]> git.proxmox.com Git - mirror_qemu.git/blob - hw/core/loader.c
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-4.1-20190612' into staging
[mirror_qemu.git] / hw / core / loader.c
1 /*
2 * QEMU Executable loader
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 *
24 * Gunzip functionality in this file is derived from u-boot:
25 *
26 * (C) Copyright 2008 Semihalf
27 *
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
35 *
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
43 */
44
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qapi/error.h"
48 #include "hw/hw.h"
49 #include "disas/disas.h"
50 #include "monitor/monitor.h"
51 #include "sysemu/sysemu.h"
52 #include "uboot_image.h"
53 #include "hw/loader.h"
54 #include "hw/nvram/fw_cfg.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "hw/boards.h"
58 #include "qemu/cutils.h"
59
60 #include <zlib.h>
61
62 static int roms_loaded;
63
64 /* return the size or -1 if error */
65 int64_t get_image_size(const char *filename)
66 {
67 int fd;
68 int64_t size;
69 fd = open(filename, O_RDONLY | O_BINARY);
70 if (fd < 0)
71 return -1;
72 size = lseek(fd, 0, SEEK_END);
73 close(fd);
74 return size;
75 }
76
77 /* return the size or -1 if error */
78 ssize_t load_image_size(const char *filename, void *addr, size_t size)
79 {
80 int fd;
81 ssize_t actsize, l = 0;
82
83 fd = open(filename, O_RDONLY | O_BINARY);
84 if (fd < 0) {
85 return -1;
86 }
87
88 while ((actsize = read(fd, addr + l, size - l)) > 0) {
89 l += actsize;
90 }
91
92 close(fd);
93
94 return actsize < 0 ? -1 : l;
95 }
96
97 /* read()-like version */
98 ssize_t read_targphys(const char *name,
99 int fd, hwaddr dst_addr, size_t nbytes)
100 {
101 uint8_t *buf;
102 ssize_t did;
103
104 buf = g_malloc(nbytes);
105 did = read(fd, buf, nbytes);
106 if (did > 0)
107 rom_add_blob_fixed("read", buf, did, dst_addr);
108 g_free(buf);
109 return did;
110 }
111
112 int load_image_targphys(const char *filename,
113 hwaddr addr, uint64_t max_sz)
114 {
115 return load_image_targphys_as(filename, addr, max_sz, NULL);
116 }
117
118 /* return the size or -1 if error */
119 int load_image_targphys_as(const char *filename,
120 hwaddr addr, uint64_t max_sz, AddressSpace *as)
121 {
122 int size;
123
124 size = get_image_size(filename);
125 if (size < 0 || size > max_sz) {
126 return -1;
127 }
128 if (size > 0) {
129 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
130 return -1;
131 }
132 }
133 return size;
134 }
135
136 int load_image_mr(const char *filename, MemoryRegion *mr)
137 {
138 int size;
139
140 if (!memory_access_is_direct(mr, false)) {
141 /* Can only load an image into RAM or ROM */
142 return -1;
143 }
144
145 size = get_image_size(filename);
146
147 if (size < 0 || size > memory_region_size(mr)) {
148 return -1;
149 }
150 if (size > 0) {
151 if (rom_add_file_mr(filename, mr, -1) < 0) {
152 return -1;
153 }
154 }
155 return size;
156 }
157
158 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
159 const char *source)
160 {
161 const char *nulp;
162 char *ptr;
163
164 if (buf_size <= 0) return;
165 nulp = memchr(source, 0, buf_size);
166 if (nulp) {
167 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
168 } else {
169 rom_add_blob_fixed(name, source, buf_size, dest);
170 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
171 *ptr = 0;
172 }
173 }
174
175 /* A.OUT loader */
176
177 struct exec
178 {
179 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
180 uint32_t a_text; /* length of text, in bytes */
181 uint32_t a_data; /* length of data, in bytes */
182 uint32_t a_bss; /* length of uninitialized data area, in bytes */
183 uint32_t a_syms; /* length of symbol table data in file, in bytes */
184 uint32_t a_entry; /* start address */
185 uint32_t a_trsize; /* length of relocation info for text, in bytes */
186 uint32_t a_drsize; /* length of relocation info for data, in bytes */
187 };
188
189 static void bswap_ahdr(struct exec *e)
190 {
191 bswap32s(&e->a_info);
192 bswap32s(&e->a_text);
193 bswap32s(&e->a_data);
194 bswap32s(&e->a_bss);
195 bswap32s(&e->a_syms);
196 bswap32s(&e->a_entry);
197 bswap32s(&e->a_trsize);
198 bswap32s(&e->a_drsize);
199 }
200
201 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
202 #define OMAGIC 0407
203 #define NMAGIC 0410
204 #define ZMAGIC 0413
205 #define QMAGIC 0314
206 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
207 #define N_TXTOFF(x) \
208 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
209 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
210 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
211 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
212
213 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
214
215 #define N_DATADDR(x, target_page_size) \
216 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
217 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
218
219
220 int load_aout(const char *filename, hwaddr addr, int max_sz,
221 int bswap_needed, hwaddr target_page_size)
222 {
223 int fd;
224 ssize_t size, ret;
225 struct exec e;
226 uint32_t magic;
227
228 fd = open(filename, O_RDONLY | O_BINARY);
229 if (fd < 0)
230 return -1;
231
232 size = read(fd, &e, sizeof(e));
233 if (size < 0)
234 goto fail;
235
236 if (bswap_needed) {
237 bswap_ahdr(&e);
238 }
239
240 magic = N_MAGIC(e);
241 switch (magic) {
242 case ZMAGIC:
243 case QMAGIC:
244 case OMAGIC:
245 if (e.a_text + e.a_data > max_sz)
246 goto fail;
247 lseek(fd, N_TXTOFF(e), SEEK_SET);
248 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
249 if (size < 0)
250 goto fail;
251 break;
252 case NMAGIC:
253 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
254 goto fail;
255 lseek(fd, N_TXTOFF(e), SEEK_SET);
256 size = read_targphys(filename, fd, addr, e.a_text);
257 if (size < 0)
258 goto fail;
259 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
260 e.a_data);
261 if (ret < 0)
262 goto fail;
263 size += ret;
264 break;
265 default:
266 goto fail;
267 }
268 close(fd);
269 return size;
270 fail:
271 close(fd);
272 return -1;
273 }
274
275 /* ELF loader */
276
277 static void *load_at(int fd, off_t offset, size_t size)
278 {
279 void *ptr;
280 if (lseek(fd, offset, SEEK_SET) < 0)
281 return NULL;
282 ptr = g_malloc(size);
283 if (read(fd, ptr, size) != size) {
284 g_free(ptr);
285 return NULL;
286 }
287 return ptr;
288 }
289
290 #ifdef ELF_CLASS
291 #undef ELF_CLASS
292 #endif
293
294 #define ELF_CLASS ELFCLASS32
295 #include "elf.h"
296
297 #define SZ 32
298 #define elf_word uint32_t
299 #define elf_sword int32_t
300 #define bswapSZs bswap32s
301 #include "hw/elf_ops.h"
302
303 #undef elfhdr
304 #undef elf_phdr
305 #undef elf_shdr
306 #undef elf_sym
307 #undef elf_rela
308 #undef elf_note
309 #undef elf_word
310 #undef elf_sword
311 #undef bswapSZs
312 #undef SZ
313 #define elfhdr elf64_hdr
314 #define elf_phdr elf64_phdr
315 #define elf_note elf64_note
316 #define elf_shdr elf64_shdr
317 #define elf_sym elf64_sym
318 #define elf_rela elf64_rela
319 #define elf_word uint64_t
320 #define elf_sword int64_t
321 #define bswapSZs bswap64s
322 #define SZ 64
323 #include "hw/elf_ops.h"
324
325 const char *load_elf_strerror(int error)
326 {
327 switch (error) {
328 case 0:
329 return "No error";
330 case ELF_LOAD_FAILED:
331 return "Failed to load ELF";
332 case ELF_LOAD_NOT_ELF:
333 return "The image is not ELF";
334 case ELF_LOAD_WRONG_ARCH:
335 return "The image is from incompatible architecture";
336 case ELF_LOAD_WRONG_ENDIAN:
337 return "The image has incorrect endianness";
338 default:
339 return "Unknown error";
340 }
341 }
342
343 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
344 {
345 int fd;
346 uint8_t e_ident_local[EI_NIDENT];
347 uint8_t *e_ident;
348 size_t hdr_size, off;
349 bool is64l;
350
351 if (!hdr) {
352 hdr = e_ident_local;
353 }
354 e_ident = hdr;
355
356 fd = open(filename, O_RDONLY | O_BINARY);
357 if (fd < 0) {
358 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
359 return;
360 }
361 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
362 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
363 goto fail;
364 }
365 if (e_ident[0] != ELFMAG0 ||
366 e_ident[1] != ELFMAG1 ||
367 e_ident[2] != ELFMAG2 ||
368 e_ident[3] != ELFMAG3) {
369 error_setg(errp, "Bad ELF magic");
370 goto fail;
371 }
372
373 is64l = e_ident[EI_CLASS] == ELFCLASS64;
374 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
375 if (is64) {
376 *is64 = is64l;
377 }
378
379 off = EI_NIDENT;
380 while (hdr != e_ident_local && off < hdr_size) {
381 size_t br = read(fd, hdr + off, hdr_size - off);
382 switch (br) {
383 case 0:
384 error_setg(errp, "File too short: %s", filename);
385 goto fail;
386 case -1:
387 error_setg_errno(errp, errno, "Failed to read file: %s",
388 filename);
389 goto fail;
390 }
391 off += br;
392 }
393
394 fail:
395 close(fd);
396 }
397
398 /* return < 0 if error, otherwise the number of bytes loaded in memory */
399 int load_elf(const char *filename,
400 uint64_t (*elf_note_fn)(void *, void *, bool),
401 uint64_t (*translate_fn)(void *, uint64_t),
402 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
403 uint64_t *highaddr, int big_endian, int elf_machine,
404 int clear_lsb, int data_swab)
405 {
406 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
407 pentry, lowaddr, highaddr, big_endian, elf_machine,
408 clear_lsb, data_swab, NULL);
409 }
410
411 /* return < 0 if error, otherwise the number of bytes loaded in memory */
412 int load_elf_as(const char *filename,
413 uint64_t (*elf_note_fn)(void *, void *, bool),
414 uint64_t (*translate_fn)(void *, uint64_t),
415 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
416 uint64_t *highaddr, int big_endian, int elf_machine,
417 int clear_lsb, int data_swab, AddressSpace *as)
418 {
419 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
420 pentry, lowaddr, highaddr, big_endian, elf_machine,
421 clear_lsb, data_swab, as, true);
422 }
423
424 /* return < 0 if error, otherwise the number of bytes loaded in memory */
425 int load_elf_ram(const char *filename,
426 uint64_t (*elf_note_fn)(void *, void *, bool),
427 uint64_t (*translate_fn)(void *, uint64_t),
428 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
429 uint64_t *highaddr, int big_endian, int elf_machine,
430 int clear_lsb, int data_swab, AddressSpace *as,
431 bool load_rom)
432 {
433 return load_elf_ram_sym(filename, elf_note_fn,
434 translate_fn, translate_opaque,
435 pentry, lowaddr, highaddr, big_endian,
436 elf_machine, clear_lsb, data_swab, as,
437 load_rom, NULL);
438 }
439
440 /* return < 0 if error, otherwise the number of bytes loaded in memory */
441 int load_elf_ram_sym(const char *filename,
442 uint64_t (*elf_note_fn)(void *, void *, bool),
443 uint64_t (*translate_fn)(void *, uint64_t),
444 void *translate_opaque, uint64_t *pentry,
445 uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
446 int elf_machine, int clear_lsb, int data_swab,
447 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
448 {
449 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
450 uint8_t e_ident[EI_NIDENT];
451
452 fd = open(filename, O_RDONLY | O_BINARY);
453 if (fd < 0) {
454 perror(filename);
455 return -1;
456 }
457 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
458 goto fail;
459 if (e_ident[0] != ELFMAG0 ||
460 e_ident[1] != ELFMAG1 ||
461 e_ident[2] != ELFMAG2 ||
462 e_ident[3] != ELFMAG3) {
463 ret = ELF_LOAD_NOT_ELF;
464 goto fail;
465 }
466 #ifdef HOST_WORDS_BIGENDIAN
467 data_order = ELFDATA2MSB;
468 #else
469 data_order = ELFDATA2LSB;
470 #endif
471 must_swab = data_order != e_ident[EI_DATA];
472 if (big_endian) {
473 target_data_order = ELFDATA2MSB;
474 } else {
475 target_data_order = ELFDATA2LSB;
476 }
477
478 if (target_data_order != e_ident[EI_DATA]) {
479 ret = ELF_LOAD_WRONG_ENDIAN;
480 goto fail;
481 }
482
483 lseek(fd, 0, SEEK_SET);
484 if (e_ident[EI_CLASS] == ELFCLASS64) {
485 ret = load_elf64(filename, fd, elf_note_fn,
486 translate_fn, translate_opaque, must_swab,
487 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
488 data_swab, as, load_rom, sym_cb);
489 } else {
490 ret = load_elf32(filename, fd, elf_note_fn,
491 translate_fn, translate_opaque, must_swab,
492 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
493 data_swab, as, load_rom, sym_cb);
494 }
495
496 fail:
497 close(fd);
498 return ret;
499 }
500
501 static void bswap_uboot_header(uboot_image_header_t *hdr)
502 {
503 #ifndef HOST_WORDS_BIGENDIAN
504 bswap32s(&hdr->ih_magic);
505 bswap32s(&hdr->ih_hcrc);
506 bswap32s(&hdr->ih_time);
507 bswap32s(&hdr->ih_size);
508 bswap32s(&hdr->ih_load);
509 bswap32s(&hdr->ih_ep);
510 bswap32s(&hdr->ih_dcrc);
511 #endif
512 }
513
514
515 #define ZALLOC_ALIGNMENT 16
516
517 static void *zalloc(void *x, unsigned items, unsigned size)
518 {
519 void *p;
520
521 size *= items;
522 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
523
524 p = g_malloc(size);
525
526 return (p);
527 }
528
529 static void zfree(void *x, void *addr)
530 {
531 g_free(addr);
532 }
533
534
535 #define HEAD_CRC 2
536 #define EXTRA_FIELD 4
537 #define ORIG_NAME 8
538 #define COMMENT 0x10
539 #define RESERVED 0xe0
540
541 #define DEFLATED 8
542
543 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
544 {
545 z_stream s;
546 ssize_t dstbytes;
547 int r, i, flags;
548
549 /* skip header */
550 i = 10;
551 flags = src[3];
552 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
553 puts ("Error: Bad gzipped data\n");
554 return -1;
555 }
556 if ((flags & EXTRA_FIELD) != 0)
557 i = 12 + src[10] + (src[11] << 8);
558 if ((flags & ORIG_NAME) != 0)
559 while (src[i++] != 0)
560 ;
561 if ((flags & COMMENT) != 0)
562 while (src[i++] != 0)
563 ;
564 if ((flags & HEAD_CRC) != 0)
565 i += 2;
566 if (i >= srclen) {
567 puts ("Error: gunzip out of data in header\n");
568 return -1;
569 }
570
571 s.zalloc = zalloc;
572 s.zfree = zfree;
573
574 r = inflateInit2(&s, -MAX_WBITS);
575 if (r != Z_OK) {
576 printf ("Error: inflateInit2() returned %d\n", r);
577 return (-1);
578 }
579 s.next_in = src + i;
580 s.avail_in = srclen - i;
581 s.next_out = dst;
582 s.avail_out = dstlen;
583 r = inflate(&s, Z_FINISH);
584 if (r != Z_OK && r != Z_STREAM_END) {
585 printf ("Error: inflate() returned %d\n", r);
586 return -1;
587 }
588 dstbytes = s.next_out - (unsigned char *) dst;
589 inflateEnd(&s);
590
591 return dstbytes;
592 }
593
594 /* Load a U-Boot image. */
595 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
596 int *is_linux, uint8_t image_type,
597 uint64_t (*translate_fn)(void *, uint64_t),
598 void *translate_opaque, AddressSpace *as)
599 {
600 int fd;
601 int size;
602 hwaddr address;
603 uboot_image_header_t h;
604 uboot_image_header_t *hdr = &h;
605 uint8_t *data = NULL;
606 int ret = -1;
607 int do_uncompress = 0;
608
609 fd = open(filename, O_RDONLY | O_BINARY);
610 if (fd < 0)
611 return -1;
612
613 size = read(fd, hdr, sizeof(uboot_image_header_t));
614 if (size < sizeof(uboot_image_header_t)) {
615 goto out;
616 }
617
618 bswap_uboot_header(hdr);
619
620 if (hdr->ih_magic != IH_MAGIC)
621 goto out;
622
623 if (hdr->ih_type != image_type) {
624 if (!(image_type == IH_TYPE_KERNEL &&
625 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
626 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
627 image_type);
628 goto out;
629 }
630 }
631
632 /* TODO: Implement other image types. */
633 switch (hdr->ih_type) {
634 case IH_TYPE_KERNEL_NOLOAD:
635 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
636 fprintf(stderr, "this image format (kernel_noload) cannot be "
637 "loaded on this machine type");
638 goto out;
639 }
640
641 hdr->ih_load = *loadaddr + sizeof(*hdr);
642 hdr->ih_ep += hdr->ih_load;
643 /* fall through */
644 case IH_TYPE_KERNEL:
645 address = hdr->ih_load;
646 if (translate_fn) {
647 address = translate_fn(translate_opaque, address);
648 }
649 if (loadaddr) {
650 *loadaddr = hdr->ih_load;
651 }
652
653 switch (hdr->ih_comp) {
654 case IH_COMP_NONE:
655 break;
656 case IH_COMP_GZIP:
657 do_uncompress = 1;
658 break;
659 default:
660 fprintf(stderr,
661 "Unable to load u-boot images with compression type %d\n",
662 hdr->ih_comp);
663 goto out;
664 }
665
666 if (ep) {
667 *ep = hdr->ih_ep;
668 }
669
670 /* TODO: Check CPU type. */
671 if (is_linux) {
672 if (hdr->ih_os == IH_OS_LINUX) {
673 *is_linux = 1;
674 } else {
675 *is_linux = 0;
676 }
677 }
678
679 break;
680 case IH_TYPE_RAMDISK:
681 address = *loadaddr;
682 break;
683 default:
684 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
685 goto out;
686 }
687
688 data = g_malloc(hdr->ih_size);
689
690 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
691 fprintf(stderr, "Error reading file\n");
692 goto out;
693 }
694
695 if (do_uncompress) {
696 uint8_t *compressed_data;
697 size_t max_bytes;
698 ssize_t bytes;
699
700 compressed_data = data;
701 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
702 data = g_malloc(max_bytes);
703
704 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
705 g_free(compressed_data);
706 if (bytes < 0) {
707 fprintf(stderr, "Unable to decompress gzipped image!\n");
708 goto out;
709 }
710 hdr->ih_size = bytes;
711 }
712
713 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
714
715 ret = hdr->ih_size;
716
717 out:
718 g_free(data);
719 close(fd);
720 return ret;
721 }
722
723 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
724 int *is_linux,
725 uint64_t (*translate_fn)(void *, uint64_t),
726 void *translate_opaque)
727 {
728 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
729 translate_fn, translate_opaque, NULL);
730 }
731
732 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
733 int *is_linux,
734 uint64_t (*translate_fn)(void *, uint64_t),
735 void *translate_opaque, AddressSpace *as)
736 {
737 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
738 translate_fn, translate_opaque, as);
739 }
740
741 /* Load a ramdisk. */
742 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
743 {
744 return load_ramdisk_as(filename, addr, max_sz, NULL);
745 }
746
747 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
748 AddressSpace *as)
749 {
750 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
751 NULL, NULL, as);
752 }
753
754 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
755 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
756 uint8_t **buffer)
757 {
758 uint8_t *compressed_data = NULL;
759 uint8_t *data = NULL;
760 gsize len;
761 ssize_t bytes;
762 int ret = -1;
763
764 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
765 NULL)) {
766 goto out;
767 }
768
769 /* Is it a gzip-compressed file? */
770 if (len < 2 ||
771 compressed_data[0] != 0x1f ||
772 compressed_data[1] != 0x8b) {
773 goto out;
774 }
775
776 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
777 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
778 }
779
780 data = g_malloc(max_sz);
781 bytes = gunzip(data, max_sz, compressed_data, len);
782 if (bytes < 0) {
783 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
784 filename);
785 goto out;
786 }
787
788 /* trim to actual size and return to caller */
789 *buffer = g_realloc(data, bytes);
790 ret = bytes;
791 /* ownership has been transferred to caller */
792 data = NULL;
793
794 out:
795 g_free(compressed_data);
796 g_free(data);
797 return ret;
798 }
799
800 /* Load a gzip-compressed kernel. */
801 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
802 {
803 int bytes;
804 uint8_t *data;
805
806 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
807 if (bytes != -1) {
808 rom_add_blob_fixed(filename, data, bytes, addr);
809 g_free(data);
810 }
811 return bytes;
812 }
813
814 /*
815 * Functions for reboot-persistent memory regions.
816 * - used for vga bios and option roms.
817 * - also linux kernel (-kernel / -initrd).
818 */
819
820 typedef struct Rom Rom;
821
822 struct Rom {
823 char *name;
824 char *path;
825
826 /* datasize is the amount of memory allocated in "data". If datasize is less
827 * than romsize, it means that the area from datasize to romsize is filled
828 * with zeros.
829 */
830 size_t romsize;
831 size_t datasize;
832
833 uint8_t *data;
834 MemoryRegion *mr;
835 AddressSpace *as;
836 int isrom;
837 char *fw_dir;
838 char *fw_file;
839
840 bool committed;
841
842 hwaddr addr;
843 QTAILQ_ENTRY(Rom) next;
844 };
845
846 static FWCfgState *fw_cfg;
847 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
848
849 /* rom->data must be heap-allocated (do not use with rom_add_elf_program()) */
850 static void rom_free(Rom *rom)
851 {
852 g_free(rom->data);
853 g_free(rom->path);
854 g_free(rom->name);
855 g_free(rom->fw_dir);
856 g_free(rom->fw_file);
857 g_free(rom);
858 }
859
860 static inline bool rom_order_compare(Rom *rom, Rom *item)
861 {
862 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
863 (rom->as == item->as && rom->addr >= item->addr);
864 }
865
866 static void rom_insert(Rom *rom)
867 {
868 Rom *item;
869
870 if (roms_loaded) {
871 hw_error ("ROM images must be loaded at startup\n");
872 }
873
874 /* The user didn't specify an address space, this is the default */
875 if (!rom->as) {
876 rom->as = &address_space_memory;
877 }
878
879 rom->committed = false;
880
881 /* List is ordered by load address in the same address space */
882 QTAILQ_FOREACH(item, &roms, next) {
883 if (rom_order_compare(rom, item)) {
884 continue;
885 }
886 QTAILQ_INSERT_BEFORE(item, rom, next);
887 return;
888 }
889 QTAILQ_INSERT_TAIL(&roms, rom, next);
890 }
891
892 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
893 {
894 if (fw_cfg) {
895 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
896 }
897 }
898
899 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
900 {
901 void *data;
902
903 rom->mr = g_malloc(sizeof(*rom->mr));
904 memory_region_init_resizeable_ram(rom->mr, owner, name,
905 rom->datasize, rom->romsize,
906 fw_cfg_resized,
907 &error_fatal);
908 memory_region_set_readonly(rom->mr, ro);
909 vmstate_register_ram_global(rom->mr);
910
911 data = memory_region_get_ram_ptr(rom->mr);
912 memcpy(data, rom->data, rom->datasize);
913
914 return data;
915 }
916
917 int rom_add_file(const char *file, const char *fw_dir,
918 hwaddr addr, int32_t bootindex,
919 bool option_rom, MemoryRegion *mr,
920 AddressSpace *as)
921 {
922 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
923 Rom *rom;
924 int rc, fd = -1;
925 char devpath[100];
926
927 if (as && mr) {
928 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
929 "not valid when loading a rom\n");
930 /* We haven't allocated anything so we don't need any cleanup */
931 return -1;
932 }
933
934 rom = g_malloc0(sizeof(*rom));
935 rom->name = g_strdup(file);
936 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
937 rom->as = as;
938 if (rom->path == NULL) {
939 rom->path = g_strdup(file);
940 }
941
942 fd = open(rom->path, O_RDONLY | O_BINARY);
943 if (fd == -1) {
944 fprintf(stderr, "Could not open option rom '%s': %s\n",
945 rom->path, strerror(errno));
946 goto err;
947 }
948
949 if (fw_dir) {
950 rom->fw_dir = g_strdup(fw_dir);
951 rom->fw_file = g_strdup(file);
952 }
953 rom->addr = addr;
954 rom->romsize = lseek(fd, 0, SEEK_END);
955 if (rom->romsize == -1) {
956 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
957 rom->name, strerror(errno));
958 goto err;
959 }
960
961 rom->datasize = rom->romsize;
962 rom->data = g_malloc0(rom->datasize);
963 lseek(fd, 0, SEEK_SET);
964 rc = read(fd, rom->data, rom->datasize);
965 if (rc != rom->datasize) {
966 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
967 rom->name, rc, rom->datasize);
968 goto err;
969 }
970 close(fd);
971 rom_insert(rom);
972 if (rom->fw_file && fw_cfg) {
973 const char *basename;
974 char fw_file_name[FW_CFG_MAX_FILE_PATH];
975 void *data;
976
977 basename = strrchr(rom->fw_file, '/');
978 if (basename) {
979 basename++;
980 } else {
981 basename = rom->fw_file;
982 }
983 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
984 basename);
985 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
986
987 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
988 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
989 } else {
990 data = rom->data;
991 }
992
993 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
994 } else {
995 if (mr) {
996 rom->mr = mr;
997 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
998 } else {
999 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1000 }
1001 }
1002
1003 add_boot_device_path(bootindex, NULL, devpath);
1004 return 0;
1005
1006 err:
1007 if (fd != -1)
1008 close(fd);
1009
1010 rom_free(rom);
1011 return -1;
1012 }
1013
1014 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1015 size_t max_len, hwaddr addr, const char *fw_file_name,
1016 FWCfgCallback fw_callback, void *callback_opaque,
1017 AddressSpace *as, bool read_only)
1018 {
1019 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1020 Rom *rom;
1021 MemoryRegion *mr = NULL;
1022
1023 rom = g_malloc0(sizeof(*rom));
1024 rom->name = g_strdup(name);
1025 rom->as = as;
1026 rom->addr = addr;
1027 rom->romsize = max_len ? max_len : len;
1028 rom->datasize = len;
1029 g_assert(rom->romsize >= rom->datasize);
1030 rom->data = g_malloc0(rom->datasize);
1031 memcpy(rom->data, blob, len);
1032 rom_insert(rom);
1033 if (fw_file_name && fw_cfg) {
1034 char devpath[100];
1035 void *data;
1036
1037 if (read_only) {
1038 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1039 } else {
1040 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1041 }
1042
1043 if (mc->rom_file_has_mr) {
1044 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1045 mr = rom->mr;
1046 } else {
1047 data = rom->data;
1048 }
1049
1050 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1051 fw_callback, NULL, callback_opaque,
1052 data, rom->datasize, read_only);
1053 }
1054 return mr;
1055 }
1056
1057 /* This function is specific for elf program because we don't need to allocate
1058 * all the rom. We just allocate the first part and the rest is just zeros. This
1059 * is why romsize and datasize are different. Also, this function seize the
1060 * memory ownership of "data", so we don't have to allocate and copy the buffer.
1061 */
1062 int rom_add_elf_program(const char *name, void *data, size_t datasize,
1063 size_t romsize, hwaddr addr, AddressSpace *as)
1064 {
1065 Rom *rom;
1066
1067 rom = g_malloc0(sizeof(*rom));
1068 rom->name = g_strdup(name);
1069 rom->addr = addr;
1070 rom->datasize = datasize;
1071 rom->romsize = romsize;
1072 rom->data = data;
1073 rom->as = as;
1074 rom_insert(rom);
1075 return 0;
1076 }
1077
1078 int rom_add_vga(const char *file)
1079 {
1080 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1081 }
1082
1083 int rom_add_option(const char *file, int32_t bootindex)
1084 {
1085 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1086 }
1087
1088 static void rom_reset(void *unused)
1089 {
1090 Rom *rom;
1091
1092 QTAILQ_FOREACH(rom, &roms, next) {
1093 if (rom->fw_file) {
1094 continue;
1095 }
1096 if (rom->data == NULL) {
1097 continue;
1098 }
1099 if (rom->mr) {
1100 void *host = memory_region_get_ram_ptr(rom->mr);
1101 memcpy(host, rom->data, rom->datasize);
1102 } else {
1103 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1104 rom->data, rom->datasize);
1105 }
1106 if (rom->isrom) {
1107 /* rom needs to be written only once */
1108 g_free(rom->data);
1109 rom->data = NULL;
1110 }
1111 /*
1112 * The rom loader is really on the same level as firmware in the guest
1113 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1114 * that the instruction cache for that new region is clear, so that the
1115 * CPU definitely fetches its instructions from the just written data.
1116 */
1117 cpu_flush_icache_range(rom->addr, rom->datasize);
1118 }
1119 }
1120
1121 int rom_check_and_register_reset(void)
1122 {
1123 hwaddr addr = 0;
1124 MemoryRegionSection section;
1125 Rom *rom;
1126 AddressSpace *as = NULL;
1127
1128 QTAILQ_FOREACH(rom, &roms, next) {
1129 if (rom->fw_file) {
1130 continue;
1131 }
1132 if (!rom->mr) {
1133 if ((addr > rom->addr) && (as == rom->as)) {
1134 fprintf(stderr, "rom: requested regions overlap "
1135 "(rom %s. free=0x" TARGET_FMT_plx
1136 ", addr=0x" TARGET_FMT_plx ")\n",
1137 rom->name, addr, rom->addr);
1138 return -1;
1139 }
1140 addr = rom->addr;
1141 addr += rom->romsize;
1142 as = rom->as;
1143 }
1144 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1145 rom->addr, 1);
1146 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1147 memory_region_unref(section.mr);
1148 }
1149 qemu_register_reset(rom_reset, NULL);
1150 roms_loaded = 1;
1151 return 0;
1152 }
1153
1154 void rom_set_fw(FWCfgState *f)
1155 {
1156 fw_cfg = f;
1157 }
1158
1159 void rom_set_order_override(int order)
1160 {
1161 if (!fw_cfg)
1162 return;
1163 fw_cfg_set_order_override(fw_cfg, order);
1164 }
1165
1166 void rom_reset_order_override(void)
1167 {
1168 if (!fw_cfg)
1169 return;
1170 fw_cfg_reset_order_override(fw_cfg);
1171 }
1172
1173 void rom_transaction_begin(void)
1174 {
1175 Rom *rom;
1176
1177 /* Ignore ROMs added without the transaction API */
1178 QTAILQ_FOREACH(rom, &roms, next) {
1179 rom->committed = true;
1180 }
1181 }
1182
1183 void rom_transaction_end(bool commit)
1184 {
1185 Rom *rom;
1186 Rom *tmp;
1187
1188 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1189 if (rom->committed) {
1190 continue;
1191 }
1192 if (commit) {
1193 rom->committed = true;
1194 } else {
1195 QTAILQ_REMOVE(&roms, rom, next);
1196 rom_free(rom);
1197 }
1198 }
1199 }
1200
1201 static Rom *find_rom(hwaddr addr, size_t size)
1202 {
1203 Rom *rom;
1204
1205 QTAILQ_FOREACH(rom, &roms, next) {
1206 if (rom->fw_file) {
1207 continue;
1208 }
1209 if (rom->mr) {
1210 continue;
1211 }
1212 if (rom->addr > addr) {
1213 continue;
1214 }
1215 if (rom->addr + rom->romsize < addr + size) {
1216 continue;
1217 }
1218 return rom;
1219 }
1220 return NULL;
1221 }
1222
1223 /*
1224 * Copies memory from registered ROMs to dest. Any memory that is contained in
1225 * a ROM between addr and addr + size is copied. Note that this can involve
1226 * multiple ROMs, which need not start at addr and need not end at addr + size.
1227 */
1228 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1229 {
1230 hwaddr end = addr + size;
1231 uint8_t *s, *d = dest;
1232 size_t l = 0;
1233 Rom *rom;
1234
1235 QTAILQ_FOREACH(rom, &roms, next) {
1236 if (rom->fw_file) {
1237 continue;
1238 }
1239 if (rom->mr) {
1240 continue;
1241 }
1242 if (rom->addr + rom->romsize < addr) {
1243 continue;
1244 }
1245 if (rom->addr > end) {
1246 break;
1247 }
1248
1249 d = dest + (rom->addr - addr);
1250 s = rom->data;
1251 l = rom->datasize;
1252
1253 if ((d + l) > (dest + size)) {
1254 l = dest - d;
1255 }
1256
1257 if (l > 0) {
1258 memcpy(d, s, l);
1259 }
1260
1261 if (rom->romsize > rom->datasize) {
1262 /* If datasize is less than romsize, it means that we didn't
1263 * allocate all the ROM because the trailing data are only zeros.
1264 */
1265
1266 d += l;
1267 l = rom->romsize - rom->datasize;
1268
1269 if ((d + l) > (dest + size)) {
1270 /* Rom size doesn't fit in the destination area. Adjust to avoid
1271 * overflow.
1272 */
1273 l = dest - d;
1274 }
1275
1276 if (l > 0) {
1277 memset(d, 0x0, l);
1278 }
1279 }
1280 }
1281
1282 return (d + l) - dest;
1283 }
1284
1285 void *rom_ptr(hwaddr addr, size_t size)
1286 {
1287 Rom *rom;
1288
1289 rom = find_rom(addr, size);
1290 if (!rom || !rom->data)
1291 return NULL;
1292 return rom->data + (addr - rom->addr);
1293 }
1294
1295 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1296 {
1297 Rom *rom;
1298
1299 QTAILQ_FOREACH(rom, &roms, next) {
1300 if (rom->mr) {
1301 monitor_printf(mon, "%s"
1302 " size=0x%06zx name=\"%s\"\n",
1303 memory_region_name(rom->mr),
1304 rom->romsize,
1305 rom->name);
1306 } else if (!rom->fw_file) {
1307 monitor_printf(mon, "addr=" TARGET_FMT_plx
1308 " size=0x%06zx mem=%s name=\"%s\"\n",
1309 rom->addr, rom->romsize,
1310 rom->isrom ? "rom" : "ram",
1311 rom->name);
1312 } else {
1313 monitor_printf(mon, "fw=%s/%s"
1314 " size=0x%06zx name=\"%s\"\n",
1315 rom->fw_dir,
1316 rom->fw_file,
1317 rom->romsize,
1318 rom->name);
1319 }
1320 }
1321 }
1322
1323 typedef enum HexRecord HexRecord;
1324 enum HexRecord {
1325 DATA_RECORD = 0,
1326 EOF_RECORD,
1327 EXT_SEG_ADDR_RECORD,
1328 START_SEG_ADDR_RECORD,
1329 EXT_LINEAR_ADDR_RECORD,
1330 START_LINEAR_ADDR_RECORD,
1331 };
1332
1333 /* Each record contains a 16-bit address which is combined with the upper 16
1334 * bits of the implicit "next address" to form a 32-bit address.
1335 */
1336 #define NEXT_ADDR_MASK 0xffff0000
1337
1338 #define DATA_FIELD_MAX_LEN 0xff
1339 #define LEN_EXCEPT_DATA 0x5
1340 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1341 * sizeof(checksum) */
1342 typedef struct {
1343 uint8_t byte_count;
1344 uint16_t address;
1345 uint8_t record_type;
1346 uint8_t data[DATA_FIELD_MAX_LEN];
1347 uint8_t checksum;
1348 } HexLine;
1349
1350 /* return 0 or -1 if error */
1351 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1352 uint32_t *index, const bool in_process)
1353 {
1354 /* +-------+---------------+-------+---------------------+--------+
1355 * | byte | |record | | |
1356 * | count | address | type | data |checksum|
1357 * +-------+---------------+-------+---------------------+--------+
1358 * ^ ^ ^ ^ ^ ^
1359 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1360 */
1361 uint8_t value = 0;
1362 uint32_t idx = *index;
1363 /* ignore space */
1364 if (g_ascii_isspace(c)) {
1365 return true;
1366 }
1367 if (!g_ascii_isxdigit(c) || !in_process) {
1368 return false;
1369 }
1370 value = g_ascii_xdigit_value(c);
1371 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1372 if (idx < 2) {
1373 line->byte_count |= value;
1374 } else if (2 <= idx && idx < 6) {
1375 line->address <<= 4;
1376 line->address += g_ascii_xdigit_value(c);
1377 } else if (6 <= idx && idx < 8) {
1378 line->record_type |= value;
1379 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1380 line->data[(idx - 8) >> 1] |= value;
1381 } else if (8 + 2 * line->byte_count <= idx &&
1382 idx < 10 + 2 * line->byte_count) {
1383 line->checksum |= value;
1384 } else {
1385 return false;
1386 }
1387 *our_checksum += value;
1388 ++(*index);
1389 return true;
1390 }
1391
1392 typedef struct {
1393 const char *filename;
1394 HexLine line;
1395 uint8_t *bin_buf;
1396 hwaddr *start_addr;
1397 int total_size;
1398 uint32_t next_address_to_write;
1399 uint32_t current_address;
1400 uint32_t current_rom_index;
1401 uint32_t rom_start_address;
1402 AddressSpace *as;
1403 } HexParser;
1404
1405 /* return size or -1 if error */
1406 static int handle_record_type(HexParser *parser)
1407 {
1408 HexLine *line = &(parser->line);
1409 switch (line->record_type) {
1410 case DATA_RECORD:
1411 parser->current_address =
1412 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1413 /* verify this is a contiguous block of memory */
1414 if (parser->current_address != parser->next_address_to_write) {
1415 if (parser->current_rom_index != 0) {
1416 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1417 parser->current_rom_index,
1418 parser->rom_start_address, parser->as);
1419 }
1420 parser->rom_start_address = parser->current_address;
1421 parser->current_rom_index = 0;
1422 }
1423
1424 /* copy from line buffer to output bin_buf */
1425 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1426 line->byte_count);
1427 parser->current_rom_index += line->byte_count;
1428 parser->total_size += line->byte_count;
1429 /* save next address to write */
1430 parser->next_address_to_write =
1431 parser->current_address + line->byte_count;
1432 break;
1433
1434 case EOF_RECORD:
1435 if (parser->current_rom_index != 0) {
1436 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1437 parser->current_rom_index,
1438 parser->rom_start_address, parser->as);
1439 }
1440 return parser->total_size;
1441 case EXT_SEG_ADDR_RECORD:
1442 case EXT_LINEAR_ADDR_RECORD:
1443 if (line->byte_count != 2 && line->address != 0) {
1444 return -1;
1445 }
1446
1447 if (parser->current_rom_index != 0) {
1448 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1449 parser->current_rom_index,
1450 parser->rom_start_address, parser->as);
1451 }
1452
1453 /* save next address to write,
1454 * in case of non-contiguous block of memory */
1455 parser->next_address_to_write = (line->data[0] << 12) |
1456 (line->data[1] << 4);
1457 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1458 parser->next_address_to_write <<= 12;
1459 }
1460
1461 parser->rom_start_address = parser->next_address_to_write;
1462 parser->current_rom_index = 0;
1463 break;
1464
1465 case START_SEG_ADDR_RECORD:
1466 if (line->byte_count != 4 && line->address != 0) {
1467 return -1;
1468 }
1469
1470 /* x86 16-bit CS:IP segmented addressing */
1471 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1472 ((line->data[2] << 8) | line->data[3]);
1473 break;
1474
1475 case START_LINEAR_ADDR_RECORD:
1476 if (line->byte_count != 4 && line->address != 0) {
1477 return -1;
1478 }
1479
1480 *(parser->start_addr) = ldl_be_p(line->data);
1481 break;
1482
1483 default:
1484 return -1;
1485 }
1486
1487 return parser->total_size;
1488 }
1489
1490 /* return size or -1 if error */
1491 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1492 size_t hex_blob_size, AddressSpace *as)
1493 {
1494 bool in_process = false; /* avoid re-enter and
1495 * check whether record begin with ':' */
1496 uint8_t *end = hex_blob + hex_blob_size;
1497 uint8_t our_checksum = 0;
1498 uint32_t record_index = 0;
1499 HexParser parser = {
1500 .filename = filename,
1501 .bin_buf = g_malloc(hex_blob_size),
1502 .start_addr = addr,
1503 .as = as,
1504 };
1505
1506 rom_transaction_begin();
1507
1508 for (; hex_blob < end; ++hex_blob) {
1509 switch (*hex_blob) {
1510 case '\r':
1511 case '\n':
1512 if (!in_process) {
1513 break;
1514 }
1515
1516 in_process = false;
1517 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1518 record_index ||
1519 our_checksum != 0) {
1520 parser.total_size = -1;
1521 goto out;
1522 }
1523
1524 if (handle_record_type(&parser) == -1) {
1525 parser.total_size = -1;
1526 goto out;
1527 }
1528 break;
1529
1530 /* start of a new record. */
1531 case ':':
1532 memset(&parser.line, 0, sizeof(HexLine));
1533 in_process = true;
1534 record_index = 0;
1535 break;
1536
1537 /* decoding lines */
1538 default:
1539 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1540 &record_index, in_process)) {
1541 parser.total_size = -1;
1542 goto out;
1543 }
1544 break;
1545 }
1546 }
1547
1548 out:
1549 g_free(parser.bin_buf);
1550 rom_transaction_end(parser.total_size != -1);
1551 return parser.total_size;
1552 }
1553
1554 /* return size or -1 if error */
1555 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1556 {
1557 gsize hex_blob_size;
1558 gchar *hex_blob;
1559 int total_size = 0;
1560
1561 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1562 return -1;
1563 }
1564
1565 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1566 hex_blob_size, as);
1567
1568 g_free(hex_blob);
1569 return total_size;
1570 }