]> git.proxmox.com Git - mirror_qemu.git/blob - hw/core/loader.c
Include sysemu/reset.h a lot less
[mirror_qemu.git] / hw / core / loader.c
1 /*
2 * QEMU Executable loader
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 *
24 * Gunzip functionality in this file is derived from u-boot:
25 *
26 * (C) Copyright 2008 Semihalf
27 *
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
35 *
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
43 */
44
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qapi/error.h"
48 #include "hw/hw.h"
49 #include "disas/disas.h"
50 #include "monitor/monitor.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/sysemu.h"
53 #include "uboot_image.h"
54 #include "hw/loader.h"
55 #include "hw/nvram/fw_cfg.h"
56 #include "exec/memory.h"
57 #include "exec/address-spaces.h"
58 #include "hw/boards.h"
59 #include "qemu/cutils.h"
60
61 #include <zlib.h>
62
63 static int roms_loaded;
64
65 /* return the size or -1 if error */
66 int64_t get_image_size(const char *filename)
67 {
68 int fd;
69 int64_t size;
70 fd = open(filename, O_RDONLY | O_BINARY);
71 if (fd < 0)
72 return -1;
73 size = lseek(fd, 0, SEEK_END);
74 close(fd);
75 return size;
76 }
77
78 /* return the size or -1 if error */
79 ssize_t load_image_size(const char *filename, void *addr, size_t size)
80 {
81 int fd;
82 ssize_t actsize, l = 0;
83
84 fd = open(filename, O_RDONLY | O_BINARY);
85 if (fd < 0) {
86 return -1;
87 }
88
89 while ((actsize = read(fd, addr + l, size - l)) > 0) {
90 l += actsize;
91 }
92
93 close(fd);
94
95 return actsize < 0 ? -1 : l;
96 }
97
98 /* read()-like version */
99 ssize_t read_targphys(const char *name,
100 int fd, hwaddr dst_addr, size_t nbytes)
101 {
102 uint8_t *buf;
103 ssize_t did;
104
105 buf = g_malloc(nbytes);
106 did = read(fd, buf, nbytes);
107 if (did > 0)
108 rom_add_blob_fixed("read", buf, did, dst_addr);
109 g_free(buf);
110 return did;
111 }
112
113 int load_image_targphys(const char *filename,
114 hwaddr addr, uint64_t max_sz)
115 {
116 return load_image_targphys_as(filename, addr, max_sz, NULL);
117 }
118
119 /* return the size or -1 if error */
120 int load_image_targphys_as(const char *filename,
121 hwaddr addr, uint64_t max_sz, AddressSpace *as)
122 {
123 int size;
124
125 size = get_image_size(filename);
126 if (size < 0 || size > max_sz) {
127 return -1;
128 }
129 if (size > 0) {
130 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
131 return -1;
132 }
133 }
134 return size;
135 }
136
137 int load_image_mr(const char *filename, MemoryRegion *mr)
138 {
139 int size;
140
141 if (!memory_access_is_direct(mr, false)) {
142 /* Can only load an image into RAM or ROM */
143 return -1;
144 }
145
146 size = get_image_size(filename);
147
148 if (size < 0 || size > memory_region_size(mr)) {
149 return -1;
150 }
151 if (size > 0) {
152 if (rom_add_file_mr(filename, mr, -1) < 0) {
153 return -1;
154 }
155 }
156 return size;
157 }
158
159 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
160 const char *source)
161 {
162 const char *nulp;
163 char *ptr;
164
165 if (buf_size <= 0) return;
166 nulp = memchr(source, 0, buf_size);
167 if (nulp) {
168 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
169 } else {
170 rom_add_blob_fixed(name, source, buf_size, dest);
171 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
172 *ptr = 0;
173 }
174 }
175
176 /* A.OUT loader */
177
178 struct exec
179 {
180 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
181 uint32_t a_text; /* length of text, in bytes */
182 uint32_t a_data; /* length of data, in bytes */
183 uint32_t a_bss; /* length of uninitialized data area, in bytes */
184 uint32_t a_syms; /* length of symbol table data in file, in bytes */
185 uint32_t a_entry; /* start address */
186 uint32_t a_trsize; /* length of relocation info for text, in bytes */
187 uint32_t a_drsize; /* length of relocation info for data, in bytes */
188 };
189
190 static void bswap_ahdr(struct exec *e)
191 {
192 bswap32s(&e->a_info);
193 bswap32s(&e->a_text);
194 bswap32s(&e->a_data);
195 bswap32s(&e->a_bss);
196 bswap32s(&e->a_syms);
197 bswap32s(&e->a_entry);
198 bswap32s(&e->a_trsize);
199 bswap32s(&e->a_drsize);
200 }
201
202 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
203 #define OMAGIC 0407
204 #define NMAGIC 0410
205 #define ZMAGIC 0413
206 #define QMAGIC 0314
207 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
208 #define N_TXTOFF(x) \
209 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
210 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
211 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
212 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
213
214 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
215
216 #define N_DATADDR(x, target_page_size) \
217 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
218 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
219
220
221 int load_aout(const char *filename, hwaddr addr, int max_sz,
222 int bswap_needed, hwaddr target_page_size)
223 {
224 int fd;
225 ssize_t size, ret;
226 struct exec e;
227 uint32_t magic;
228
229 fd = open(filename, O_RDONLY | O_BINARY);
230 if (fd < 0)
231 return -1;
232
233 size = read(fd, &e, sizeof(e));
234 if (size < 0)
235 goto fail;
236
237 if (bswap_needed) {
238 bswap_ahdr(&e);
239 }
240
241 magic = N_MAGIC(e);
242 switch (magic) {
243 case ZMAGIC:
244 case QMAGIC:
245 case OMAGIC:
246 if (e.a_text + e.a_data > max_sz)
247 goto fail;
248 lseek(fd, N_TXTOFF(e), SEEK_SET);
249 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
250 if (size < 0)
251 goto fail;
252 break;
253 case NMAGIC:
254 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
255 goto fail;
256 lseek(fd, N_TXTOFF(e), SEEK_SET);
257 size = read_targphys(filename, fd, addr, e.a_text);
258 if (size < 0)
259 goto fail;
260 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
261 e.a_data);
262 if (ret < 0)
263 goto fail;
264 size += ret;
265 break;
266 default:
267 goto fail;
268 }
269 close(fd);
270 return size;
271 fail:
272 close(fd);
273 return -1;
274 }
275
276 /* ELF loader */
277
278 static void *load_at(int fd, off_t offset, size_t size)
279 {
280 void *ptr;
281 if (lseek(fd, offset, SEEK_SET) < 0)
282 return NULL;
283 ptr = g_malloc(size);
284 if (read(fd, ptr, size) != size) {
285 g_free(ptr);
286 return NULL;
287 }
288 return ptr;
289 }
290
291 #ifdef ELF_CLASS
292 #undef ELF_CLASS
293 #endif
294
295 #define ELF_CLASS ELFCLASS32
296 #include "elf.h"
297
298 #define SZ 32
299 #define elf_word uint32_t
300 #define elf_sword int32_t
301 #define bswapSZs bswap32s
302 #include "hw/elf_ops.h"
303
304 #undef elfhdr
305 #undef elf_phdr
306 #undef elf_shdr
307 #undef elf_sym
308 #undef elf_rela
309 #undef elf_note
310 #undef elf_word
311 #undef elf_sword
312 #undef bswapSZs
313 #undef SZ
314 #define elfhdr elf64_hdr
315 #define elf_phdr elf64_phdr
316 #define elf_note elf64_note
317 #define elf_shdr elf64_shdr
318 #define elf_sym elf64_sym
319 #define elf_rela elf64_rela
320 #define elf_word uint64_t
321 #define elf_sword int64_t
322 #define bswapSZs bswap64s
323 #define SZ 64
324 #include "hw/elf_ops.h"
325
326 const char *load_elf_strerror(int error)
327 {
328 switch (error) {
329 case 0:
330 return "No error";
331 case ELF_LOAD_FAILED:
332 return "Failed to load ELF";
333 case ELF_LOAD_NOT_ELF:
334 return "The image is not ELF";
335 case ELF_LOAD_WRONG_ARCH:
336 return "The image is from incompatible architecture";
337 case ELF_LOAD_WRONG_ENDIAN:
338 return "The image has incorrect endianness";
339 default:
340 return "Unknown error";
341 }
342 }
343
344 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
345 {
346 int fd;
347 uint8_t e_ident_local[EI_NIDENT];
348 uint8_t *e_ident;
349 size_t hdr_size, off;
350 bool is64l;
351
352 if (!hdr) {
353 hdr = e_ident_local;
354 }
355 e_ident = hdr;
356
357 fd = open(filename, O_RDONLY | O_BINARY);
358 if (fd < 0) {
359 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
360 return;
361 }
362 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
363 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
364 goto fail;
365 }
366 if (e_ident[0] != ELFMAG0 ||
367 e_ident[1] != ELFMAG1 ||
368 e_ident[2] != ELFMAG2 ||
369 e_ident[3] != ELFMAG3) {
370 error_setg(errp, "Bad ELF magic");
371 goto fail;
372 }
373
374 is64l = e_ident[EI_CLASS] == ELFCLASS64;
375 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
376 if (is64) {
377 *is64 = is64l;
378 }
379
380 off = EI_NIDENT;
381 while (hdr != e_ident_local && off < hdr_size) {
382 size_t br = read(fd, hdr + off, hdr_size - off);
383 switch (br) {
384 case 0:
385 error_setg(errp, "File too short: %s", filename);
386 goto fail;
387 case -1:
388 error_setg_errno(errp, errno, "Failed to read file: %s",
389 filename);
390 goto fail;
391 }
392 off += br;
393 }
394
395 fail:
396 close(fd);
397 }
398
399 /* return < 0 if error, otherwise the number of bytes loaded in memory */
400 int load_elf(const char *filename,
401 uint64_t (*elf_note_fn)(void *, void *, bool),
402 uint64_t (*translate_fn)(void *, uint64_t),
403 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
404 uint64_t *highaddr, int big_endian, int elf_machine,
405 int clear_lsb, int data_swab)
406 {
407 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
408 pentry, lowaddr, highaddr, big_endian, elf_machine,
409 clear_lsb, data_swab, NULL);
410 }
411
412 /* return < 0 if error, otherwise the number of bytes loaded in memory */
413 int load_elf_as(const char *filename,
414 uint64_t (*elf_note_fn)(void *, void *, bool),
415 uint64_t (*translate_fn)(void *, uint64_t),
416 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
417 uint64_t *highaddr, int big_endian, int elf_machine,
418 int clear_lsb, int data_swab, AddressSpace *as)
419 {
420 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
421 pentry, lowaddr, highaddr, big_endian, elf_machine,
422 clear_lsb, data_swab, as, true);
423 }
424
425 /* return < 0 if error, otherwise the number of bytes loaded in memory */
426 int load_elf_ram(const char *filename,
427 uint64_t (*elf_note_fn)(void *, void *, bool),
428 uint64_t (*translate_fn)(void *, uint64_t),
429 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
430 uint64_t *highaddr, int big_endian, int elf_machine,
431 int clear_lsb, int data_swab, AddressSpace *as,
432 bool load_rom)
433 {
434 return load_elf_ram_sym(filename, elf_note_fn,
435 translate_fn, translate_opaque,
436 pentry, lowaddr, highaddr, big_endian,
437 elf_machine, clear_lsb, data_swab, as,
438 load_rom, NULL);
439 }
440
441 /* return < 0 if error, otherwise the number of bytes loaded in memory */
442 int load_elf_ram_sym(const char *filename,
443 uint64_t (*elf_note_fn)(void *, void *, bool),
444 uint64_t (*translate_fn)(void *, uint64_t),
445 void *translate_opaque, uint64_t *pentry,
446 uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
447 int elf_machine, int clear_lsb, int data_swab,
448 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
449 {
450 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
451 uint8_t e_ident[EI_NIDENT];
452
453 fd = open(filename, O_RDONLY | O_BINARY);
454 if (fd < 0) {
455 perror(filename);
456 return -1;
457 }
458 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
459 goto fail;
460 if (e_ident[0] != ELFMAG0 ||
461 e_ident[1] != ELFMAG1 ||
462 e_ident[2] != ELFMAG2 ||
463 e_ident[3] != ELFMAG3) {
464 ret = ELF_LOAD_NOT_ELF;
465 goto fail;
466 }
467 #ifdef HOST_WORDS_BIGENDIAN
468 data_order = ELFDATA2MSB;
469 #else
470 data_order = ELFDATA2LSB;
471 #endif
472 must_swab = data_order != e_ident[EI_DATA];
473 if (big_endian) {
474 target_data_order = ELFDATA2MSB;
475 } else {
476 target_data_order = ELFDATA2LSB;
477 }
478
479 if (target_data_order != e_ident[EI_DATA]) {
480 ret = ELF_LOAD_WRONG_ENDIAN;
481 goto fail;
482 }
483
484 lseek(fd, 0, SEEK_SET);
485 if (e_ident[EI_CLASS] == ELFCLASS64) {
486 ret = load_elf64(filename, fd, elf_note_fn,
487 translate_fn, translate_opaque, must_swab,
488 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
489 data_swab, as, load_rom, sym_cb);
490 } else {
491 ret = load_elf32(filename, fd, elf_note_fn,
492 translate_fn, translate_opaque, must_swab,
493 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
494 data_swab, as, load_rom, sym_cb);
495 }
496
497 fail:
498 close(fd);
499 return ret;
500 }
501
502 static void bswap_uboot_header(uboot_image_header_t *hdr)
503 {
504 #ifndef HOST_WORDS_BIGENDIAN
505 bswap32s(&hdr->ih_magic);
506 bswap32s(&hdr->ih_hcrc);
507 bswap32s(&hdr->ih_time);
508 bswap32s(&hdr->ih_size);
509 bswap32s(&hdr->ih_load);
510 bswap32s(&hdr->ih_ep);
511 bswap32s(&hdr->ih_dcrc);
512 #endif
513 }
514
515
516 #define ZALLOC_ALIGNMENT 16
517
518 static void *zalloc(void *x, unsigned items, unsigned size)
519 {
520 void *p;
521
522 size *= items;
523 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
524
525 p = g_malloc(size);
526
527 return (p);
528 }
529
530 static void zfree(void *x, void *addr)
531 {
532 g_free(addr);
533 }
534
535
536 #define HEAD_CRC 2
537 #define EXTRA_FIELD 4
538 #define ORIG_NAME 8
539 #define COMMENT 0x10
540 #define RESERVED 0xe0
541
542 #define DEFLATED 8
543
544 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
545 {
546 z_stream s;
547 ssize_t dstbytes;
548 int r, i, flags;
549
550 /* skip header */
551 i = 10;
552 flags = src[3];
553 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
554 puts ("Error: Bad gzipped data\n");
555 return -1;
556 }
557 if ((flags & EXTRA_FIELD) != 0)
558 i = 12 + src[10] + (src[11] << 8);
559 if ((flags & ORIG_NAME) != 0)
560 while (src[i++] != 0)
561 ;
562 if ((flags & COMMENT) != 0)
563 while (src[i++] != 0)
564 ;
565 if ((flags & HEAD_CRC) != 0)
566 i += 2;
567 if (i >= srclen) {
568 puts ("Error: gunzip out of data in header\n");
569 return -1;
570 }
571
572 s.zalloc = zalloc;
573 s.zfree = zfree;
574
575 r = inflateInit2(&s, -MAX_WBITS);
576 if (r != Z_OK) {
577 printf ("Error: inflateInit2() returned %d\n", r);
578 return (-1);
579 }
580 s.next_in = src + i;
581 s.avail_in = srclen - i;
582 s.next_out = dst;
583 s.avail_out = dstlen;
584 r = inflate(&s, Z_FINISH);
585 if (r != Z_OK && r != Z_STREAM_END) {
586 printf ("Error: inflate() returned %d\n", r);
587 return -1;
588 }
589 dstbytes = s.next_out - (unsigned char *) dst;
590 inflateEnd(&s);
591
592 return dstbytes;
593 }
594
595 /* Load a U-Boot image. */
596 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
597 int *is_linux, uint8_t image_type,
598 uint64_t (*translate_fn)(void *, uint64_t),
599 void *translate_opaque, AddressSpace *as)
600 {
601 int fd;
602 int size;
603 hwaddr address;
604 uboot_image_header_t h;
605 uboot_image_header_t *hdr = &h;
606 uint8_t *data = NULL;
607 int ret = -1;
608 int do_uncompress = 0;
609
610 fd = open(filename, O_RDONLY | O_BINARY);
611 if (fd < 0)
612 return -1;
613
614 size = read(fd, hdr, sizeof(uboot_image_header_t));
615 if (size < sizeof(uboot_image_header_t)) {
616 goto out;
617 }
618
619 bswap_uboot_header(hdr);
620
621 if (hdr->ih_magic != IH_MAGIC)
622 goto out;
623
624 if (hdr->ih_type != image_type) {
625 if (!(image_type == IH_TYPE_KERNEL &&
626 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
627 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
628 image_type);
629 goto out;
630 }
631 }
632
633 /* TODO: Implement other image types. */
634 switch (hdr->ih_type) {
635 case IH_TYPE_KERNEL_NOLOAD:
636 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
637 fprintf(stderr, "this image format (kernel_noload) cannot be "
638 "loaded on this machine type");
639 goto out;
640 }
641
642 hdr->ih_load = *loadaddr + sizeof(*hdr);
643 hdr->ih_ep += hdr->ih_load;
644 /* fall through */
645 case IH_TYPE_KERNEL:
646 address = hdr->ih_load;
647 if (translate_fn) {
648 address = translate_fn(translate_opaque, address);
649 }
650 if (loadaddr) {
651 *loadaddr = hdr->ih_load;
652 }
653
654 switch (hdr->ih_comp) {
655 case IH_COMP_NONE:
656 break;
657 case IH_COMP_GZIP:
658 do_uncompress = 1;
659 break;
660 default:
661 fprintf(stderr,
662 "Unable to load u-boot images with compression type %d\n",
663 hdr->ih_comp);
664 goto out;
665 }
666
667 if (ep) {
668 *ep = hdr->ih_ep;
669 }
670
671 /* TODO: Check CPU type. */
672 if (is_linux) {
673 if (hdr->ih_os == IH_OS_LINUX) {
674 *is_linux = 1;
675 } else {
676 *is_linux = 0;
677 }
678 }
679
680 break;
681 case IH_TYPE_RAMDISK:
682 address = *loadaddr;
683 break;
684 default:
685 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
686 goto out;
687 }
688
689 data = g_malloc(hdr->ih_size);
690
691 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
692 fprintf(stderr, "Error reading file\n");
693 goto out;
694 }
695
696 if (do_uncompress) {
697 uint8_t *compressed_data;
698 size_t max_bytes;
699 ssize_t bytes;
700
701 compressed_data = data;
702 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
703 data = g_malloc(max_bytes);
704
705 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
706 g_free(compressed_data);
707 if (bytes < 0) {
708 fprintf(stderr, "Unable to decompress gzipped image!\n");
709 goto out;
710 }
711 hdr->ih_size = bytes;
712 }
713
714 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
715
716 ret = hdr->ih_size;
717
718 out:
719 g_free(data);
720 close(fd);
721 return ret;
722 }
723
724 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
725 int *is_linux,
726 uint64_t (*translate_fn)(void *, uint64_t),
727 void *translate_opaque)
728 {
729 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
730 translate_fn, translate_opaque, NULL);
731 }
732
733 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
734 int *is_linux,
735 uint64_t (*translate_fn)(void *, uint64_t),
736 void *translate_opaque, AddressSpace *as)
737 {
738 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
739 translate_fn, translate_opaque, as);
740 }
741
742 /* Load a ramdisk. */
743 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
744 {
745 return load_ramdisk_as(filename, addr, max_sz, NULL);
746 }
747
748 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
749 AddressSpace *as)
750 {
751 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
752 NULL, NULL, as);
753 }
754
755 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
756 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
757 uint8_t **buffer)
758 {
759 uint8_t *compressed_data = NULL;
760 uint8_t *data = NULL;
761 gsize len;
762 ssize_t bytes;
763 int ret = -1;
764
765 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
766 NULL)) {
767 goto out;
768 }
769
770 /* Is it a gzip-compressed file? */
771 if (len < 2 ||
772 compressed_data[0] != 0x1f ||
773 compressed_data[1] != 0x8b) {
774 goto out;
775 }
776
777 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
778 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
779 }
780
781 data = g_malloc(max_sz);
782 bytes = gunzip(data, max_sz, compressed_data, len);
783 if (bytes < 0) {
784 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
785 filename);
786 goto out;
787 }
788
789 /* trim to actual size and return to caller */
790 *buffer = g_realloc(data, bytes);
791 ret = bytes;
792 /* ownership has been transferred to caller */
793 data = NULL;
794
795 out:
796 g_free(compressed_data);
797 g_free(data);
798 return ret;
799 }
800
801 /* Load a gzip-compressed kernel. */
802 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
803 {
804 int bytes;
805 uint8_t *data;
806
807 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
808 if (bytes != -1) {
809 rom_add_blob_fixed(filename, data, bytes, addr);
810 g_free(data);
811 }
812 return bytes;
813 }
814
815 /*
816 * Functions for reboot-persistent memory regions.
817 * - used for vga bios and option roms.
818 * - also linux kernel (-kernel / -initrd).
819 */
820
821 typedef struct Rom Rom;
822
823 struct Rom {
824 char *name;
825 char *path;
826
827 /* datasize is the amount of memory allocated in "data". If datasize is less
828 * than romsize, it means that the area from datasize to romsize is filled
829 * with zeros.
830 */
831 size_t romsize;
832 size_t datasize;
833
834 uint8_t *data;
835 MemoryRegion *mr;
836 AddressSpace *as;
837 int isrom;
838 char *fw_dir;
839 char *fw_file;
840
841 bool committed;
842
843 hwaddr addr;
844 QTAILQ_ENTRY(Rom) next;
845 };
846
847 static FWCfgState *fw_cfg;
848 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
849
850 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */
851 static void rom_free(Rom *rom)
852 {
853 g_free(rom->data);
854 g_free(rom->path);
855 g_free(rom->name);
856 g_free(rom->fw_dir);
857 g_free(rom->fw_file);
858 g_free(rom);
859 }
860
861 static inline bool rom_order_compare(Rom *rom, Rom *item)
862 {
863 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
864 (rom->as == item->as && rom->addr >= item->addr);
865 }
866
867 static void rom_insert(Rom *rom)
868 {
869 Rom *item;
870
871 if (roms_loaded) {
872 hw_error ("ROM images must be loaded at startup\n");
873 }
874
875 /* The user didn't specify an address space, this is the default */
876 if (!rom->as) {
877 rom->as = &address_space_memory;
878 }
879
880 rom->committed = false;
881
882 /* List is ordered by load address in the same address space */
883 QTAILQ_FOREACH(item, &roms, next) {
884 if (rom_order_compare(rom, item)) {
885 continue;
886 }
887 QTAILQ_INSERT_BEFORE(item, rom, next);
888 return;
889 }
890 QTAILQ_INSERT_TAIL(&roms, rom, next);
891 }
892
893 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
894 {
895 if (fw_cfg) {
896 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
897 }
898 }
899
900 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
901 {
902 void *data;
903
904 rom->mr = g_malloc(sizeof(*rom->mr));
905 memory_region_init_resizeable_ram(rom->mr, owner, name,
906 rom->datasize, rom->romsize,
907 fw_cfg_resized,
908 &error_fatal);
909 memory_region_set_readonly(rom->mr, ro);
910 vmstate_register_ram_global(rom->mr);
911
912 data = memory_region_get_ram_ptr(rom->mr);
913 memcpy(data, rom->data, rom->datasize);
914
915 return data;
916 }
917
918 int rom_add_file(const char *file, const char *fw_dir,
919 hwaddr addr, int32_t bootindex,
920 bool option_rom, MemoryRegion *mr,
921 AddressSpace *as)
922 {
923 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
924 Rom *rom;
925 int rc, fd = -1;
926 char devpath[100];
927
928 if (as && mr) {
929 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
930 "not valid when loading a rom\n");
931 /* We haven't allocated anything so we don't need any cleanup */
932 return -1;
933 }
934
935 rom = g_malloc0(sizeof(*rom));
936 rom->name = g_strdup(file);
937 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
938 rom->as = as;
939 if (rom->path == NULL) {
940 rom->path = g_strdup(file);
941 }
942
943 fd = open(rom->path, O_RDONLY | O_BINARY);
944 if (fd == -1) {
945 fprintf(stderr, "Could not open option rom '%s': %s\n",
946 rom->path, strerror(errno));
947 goto err;
948 }
949
950 if (fw_dir) {
951 rom->fw_dir = g_strdup(fw_dir);
952 rom->fw_file = g_strdup(file);
953 }
954 rom->addr = addr;
955 rom->romsize = lseek(fd, 0, SEEK_END);
956 if (rom->romsize == -1) {
957 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
958 rom->name, strerror(errno));
959 goto err;
960 }
961
962 rom->datasize = rom->romsize;
963 rom->data = g_malloc0(rom->datasize);
964 lseek(fd, 0, SEEK_SET);
965 rc = read(fd, rom->data, rom->datasize);
966 if (rc != rom->datasize) {
967 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
968 rom->name, rc, rom->datasize);
969 goto err;
970 }
971 close(fd);
972 rom_insert(rom);
973 if (rom->fw_file && fw_cfg) {
974 const char *basename;
975 char fw_file_name[FW_CFG_MAX_FILE_PATH];
976 void *data;
977
978 basename = strrchr(rom->fw_file, '/');
979 if (basename) {
980 basename++;
981 } else {
982 basename = rom->fw_file;
983 }
984 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
985 basename);
986 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
987
988 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
989 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
990 } else {
991 data = rom->data;
992 }
993
994 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
995 } else {
996 if (mr) {
997 rom->mr = mr;
998 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
999 } else {
1000 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1001 }
1002 }
1003
1004 add_boot_device_path(bootindex, NULL, devpath);
1005 return 0;
1006
1007 err:
1008 if (fd != -1)
1009 close(fd);
1010
1011 rom_free(rom);
1012 return -1;
1013 }
1014
1015 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1016 size_t max_len, hwaddr addr, const char *fw_file_name,
1017 FWCfgCallback fw_callback, void *callback_opaque,
1018 AddressSpace *as, bool read_only)
1019 {
1020 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1021 Rom *rom;
1022 MemoryRegion *mr = NULL;
1023
1024 rom = g_malloc0(sizeof(*rom));
1025 rom->name = g_strdup(name);
1026 rom->as = as;
1027 rom->addr = addr;
1028 rom->romsize = max_len ? max_len : len;
1029 rom->datasize = len;
1030 g_assert(rom->romsize >= rom->datasize);
1031 rom->data = g_malloc0(rom->datasize);
1032 memcpy(rom->data, blob, len);
1033 rom_insert(rom);
1034 if (fw_file_name && fw_cfg) {
1035 char devpath[100];
1036 void *data;
1037
1038 if (read_only) {
1039 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1040 } else {
1041 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1042 }
1043
1044 if (mc->rom_file_has_mr) {
1045 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1046 mr = rom->mr;
1047 } else {
1048 data = rom->data;
1049 }
1050
1051 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1052 fw_callback, NULL, callback_opaque,
1053 data, rom->datasize, read_only);
1054 }
1055 return mr;
1056 }
1057
1058 /* This function is specific for elf program because we don't need to allocate
1059 * all the rom. We just allocate the first part and the rest is just zeros. This
1060 * is why romsize and datasize are different. Also, this function seize the
1061 * memory ownership of "data", so we don't have to allocate and copy the buffer.
1062 */
1063 int rom_add_elf_program(const char *name, void *data, size_t datasize,
1064 size_t romsize, hwaddr addr, AddressSpace *as)
1065 {
1066 Rom *rom;
1067
1068 rom = g_malloc0(sizeof(*rom));
1069 rom->name = g_strdup(name);
1070 rom->addr = addr;
1071 rom->datasize = datasize;
1072 rom->romsize = romsize;
1073 rom->data = data;
1074 rom->as = as;
1075 rom_insert(rom);
1076 return 0;
1077 }
1078
1079 int rom_add_vga(const char *file)
1080 {
1081 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1082 }
1083
1084 int rom_add_option(const char *file, int32_t bootindex)
1085 {
1086 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1087 }
1088
1089 static void rom_reset(void *unused)
1090 {
1091 Rom *rom;
1092
1093 QTAILQ_FOREACH(rom, &roms, next) {
1094 if (rom->fw_file) {
1095 continue;
1096 }
1097 if (rom->data == NULL) {
1098 continue;
1099 }
1100 if (rom->mr) {
1101 void *host = memory_region_get_ram_ptr(rom->mr);
1102 memcpy(host, rom->data, rom->datasize);
1103 } else {
1104 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1105 rom->data, rom->datasize);
1106 }
1107 if (rom->isrom) {
1108 /* rom needs to be written only once */
1109 g_free(rom->data);
1110 rom->data = NULL;
1111 }
1112 /*
1113 * The rom loader is really on the same level as firmware in the guest
1114 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1115 * that the instruction cache for that new region is clear, so that the
1116 * CPU definitely fetches its instructions from the just written data.
1117 */
1118 cpu_flush_icache_range(rom->addr, rom->datasize);
1119 }
1120 }
1121
1122 int rom_check_and_register_reset(void)
1123 {
1124 hwaddr addr = 0;
1125 MemoryRegionSection section;
1126 Rom *rom;
1127 AddressSpace *as = NULL;
1128
1129 QTAILQ_FOREACH(rom, &roms, next) {
1130 if (rom->fw_file) {
1131 continue;
1132 }
1133 if (!rom->mr) {
1134 if ((addr > rom->addr) && (as == rom->as)) {
1135 fprintf(stderr, "rom: requested regions overlap "
1136 "(rom %s. free=0x" TARGET_FMT_plx
1137 ", addr=0x" TARGET_FMT_plx ")\n",
1138 rom->name, addr, rom->addr);
1139 return -1;
1140 }
1141 addr = rom->addr;
1142 addr += rom->romsize;
1143 as = rom->as;
1144 }
1145 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1146 rom->addr, 1);
1147 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1148 memory_region_unref(section.mr);
1149 }
1150 qemu_register_reset(rom_reset, NULL);
1151 roms_loaded = 1;
1152 return 0;
1153 }
1154
1155 void rom_set_fw(FWCfgState *f)
1156 {
1157 fw_cfg = f;
1158 }
1159
1160 void rom_set_order_override(int order)
1161 {
1162 if (!fw_cfg)
1163 return;
1164 fw_cfg_set_order_override(fw_cfg, order);
1165 }
1166
1167 void rom_reset_order_override(void)
1168 {
1169 if (!fw_cfg)
1170 return;
1171 fw_cfg_reset_order_override(fw_cfg);
1172 }
1173
1174 void rom_transaction_begin(void)
1175 {
1176 Rom *rom;
1177
1178 /* Ignore ROMs added without the transaction API */
1179 QTAILQ_FOREACH(rom, &roms, next) {
1180 rom->committed = true;
1181 }
1182 }
1183
1184 void rom_transaction_end(bool commit)
1185 {
1186 Rom *rom;
1187 Rom *tmp;
1188
1189 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1190 if (rom->committed) {
1191 continue;
1192 }
1193 if (commit) {
1194 rom->committed = true;
1195 } else {
1196 QTAILQ_REMOVE(&roms, rom, next);
1197 rom_free(rom);
1198 }
1199 }
1200 }
1201
1202 static Rom *find_rom(hwaddr addr, size_t size)
1203 {
1204 Rom *rom;
1205
1206 QTAILQ_FOREACH(rom, &roms, next) {
1207 if (rom->fw_file) {
1208 continue;
1209 }
1210 if (rom->mr) {
1211 continue;
1212 }
1213 if (rom->addr > addr) {
1214 continue;
1215 }
1216 if (rom->addr + rom->romsize < addr + size) {
1217 continue;
1218 }
1219 return rom;
1220 }
1221 return NULL;
1222 }
1223
1224 /*
1225 * Copies memory from registered ROMs to dest. Any memory that is contained in
1226 * a ROM between addr and addr + size is copied. Note that this can involve
1227 * multiple ROMs, which need not start at addr and need not end at addr + size.
1228 */
1229 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1230 {
1231 hwaddr end = addr + size;
1232 uint8_t *s, *d = dest;
1233 size_t l = 0;
1234 Rom *rom;
1235
1236 QTAILQ_FOREACH(rom, &roms, next) {
1237 if (rom->fw_file) {
1238 continue;
1239 }
1240 if (rom->mr) {
1241 continue;
1242 }
1243 if (rom->addr + rom->romsize < addr) {
1244 continue;
1245 }
1246 if (rom->addr > end) {
1247 break;
1248 }
1249
1250 d = dest + (rom->addr - addr);
1251 s = rom->data;
1252 l = rom->datasize;
1253
1254 if ((d + l) > (dest + size)) {
1255 l = dest - d;
1256 }
1257
1258 if (l > 0) {
1259 memcpy(d, s, l);
1260 }
1261
1262 if (rom->romsize > rom->datasize) {
1263 /* If datasize is less than romsize, it means that we didn't
1264 * allocate all the ROM because the trailing data are only zeros.
1265 */
1266
1267 d += l;
1268 l = rom->romsize - rom->datasize;
1269
1270 if ((d + l) > (dest + size)) {
1271 /* Rom size doesn't fit in the destination area. Adjust to avoid
1272 * overflow.
1273 */
1274 l = dest - d;
1275 }
1276
1277 if (l > 0) {
1278 memset(d, 0x0, l);
1279 }
1280 }
1281 }
1282
1283 return (d + l) - dest;
1284 }
1285
1286 void *rom_ptr(hwaddr addr, size_t size)
1287 {
1288 Rom *rom;
1289
1290 rom = find_rom(addr, size);
1291 if (!rom || !rom->data)
1292 return NULL;
1293 return rom->data + (addr - rom->addr);
1294 }
1295
1296 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1297 {
1298 Rom *rom;
1299
1300 QTAILQ_FOREACH(rom, &roms, next) {
1301 if (rom->mr) {
1302 monitor_printf(mon, "%s"
1303 " size=0x%06zx name=\"%s\"\n",
1304 memory_region_name(rom->mr),
1305 rom->romsize,
1306 rom->name);
1307 } else if (!rom->fw_file) {
1308 monitor_printf(mon, "addr=" TARGET_FMT_plx
1309 " size=0x%06zx mem=%s name=\"%s\"\n",
1310 rom->addr, rom->romsize,
1311 rom->isrom ? "rom" : "ram",
1312 rom->name);
1313 } else {
1314 monitor_printf(mon, "fw=%s/%s"
1315 " size=0x%06zx name=\"%s\"\n",
1316 rom->fw_dir,
1317 rom->fw_file,
1318 rom->romsize,
1319 rom->name);
1320 }
1321 }
1322 }
1323
1324 typedef enum HexRecord HexRecord;
1325 enum HexRecord {
1326 DATA_RECORD = 0,
1327 EOF_RECORD,
1328 EXT_SEG_ADDR_RECORD,
1329 START_SEG_ADDR_RECORD,
1330 EXT_LINEAR_ADDR_RECORD,
1331 START_LINEAR_ADDR_RECORD,
1332 };
1333
1334 /* Each record contains a 16-bit address which is combined with the upper 16
1335 * bits of the implicit "next address" to form a 32-bit address.
1336 */
1337 #define NEXT_ADDR_MASK 0xffff0000
1338
1339 #define DATA_FIELD_MAX_LEN 0xff
1340 #define LEN_EXCEPT_DATA 0x5
1341 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1342 * sizeof(checksum) */
1343 typedef struct {
1344 uint8_t byte_count;
1345 uint16_t address;
1346 uint8_t record_type;
1347 uint8_t data[DATA_FIELD_MAX_LEN];
1348 uint8_t checksum;
1349 } HexLine;
1350
1351 /* return 0 or -1 if error */
1352 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1353 uint32_t *index, const bool in_process)
1354 {
1355 /* +-------+---------------+-------+---------------------+--------+
1356 * | byte | |record | | |
1357 * | count | address | type | data |checksum|
1358 * +-------+---------------+-------+---------------------+--------+
1359 * ^ ^ ^ ^ ^ ^
1360 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1361 */
1362 uint8_t value = 0;
1363 uint32_t idx = *index;
1364 /* ignore space */
1365 if (g_ascii_isspace(c)) {
1366 return true;
1367 }
1368 if (!g_ascii_isxdigit(c) || !in_process) {
1369 return false;
1370 }
1371 value = g_ascii_xdigit_value(c);
1372 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1373 if (idx < 2) {
1374 line->byte_count |= value;
1375 } else if (2 <= idx && idx < 6) {
1376 line->address <<= 4;
1377 line->address += g_ascii_xdigit_value(c);
1378 } else if (6 <= idx && idx < 8) {
1379 line->record_type |= value;
1380 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1381 line->data[(idx - 8) >> 1] |= value;
1382 } else if (8 + 2 * line->byte_count <= idx &&
1383 idx < 10 + 2 * line->byte_count) {
1384 line->checksum |= value;
1385 } else {
1386 return false;
1387 }
1388 *our_checksum += value;
1389 ++(*index);
1390 return true;
1391 }
1392
1393 typedef struct {
1394 const char *filename;
1395 HexLine line;
1396 uint8_t *bin_buf;
1397 hwaddr *start_addr;
1398 int total_size;
1399 uint32_t next_address_to_write;
1400 uint32_t current_address;
1401 uint32_t current_rom_index;
1402 uint32_t rom_start_address;
1403 AddressSpace *as;
1404 } HexParser;
1405
1406 /* return size or -1 if error */
1407 static int handle_record_type(HexParser *parser)
1408 {
1409 HexLine *line = &(parser->line);
1410 switch (line->record_type) {
1411 case DATA_RECORD:
1412 parser->current_address =
1413 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1414 /* verify this is a contiguous block of memory */
1415 if (parser->current_address != parser->next_address_to_write) {
1416 if (parser->current_rom_index != 0) {
1417 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1418 parser->current_rom_index,
1419 parser->rom_start_address, parser->as);
1420 }
1421 parser->rom_start_address = parser->current_address;
1422 parser->current_rom_index = 0;
1423 }
1424
1425 /* copy from line buffer to output bin_buf */
1426 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1427 line->byte_count);
1428 parser->current_rom_index += line->byte_count;
1429 parser->total_size += line->byte_count;
1430 /* save next address to write */
1431 parser->next_address_to_write =
1432 parser->current_address + line->byte_count;
1433 break;
1434
1435 case EOF_RECORD:
1436 if (parser->current_rom_index != 0) {
1437 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1438 parser->current_rom_index,
1439 parser->rom_start_address, parser->as);
1440 }
1441 return parser->total_size;
1442 case EXT_SEG_ADDR_RECORD:
1443 case EXT_LINEAR_ADDR_RECORD:
1444 if (line->byte_count != 2 && line->address != 0) {
1445 return -1;
1446 }
1447
1448 if (parser->current_rom_index != 0) {
1449 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1450 parser->current_rom_index,
1451 parser->rom_start_address, parser->as);
1452 }
1453
1454 /* save next address to write,
1455 * in case of non-contiguous block of memory */
1456 parser->next_address_to_write = (line->data[0] << 12) |
1457 (line->data[1] << 4);
1458 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1459 parser->next_address_to_write <<= 12;
1460 }
1461
1462 parser->rom_start_address = parser->next_address_to_write;
1463 parser->current_rom_index = 0;
1464 break;
1465
1466 case START_SEG_ADDR_RECORD:
1467 if (line->byte_count != 4 && line->address != 0) {
1468 return -1;
1469 }
1470
1471 /* x86 16-bit CS:IP segmented addressing */
1472 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1473 ((line->data[2] << 8) | line->data[3]);
1474 break;
1475
1476 case START_LINEAR_ADDR_RECORD:
1477 if (line->byte_count != 4 && line->address != 0) {
1478 return -1;
1479 }
1480
1481 *(parser->start_addr) = ldl_be_p(line->data);
1482 break;
1483
1484 default:
1485 return -1;
1486 }
1487
1488 return parser->total_size;
1489 }
1490
1491 /* return size or -1 if error */
1492 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1493 size_t hex_blob_size, AddressSpace *as)
1494 {
1495 bool in_process = false; /* avoid re-enter and
1496 * check whether record begin with ':' */
1497 uint8_t *end = hex_blob + hex_blob_size;
1498 uint8_t our_checksum = 0;
1499 uint32_t record_index = 0;
1500 HexParser parser = {
1501 .filename = filename,
1502 .bin_buf = g_malloc(hex_blob_size),
1503 .start_addr = addr,
1504 .as = as,
1505 };
1506
1507 rom_transaction_begin();
1508
1509 for (; hex_blob < end; ++hex_blob) {
1510 switch (*hex_blob) {
1511 case '\r':
1512 case '\n':
1513 if (!in_process) {
1514 break;
1515 }
1516
1517 in_process = false;
1518 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1519 record_index ||
1520 our_checksum != 0) {
1521 parser.total_size = -1;
1522 goto out;
1523 }
1524
1525 if (handle_record_type(&parser) == -1) {
1526 parser.total_size = -1;
1527 goto out;
1528 }
1529 break;
1530
1531 /* start of a new record. */
1532 case ':':
1533 memset(&parser.line, 0, sizeof(HexLine));
1534 in_process = true;
1535 record_index = 0;
1536 break;
1537
1538 /* decoding lines */
1539 default:
1540 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1541 &record_index, in_process)) {
1542 parser.total_size = -1;
1543 goto out;
1544 }
1545 break;
1546 }
1547 }
1548
1549 out:
1550 g_free(parser.bin_buf);
1551 rom_transaction_end(parser.total_size != -1);
1552 return parser.total_size;
1553 }
1554
1555 /* return size or -1 if error */
1556 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1557 {
1558 gsize hex_blob_size;
1559 gchar *hex_blob;
1560 int total_size = 0;
1561
1562 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1563 return -1;
1564 }
1565
1566 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1567 hex_blob_size, as);
1568
1569 g_free(hex_blob);
1570 return total_size;
1571 }