]> git.proxmox.com Git - mirror_qemu.git/blob - hw/core/loader.c
Merge remote-tracking branch 'remotes/hdeller/tags/hppa-updates-pull-request' into...
[mirror_qemu.git] / hw / core / loader.c
1 /*
2 * QEMU Executable loader
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 *
24 * Gunzip functionality in this file is derived from u-boot:
25 *
26 * (C) Copyright 2008 Semihalf
27 *
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
35 *
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
43 */
44
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qemu/datadir.h"
48 #include "qapi/error.h"
49 #include "qapi/qapi-commands-machine.h"
50 #include "qapi/type-helpers.h"
51 #include "trace.h"
52 #include "hw/hw.h"
53 #include "disas/disas.h"
54 #include "migration/vmstate.h"
55 #include "monitor/monitor.h"
56 #include "sysemu/reset.h"
57 #include "sysemu/sysemu.h"
58 #include "uboot_image.h"
59 #include "hw/loader.h"
60 #include "hw/nvram/fw_cfg.h"
61 #include "exec/memory.h"
62 #include "hw/boards.h"
63 #include "qemu/cutils.h"
64 #include "sysemu/runstate.h"
65
66 #include <zlib.h>
67
68 static int roms_loaded;
69
70 /* return the size or -1 if error */
71 int64_t get_image_size(const char *filename)
72 {
73 int fd;
74 int64_t size;
75 fd = open(filename, O_RDONLY | O_BINARY);
76 if (fd < 0)
77 return -1;
78 size = lseek(fd, 0, SEEK_END);
79 close(fd);
80 return size;
81 }
82
83 /* return the size or -1 if error */
84 ssize_t load_image_size(const char *filename, void *addr, size_t size)
85 {
86 int fd;
87 ssize_t actsize, l = 0;
88
89 fd = open(filename, O_RDONLY | O_BINARY);
90 if (fd < 0) {
91 return -1;
92 }
93
94 while ((actsize = read(fd, addr + l, size - l)) > 0) {
95 l += actsize;
96 }
97
98 close(fd);
99
100 return actsize < 0 ? -1 : l;
101 }
102
103 /* read()-like version */
104 ssize_t read_targphys(const char *name,
105 int fd, hwaddr dst_addr, size_t nbytes)
106 {
107 uint8_t *buf;
108 ssize_t did;
109
110 buf = g_malloc(nbytes);
111 did = read(fd, buf, nbytes);
112 if (did > 0)
113 rom_add_blob_fixed("read", buf, did, dst_addr);
114 g_free(buf);
115 return did;
116 }
117
118 int load_image_targphys(const char *filename,
119 hwaddr addr, uint64_t max_sz)
120 {
121 return load_image_targphys_as(filename, addr, max_sz, NULL);
122 }
123
124 /* return the size or -1 if error */
125 int load_image_targphys_as(const char *filename,
126 hwaddr addr, uint64_t max_sz, AddressSpace *as)
127 {
128 int size;
129
130 size = get_image_size(filename);
131 if (size < 0 || size > max_sz) {
132 return -1;
133 }
134 if (size > 0) {
135 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
136 return -1;
137 }
138 }
139 return size;
140 }
141
142 int load_image_mr(const char *filename, MemoryRegion *mr)
143 {
144 int size;
145
146 if (!memory_access_is_direct(mr, false)) {
147 /* Can only load an image into RAM or ROM */
148 return -1;
149 }
150
151 size = get_image_size(filename);
152
153 if (size < 0 || size > memory_region_size(mr)) {
154 return -1;
155 }
156 if (size > 0) {
157 if (rom_add_file_mr(filename, mr, -1) < 0) {
158 return -1;
159 }
160 }
161 return size;
162 }
163
164 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
165 const char *source)
166 {
167 const char *nulp;
168 char *ptr;
169
170 if (buf_size <= 0) return;
171 nulp = memchr(source, 0, buf_size);
172 if (nulp) {
173 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
174 } else {
175 rom_add_blob_fixed(name, source, buf_size, dest);
176 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
177 *ptr = 0;
178 }
179 }
180
181 /* A.OUT loader */
182
183 struct exec
184 {
185 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
186 uint32_t a_text; /* length of text, in bytes */
187 uint32_t a_data; /* length of data, in bytes */
188 uint32_t a_bss; /* length of uninitialized data area, in bytes */
189 uint32_t a_syms; /* length of symbol table data in file, in bytes */
190 uint32_t a_entry; /* start address */
191 uint32_t a_trsize; /* length of relocation info for text, in bytes */
192 uint32_t a_drsize; /* length of relocation info for data, in bytes */
193 };
194
195 static void bswap_ahdr(struct exec *e)
196 {
197 bswap32s(&e->a_info);
198 bswap32s(&e->a_text);
199 bswap32s(&e->a_data);
200 bswap32s(&e->a_bss);
201 bswap32s(&e->a_syms);
202 bswap32s(&e->a_entry);
203 bswap32s(&e->a_trsize);
204 bswap32s(&e->a_drsize);
205 }
206
207 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
208 #define OMAGIC 0407
209 #define NMAGIC 0410
210 #define ZMAGIC 0413
211 #define QMAGIC 0314
212 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
213 #define N_TXTOFF(x) \
214 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
215 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
216 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
217 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
218
219 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
220
221 #define N_DATADDR(x, target_page_size) \
222 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
223 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
224
225
226 int load_aout(const char *filename, hwaddr addr, int max_sz,
227 int bswap_needed, hwaddr target_page_size)
228 {
229 int fd;
230 ssize_t size, ret;
231 struct exec e;
232 uint32_t magic;
233
234 fd = open(filename, O_RDONLY | O_BINARY);
235 if (fd < 0)
236 return -1;
237
238 size = read(fd, &e, sizeof(e));
239 if (size < 0)
240 goto fail;
241
242 if (bswap_needed) {
243 bswap_ahdr(&e);
244 }
245
246 magic = N_MAGIC(e);
247 switch (magic) {
248 case ZMAGIC:
249 case QMAGIC:
250 case OMAGIC:
251 if (e.a_text + e.a_data > max_sz)
252 goto fail;
253 lseek(fd, N_TXTOFF(e), SEEK_SET);
254 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
255 if (size < 0)
256 goto fail;
257 break;
258 case NMAGIC:
259 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
260 goto fail;
261 lseek(fd, N_TXTOFF(e), SEEK_SET);
262 size = read_targphys(filename, fd, addr, e.a_text);
263 if (size < 0)
264 goto fail;
265 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
266 e.a_data);
267 if (ret < 0)
268 goto fail;
269 size += ret;
270 break;
271 default:
272 goto fail;
273 }
274 close(fd);
275 return size;
276 fail:
277 close(fd);
278 return -1;
279 }
280
281 /* ELF loader */
282
283 static void *load_at(int fd, off_t offset, size_t size)
284 {
285 void *ptr;
286 if (lseek(fd, offset, SEEK_SET) < 0)
287 return NULL;
288 ptr = g_malloc(size);
289 if (read(fd, ptr, size) != size) {
290 g_free(ptr);
291 return NULL;
292 }
293 return ptr;
294 }
295
296 #ifdef ELF_CLASS
297 #undef ELF_CLASS
298 #endif
299
300 #define ELF_CLASS ELFCLASS32
301 #include "elf.h"
302
303 #define SZ 32
304 #define elf_word uint32_t
305 #define elf_sword int32_t
306 #define bswapSZs bswap32s
307 #include "hw/elf_ops.h"
308
309 #undef elfhdr
310 #undef elf_phdr
311 #undef elf_shdr
312 #undef elf_sym
313 #undef elf_rela
314 #undef elf_note
315 #undef elf_word
316 #undef elf_sword
317 #undef bswapSZs
318 #undef SZ
319 #define elfhdr elf64_hdr
320 #define elf_phdr elf64_phdr
321 #define elf_note elf64_note
322 #define elf_shdr elf64_shdr
323 #define elf_sym elf64_sym
324 #define elf_rela elf64_rela
325 #define elf_word uint64_t
326 #define elf_sword int64_t
327 #define bswapSZs bswap64s
328 #define SZ 64
329 #include "hw/elf_ops.h"
330
331 const char *load_elf_strerror(ssize_t error)
332 {
333 switch (error) {
334 case 0:
335 return "No error";
336 case ELF_LOAD_FAILED:
337 return "Failed to load ELF";
338 case ELF_LOAD_NOT_ELF:
339 return "The image is not ELF";
340 case ELF_LOAD_WRONG_ARCH:
341 return "The image is from incompatible architecture";
342 case ELF_LOAD_WRONG_ENDIAN:
343 return "The image has incorrect endianness";
344 case ELF_LOAD_TOO_BIG:
345 return "The image segments are too big to load";
346 default:
347 return "Unknown error";
348 }
349 }
350
351 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
352 {
353 int fd;
354 uint8_t e_ident_local[EI_NIDENT];
355 uint8_t *e_ident;
356 size_t hdr_size, off;
357 bool is64l;
358
359 if (!hdr) {
360 hdr = e_ident_local;
361 }
362 e_ident = hdr;
363
364 fd = open(filename, O_RDONLY | O_BINARY);
365 if (fd < 0) {
366 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
367 return;
368 }
369 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
370 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
371 goto fail;
372 }
373 if (e_ident[0] != ELFMAG0 ||
374 e_ident[1] != ELFMAG1 ||
375 e_ident[2] != ELFMAG2 ||
376 e_ident[3] != ELFMAG3) {
377 error_setg(errp, "Bad ELF magic");
378 goto fail;
379 }
380
381 is64l = e_ident[EI_CLASS] == ELFCLASS64;
382 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
383 if (is64) {
384 *is64 = is64l;
385 }
386
387 off = EI_NIDENT;
388 while (hdr != e_ident_local && off < hdr_size) {
389 size_t br = read(fd, hdr + off, hdr_size - off);
390 switch (br) {
391 case 0:
392 error_setg(errp, "File too short: %s", filename);
393 goto fail;
394 case -1:
395 error_setg_errno(errp, errno, "Failed to read file: %s",
396 filename);
397 goto fail;
398 }
399 off += br;
400 }
401
402 fail:
403 close(fd);
404 }
405
406 /* return < 0 if error, otherwise the number of bytes loaded in memory */
407 ssize_t load_elf(const char *filename,
408 uint64_t (*elf_note_fn)(void *, void *, bool),
409 uint64_t (*translate_fn)(void *, uint64_t),
410 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
411 uint64_t *highaddr, uint32_t *pflags, int big_endian,
412 int elf_machine, int clear_lsb, int data_swab)
413 {
414 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
415 pentry, lowaddr, highaddr, pflags, big_endian,
416 elf_machine, clear_lsb, data_swab, NULL);
417 }
418
419 /* return < 0 if error, otherwise the number of bytes loaded in memory */
420 ssize_t load_elf_as(const char *filename,
421 uint64_t (*elf_note_fn)(void *, void *, bool),
422 uint64_t (*translate_fn)(void *, uint64_t),
423 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
424 uint64_t *highaddr, uint32_t *pflags, int big_endian,
425 int elf_machine, int clear_lsb, int data_swab,
426 AddressSpace *as)
427 {
428 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
429 pentry, lowaddr, highaddr, pflags, big_endian,
430 elf_machine, clear_lsb, data_swab, as, true);
431 }
432
433 /* return < 0 if error, otherwise the number of bytes loaded in memory */
434 ssize_t load_elf_ram(const char *filename,
435 uint64_t (*elf_note_fn)(void *, void *, bool),
436 uint64_t (*translate_fn)(void *, uint64_t),
437 void *translate_opaque, uint64_t *pentry,
438 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
439 int big_endian, int elf_machine, int clear_lsb,
440 int data_swab, AddressSpace *as, bool load_rom)
441 {
442 return load_elf_ram_sym(filename, elf_note_fn,
443 translate_fn, translate_opaque,
444 pentry, lowaddr, highaddr, pflags, big_endian,
445 elf_machine, clear_lsb, data_swab, as,
446 load_rom, NULL);
447 }
448
449 /* return < 0 if error, otherwise the number of bytes loaded in memory */
450 ssize_t load_elf_ram_sym(const char *filename,
451 uint64_t (*elf_note_fn)(void *, void *, bool),
452 uint64_t (*translate_fn)(void *, uint64_t),
453 void *translate_opaque, uint64_t *pentry,
454 uint64_t *lowaddr, uint64_t *highaddr,
455 uint32_t *pflags, int big_endian, int elf_machine,
456 int clear_lsb, int data_swab,
457 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
458 {
459 int fd, data_order, target_data_order, must_swab;
460 ssize_t ret = ELF_LOAD_FAILED;
461 uint8_t e_ident[EI_NIDENT];
462
463 fd = open(filename, O_RDONLY | O_BINARY);
464 if (fd < 0) {
465 perror(filename);
466 return -1;
467 }
468 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
469 goto fail;
470 if (e_ident[0] != ELFMAG0 ||
471 e_ident[1] != ELFMAG1 ||
472 e_ident[2] != ELFMAG2 ||
473 e_ident[3] != ELFMAG3) {
474 ret = ELF_LOAD_NOT_ELF;
475 goto fail;
476 }
477 #ifdef HOST_WORDS_BIGENDIAN
478 data_order = ELFDATA2MSB;
479 #else
480 data_order = ELFDATA2LSB;
481 #endif
482 must_swab = data_order != e_ident[EI_DATA];
483 if (big_endian) {
484 target_data_order = ELFDATA2MSB;
485 } else {
486 target_data_order = ELFDATA2LSB;
487 }
488
489 if (target_data_order != e_ident[EI_DATA]) {
490 ret = ELF_LOAD_WRONG_ENDIAN;
491 goto fail;
492 }
493
494 lseek(fd, 0, SEEK_SET);
495 if (e_ident[EI_CLASS] == ELFCLASS64) {
496 ret = load_elf64(filename, fd, elf_note_fn,
497 translate_fn, translate_opaque, must_swab,
498 pentry, lowaddr, highaddr, pflags, elf_machine,
499 clear_lsb, data_swab, as, load_rom, sym_cb);
500 } else {
501 ret = load_elf32(filename, fd, elf_note_fn,
502 translate_fn, translate_opaque, must_swab,
503 pentry, lowaddr, highaddr, pflags, elf_machine,
504 clear_lsb, data_swab, as, load_rom, sym_cb);
505 }
506
507 fail:
508 close(fd);
509 return ret;
510 }
511
512 static void bswap_uboot_header(uboot_image_header_t *hdr)
513 {
514 #ifndef HOST_WORDS_BIGENDIAN
515 bswap32s(&hdr->ih_magic);
516 bswap32s(&hdr->ih_hcrc);
517 bswap32s(&hdr->ih_time);
518 bswap32s(&hdr->ih_size);
519 bswap32s(&hdr->ih_load);
520 bswap32s(&hdr->ih_ep);
521 bswap32s(&hdr->ih_dcrc);
522 #endif
523 }
524
525
526 #define ZALLOC_ALIGNMENT 16
527
528 static void *zalloc(void *x, unsigned items, unsigned size)
529 {
530 void *p;
531
532 size *= items;
533 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
534
535 p = g_malloc(size);
536
537 return (p);
538 }
539
540 static void zfree(void *x, void *addr)
541 {
542 g_free(addr);
543 }
544
545
546 #define HEAD_CRC 2
547 #define EXTRA_FIELD 4
548 #define ORIG_NAME 8
549 #define COMMENT 0x10
550 #define RESERVED 0xe0
551
552 #define DEFLATED 8
553
554 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
555 {
556 z_stream s;
557 ssize_t dstbytes;
558 int r, i, flags;
559
560 /* skip header */
561 i = 10;
562 if (srclen < 4) {
563 goto toosmall;
564 }
565 flags = src[3];
566 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
567 puts ("Error: Bad gzipped data\n");
568 return -1;
569 }
570 if ((flags & EXTRA_FIELD) != 0) {
571 if (srclen < 12) {
572 goto toosmall;
573 }
574 i = 12 + src[10] + (src[11] << 8);
575 }
576 if ((flags & ORIG_NAME) != 0) {
577 while (i < srclen && src[i++] != 0) {
578 /* do nothing */
579 }
580 }
581 if ((flags & COMMENT) != 0) {
582 while (i < srclen && src[i++] != 0) {
583 /* do nothing */
584 }
585 }
586 if ((flags & HEAD_CRC) != 0) {
587 i += 2;
588 }
589 if (i >= srclen) {
590 goto toosmall;
591 }
592
593 s.zalloc = zalloc;
594 s.zfree = zfree;
595
596 r = inflateInit2(&s, -MAX_WBITS);
597 if (r != Z_OK) {
598 printf ("Error: inflateInit2() returned %d\n", r);
599 return (-1);
600 }
601 s.next_in = src + i;
602 s.avail_in = srclen - i;
603 s.next_out = dst;
604 s.avail_out = dstlen;
605 r = inflate(&s, Z_FINISH);
606 if (r != Z_OK && r != Z_STREAM_END) {
607 printf ("Error: inflate() returned %d\n", r);
608 return -1;
609 }
610 dstbytes = s.next_out - (unsigned char *) dst;
611 inflateEnd(&s);
612
613 return dstbytes;
614
615 toosmall:
616 puts("Error: gunzip out of data in header\n");
617 return -1;
618 }
619
620 /* Load a U-Boot image. */
621 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
622 int *is_linux, uint8_t image_type,
623 uint64_t (*translate_fn)(void *, uint64_t),
624 void *translate_opaque, AddressSpace *as)
625 {
626 int fd;
627 int size;
628 hwaddr address;
629 uboot_image_header_t h;
630 uboot_image_header_t *hdr = &h;
631 uint8_t *data = NULL;
632 int ret = -1;
633 int do_uncompress = 0;
634
635 fd = open(filename, O_RDONLY | O_BINARY);
636 if (fd < 0)
637 return -1;
638
639 size = read(fd, hdr, sizeof(uboot_image_header_t));
640 if (size < sizeof(uboot_image_header_t)) {
641 goto out;
642 }
643
644 bswap_uboot_header(hdr);
645
646 if (hdr->ih_magic != IH_MAGIC)
647 goto out;
648
649 if (hdr->ih_type != image_type) {
650 if (!(image_type == IH_TYPE_KERNEL &&
651 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
652 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
653 image_type);
654 goto out;
655 }
656 }
657
658 /* TODO: Implement other image types. */
659 switch (hdr->ih_type) {
660 case IH_TYPE_KERNEL_NOLOAD:
661 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
662 fprintf(stderr, "this image format (kernel_noload) cannot be "
663 "loaded on this machine type");
664 goto out;
665 }
666
667 hdr->ih_load = *loadaddr + sizeof(*hdr);
668 hdr->ih_ep += hdr->ih_load;
669 /* fall through */
670 case IH_TYPE_KERNEL:
671 address = hdr->ih_load;
672 if (translate_fn) {
673 address = translate_fn(translate_opaque, address);
674 }
675 if (loadaddr) {
676 *loadaddr = hdr->ih_load;
677 }
678
679 switch (hdr->ih_comp) {
680 case IH_COMP_NONE:
681 break;
682 case IH_COMP_GZIP:
683 do_uncompress = 1;
684 break;
685 default:
686 fprintf(stderr,
687 "Unable to load u-boot images with compression type %d\n",
688 hdr->ih_comp);
689 goto out;
690 }
691
692 if (ep) {
693 *ep = hdr->ih_ep;
694 }
695
696 /* TODO: Check CPU type. */
697 if (is_linux) {
698 if (hdr->ih_os == IH_OS_LINUX) {
699 *is_linux = 1;
700 } else {
701 *is_linux = 0;
702 }
703 }
704
705 break;
706 case IH_TYPE_RAMDISK:
707 address = *loadaddr;
708 break;
709 default:
710 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
711 goto out;
712 }
713
714 data = g_malloc(hdr->ih_size);
715
716 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
717 fprintf(stderr, "Error reading file\n");
718 goto out;
719 }
720
721 if (do_uncompress) {
722 uint8_t *compressed_data;
723 size_t max_bytes;
724 ssize_t bytes;
725
726 compressed_data = data;
727 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
728 data = g_malloc(max_bytes);
729
730 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
731 g_free(compressed_data);
732 if (bytes < 0) {
733 fprintf(stderr, "Unable to decompress gzipped image!\n");
734 goto out;
735 }
736 hdr->ih_size = bytes;
737 }
738
739 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
740
741 ret = hdr->ih_size;
742
743 out:
744 g_free(data);
745 close(fd);
746 return ret;
747 }
748
749 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
750 int *is_linux,
751 uint64_t (*translate_fn)(void *, uint64_t),
752 void *translate_opaque)
753 {
754 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
755 translate_fn, translate_opaque, NULL);
756 }
757
758 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
759 int *is_linux,
760 uint64_t (*translate_fn)(void *, uint64_t),
761 void *translate_opaque, AddressSpace *as)
762 {
763 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
764 translate_fn, translate_opaque, as);
765 }
766
767 /* Load a ramdisk. */
768 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
769 {
770 return load_ramdisk_as(filename, addr, max_sz, NULL);
771 }
772
773 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
774 AddressSpace *as)
775 {
776 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
777 NULL, NULL, as);
778 }
779
780 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
781 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
782 uint8_t **buffer)
783 {
784 uint8_t *compressed_data = NULL;
785 uint8_t *data = NULL;
786 gsize len;
787 ssize_t bytes;
788 int ret = -1;
789
790 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
791 NULL)) {
792 goto out;
793 }
794
795 /* Is it a gzip-compressed file? */
796 if (len < 2 ||
797 compressed_data[0] != 0x1f ||
798 compressed_data[1] != 0x8b) {
799 goto out;
800 }
801
802 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
803 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
804 }
805
806 data = g_malloc(max_sz);
807 bytes = gunzip(data, max_sz, compressed_data, len);
808 if (bytes < 0) {
809 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
810 filename);
811 goto out;
812 }
813
814 /* trim to actual size and return to caller */
815 *buffer = g_realloc(data, bytes);
816 ret = bytes;
817 /* ownership has been transferred to caller */
818 data = NULL;
819
820 out:
821 g_free(compressed_data);
822 g_free(data);
823 return ret;
824 }
825
826 /* Load a gzip-compressed kernel. */
827 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
828 {
829 int bytes;
830 uint8_t *data;
831
832 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
833 if (bytes != -1) {
834 rom_add_blob_fixed(filename, data, bytes, addr);
835 g_free(data);
836 }
837 return bytes;
838 }
839
840 /*
841 * Functions for reboot-persistent memory regions.
842 * - used for vga bios and option roms.
843 * - also linux kernel (-kernel / -initrd).
844 */
845
846 typedef struct Rom Rom;
847
848 struct Rom {
849 char *name;
850 char *path;
851
852 /* datasize is the amount of memory allocated in "data". If datasize is less
853 * than romsize, it means that the area from datasize to romsize is filled
854 * with zeros.
855 */
856 size_t romsize;
857 size_t datasize;
858
859 uint8_t *data;
860 MemoryRegion *mr;
861 AddressSpace *as;
862 int isrom;
863 char *fw_dir;
864 char *fw_file;
865 GMappedFile *mapped_file;
866
867 bool committed;
868
869 hwaddr addr;
870 QTAILQ_ENTRY(Rom) next;
871 };
872
873 static FWCfgState *fw_cfg;
874 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
875
876 /*
877 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
878 * rom_add_elf_program())
879 */
880 static void rom_free_data(Rom *rom)
881 {
882 if (rom->mapped_file) {
883 g_mapped_file_unref(rom->mapped_file);
884 rom->mapped_file = NULL;
885 } else {
886 g_free(rom->data);
887 }
888
889 rom->data = NULL;
890 }
891
892 static void rom_free(Rom *rom)
893 {
894 rom_free_data(rom);
895 g_free(rom->path);
896 g_free(rom->name);
897 g_free(rom->fw_dir);
898 g_free(rom->fw_file);
899 g_free(rom);
900 }
901
902 static inline bool rom_order_compare(Rom *rom, Rom *item)
903 {
904 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
905 (rom->as == item->as && rom->addr >= item->addr);
906 }
907
908 static void rom_insert(Rom *rom)
909 {
910 Rom *item;
911
912 if (roms_loaded) {
913 hw_error ("ROM images must be loaded at startup\n");
914 }
915
916 /* The user didn't specify an address space, this is the default */
917 if (!rom->as) {
918 rom->as = &address_space_memory;
919 }
920
921 rom->committed = false;
922
923 /* List is ordered by load address in the same address space */
924 QTAILQ_FOREACH(item, &roms, next) {
925 if (rom_order_compare(rom, item)) {
926 continue;
927 }
928 QTAILQ_INSERT_BEFORE(item, rom, next);
929 return;
930 }
931 QTAILQ_INSERT_TAIL(&roms, rom, next);
932 }
933
934 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
935 {
936 if (fw_cfg) {
937 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
938 }
939 }
940
941 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
942 {
943 void *data;
944
945 rom->mr = g_malloc(sizeof(*rom->mr));
946 memory_region_init_resizeable_ram(rom->mr, owner, name,
947 rom->datasize, rom->romsize,
948 fw_cfg_resized,
949 &error_fatal);
950 memory_region_set_readonly(rom->mr, ro);
951 vmstate_register_ram_global(rom->mr);
952
953 data = memory_region_get_ram_ptr(rom->mr);
954 memcpy(data, rom->data, rom->datasize);
955
956 return data;
957 }
958
959 int rom_add_file(const char *file, const char *fw_dir,
960 hwaddr addr, int32_t bootindex,
961 bool option_rom, MemoryRegion *mr,
962 AddressSpace *as)
963 {
964 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
965 Rom *rom;
966 int rc, fd = -1;
967 char devpath[100];
968
969 if (as && mr) {
970 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
971 "not valid when loading a rom\n");
972 /* We haven't allocated anything so we don't need any cleanup */
973 return -1;
974 }
975
976 rom = g_malloc0(sizeof(*rom));
977 rom->name = g_strdup(file);
978 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
979 rom->as = as;
980 if (rom->path == NULL) {
981 rom->path = g_strdup(file);
982 }
983
984 fd = open(rom->path, O_RDONLY | O_BINARY);
985 if (fd == -1) {
986 fprintf(stderr, "Could not open option rom '%s': %s\n",
987 rom->path, strerror(errno));
988 goto err;
989 }
990
991 if (fw_dir) {
992 rom->fw_dir = g_strdup(fw_dir);
993 rom->fw_file = g_strdup(file);
994 }
995 rom->addr = addr;
996 rom->romsize = lseek(fd, 0, SEEK_END);
997 if (rom->romsize == -1) {
998 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
999 rom->name, strerror(errno));
1000 goto err;
1001 }
1002
1003 rom->datasize = rom->romsize;
1004 rom->data = g_malloc0(rom->datasize);
1005 lseek(fd, 0, SEEK_SET);
1006 rc = read(fd, rom->data, rom->datasize);
1007 if (rc != rom->datasize) {
1008 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
1009 rom->name, rc, rom->datasize);
1010 goto err;
1011 }
1012 close(fd);
1013 rom_insert(rom);
1014 if (rom->fw_file && fw_cfg) {
1015 const char *basename;
1016 char fw_file_name[FW_CFG_MAX_FILE_PATH];
1017 void *data;
1018
1019 basename = strrchr(rom->fw_file, '/');
1020 if (basename) {
1021 basename++;
1022 } else {
1023 basename = rom->fw_file;
1024 }
1025 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1026 basename);
1027 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1028
1029 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1030 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1031 } else {
1032 data = rom->data;
1033 }
1034
1035 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1036 } else {
1037 if (mr) {
1038 rom->mr = mr;
1039 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1040 } else {
1041 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1042 }
1043 }
1044
1045 add_boot_device_path(bootindex, NULL, devpath);
1046 return 0;
1047
1048 err:
1049 if (fd != -1)
1050 close(fd);
1051
1052 rom_free(rom);
1053 return -1;
1054 }
1055
1056 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1057 size_t max_len, hwaddr addr, const char *fw_file_name,
1058 FWCfgCallback fw_callback, void *callback_opaque,
1059 AddressSpace *as, bool read_only)
1060 {
1061 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1062 Rom *rom;
1063 MemoryRegion *mr = NULL;
1064
1065 rom = g_malloc0(sizeof(*rom));
1066 rom->name = g_strdup(name);
1067 rom->as = as;
1068 rom->addr = addr;
1069 rom->romsize = max_len ? max_len : len;
1070 rom->datasize = len;
1071 g_assert(rom->romsize >= rom->datasize);
1072 rom->data = g_malloc0(rom->datasize);
1073 memcpy(rom->data, blob, len);
1074 rom_insert(rom);
1075 if (fw_file_name && fw_cfg) {
1076 char devpath[100];
1077 void *data;
1078
1079 if (read_only) {
1080 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1081 } else {
1082 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1083 }
1084
1085 if (mc->rom_file_has_mr) {
1086 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1087 mr = rom->mr;
1088 } else {
1089 data = rom->data;
1090 }
1091
1092 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1093 fw_callback, NULL, callback_opaque,
1094 data, rom->datasize, read_only);
1095 }
1096 return mr;
1097 }
1098
1099 /* This function is specific for elf program because we don't need to allocate
1100 * all the rom. We just allocate the first part and the rest is just zeros. This
1101 * is why romsize and datasize are different. Also, this function takes its own
1102 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1103 */
1104 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1105 size_t datasize, size_t romsize, hwaddr addr,
1106 AddressSpace *as)
1107 {
1108 Rom *rom;
1109
1110 rom = g_malloc0(sizeof(*rom));
1111 rom->name = g_strdup(name);
1112 rom->addr = addr;
1113 rom->datasize = datasize;
1114 rom->romsize = romsize;
1115 rom->data = data;
1116 rom->as = as;
1117
1118 if (mapped_file && data) {
1119 g_mapped_file_ref(mapped_file);
1120 rom->mapped_file = mapped_file;
1121 }
1122
1123 rom_insert(rom);
1124 return 0;
1125 }
1126
1127 int rom_add_vga(const char *file)
1128 {
1129 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1130 }
1131
1132 int rom_add_option(const char *file, int32_t bootindex)
1133 {
1134 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1135 }
1136
1137 static void rom_reset(void *unused)
1138 {
1139 Rom *rom;
1140
1141 QTAILQ_FOREACH(rom, &roms, next) {
1142 if (rom->fw_file) {
1143 continue;
1144 }
1145 /*
1146 * We don't need to fill in the RAM with ROM data because we'll fill
1147 * the data in during the next incoming migration in all cases. Note
1148 * that some of those RAMs can actually be modified by the guest.
1149 */
1150 if (runstate_check(RUN_STATE_INMIGRATE)) {
1151 if (rom->data && rom->isrom) {
1152 /*
1153 * Free it so that a rom_reset after migration doesn't
1154 * overwrite a potentially modified 'rom'.
1155 */
1156 rom_free_data(rom);
1157 }
1158 continue;
1159 }
1160
1161 if (rom->data == NULL) {
1162 continue;
1163 }
1164 if (rom->mr) {
1165 void *host = memory_region_get_ram_ptr(rom->mr);
1166 memcpy(host, rom->data, rom->datasize);
1167 memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1168 } else {
1169 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1170 rom->data, rom->datasize);
1171 address_space_set(rom->as, rom->addr + rom->datasize, 0,
1172 rom->romsize - rom->datasize,
1173 MEMTXATTRS_UNSPECIFIED);
1174 }
1175 if (rom->isrom) {
1176 /* rom needs to be written only once */
1177 rom_free_data(rom);
1178 }
1179 /*
1180 * The rom loader is really on the same level as firmware in the guest
1181 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1182 * that the instruction cache for that new region is clear, so that the
1183 * CPU definitely fetches its instructions from the just written data.
1184 */
1185 cpu_flush_icache_range(rom->addr, rom->datasize);
1186
1187 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1188 }
1189 }
1190
1191 /* Return true if two consecutive ROMs in the ROM list overlap */
1192 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1193 {
1194 if (!last_rom) {
1195 return false;
1196 }
1197 return last_rom->as == this_rom->as &&
1198 last_rom->addr + last_rom->romsize > this_rom->addr;
1199 }
1200
1201 static const char *rom_as_name(Rom *rom)
1202 {
1203 const char *name = rom->as ? rom->as->name : NULL;
1204 return name ?: "anonymous";
1205 }
1206
1207 static void rom_print_overlap_error_header(void)
1208 {
1209 error_report("Some ROM regions are overlapping");
1210 error_printf(
1211 "These ROM regions might have been loaded by "
1212 "direct user request or by default.\n"
1213 "They could be BIOS/firmware images, a guest kernel, "
1214 "initrd or some other file loaded into guest memory.\n"
1215 "Check whether you intended to load all this guest code, and "
1216 "whether it has been built to load to the correct addresses.\n");
1217 }
1218
1219 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1220 {
1221 error_printf(
1222 "\nThe following two regions overlap (in the %s address space):\n",
1223 rom_as_name(rom));
1224 error_printf(
1225 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1226 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1227 error_printf(
1228 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1229 rom->name, rom->addr, rom->addr + rom->romsize);
1230 }
1231
1232 int rom_check_and_register_reset(void)
1233 {
1234 MemoryRegionSection section;
1235 Rom *rom, *last_rom = NULL;
1236 bool found_overlap = false;
1237
1238 QTAILQ_FOREACH(rom, &roms, next) {
1239 if (rom->fw_file) {
1240 continue;
1241 }
1242 if (!rom->mr) {
1243 if (roms_overlap(last_rom, rom)) {
1244 if (!found_overlap) {
1245 found_overlap = true;
1246 rom_print_overlap_error_header();
1247 }
1248 rom_print_one_overlap_error(last_rom, rom);
1249 /* Keep going through the list so we report all overlaps */
1250 }
1251 last_rom = rom;
1252 }
1253 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1254 rom->addr, 1);
1255 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1256 memory_region_unref(section.mr);
1257 }
1258 if (found_overlap) {
1259 return -1;
1260 }
1261
1262 qemu_register_reset(rom_reset, NULL);
1263 roms_loaded = 1;
1264 return 0;
1265 }
1266
1267 void rom_set_fw(FWCfgState *f)
1268 {
1269 fw_cfg = f;
1270 }
1271
1272 void rom_set_order_override(int order)
1273 {
1274 if (!fw_cfg)
1275 return;
1276 fw_cfg_set_order_override(fw_cfg, order);
1277 }
1278
1279 void rom_reset_order_override(void)
1280 {
1281 if (!fw_cfg)
1282 return;
1283 fw_cfg_reset_order_override(fw_cfg);
1284 }
1285
1286 void rom_transaction_begin(void)
1287 {
1288 Rom *rom;
1289
1290 /* Ignore ROMs added without the transaction API */
1291 QTAILQ_FOREACH(rom, &roms, next) {
1292 rom->committed = true;
1293 }
1294 }
1295
1296 void rom_transaction_end(bool commit)
1297 {
1298 Rom *rom;
1299 Rom *tmp;
1300
1301 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1302 if (rom->committed) {
1303 continue;
1304 }
1305 if (commit) {
1306 rom->committed = true;
1307 } else {
1308 QTAILQ_REMOVE(&roms, rom, next);
1309 rom_free(rom);
1310 }
1311 }
1312 }
1313
1314 static Rom *find_rom(hwaddr addr, size_t size)
1315 {
1316 Rom *rom;
1317
1318 QTAILQ_FOREACH(rom, &roms, next) {
1319 if (rom->fw_file) {
1320 continue;
1321 }
1322 if (rom->mr) {
1323 continue;
1324 }
1325 if (rom->addr > addr) {
1326 continue;
1327 }
1328 if (rom->addr + rom->romsize < addr + size) {
1329 continue;
1330 }
1331 return rom;
1332 }
1333 return NULL;
1334 }
1335
1336 /*
1337 * Copies memory from registered ROMs to dest. Any memory that is contained in
1338 * a ROM between addr and addr + size is copied. Note that this can involve
1339 * multiple ROMs, which need not start at addr and need not end at addr + size.
1340 */
1341 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1342 {
1343 hwaddr end = addr + size;
1344 uint8_t *s, *d = dest;
1345 size_t l = 0;
1346 Rom *rom;
1347
1348 QTAILQ_FOREACH(rom, &roms, next) {
1349 if (rom->fw_file) {
1350 continue;
1351 }
1352 if (rom->mr) {
1353 continue;
1354 }
1355 if (rom->addr + rom->romsize < addr) {
1356 continue;
1357 }
1358 if (rom->addr > end || rom->addr < addr) {
1359 break;
1360 }
1361
1362 d = dest + (rom->addr - addr);
1363 s = rom->data;
1364 l = rom->datasize;
1365
1366 if ((d + l) > (dest + size)) {
1367 l = dest - d;
1368 }
1369
1370 if (l > 0) {
1371 memcpy(d, s, l);
1372 }
1373
1374 if (rom->romsize > rom->datasize) {
1375 /* If datasize is less than romsize, it means that we didn't
1376 * allocate all the ROM because the trailing data are only zeros.
1377 */
1378
1379 d += l;
1380 l = rom->romsize - rom->datasize;
1381
1382 if ((d + l) > (dest + size)) {
1383 /* Rom size doesn't fit in the destination area. Adjust to avoid
1384 * overflow.
1385 */
1386 l = dest - d;
1387 }
1388
1389 if (l > 0) {
1390 memset(d, 0x0, l);
1391 }
1392 }
1393 }
1394
1395 return (d + l) - dest;
1396 }
1397
1398 void *rom_ptr(hwaddr addr, size_t size)
1399 {
1400 Rom *rom;
1401
1402 rom = find_rom(addr, size);
1403 if (!rom || !rom->data)
1404 return NULL;
1405 return rom->data + (addr - rom->addr);
1406 }
1407
1408 typedef struct FindRomCBData {
1409 size_t size; /* Amount of data we want from ROM, in bytes */
1410 MemoryRegion *mr; /* MR at the unaliased guest addr */
1411 hwaddr xlat; /* Offset of addr within mr */
1412 void *rom; /* Output: rom data pointer, if found */
1413 } FindRomCBData;
1414
1415 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1416 hwaddr offset_in_region, void *opaque)
1417 {
1418 FindRomCBData *cbdata = opaque;
1419 hwaddr alias_addr;
1420
1421 if (mr != cbdata->mr) {
1422 return false;
1423 }
1424
1425 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1426 cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1427 if (!cbdata->rom) {
1428 return false;
1429 }
1430 /* Found a match, stop iterating */
1431 return true;
1432 }
1433
1434 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1435 {
1436 /*
1437 * Find any ROM data for the given guest address range. If there
1438 * is a ROM blob then return a pointer to the host memory
1439 * corresponding to 'addr'; otherwise return NULL.
1440 *
1441 * We look not only for ROM blobs that were loaded directly to
1442 * addr, but also for ROM blobs that were loaded to aliases of
1443 * that memory at other addresses within the AddressSpace.
1444 *
1445 * Note that we do not check @as against the 'as' member in the
1446 * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1447 * AddressSpace which the rom blob should be written to, whereas
1448 * our @as argument is the AddressSpace which we are (effectively)
1449 * reading from, and the same underlying RAM will often be visible
1450 * in multiple AddressSpaces. (A common example is a ROM blob
1451 * written to the 'system' address space but then read back via a
1452 * CPU's cpu->as pointer.) This does mean we might potentially
1453 * return a false-positive match if a ROM blob was loaded into an
1454 * AS which is entirely separate and distinct from the one we're
1455 * querying, but this issue exists also for rom_ptr() and hasn't
1456 * caused any problems in practice.
1457 */
1458 FlatView *fv;
1459 void *rom;
1460 hwaddr len_unused;
1461 FindRomCBData cbdata = {};
1462
1463 /* Easy case: there's data at the actual address */
1464 rom = rom_ptr(addr, size);
1465 if (rom) {
1466 return rom;
1467 }
1468
1469 RCU_READ_LOCK_GUARD();
1470
1471 fv = address_space_to_flatview(as);
1472 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1473 false, MEMTXATTRS_UNSPECIFIED);
1474 if (!cbdata.mr) {
1475 /* Nothing at this address, so there can't be any aliasing */
1476 return NULL;
1477 }
1478 cbdata.size = size;
1479 flatview_for_each_range(fv, find_rom_cb, &cbdata);
1480 return cbdata.rom;
1481 }
1482
1483 HumanReadableText *qmp_x_query_roms(Error **errp)
1484 {
1485 Rom *rom;
1486 g_autoptr(GString) buf = g_string_new("");
1487
1488 QTAILQ_FOREACH(rom, &roms, next) {
1489 if (rom->mr) {
1490 g_string_append_printf(buf, "%s"
1491 " size=0x%06zx name=\"%s\"\n",
1492 memory_region_name(rom->mr),
1493 rom->romsize,
1494 rom->name);
1495 } else if (!rom->fw_file) {
1496 g_string_append_printf(buf, "addr=" TARGET_FMT_plx
1497 " size=0x%06zx mem=%s name=\"%s\"\n",
1498 rom->addr, rom->romsize,
1499 rom->isrom ? "rom" : "ram",
1500 rom->name);
1501 } else {
1502 g_string_append_printf(buf, "fw=%s/%s"
1503 " size=0x%06zx name=\"%s\"\n",
1504 rom->fw_dir,
1505 rom->fw_file,
1506 rom->romsize,
1507 rom->name);
1508 }
1509 }
1510
1511 return human_readable_text_from_str(buf);
1512 }
1513
1514 typedef enum HexRecord HexRecord;
1515 enum HexRecord {
1516 DATA_RECORD = 0,
1517 EOF_RECORD,
1518 EXT_SEG_ADDR_RECORD,
1519 START_SEG_ADDR_RECORD,
1520 EXT_LINEAR_ADDR_RECORD,
1521 START_LINEAR_ADDR_RECORD,
1522 };
1523
1524 /* Each record contains a 16-bit address which is combined with the upper 16
1525 * bits of the implicit "next address" to form a 32-bit address.
1526 */
1527 #define NEXT_ADDR_MASK 0xffff0000
1528
1529 #define DATA_FIELD_MAX_LEN 0xff
1530 #define LEN_EXCEPT_DATA 0x5
1531 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1532 * sizeof(checksum) */
1533 typedef struct {
1534 uint8_t byte_count;
1535 uint16_t address;
1536 uint8_t record_type;
1537 uint8_t data[DATA_FIELD_MAX_LEN];
1538 uint8_t checksum;
1539 } HexLine;
1540
1541 /* return 0 or -1 if error */
1542 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1543 uint32_t *index, const bool in_process)
1544 {
1545 /* +-------+---------------+-------+---------------------+--------+
1546 * | byte | |record | | |
1547 * | count | address | type | data |checksum|
1548 * +-------+---------------+-------+---------------------+--------+
1549 * ^ ^ ^ ^ ^ ^
1550 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1551 */
1552 uint8_t value = 0;
1553 uint32_t idx = *index;
1554 /* ignore space */
1555 if (g_ascii_isspace(c)) {
1556 return true;
1557 }
1558 if (!g_ascii_isxdigit(c) || !in_process) {
1559 return false;
1560 }
1561 value = g_ascii_xdigit_value(c);
1562 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1563 if (idx < 2) {
1564 line->byte_count |= value;
1565 } else if (2 <= idx && idx < 6) {
1566 line->address <<= 4;
1567 line->address += g_ascii_xdigit_value(c);
1568 } else if (6 <= idx && idx < 8) {
1569 line->record_type |= value;
1570 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1571 line->data[(idx - 8) >> 1] |= value;
1572 } else if (8 + 2 * line->byte_count <= idx &&
1573 idx < 10 + 2 * line->byte_count) {
1574 line->checksum |= value;
1575 } else {
1576 return false;
1577 }
1578 *our_checksum += value;
1579 ++(*index);
1580 return true;
1581 }
1582
1583 typedef struct {
1584 const char *filename;
1585 HexLine line;
1586 uint8_t *bin_buf;
1587 hwaddr *start_addr;
1588 int total_size;
1589 uint32_t next_address_to_write;
1590 uint32_t current_address;
1591 uint32_t current_rom_index;
1592 uint32_t rom_start_address;
1593 AddressSpace *as;
1594 bool complete;
1595 } HexParser;
1596
1597 /* return size or -1 if error */
1598 static int handle_record_type(HexParser *parser)
1599 {
1600 HexLine *line = &(parser->line);
1601 switch (line->record_type) {
1602 case DATA_RECORD:
1603 parser->current_address =
1604 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1605 /* verify this is a contiguous block of memory */
1606 if (parser->current_address != parser->next_address_to_write) {
1607 if (parser->current_rom_index != 0) {
1608 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1609 parser->current_rom_index,
1610 parser->rom_start_address, parser->as);
1611 }
1612 parser->rom_start_address = parser->current_address;
1613 parser->current_rom_index = 0;
1614 }
1615
1616 /* copy from line buffer to output bin_buf */
1617 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1618 line->byte_count);
1619 parser->current_rom_index += line->byte_count;
1620 parser->total_size += line->byte_count;
1621 /* save next address to write */
1622 parser->next_address_to_write =
1623 parser->current_address + line->byte_count;
1624 break;
1625
1626 case EOF_RECORD:
1627 if (parser->current_rom_index != 0) {
1628 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1629 parser->current_rom_index,
1630 parser->rom_start_address, parser->as);
1631 }
1632 parser->complete = true;
1633 return parser->total_size;
1634 case EXT_SEG_ADDR_RECORD:
1635 case EXT_LINEAR_ADDR_RECORD:
1636 if (line->byte_count != 2 && line->address != 0) {
1637 return -1;
1638 }
1639
1640 if (parser->current_rom_index != 0) {
1641 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1642 parser->current_rom_index,
1643 parser->rom_start_address, parser->as);
1644 }
1645
1646 /* save next address to write,
1647 * in case of non-contiguous block of memory */
1648 parser->next_address_to_write = (line->data[0] << 12) |
1649 (line->data[1] << 4);
1650 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1651 parser->next_address_to_write <<= 12;
1652 }
1653
1654 parser->rom_start_address = parser->next_address_to_write;
1655 parser->current_rom_index = 0;
1656 break;
1657
1658 case START_SEG_ADDR_RECORD:
1659 if (line->byte_count != 4 && line->address != 0) {
1660 return -1;
1661 }
1662
1663 /* x86 16-bit CS:IP segmented addressing */
1664 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1665 ((line->data[2] << 8) | line->data[3]);
1666 break;
1667
1668 case START_LINEAR_ADDR_RECORD:
1669 if (line->byte_count != 4 && line->address != 0) {
1670 return -1;
1671 }
1672
1673 *(parser->start_addr) = ldl_be_p(line->data);
1674 break;
1675
1676 default:
1677 return -1;
1678 }
1679
1680 return parser->total_size;
1681 }
1682
1683 /* return size or -1 if error */
1684 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1685 size_t hex_blob_size, AddressSpace *as)
1686 {
1687 bool in_process = false; /* avoid re-enter and
1688 * check whether record begin with ':' */
1689 uint8_t *end = hex_blob + hex_blob_size;
1690 uint8_t our_checksum = 0;
1691 uint32_t record_index = 0;
1692 HexParser parser = {
1693 .filename = filename,
1694 .bin_buf = g_malloc(hex_blob_size),
1695 .start_addr = addr,
1696 .as = as,
1697 .complete = false
1698 };
1699
1700 rom_transaction_begin();
1701
1702 for (; hex_blob < end && !parser.complete; ++hex_blob) {
1703 switch (*hex_blob) {
1704 case '\r':
1705 case '\n':
1706 if (!in_process) {
1707 break;
1708 }
1709
1710 in_process = false;
1711 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1712 record_index ||
1713 our_checksum != 0) {
1714 parser.total_size = -1;
1715 goto out;
1716 }
1717
1718 if (handle_record_type(&parser) == -1) {
1719 parser.total_size = -1;
1720 goto out;
1721 }
1722 break;
1723
1724 /* start of a new record. */
1725 case ':':
1726 memset(&parser.line, 0, sizeof(HexLine));
1727 in_process = true;
1728 record_index = 0;
1729 break;
1730
1731 /* decoding lines */
1732 default:
1733 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1734 &record_index, in_process)) {
1735 parser.total_size = -1;
1736 goto out;
1737 }
1738 break;
1739 }
1740 }
1741
1742 out:
1743 g_free(parser.bin_buf);
1744 rom_transaction_end(parser.total_size != -1);
1745 return parser.total_size;
1746 }
1747
1748 /* return size or -1 if error */
1749 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1750 {
1751 gsize hex_blob_size;
1752 gchar *hex_blob;
1753 int total_size = 0;
1754
1755 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1756 return -1;
1757 }
1758
1759 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1760 hex_blob_size, as);
1761
1762 g_free(hex_blob);
1763 return total_size;
1764 }