]> git.proxmox.com Git - mirror_qemu.git/blob - hw/display/ssd0323.c
Include qemu/module.h where needed, drop it from qemu-common.h
[mirror_qemu.git] / hw / display / ssd0323.c
1 /*
2 * SSD0323 OLED controller with OSRAM Pictiva 128x64 display.
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 /* The controller can support a variety of different displays, but we only
11 implement one. Most of the commends relating to brightness and geometry
12 setup are ignored. */
13
14 #include "qemu/osdep.h"
15 #include "hw/ssi/ssi.h"
16 #include "qemu/module.h"
17 #include "ui/console.h"
18
19 //#define DEBUG_SSD0323 1
20
21 #ifdef DEBUG_SSD0323
22 #define DPRINTF(fmt, ...) \
23 do { printf("ssd0323: " fmt , ## __VA_ARGS__); } while (0)
24 #define BADF(fmt, ...) \
25 do { \
26 fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__); abort(); \
27 } while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
33
34 /* Scaling factor for pixels. */
35 #define MAGNIFY 4
36
37 #define REMAP_SWAP_COLUMN 0x01
38 #define REMAP_SWAP_NYBBLE 0x02
39 #define REMAP_VERTICAL 0x04
40 #define REMAP_SWAP_COM 0x10
41 #define REMAP_SPLIT_COM 0x40
42
43 enum ssd0323_mode
44 {
45 SSD0323_CMD,
46 SSD0323_DATA
47 };
48
49 typedef struct {
50 SSISlave ssidev;
51 QemuConsole *con;
52
53 uint32_t cmd_len;
54 int32_t cmd;
55 int32_t cmd_data[8];
56 int32_t row;
57 int32_t row_start;
58 int32_t row_end;
59 int32_t col;
60 int32_t col_start;
61 int32_t col_end;
62 int32_t redraw;
63 int32_t remap;
64 uint32_t mode;
65 uint8_t framebuffer[128 * 80 / 2];
66 } ssd0323_state;
67
68 static uint32_t ssd0323_transfer(SSISlave *dev, uint32_t data)
69 {
70 ssd0323_state *s = FROM_SSI_SLAVE(ssd0323_state, dev);
71
72 switch (s->mode) {
73 case SSD0323_DATA:
74 DPRINTF("data 0x%02x\n", data);
75 s->framebuffer[s->col + s->row * 64] = data;
76 if (s->remap & REMAP_VERTICAL) {
77 s->row++;
78 if (s->row > s->row_end) {
79 s->row = s->row_start;
80 s->col++;
81 }
82 if (s->col > s->col_end) {
83 s->col = s->col_start;
84 }
85 } else {
86 s->col++;
87 if (s->col > s->col_end) {
88 s->row++;
89 s->col = s->col_start;
90 }
91 if (s->row > s->row_end) {
92 s->row = s->row_start;
93 }
94 }
95 s->redraw = 1;
96 break;
97 case SSD0323_CMD:
98 DPRINTF("cmd 0x%02x\n", data);
99 if (s->cmd_len == 0) {
100 s->cmd = data;
101 } else {
102 s->cmd_data[s->cmd_len - 1] = data;
103 }
104 s->cmd_len++;
105 switch (s->cmd) {
106 #define DATA(x) if (s->cmd_len <= (x)) return 0
107 case 0x15: /* Set column. */
108 DATA(2);
109 s->col = s->col_start = s->cmd_data[0] % 64;
110 s->col_end = s->cmd_data[1] % 64;
111 break;
112 case 0x75: /* Set row. */
113 DATA(2);
114 s->row = s->row_start = s->cmd_data[0] % 80;
115 s->row_end = s->cmd_data[1] % 80;
116 break;
117 case 0x81: /* Set contrast */
118 DATA(1);
119 break;
120 case 0x84: case 0x85: case 0x86: /* Max current. */
121 DATA(0);
122 break;
123 case 0xa0: /* Set remapping. */
124 /* FIXME: Implement this. */
125 DATA(1);
126 s->remap = s->cmd_data[0];
127 break;
128 case 0xa1: /* Set display start line. */
129 case 0xa2: /* Set display offset. */
130 /* FIXME: Implement these. */
131 DATA(1);
132 break;
133 case 0xa4: /* Normal mode. */
134 case 0xa5: /* All on. */
135 case 0xa6: /* All off. */
136 case 0xa7: /* Inverse. */
137 /* FIXME: Implement these. */
138 DATA(0);
139 break;
140 case 0xa8: /* Set multiplex ratio. */
141 case 0xad: /* Set DC-DC converter. */
142 DATA(1);
143 /* Ignored. Don't care. */
144 break;
145 case 0xae: /* Display off. */
146 case 0xaf: /* Display on. */
147 DATA(0);
148 /* TODO: Implement power control. */
149 break;
150 case 0xb1: /* Set phase length. */
151 case 0xb2: /* Set row period. */
152 case 0xb3: /* Set clock rate. */
153 case 0xbc: /* Set precharge. */
154 case 0xbe: /* Set VCOMH. */
155 case 0xbf: /* Set segment low. */
156 DATA(1);
157 /* Ignored. Don't care. */
158 break;
159 case 0xb8: /* Set grey scale table. */
160 /* FIXME: Implement this. */
161 DATA(8);
162 break;
163 case 0xe3: /* NOP. */
164 DATA(0);
165 break;
166 case 0xff: /* Nasty hack because we don't handle chip selects
167 properly. */
168 break;
169 default:
170 BADF("Unknown command: 0x%x\n", data);
171 }
172 s->cmd_len = 0;
173 return 0;
174 }
175 return 0;
176 }
177
178 static void ssd0323_update_display(void *opaque)
179 {
180 ssd0323_state *s = (ssd0323_state *)opaque;
181 DisplaySurface *surface = qemu_console_surface(s->con);
182 uint8_t *dest;
183 uint8_t *src;
184 int x;
185 int y;
186 int i;
187 int line;
188 char *colors[16];
189 char colortab[MAGNIFY * 64];
190 char *p;
191 int dest_width;
192
193 if (!s->redraw)
194 return;
195
196 switch (surface_bits_per_pixel(surface)) {
197 case 0:
198 return;
199 case 15:
200 dest_width = 2;
201 break;
202 case 16:
203 dest_width = 2;
204 break;
205 case 24:
206 dest_width = 3;
207 break;
208 case 32:
209 dest_width = 4;
210 break;
211 default:
212 BADF("Bad color depth\n");
213 return;
214 }
215 p = colortab;
216 for (i = 0; i < 16; i++) {
217 int n;
218 colors[i] = p;
219 switch (surface_bits_per_pixel(surface)) {
220 case 15:
221 n = i * 2 + (i >> 3);
222 p[0] = n | (n << 5);
223 p[1] = (n << 2) | (n >> 3);
224 break;
225 case 16:
226 n = i * 2 + (i >> 3);
227 p[0] = n | (n << 6) | ((n << 1) & 0x20);
228 p[1] = (n << 3) | (n >> 2);
229 break;
230 case 24:
231 case 32:
232 n = (i << 4) | i;
233 p[0] = p[1] = p[2] = n;
234 break;
235 default:
236 BADF("Bad color depth\n");
237 return;
238 }
239 p += dest_width;
240 }
241 /* TODO: Implement row/column remapping. */
242 dest = surface_data(surface);
243 for (y = 0; y < 64; y++) {
244 line = y;
245 src = s->framebuffer + 64 * line;
246 for (x = 0; x < 64; x++) {
247 int val;
248 val = *src >> 4;
249 for (i = 0; i < MAGNIFY; i++) {
250 memcpy(dest, colors[val], dest_width);
251 dest += dest_width;
252 }
253 val = *src & 0xf;
254 for (i = 0; i < MAGNIFY; i++) {
255 memcpy(dest, colors[val], dest_width);
256 dest += dest_width;
257 }
258 src++;
259 }
260 for (i = 1; i < MAGNIFY; i++) {
261 memcpy(dest, dest - dest_width * MAGNIFY * 128,
262 dest_width * 128 * MAGNIFY);
263 dest += dest_width * 128 * MAGNIFY;
264 }
265 }
266 s->redraw = 0;
267 dpy_gfx_update(s->con, 0, 0, 128 * MAGNIFY, 64 * MAGNIFY);
268 }
269
270 static void ssd0323_invalidate_display(void * opaque)
271 {
272 ssd0323_state *s = (ssd0323_state *)opaque;
273 s->redraw = 1;
274 }
275
276 /* Command/data input. */
277 static void ssd0323_cd(void *opaque, int n, int level)
278 {
279 ssd0323_state *s = (ssd0323_state *)opaque;
280 DPRINTF("%s mode\n", level ? "Data" : "Command");
281 s->mode = level ? SSD0323_DATA : SSD0323_CMD;
282 }
283
284 static int ssd0323_post_load(void *opaque, int version_id)
285 {
286 ssd0323_state *s = (ssd0323_state *)opaque;
287
288 if (s->cmd_len > ARRAY_SIZE(s->cmd_data)) {
289 return -EINVAL;
290 }
291 if (s->row < 0 || s->row >= 80) {
292 return -EINVAL;
293 }
294 if (s->row_start < 0 || s->row_start >= 80) {
295 return -EINVAL;
296 }
297 if (s->row_end < 0 || s->row_end >= 80) {
298 return -EINVAL;
299 }
300 if (s->col < 0 || s->col >= 64) {
301 return -EINVAL;
302 }
303 if (s->col_start < 0 || s->col_start >= 64) {
304 return -EINVAL;
305 }
306 if (s->col_end < 0 || s->col_end >= 64) {
307 return -EINVAL;
308 }
309 if (s->mode != SSD0323_CMD && s->mode != SSD0323_DATA) {
310 return -EINVAL;
311 }
312
313 return 0;
314 }
315
316 static const VMStateDescription vmstate_ssd0323 = {
317 .name = "ssd0323_oled",
318 .version_id = 2,
319 .minimum_version_id = 2,
320 .post_load = ssd0323_post_load,
321 .fields = (VMStateField []) {
322 VMSTATE_UINT32(cmd_len, ssd0323_state),
323 VMSTATE_INT32(cmd, ssd0323_state),
324 VMSTATE_INT32_ARRAY(cmd_data, ssd0323_state, 8),
325 VMSTATE_INT32(row, ssd0323_state),
326 VMSTATE_INT32(row_start, ssd0323_state),
327 VMSTATE_INT32(row_end, ssd0323_state),
328 VMSTATE_INT32(col, ssd0323_state),
329 VMSTATE_INT32(col_start, ssd0323_state),
330 VMSTATE_INT32(col_end, ssd0323_state),
331 VMSTATE_INT32(redraw, ssd0323_state),
332 VMSTATE_INT32(remap, ssd0323_state),
333 VMSTATE_UINT32(mode, ssd0323_state),
334 VMSTATE_BUFFER(framebuffer, ssd0323_state),
335 VMSTATE_SSI_SLAVE(ssidev, ssd0323_state),
336 VMSTATE_END_OF_LIST()
337 }
338 };
339
340 static const GraphicHwOps ssd0323_ops = {
341 .invalidate = ssd0323_invalidate_display,
342 .gfx_update = ssd0323_update_display,
343 };
344
345 static void ssd0323_realize(SSISlave *d, Error **errp)
346 {
347 DeviceState *dev = DEVICE(d);
348 ssd0323_state *s = FROM_SSI_SLAVE(ssd0323_state, d);
349
350 s->col_end = 63;
351 s->row_end = 79;
352 s->con = graphic_console_init(dev, 0, &ssd0323_ops, s);
353 qemu_console_resize(s->con, 128 * MAGNIFY, 64 * MAGNIFY);
354
355 qdev_init_gpio_in(dev, ssd0323_cd, 1);
356 }
357
358 static void ssd0323_class_init(ObjectClass *klass, void *data)
359 {
360 DeviceClass *dc = DEVICE_CLASS(klass);
361 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
362
363 k->realize = ssd0323_realize;
364 k->transfer = ssd0323_transfer;
365 k->cs_polarity = SSI_CS_HIGH;
366 dc->vmsd = &vmstate_ssd0323;
367 }
368
369 static const TypeInfo ssd0323_info = {
370 .name = "ssd0323",
371 .parent = TYPE_SSI_SLAVE,
372 .instance_size = sizeof(ssd0323_state),
373 .class_init = ssd0323_class_init,
374 };
375
376 static void ssd03232_register_types(void)
377 {
378 type_register_static(&ssd0323_info);
379 }
380
381 type_init(ssd03232_register_types)