]> git.proxmox.com Git - mirror_qemu.git/blob - hw/core/loader.c
roms: assert if max rom size is less than the used size
[mirror_qemu.git] / hw / core / loader.c
1 /*
2 * QEMU Executable loader
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 *
24 * Gunzip functionality in this file is derived from u-boot:
25 *
26 * (C) Copyright 2008 Semihalf
27 *
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
35 *
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
43 */
44
45 #include "qemu/osdep.h"
46 #include "qapi/error.h"
47 #include "hw/hw.h"
48 #include "disas/disas.h"
49 #include "monitor/monitor.h"
50 #include "sysemu/sysemu.h"
51 #include "uboot_image.h"
52 #include "hw/loader.h"
53 #include "hw/nvram/fw_cfg.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "hw/boards.h"
57 #include "qemu/cutils.h"
58
59 #include <zlib.h>
60
61 static int roms_loaded;
62
63 /* return the size or -1 if error */
64 int64_t get_image_size(const char *filename)
65 {
66 int fd;
67 int64_t size;
68 fd = open(filename, O_RDONLY | O_BINARY);
69 if (fd < 0)
70 return -1;
71 size = lseek(fd, 0, SEEK_END);
72 close(fd);
73 return size;
74 }
75
76 /* return the size or -1 if error */
77 ssize_t load_image_size(const char *filename, void *addr, size_t size)
78 {
79 int fd;
80 ssize_t actsize, l = 0;
81
82 fd = open(filename, O_RDONLY | O_BINARY);
83 if (fd < 0) {
84 return -1;
85 }
86
87 while ((actsize = read(fd, addr + l, size - l)) > 0) {
88 l += actsize;
89 }
90
91 close(fd);
92
93 return actsize < 0 ? -1 : l;
94 }
95
96 /* read()-like version */
97 ssize_t read_targphys(const char *name,
98 int fd, hwaddr dst_addr, size_t nbytes)
99 {
100 uint8_t *buf;
101 ssize_t did;
102
103 buf = g_malloc(nbytes);
104 did = read(fd, buf, nbytes);
105 if (did > 0)
106 rom_add_blob_fixed("read", buf, did, dst_addr);
107 g_free(buf);
108 return did;
109 }
110
111 int load_image_targphys(const char *filename,
112 hwaddr addr, uint64_t max_sz)
113 {
114 return load_image_targphys_as(filename, addr, max_sz, NULL);
115 }
116
117 /* return the size or -1 if error */
118 int load_image_targphys_as(const char *filename,
119 hwaddr addr, uint64_t max_sz, AddressSpace *as)
120 {
121 int size;
122
123 size = get_image_size(filename);
124 if (size < 0 || size > max_sz) {
125 return -1;
126 }
127 if (size > 0) {
128 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
129 return -1;
130 }
131 }
132 return size;
133 }
134
135 int load_image_mr(const char *filename, MemoryRegion *mr)
136 {
137 int size;
138
139 if (!memory_access_is_direct(mr, false)) {
140 /* Can only load an image into RAM or ROM */
141 return -1;
142 }
143
144 size = get_image_size(filename);
145
146 if (size < 0 || size > memory_region_size(mr)) {
147 return -1;
148 }
149 if (size > 0) {
150 if (rom_add_file_mr(filename, mr, -1) < 0) {
151 return -1;
152 }
153 }
154 return size;
155 }
156
157 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
158 const char *source)
159 {
160 const char *nulp;
161 char *ptr;
162
163 if (buf_size <= 0) return;
164 nulp = memchr(source, 0, buf_size);
165 if (nulp) {
166 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
167 } else {
168 rom_add_blob_fixed(name, source, buf_size, dest);
169 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
170 *ptr = 0;
171 }
172 }
173
174 /* A.OUT loader */
175
176 struct exec
177 {
178 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
179 uint32_t a_text; /* length of text, in bytes */
180 uint32_t a_data; /* length of data, in bytes */
181 uint32_t a_bss; /* length of uninitialized data area, in bytes */
182 uint32_t a_syms; /* length of symbol table data in file, in bytes */
183 uint32_t a_entry; /* start address */
184 uint32_t a_trsize; /* length of relocation info for text, in bytes */
185 uint32_t a_drsize; /* length of relocation info for data, in bytes */
186 };
187
188 static void bswap_ahdr(struct exec *e)
189 {
190 bswap32s(&e->a_info);
191 bswap32s(&e->a_text);
192 bswap32s(&e->a_data);
193 bswap32s(&e->a_bss);
194 bswap32s(&e->a_syms);
195 bswap32s(&e->a_entry);
196 bswap32s(&e->a_trsize);
197 bswap32s(&e->a_drsize);
198 }
199
200 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
201 #define OMAGIC 0407
202 #define NMAGIC 0410
203 #define ZMAGIC 0413
204 #define QMAGIC 0314
205 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
206 #define N_TXTOFF(x) \
207 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
208 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
209 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
210 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
211
212 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
213
214 #define N_DATADDR(x, target_page_size) \
215 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
216 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
217
218
219 int load_aout(const char *filename, hwaddr addr, int max_sz,
220 int bswap_needed, hwaddr target_page_size)
221 {
222 int fd;
223 ssize_t size, ret;
224 struct exec e;
225 uint32_t magic;
226
227 fd = open(filename, O_RDONLY | O_BINARY);
228 if (fd < 0)
229 return -1;
230
231 size = read(fd, &e, sizeof(e));
232 if (size < 0)
233 goto fail;
234
235 if (bswap_needed) {
236 bswap_ahdr(&e);
237 }
238
239 magic = N_MAGIC(e);
240 switch (magic) {
241 case ZMAGIC:
242 case QMAGIC:
243 case OMAGIC:
244 if (e.a_text + e.a_data > max_sz)
245 goto fail;
246 lseek(fd, N_TXTOFF(e), SEEK_SET);
247 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
248 if (size < 0)
249 goto fail;
250 break;
251 case NMAGIC:
252 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
253 goto fail;
254 lseek(fd, N_TXTOFF(e), SEEK_SET);
255 size = read_targphys(filename, fd, addr, e.a_text);
256 if (size < 0)
257 goto fail;
258 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
259 e.a_data);
260 if (ret < 0)
261 goto fail;
262 size += ret;
263 break;
264 default:
265 goto fail;
266 }
267 close(fd);
268 return size;
269 fail:
270 close(fd);
271 return -1;
272 }
273
274 /* ELF loader */
275
276 static void *load_at(int fd, off_t offset, size_t size)
277 {
278 void *ptr;
279 if (lseek(fd, offset, SEEK_SET) < 0)
280 return NULL;
281 ptr = g_malloc(size);
282 if (read(fd, ptr, size) != size) {
283 g_free(ptr);
284 return NULL;
285 }
286 return ptr;
287 }
288
289 #ifdef ELF_CLASS
290 #undef ELF_CLASS
291 #endif
292
293 #define ELF_CLASS ELFCLASS32
294 #include "elf.h"
295
296 #define SZ 32
297 #define elf_word uint32_t
298 #define elf_sword int32_t
299 #define bswapSZs bswap32s
300 #include "hw/elf_ops.h"
301
302 #undef elfhdr
303 #undef elf_phdr
304 #undef elf_shdr
305 #undef elf_sym
306 #undef elf_rela
307 #undef elf_note
308 #undef elf_word
309 #undef elf_sword
310 #undef bswapSZs
311 #undef SZ
312 #define elfhdr elf64_hdr
313 #define elf_phdr elf64_phdr
314 #define elf_note elf64_note
315 #define elf_shdr elf64_shdr
316 #define elf_sym elf64_sym
317 #define elf_rela elf64_rela
318 #define elf_word uint64_t
319 #define elf_sword int64_t
320 #define bswapSZs bswap64s
321 #define SZ 64
322 #include "hw/elf_ops.h"
323
324 const char *load_elf_strerror(int error)
325 {
326 switch (error) {
327 case 0:
328 return "No error";
329 case ELF_LOAD_FAILED:
330 return "Failed to load ELF";
331 case ELF_LOAD_NOT_ELF:
332 return "The image is not ELF";
333 case ELF_LOAD_WRONG_ARCH:
334 return "The image is from incompatible architecture";
335 case ELF_LOAD_WRONG_ENDIAN:
336 return "The image has incorrect endianness";
337 default:
338 return "Unknown error";
339 }
340 }
341
342 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
343 {
344 int fd;
345 uint8_t e_ident_local[EI_NIDENT];
346 uint8_t *e_ident;
347 size_t hdr_size, off;
348 bool is64l;
349
350 if (!hdr) {
351 hdr = e_ident_local;
352 }
353 e_ident = hdr;
354
355 fd = open(filename, O_RDONLY | O_BINARY);
356 if (fd < 0) {
357 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
358 return;
359 }
360 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
361 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
362 goto fail;
363 }
364 if (e_ident[0] != ELFMAG0 ||
365 e_ident[1] != ELFMAG1 ||
366 e_ident[2] != ELFMAG2 ||
367 e_ident[3] != ELFMAG3) {
368 error_setg(errp, "Bad ELF magic");
369 goto fail;
370 }
371
372 is64l = e_ident[EI_CLASS] == ELFCLASS64;
373 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
374 if (is64) {
375 *is64 = is64l;
376 }
377
378 off = EI_NIDENT;
379 while (hdr != e_ident_local && off < hdr_size) {
380 size_t br = read(fd, hdr + off, hdr_size - off);
381 switch (br) {
382 case 0:
383 error_setg(errp, "File too short: %s", filename);
384 goto fail;
385 case -1:
386 error_setg_errno(errp, errno, "Failed to read file: %s",
387 filename);
388 goto fail;
389 }
390 off += br;
391 }
392
393 fail:
394 close(fd);
395 }
396
397 /* return < 0 if error, otherwise the number of bytes loaded in memory */
398 int load_elf(const char *filename,
399 uint64_t (*elf_note_fn)(void *, void *, bool),
400 uint64_t (*translate_fn)(void *, uint64_t),
401 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
402 uint64_t *highaddr, int big_endian, int elf_machine,
403 int clear_lsb, int data_swab)
404 {
405 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
406 pentry, lowaddr, highaddr, big_endian, elf_machine,
407 clear_lsb, data_swab, NULL);
408 }
409
410 /* return < 0 if error, otherwise the number of bytes loaded in memory */
411 int load_elf_as(const char *filename,
412 uint64_t (*elf_note_fn)(void *, void *, bool),
413 uint64_t (*translate_fn)(void *, uint64_t),
414 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
415 uint64_t *highaddr, int big_endian, int elf_machine,
416 int clear_lsb, int data_swab, AddressSpace *as)
417 {
418 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
419 pentry, lowaddr, highaddr, big_endian, elf_machine,
420 clear_lsb, data_swab, as, true);
421 }
422
423 /* return < 0 if error, otherwise the number of bytes loaded in memory */
424 int load_elf_ram(const char *filename,
425 uint64_t (*elf_note_fn)(void *, void *, bool),
426 uint64_t (*translate_fn)(void *, uint64_t),
427 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
428 uint64_t *highaddr, int big_endian, int elf_machine,
429 int clear_lsb, int data_swab, AddressSpace *as,
430 bool load_rom)
431 {
432 return load_elf_ram_sym(filename, elf_note_fn,
433 translate_fn, translate_opaque,
434 pentry, lowaddr, highaddr, big_endian,
435 elf_machine, clear_lsb, data_swab, as,
436 load_rom, NULL);
437 }
438
439 /* return < 0 if error, otherwise the number of bytes loaded in memory */
440 int load_elf_ram_sym(const char *filename,
441 uint64_t (*elf_note_fn)(void *, void *, bool),
442 uint64_t (*translate_fn)(void *, uint64_t),
443 void *translate_opaque, uint64_t *pentry,
444 uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
445 int elf_machine, int clear_lsb, int data_swab,
446 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
447 {
448 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
449 uint8_t e_ident[EI_NIDENT];
450
451 fd = open(filename, O_RDONLY | O_BINARY);
452 if (fd < 0) {
453 perror(filename);
454 return -1;
455 }
456 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
457 goto fail;
458 if (e_ident[0] != ELFMAG0 ||
459 e_ident[1] != ELFMAG1 ||
460 e_ident[2] != ELFMAG2 ||
461 e_ident[3] != ELFMAG3) {
462 ret = ELF_LOAD_NOT_ELF;
463 goto fail;
464 }
465 #ifdef HOST_WORDS_BIGENDIAN
466 data_order = ELFDATA2MSB;
467 #else
468 data_order = ELFDATA2LSB;
469 #endif
470 must_swab = data_order != e_ident[EI_DATA];
471 if (big_endian) {
472 target_data_order = ELFDATA2MSB;
473 } else {
474 target_data_order = ELFDATA2LSB;
475 }
476
477 if (target_data_order != e_ident[EI_DATA]) {
478 ret = ELF_LOAD_WRONG_ENDIAN;
479 goto fail;
480 }
481
482 lseek(fd, 0, SEEK_SET);
483 if (e_ident[EI_CLASS] == ELFCLASS64) {
484 ret = load_elf64(filename, fd, elf_note_fn,
485 translate_fn, translate_opaque, must_swab,
486 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
487 data_swab, as, load_rom, sym_cb);
488 } else {
489 ret = load_elf32(filename, fd, elf_note_fn,
490 translate_fn, translate_opaque, must_swab,
491 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
492 data_swab, as, load_rom, sym_cb);
493 }
494
495 fail:
496 close(fd);
497 return ret;
498 }
499
500 static void bswap_uboot_header(uboot_image_header_t *hdr)
501 {
502 #ifndef HOST_WORDS_BIGENDIAN
503 bswap32s(&hdr->ih_magic);
504 bswap32s(&hdr->ih_hcrc);
505 bswap32s(&hdr->ih_time);
506 bswap32s(&hdr->ih_size);
507 bswap32s(&hdr->ih_load);
508 bswap32s(&hdr->ih_ep);
509 bswap32s(&hdr->ih_dcrc);
510 #endif
511 }
512
513
514 #define ZALLOC_ALIGNMENT 16
515
516 static void *zalloc(void *x, unsigned items, unsigned size)
517 {
518 void *p;
519
520 size *= items;
521 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
522
523 p = g_malloc(size);
524
525 return (p);
526 }
527
528 static void zfree(void *x, void *addr)
529 {
530 g_free(addr);
531 }
532
533
534 #define HEAD_CRC 2
535 #define EXTRA_FIELD 4
536 #define ORIG_NAME 8
537 #define COMMENT 0x10
538 #define RESERVED 0xe0
539
540 #define DEFLATED 8
541
542 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
543 {
544 z_stream s;
545 ssize_t dstbytes;
546 int r, i, flags;
547
548 /* skip header */
549 i = 10;
550 flags = src[3];
551 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
552 puts ("Error: Bad gzipped data\n");
553 return -1;
554 }
555 if ((flags & EXTRA_FIELD) != 0)
556 i = 12 + src[10] + (src[11] << 8);
557 if ((flags & ORIG_NAME) != 0)
558 while (src[i++] != 0)
559 ;
560 if ((flags & COMMENT) != 0)
561 while (src[i++] != 0)
562 ;
563 if ((flags & HEAD_CRC) != 0)
564 i += 2;
565 if (i >= srclen) {
566 puts ("Error: gunzip out of data in header\n");
567 return -1;
568 }
569
570 s.zalloc = zalloc;
571 s.zfree = zfree;
572
573 r = inflateInit2(&s, -MAX_WBITS);
574 if (r != Z_OK) {
575 printf ("Error: inflateInit2() returned %d\n", r);
576 return (-1);
577 }
578 s.next_in = src + i;
579 s.avail_in = srclen - i;
580 s.next_out = dst;
581 s.avail_out = dstlen;
582 r = inflate(&s, Z_FINISH);
583 if (r != Z_OK && r != Z_STREAM_END) {
584 printf ("Error: inflate() returned %d\n", r);
585 return -1;
586 }
587 dstbytes = s.next_out - (unsigned char *) dst;
588 inflateEnd(&s);
589
590 return dstbytes;
591 }
592
593 /* Load a U-Boot image. */
594 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
595 int *is_linux, uint8_t image_type,
596 uint64_t (*translate_fn)(void *, uint64_t),
597 void *translate_opaque, AddressSpace *as)
598 {
599 int fd;
600 int size;
601 hwaddr address;
602 uboot_image_header_t h;
603 uboot_image_header_t *hdr = &h;
604 uint8_t *data = NULL;
605 int ret = -1;
606 int do_uncompress = 0;
607
608 fd = open(filename, O_RDONLY | O_BINARY);
609 if (fd < 0)
610 return -1;
611
612 size = read(fd, hdr, sizeof(uboot_image_header_t));
613 if (size < sizeof(uboot_image_header_t)) {
614 goto out;
615 }
616
617 bswap_uboot_header(hdr);
618
619 if (hdr->ih_magic != IH_MAGIC)
620 goto out;
621
622 if (hdr->ih_type != image_type) {
623 if (!(image_type == IH_TYPE_KERNEL &&
624 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
625 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
626 image_type);
627 goto out;
628 }
629 }
630
631 /* TODO: Implement other image types. */
632 switch (hdr->ih_type) {
633 case IH_TYPE_KERNEL_NOLOAD:
634 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
635 fprintf(stderr, "this image format (kernel_noload) cannot be "
636 "loaded on this machine type");
637 goto out;
638 }
639
640 hdr->ih_load = *loadaddr + sizeof(*hdr);
641 hdr->ih_ep += hdr->ih_load;
642 /* fall through */
643 case IH_TYPE_KERNEL:
644 address = hdr->ih_load;
645 if (translate_fn) {
646 address = translate_fn(translate_opaque, address);
647 }
648 if (loadaddr) {
649 *loadaddr = hdr->ih_load;
650 }
651
652 switch (hdr->ih_comp) {
653 case IH_COMP_NONE:
654 break;
655 case IH_COMP_GZIP:
656 do_uncompress = 1;
657 break;
658 default:
659 fprintf(stderr,
660 "Unable to load u-boot images with compression type %d\n",
661 hdr->ih_comp);
662 goto out;
663 }
664
665 if (ep) {
666 *ep = hdr->ih_ep;
667 }
668
669 /* TODO: Check CPU type. */
670 if (is_linux) {
671 if (hdr->ih_os == IH_OS_LINUX) {
672 *is_linux = 1;
673 } else {
674 *is_linux = 0;
675 }
676 }
677
678 break;
679 case IH_TYPE_RAMDISK:
680 address = *loadaddr;
681 break;
682 default:
683 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
684 goto out;
685 }
686
687 data = g_malloc(hdr->ih_size);
688
689 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
690 fprintf(stderr, "Error reading file\n");
691 goto out;
692 }
693
694 if (do_uncompress) {
695 uint8_t *compressed_data;
696 size_t max_bytes;
697 ssize_t bytes;
698
699 compressed_data = data;
700 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
701 data = g_malloc(max_bytes);
702
703 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
704 g_free(compressed_data);
705 if (bytes < 0) {
706 fprintf(stderr, "Unable to decompress gzipped image!\n");
707 goto out;
708 }
709 hdr->ih_size = bytes;
710 }
711
712 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
713
714 ret = hdr->ih_size;
715
716 out:
717 g_free(data);
718 close(fd);
719 return ret;
720 }
721
722 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
723 int *is_linux,
724 uint64_t (*translate_fn)(void *, uint64_t),
725 void *translate_opaque)
726 {
727 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
728 translate_fn, translate_opaque, NULL);
729 }
730
731 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
732 int *is_linux,
733 uint64_t (*translate_fn)(void *, uint64_t),
734 void *translate_opaque, AddressSpace *as)
735 {
736 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
737 translate_fn, translate_opaque, as);
738 }
739
740 /* Load a ramdisk. */
741 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
742 {
743 return load_ramdisk_as(filename, addr, max_sz, NULL);
744 }
745
746 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
747 AddressSpace *as)
748 {
749 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
750 NULL, NULL, as);
751 }
752
753 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
754 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
755 uint8_t **buffer)
756 {
757 uint8_t *compressed_data = NULL;
758 uint8_t *data = NULL;
759 gsize len;
760 ssize_t bytes;
761 int ret = -1;
762
763 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
764 NULL)) {
765 goto out;
766 }
767
768 /* Is it a gzip-compressed file? */
769 if (len < 2 ||
770 compressed_data[0] != 0x1f ||
771 compressed_data[1] != 0x8b) {
772 goto out;
773 }
774
775 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
776 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
777 }
778
779 data = g_malloc(max_sz);
780 bytes = gunzip(data, max_sz, compressed_data, len);
781 if (bytes < 0) {
782 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
783 filename);
784 goto out;
785 }
786
787 /* trim to actual size and return to caller */
788 *buffer = g_realloc(data, bytes);
789 ret = bytes;
790 /* ownership has been transferred to caller */
791 data = NULL;
792
793 out:
794 g_free(compressed_data);
795 g_free(data);
796 return ret;
797 }
798
799 /* Load a gzip-compressed kernel. */
800 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
801 {
802 int bytes;
803 uint8_t *data;
804
805 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
806 if (bytes != -1) {
807 rom_add_blob_fixed(filename, data, bytes, addr);
808 g_free(data);
809 }
810 return bytes;
811 }
812
813 /*
814 * Functions for reboot-persistent memory regions.
815 * - used for vga bios and option roms.
816 * - also linux kernel (-kernel / -initrd).
817 */
818
819 typedef struct Rom Rom;
820
821 struct Rom {
822 char *name;
823 char *path;
824
825 /* datasize is the amount of memory allocated in "data". If datasize is less
826 * than romsize, it means that the area from datasize to romsize is filled
827 * with zeros.
828 */
829 size_t romsize;
830 size_t datasize;
831
832 uint8_t *data;
833 MemoryRegion *mr;
834 AddressSpace *as;
835 int isrom;
836 char *fw_dir;
837 char *fw_file;
838
839 bool committed;
840
841 hwaddr addr;
842 QTAILQ_ENTRY(Rom) next;
843 };
844
845 static FWCfgState *fw_cfg;
846 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
847
848 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */
849 static void rom_free(Rom *rom)
850 {
851 g_free(rom->data);
852 g_free(rom->path);
853 g_free(rom->name);
854 g_free(rom->fw_dir);
855 g_free(rom->fw_file);
856 g_free(rom);
857 }
858
859 static inline bool rom_order_compare(Rom *rom, Rom *item)
860 {
861 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
862 (rom->as == item->as && rom->addr >= item->addr);
863 }
864
865 static void rom_insert(Rom *rom)
866 {
867 Rom *item;
868
869 if (roms_loaded) {
870 hw_error ("ROM images must be loaded at startup\n");
871 }
872
873 /* The user didn't specify an address space, this is the default */
874 if (!rom->as) {
875 rom->as = &address_space_memory;
876 }
877
878 rom->committed = false;
879
880 /* List is ordered by load address in the same address space */
881 QTAILQ_FOREACH(item, &roms, next) {
882 if (rom_order_compare(rom, item)) {
883 continue;
884 }
885 QTAILQ_INSERT_BEFORE(item, rom, next);
886 return;
887 }
888 QTAILQ_INSERT_TAIL(&roms, rom, next);
889 }
890
891 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
892 {
893 if (fw_cfg) {
894 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
895 }
896 }
897
898 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
899 {
900 void *data;
901
902 rom->mr = g_malloc(sizeof(*rom->mr));
903 memory_region_init_resizeable_ram(rom->mr, owner, name,
904 rom->datasize, rom->romsize,
905 fw_cfg_resized,
906 &error_fatal);
907 memory_region_set_readonly(rom->mr, ro);
908 vmstate_register_ram_global(rom->mr);
909
910 data = memory_region_get_ram_ptr(rom->mr);
911 memcpy(data, rom->data, rom->datasize);
912
913 return data;
914 }
915
916 int rom_add_file(const char *file, const char *fw_dir,
917 hwaddr addr, int32_t bootindex,
918 bool option_rom, MemoryRegion *mr,
919 AddressSpace *as)
920 {
921 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
922 Rom *rom;
923 int rc, fd = -1;
924 char devpath[100];
925
926 if (as && mr) {
927 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
928 "not valid when loading a rom\n");
929 /* We haven't allocated anything so we don't need any cleanup */
930 return -1;
931 }
932
933 rom = g_malloc0(sizeof(*rom));
934 rom->name = g_strdup(file);
935 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
936 rom->as = as;
937 if (rom->path == NULL) {
938 rom->path = g_strdup(file);
939 }
940
941 fd = open(rom->path, O_RDONLY | O_BINARY);
942 if (fd == -1) {
943 fprintf(stderr, "Could not open option rom '%s': %s\n",
944 rom->path, strerror(errno));
945 goto err;
946 }
947
948 if (fw_dir) {
949 rom->fw_dir = g_strdup(fw_dir);
950 rom->fw_file = g_strdup(file);
951 }
952 rom->addr = addr;
953 rom->romsize = lseek(fd, 0, SEEK_END);
954 if (rom->romsize == -1) {
955 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
956 rom->name, strerror(errno));
957 goto err;
958 }
959
960 rom->datasize = rom->romsize;
961 rom->data = g_malloc0(rom->datasize);
962 lseek(fd, 0, SEEK_SET);
963 rc = read(fd, rom->data, rom->datasize);
964 if (rc != rom->datasize) {
965 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
966 rom->name, rc, rom->datasize);
967 goto err;
968 }
969 close(fd);
970 rom_insert(rom);
971 if (rom->fw_file && fw_cfg) {
972 const char *basename;
973 char fw_file_name[FW_CFG_MAX_FILE_PATH];
974 void *data;
975
976 basename = strrchr(rom->fw_file, '/');
977 if (basename) {
978 basename++;
979 } else {
980 basename = rom->fw_file;
981 }
982 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
983 basename);
984 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
985
986 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
987 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
988 } else {
989 data = rom->data;
990 }
991
992 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
993 } else {
994 if (mr) {
995 rom->mr = mr;
996 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
997 } else {
998 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
999 }
1000 }
1001
1002 add_boot_device_path(bootindex, NULL, devpath);
1003 return 0;
1004
1005 err:
1006 if (fd != -1)
1007 close(fd);
1008
1009 rom_free(rom);
1010 return -1;
1011 }
1012
1013 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1014 size_t max_len, hwaddr addr, const char *fw_file_name,
1015 FWCfgCallback fw_callback, void *callback_opaque,
1016 AddressSpace *as, bool read_only)
1017 {
1018 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1019 Rom *rom;
1020 MemoryRegion *mr = NULL;
1021
1022 rom = g_malloc0(sizeof(*rom));
1023 rom->name = g_strdup(name);
1024 rom->as = as;
1025 rom->addr = addr;
1026 rom->romsize = max_len ? max_len : len;
1027 rom->datasize = len;
1028 g_assert(rom->romsize >= rom->datasize);
1029 rom->data = g_malloc0(rom->datasize);
1030 memcpy(rom->data, blob, len);
1031 rom_insert(rom);
1032 if (fw_file_name && fw_cfg) {
1033 char devpath[100];
1034 void *data;
1035
1036 if (read_only) {
1037 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1038 } else {
1039 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1040 }
1041
1042 if (mc->rom_file_has_mr) {
1043 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1044 mr = rom->mr;
1045 } else {
1046 data = rom->data;
1047 }
1048
1049 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1050 fw_callback, NULL, callback_opaque,
1051 data, rom->datasize, read_only);
1052 }
1053 return mr;
1054 }
1055
1056 /* This function is specific for elf program because we don't need to allocate
1057 * all the rom. We just allocate the first part and the rest is just zeros. This
1058 * is why romsize and datasize are different. Also, this function seize the
1059 * memory ownership of "data", so we don't have to allocate and copy the buffer.
1060 */
1061 int rom_add_elf_program(const char *name, void *data, size_t datasize,
1062 size_t romsize, hwaddr addr, AddressSpace *as)
1063 {
1064 Rom *rom;
1065
1066 rom = g_malloc0(sizeof(*rom));
1067 rom->name = g_strdup(name);
1068 rom->addr = addr;
1069 rom->datasize = datasize;
1070 rom->romsize = romsize;
1071 rom->data = data;
1072 rom->as = as;
1073 rom_insert(rom);
1074 return 0;
1075 }
1076
1077 int rom_add_vga(const char *file)
1078 {
1079 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1080 }
1081
1082 int rom_add_option(const char *file, int32_t bootindex)
1083 {
1084 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1085 }
1086
1087 static void rom_reset(void *unused)
1088 {
1089 Rom *rom;
1090
1091 QTAILQ_FOREACH(rom, &roms, next) {
1092 if (rom->fw_file) {
1093 continue;
1094 }
1095 if (rom->data == NULL) {
1096 continue;
1097 }
1098 if (rom->mr) {
1099 void *host = memory_region_get_ram_ptr(rom->mr);
1100 memcpy(host, rom->data, rom->datasize);
1101 } else {
1102 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1103 rom->data, rom->datasize);
1104 }
1105 if (rom->isrom) {
1106 /* rom needs to be written only once */
1107 g_free(rom->data);
1108 rom->data = NULL;
1109 }
1110 /*
1111 * The rom loader is really on the same level as firmware in the guest
1112 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1113 * that the instruction cache for that new region is clear, so that the
1114 * CPU definitely fetches its instructions from the just written data.
1115 */
1116 cpu_flush_icache_range(rom->addr, rom->datasize);
1117 }
1118 }
1119
1120 int rom_check_and_register_reset(void)
1121 {
1122 hwaddr addr = 0;
1123 MemoryRegionSection section;
1124 Rom *rom;
1125 AddressSpace *as = NULL;
1126
1127 QTAILQ_FOREACH(rom, &roms, next) {
1128 if (rom->fw_file) {
1129 continue;
1130 }
1131 if (!rom->mr) {
1132 if ((addr > rom->addr) && (as == rom->as)) {
1133 fprintf(stderr, "rom: requested regions overlap "
1134 "(rom %s. free=0x" TARGET_FMT_plx
1135 ", addr=0x" TARGET_FMT_plx ")\n",
1136 rom->name, addr, rom->addr);
1137 return -1;
1138 }
1139 addr = rom->addr;
1140 addr += rom->romsize;
1141 as = rom->as;
1142 }
1143 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1144 rom->addr, 1);
1145 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1146 memory_region_unref(section.mr);
1147 }
1148 qemu_register_reset(rom_reset, NULL);
1149 roms_loaded = 1;
1150 return 0;
1151 }
1152
1153 void rom_set_fw(FWCfgState *f)
1154 {
1155 fw_cfg = f;
1156 }
1157
1158 void rom_set_order_override(int order)
1159 {
1160 if (!fw_cfg)
1161 return;
1162 fw_cfg_set_order_override(fw_cfg, order);
1163 }
1164
1165 void rom_reset_order_override(void)
1166 {
1167 if (!fw_cfg)
1168 return;
1169 fw_cfg_reset_order_override(fw_cfg);
1170 }
1171
1172 void rom_transaction_begin(void)
1173 {
1174 Rom *rom;
1175
1176 /* Ignore ROMs added without the transaction API */
1177 QTAILQ_FOREACH(rom, &roms, next) {
1178 rom->committed = true;
1179 }
1180 }
1181
1182 void rom_transaction_end(bool commit)
1183 {
1184 Rom *rom;
1185 Rom *tmp;
1186
1187 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1188 if (rom->committed) {
1189 continue;
1190 }
1191 if (commit) {
1192 rom->committed = true;
1193 } else {
1194 QTAILQ_REMOVE(&roms, rom, next);
1195 rom_free(rom);
1196 }
1197 }
1198 }
1199
1200 static Rom *find_rom(hwaddr addr, size_t size)
1201 {
1202 Rom *rom;
1203
1204 QTAILQ_FOREACH(rom, &roms, next) {
1205 if (rom->fw_file) {
1206 continue;
1207 }
1208 if (rom->mr) {
1209 continue;
1210 }
1211 if (rom->addr > addr) {
1212 continue;
1213 }
1214 if (rom->addr + rom->romsize < addr + size) {
1215 continue;
1216 }
1217 return rom;
1218 }
1219 return NULL;
1220 }
1221
1222 /*
1223 * Copies memory from registered ROMs to dest. Any memory that is contained in
1224 * a ROM between addr and addr + size is copied. Note that this can involve
1225 * multiple ROMs, which need not start at addr and need not end at addr + size.
1226 */
1227 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1228 {
1229 hwaddr end = addr + size;
1230 uint8_t *s, *d = dest;
1231 size_t l = 0;
1232 Rom *rom;
1233
1234 QTAILQ_FOREACH(rom, &roms, next) {
1235 if (rom->fw_file) {
1236 continue;
1237 }
1238 if (rom->mr) {
1239 continue;
1240 }
1241 if (rom->addr + rom->romsize < addr) {
1242 continue;
1243 }
1244 if (rom->addr > end) {
1245 break;
1246 }
1247
1248 d = dest + (rom->addr - addr);
1249 s = rom->data;
1250 l = rom->datasize;
1251
1252 if ((d + l) > (dest + size)) {
1253 l = dest - d;
1254 }
1255
1256 if (l > 0) {
1257 memcpy(d, s, l);
1258 }
1259
1260 if (rom->romsize > rom->datasize) {
1261 /* If datasize is less than romsize, it means that we didn't
1262 * allocate all the ROM because the trailing data are only zeros.
1263 */
1264
1265 d += l;
1266 l = rom->romsize - rom->datasize;
1267
1268 if ((d + l) > (dest + size)) {
1269 /* Rom size doesn't fit in the destination area. Adjust to avoid
1270 * overflow.
1271 */
1272 l = dest - d;
1273 }
1274
1275 if (l > 0) {
1276 memset(d, 0x0, l);
1277 }
1278 }
1279 }
1280
1281 return (d + l) - dest;
1282 }
1283
1284 void *rom_ptr(hwaddr addr, size_t size)
1285 {
1286 Rom *rom;
1287
1288 rom = find_rom(addr, size);
1289 if (!rom || !rom->data)
1290 return NULL;
1291 return rom->data + (addr - rom->addr);
1292 }
1293
1294 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1295 {
1296 Rom *rom;
1297
1298 QTAILQ_FOREACH(rom, &roms, next) {
1299 if (rom->mr) {
1300 monitor_printf(mon, "%s"
1301 " size=0x%06zx name=\"%s\"\n",
1302 memory_region_name(rom->mr),
1303 rom->romsize,
1304 rom->name);
1305 } else if (!rom->fw_file) {
1306 monitor_printf(mon, "addr=" TARGET_FMT_plx
1307 " size=0x%06zx mem=%s name=\"%s\"\n",
1308 rom->addr, rom->romsize,
1309 rom->isrom ? "rom" : "ram",
1310 rom->name);
1311 } else {
1312 monitor_printf(mon, "fw=%s/%s"
1313 " size=0x%06zx name=\"%s\"\n",
1314 rom->fw_dir,
1315 rom->fw_file,
1316 rom->romsize,
1317 rom->name);
1318 }
1319 }
1320 }
1321
1322 typedef enum HexRecord HexRecord;
1323 enum HexRecord {
1324 DATA_RECORD = 0,
1325 EOF_RECORD,
1326 EXT_SEG_ADDR_RECORD,
1327 START_SEG_ADDR_RECORD,
1328 EXT_LINEAR_ADDR_RECORD,
1329 START_LINEAR_ADDR_RECORD,
1330 };
1331
1332 /* Each record contains a 16-bit address which is combined with the upper 16
1333 * bits of the implicit "next address" to form a 32-bit address.
1334 */
1335 #define NEXT_ADDR_MASK 0xffff0000
1336
1337 #define DATA_FIELD_MAX_LEN 0xff
1338 #define LEN_EXCEPT_DATA 0x5
1339 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1340 * sizeof(checksum) */
1341 typedef struct {
1342 uint8_t byte_count;
1343 uint16_t address;
1344 uint8_t record_type;
1345 uint8_t data[DATA_FIELD_MAX_LEN];
1346 uint8_t checksum;
1347 } HexLine;
1348
1349 /* return 0 or -1 if error */
1350 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1351 uint32_t *index, const bool in_process)
1352 {
1353 /* +-------+---------------+-------+---------------------+--------+
1354 * | byte | |record | | |
1355 * | count | address | type | data |checksum|
1356 * +-------+---------------+-------+---------------------+--------+
1357 * ^ ^ ^ ^ ^ ^
1358 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1359 */
1360 uint8_t value = 0;
1361 uint32_t idx = *index;
1362 /* ignore space */
1363 if (g_ascii_isspace(c)) {
1364 return true;
1365 }
1366 if (!g_ascii_isxdigit(c) || !in_process) {
1367 return false;
1368 }
1369 value = g_ascii_xdigit_value(c);
1370 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1371 if (idx < 2) {
1372 line->byte_count |= value;
1373 } else if (2 <= idx && idx < 6) {
1374 line->address <<= 4;
1375 line->address += g_ascii_xdigit_value(c);
1376 } else if (6 <= idx && idx < 8) {
1377 line->record_type |= value;
1378 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1379 line->data[(idx - 8) >> 1] |= value;
1380 } else if (8 + 2 * line->byte_count <= idx &&
1381 idx < 10 + 2 * line->byte_count) {
1382 line->checksum |= value;
1383 } else {
1384 return false;
1385 }
1386 *our_checksum += value;
1387 ++(*index);
1388 return true;
1389 }
1390
1391 typedef struct {
1392 const char *filename;
1393 HexLine line;
1394 uint8_t *bin_buf;
1395 hwaddr *start_addr;
1396 int total_size;
1397 uint32_t next_address_to_write;
1398 uint32_t current_address;
1399 uint32_t current_rom_index;
1400 uint32_t rom_start_address;
1401 AddressSpace *as;
1402 } HexParser;
1403
1404 /* return size or -1 if error */
1405 static int handle_record_type(HexParser *parser)
1406 {
1407 HexLine *line = &(parser->line);
1408 switch (line->record_type) {
1409 case DATA_RECORD:
1410 parser->current_address =
1411 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1412 /* verify this is a contiguous block of memory */
1413 if (parser->current_address != parser->next_address_to_write) {
1414 if (parser->current_rom_index != 0) {
1415 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1416 parser->current_rom_index,
1417 parser->rom_start_address, parser->as);
1418 }
1419 parser->rom_start_address = parser->current_address;
1420 parser->current_rom_index = 0;
1421 }
1422
1423 /* copy from line buffer to output bin_buf */
1424 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1425 line->byte_count);
1426 parser->current_rom_index += line->byte_count;
1427 parser->total_size += line->byte_count;
1428 /* save next address to write */
1429 parser->next_address_to_write =
1430 parser->current_address + line->byte_count;
1431 break;
1432
1433 case EOF_RECORD:
1434 if (parser->current_rom_index != 0) {
1435 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1436 parser->current_rom_index,
1437 parser->rom_start_address, parser->as);
1438 }
1439 return parser->total_size;
1440 case EXT_SEG_ADDR_RECORD:
1441 case EXT_LINEAR_ADDR_RECORD:
1442 if (line->byte_count != 2 && line->address != 0) {
1443 return -1;
1444 }
1445
1446 if (parser->current_rom_index != 0) {
1447 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1448 parser->current_rom_index,
1449 parser->rom_start_address, parser->as);
1450 }
1451
1452 /* save next address to write,
1453 * in case of non-contiguous block of memory */
1454 parser->next_address_to_write = (line->data[0] << 12) |
1455 (line->data[1] << 4);
1456 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1457 parser->next_address_to_write <<= 12;
1458 }
1459
1460 parser->rom_start_address = parser->next_address_to_write;
1461 parser->current_rom_index = 0;
1462 break;
1463
1464 case START_SEG_ADDR_RECORD:
1465 if (line->byte_count != 4 && line->address != 0) {
1466 return -1;
1467 }
1468
1469 /* x86 16-bit CS:IP segmented addressing */
1470 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1471 ((line->data[2] << 8) | line->data[3]);
1472 break;
1473
1474 case START_LINEAR_ADDR_RECORD:
1475 if (line->byte_count != 4 && line->address != 0) {
1476 return -1;
1477 }
1478
1479 *(parser->start_addr) = ldl_be_p(line->data);
1480 break;
1481
1482 default:
1483 return -1;
1484 }
1485
1486 return parser->total_size;
1487 }
1488
1489 /* return size or -1 if error */
1490 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1491 size_t hex_blob_size, AddressSpace *as)
1492 {
1493 bool in_process = false; /* avoid re-enter and
1494 * check whether record begin with ':' */
1495 uint8_t *end = hex_blob + hex_blob_size;
1496 uint8_t our_checksum = 0;
1497 uint32_t record_index = 0;
1498 HexParser parser = {
1499 .filename = filename,
1500 .bin_buf = g_malloc(hex_blob_size),
1501 .start_addr = addr,
1502 .as = as,
1503 };
1504
1505 rom_transaction_begin();
1506
1507 for (; hex_blob < end; ++hex_blob) {
1508 switch (*hex_blob) {
1509 case '\r':
1510 case '\n':
1511 if (!in_process) {
1512 break;
1513 }
1514
1515 in_process = false;
1516 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1517 record_index ||
1518 our_checksum != 0) {
1519 parser.total_size = -1;
1520 goto out;
1521 }
1522
1523 if (handle_record_type(&parser) == -1) {
1524 parser.total_size = -1;
1525 goto out;
1526 }
1527 break;
1528
1529 /* start of a new record. */
1530 case ':':
1531 memset(&parser.line, 0, sizeof(HexLine));
1532 in_process = true;
1533 record_index = 0;
1534 break;
1535
1536 /* decoding lines */
1537 default:
1538 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1539 &record_index, in_process)) {
1540 parser.total_size = -1;
1541 goto out;
1542 }
1543 break;
1544 }
1545 }
1546
1547 out:
1548 g_free(parser.bin_buf);
1549 rom_transaction_end(parser.total_size != -1);
1550 return parser.total_size;
1551 }
1552
1553 /* return size or -1 if error */
1554 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1555 {
1556 gsize hex_blob_size;
1557 gchar *hex_blob;
1558 int total_size = 0;
1559
1560 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1561 return -1;
1562 }
1563
1564 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1565 hex_blob_size, as);
1566
1567 g_free(hex_blob);
1568 return total_size;
1569 }