]> git.proxmox.com Git - mirror_qemu.git/blob - hw/dma.c
Merge remote-tracking branch 'aneesh/for-upstream' into staging
[mirror_qemu.git] / hw / dma.c
1 /*
2 * QEMU DMA emulation
3 *
4 * Copyright (c) 2003-2004 Vassili Karpov (malc)
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "isa.h"
26
27 /* #define DEBUG_DMA */
28
29 #define dolog(...) fprintf (stderr, "dma: " __VA_ARGS__)
30 #ifdef DEBUG_DMA
31 #define linfo(...) fprintf (stderr, "dma: " __VA_ARGS__)
32 #define ldebug(...) fprintf (stderr, "dma: " __VA_ARGS__)
33 #else
34 #define linfo(...)
35 #define ldebug(...)
36 #endif
37
38 struct dma_regs {
39 int now[2];
40 uint16_t base[2];
41 uint8_t mode;
42 uint8_t page;
43 uint8_t pageh;
44 uint8_t dack;
45 uint8_t eop;
46 DMA_transfer_handler transfer_handler;
47 void *opaque;
48 };
49
50 #define ADDR 0
51 #define COUNT 1
52
53 static struct dma_cont {
54 uint8_t status;
55 uint8_t command;
56 uint8_t mask;
57 uint8_t flip_flop;
58 int dshift;
59 struct dma_regs regs[4];
60 qemu_irq *cpu_request_exit;
61 MemoryRegion channel_io;
62 MemoryRegion cont_io;
63 } dma_controllers[2];
64
65 enum {
66 CMD_MEMORY_TO_MEMORY = 0x01,
67 CMD_FIXED_ADDRESS = 0x02,
68 CMD_BLOCK_CONTROLLER = 0x04,
69 CMD_COMPRESSED_TIME = 0x08,
70 CMD_CYCLIC_PRIORITY = 0x10,
71 CMD_EXTENDED_WRITE = 0x20,
72 CMD_LOW_DREQ = 0x40,
73 CMD_LOW_DACK = 0x80,
74 CMD_NOT_SUPPORTED = CMD_MEMORY_TO_MEMORY | CMD_FIXED_ADDRESS
75 | CMD_COMPRESSED_TIME | CMD_CYCLIC_PRIORITY | CMD_EXTENDED_WRITE
76 | CMD_LOW_DREQ | CMD_LOW_DACK
77
78 };
79
80 static void DMA_run (void);
81
82 static int channels[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
83
84 static void write_page (void *opaque, uint32_t nport, uint32_t data)
85 {
86 struct dma_cont *d = opaque;
87 int ichan;
88
89 ichan = channels[nport & 7];
90 if (-1 == ichan) {
91 dolog ("invalid channel %#x %#x\n", nport, data);
92 return;
93 }
94 d->regs[ichan].page = data;
95 }
96
97 static void write_pageh (void *opaque, uint32_t nport, uint32_t data)
98 {
99 struct dma_cont *d = opaque;
100 int ichan;
101
102 ichan = channels[nport & 7];
103 if (-1 == ichan) {
104 dolog ("invalid channel %#x %#x\n", nport, data);
105 return;
106 }
107 d->regs[ichan].pageh = data;
108 }
109
110 static uint32_t read_page (void *opaque, uint32_t nport)
111 {
112 struct dma_cont *d = opaque;
113 int ichan;
114
115 ichan = channels[nport & 7];
116 if (-1 == ichan) {
117 dolog ("invalid channel read %#x\n", nport);
118 return 0;
119 }
120 return d->regs[ichan].page;
121 }
122
123 static uint32_t read_pageh (void *opaque, uint32_t nport)
124 {
125 struct dma_cont *d = opaque;
126 int ichan;
127
128 ichan = channels[nport & 7];
129 if (-1 == ichan) {
130 dolog ("invalid channel read %#x\n", nport);
131 return 0;
132 }
133 return d->regs[ichan].pageh;
134 }
135
136 static inline void init_chan (struct dma_cont *d, int ichan)
137 {
138 struct dma_regs *r;
139
140 r = d->regs + ichan;
141 r->now[ADDR] = r->base[ADDR] << d->dshift;
142 r->now[COUNT] = 0;
143 }
144
145 static inline int getff (struct dma_cont *d)
146 {
147 int ff;
148
149 ff = d->flip_flop;
150 d->flip_flop = !ff;
151 return ff;
152 }
153
154 static uint64_t read_chan(void *opaque, hwaddr nport, unsigned size)
155 {
156 struct dma_cont *d = opaque;
157 int ichan, nreg, iport, ff, val, dir;
158 struct dma_regs *r;
159
160 iport = (nport >> d->dshift) & 0x0f;
161 ichan = iport >> 1;
162 nreg = iport & 1;
163 r = d->regs + ichan;
164
165 dir = ((r->mode >> 5) & 1) ? -1 : 1;
166 ff = getff (d);
167 if (nreg)
168 val = (r->base[COUNT] << d->dshift) - r->now[COUNT];
169 else
170 val = r->now[ADDR] + r->now[COUNT] * dir;
171
172 ldebug ("read_chan %#x -> %d\n", iport, val);
173 return (val >> (d->dshift + (ff << 3))) & 0xff;
174 }
175
176 static void write_chan(void *opaque, hwaddr nport, uint64_t data,
177 unsigned size)
178 {
179 struct dma_cont *d = opaque;
180 int iport, ichan, nreg;
181 struct dma_regs *r;
182
183 iport = (nport >> d->dshift) & 0x0f;
184 ichan = iport >> 1;
185 nreg = iport & 1;
186 r = d->regs + ichan;
187 if (getff (d)) {
188 r->base[nreg] = (r->base[nreg] & 0xff) | ((data << 8) & 0xff00);
189 init_chan (d, ichan);
190 } else {
191 r->base[nreg] = (r->base[nreg] & 0xff00) | (data & 0xff);
192 }
193 }
194
195 static void write_cont(void *opaque, hwaddr nport, uint64_t data,
196 unsigned size)
197 {
198 struct dma_cont *d = opaque;
199 int iport, ichan = 0;
200
201 iport = (nport >> d->dshift) & 0x0f;
202 switch (iport) {
203 case 0x01: /* command */
204 if ((data != 0) && (data & CMD_NOT_SUPPORTED)) {
205 dolog("command %"PRIx64" not supported\n", data);
206 return;
207 }
208 d->command = data;
209 break;
210
211 case 0x02:
212 ichan = data & 3;
213 if (data & 4) {
214 d->status |= 1 << (ichan + 4);
215 }
216 else {
217 d->status &= ~(1 << (ichan + 4));
218 }
219 d->status &= ~(1 << ichan);
220 DMA_run();
221 break;
222
223 case 0x03: /* single mask */
224 if (data & 4)
225 d->mask |= 1 << (data & 3);
226 else
227 d->mask &= ~(1 << (data & 3));
228 DMA_run();
229 break;
230
231 case 0x04: /* mode */
232 {
233 ichan = data & 3;
234 #ifdef DEBUG_DMA
235 {
236 int op, ai, dir, opmode;
237 op = (data >> 2) & 3;
238 ai = (data >> 4) & 1;
239 dir = (data >> 5) & 1;
240 opmode = (data >> 6) & 3;
241
242 linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n",
243 ichan, op, ai, dir, opmode);
244 }
245 #endif
246 d->regs[ichan].mode = data;
247 break;
248 }
249
250 case 0x05: /* clear flip flop */
251 d->flip_flop = 0;
252 break;
253
254 case 0x06: /* reset */
255 d->flip_flop = 0;
256 d->mask = ~0;
257 d->status = 0;
258 d->command = 0;
259 break;
260
261 case 0x07: /* clear mask for all channels */
262 d->mask = 0;
263 DMA_run();
264 break;
265
266 case 0x08: /* write mask for all channels */
267 d->mask = data;
268 DMA_run();
269 break;
270
271 default:
272 dolog ("unknown iport %#x\n", iport);
273 break;
274 }
275
276 #ifdef DEBUG_DMA
277 if (0xc != iport) {
278 linfo ("write_cont: nport %#06x, ichan % 2d, val %#06x\n",
279 nport, ichan, data);
280 }
281 #endif
282 }
283
284 static uint64_t read_cont(void *opaque, hwaddr nport, unsigned size)
285 {
286 struct dma_cont *d = opaque;
287 int iport, val;
288
289 iport = (nport >> d->dshift) & 0x0f;
290 switch (iport) {
291 case 0x08: /* status */
292 val = d->status;
293 d->status &= 0xf0;
294 break;
295 case 0x0f: /* mask */
296 val = d->mask;
297 break;
298 default:
299 val = 0;
300 break;
301 }
302
303 ldebug ("read_cont: nport %#06x, iport %#04x val %#x\n", nport, iport, val);
304 return val;
305 }
306
307 int DMA_get_channel_mode (int nchan)
308 {
309 return dma_controllers[nchan > 3].regs[nchan & 3].mode;
310 }
311
312 void DMA_hold_DREQ (int nchan)
313 {
314 int ncont, ichan;
315
316 ncont = nchan > 3;
317 ichan = nchan & 3;
318 linfo ("held cont=%d chan=%d\n", ncont, ichan);
319 dma_controllers[ncont].status |= 1 << (ichan + 4);
320 DMA_run();
321 }
322
323 void DMA_release_DREQ (int nchan)
324 {
325 int ncont, ichan;
326
327 ncont = nchan > 3;
328 ichan = nchan & 3;
329 linfo ("released cont=%d chan=%d\n", ncont, ichan);
330 dma_controllers[ncont].status &= ~(1 << (ichan + 4));
331 DMA_run();
332 }
333
334 static void channel_run (int ncont, int ichan)
335 {
336 int n;
337 struct dma_regs *r = &dma_controllers[ncont].regs[ichan];
338 #ifdef DEBUG_DMA
339 int dir, opmode;
340
341 dir = (r->mode >> 5) & 1;
342 opmode = (r->mode >> 6) & 3;
343
344 if (dir) {
345 dolog ("DMA in address decrement mode\n");
346 }
347 if (opmode != 1) {
348 dolog ("DMA not in single mode select %#x\n", opmode);
349 }
350 #endif
351
352 n = r->transfer_handler (r->opaque, ichan + (ncont << 2),
353 r->now[COUNT], (r->base[COUNT] + 1) << ncont);
354 r->now[COUNT] = n;
355 ldebug ("dma_pos %d size %d\n", n, (r->base[COUNT] + 1) << ncont);
356 }
357
358 static QEMUBH *dma_bh;
359
360 static void DMA_run (void)
361 {
362 struct dma_cont *d;
363 int icont, ichan;
364 int rearm = 0;
365 static int running = 0;
366
367 if (running) {
368 rearm = 1;
369 goto out;
370 } else {
371 running = 1;
372 }
373
374 d = dma_controllers;
375
376 for (icont = 0; icont < 2; icont++, d++) {
377 for (ichan = 0; ichan < 4; ichan++) {
378 int mask;
379
380 mask = 1 << ichan;
381
382 if ((0 == (d->mask & mask)) && (0 != (d->status & (mask << 4)))) {
383 channel_run (icont, ichan);
384 rearm = 1;
385 }
386 }
387 }
388
389 running = 0;
390 out:
391 if (rearm)
392 qemu_bh_schedule_idle(dma_bh);
393 }
394
395 static void DMA_run_bh(void *unused)
396 {
397 DMA_run();
398 }
399
400 void DMA_register_channel (int nchan,
401 DMA_transfer_handler transfer_handler,
402 void *opaque)
403 {
404 struct dma_regs *r;
405 int ichan, ncont;
406
407 ncont = nchan > 3;
408 ichan = nchan & 3;
409
410 r = dma_controllers[ncont].regs + ichan;
411 r->transfer_handler = transfer_handler;
412 r->opaque = opaque;
413 }
414
415 int DMA_read_memory (int nchan, void *buf, int pos, int len)
416 {
417 struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
418 hwaddr addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
419
420 if (r->mode & 0x20) {
421 int i;
422 uint8_t *p = buf;
423
424 cpu_physical_memory_read (addr - pos - len, buf, len);
425 /* What about 16bit transfers? */
426 for (i = 0; i < len >> 1; i++) {
427 uint8_t b = p[len - i - 1];
428 p[i] = b;
429 }
430 }
431 else
432 cpu_physical_memory_read (addr + pos, buf, len);
433
434 return len;
435 }
436
437 int DMA_write_memory (int nchan, void *buf, int pos, int len)
438 {
439 struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
440 hwaddr addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
441
442 if (r->mode & 0x20) {
443 int i;
444 uint8_t *p = buf;
445
446 cpu_physical_memory_write (addr - pos - len, buf, len);
447 /* What about 16bit transfers? */
448 for (i = 0; i < len; i++) {
449 uint8_t b = p[len - i - 1];
450 p[i] = b;
451 }
452 }
453 else
454 cpu_physical_memory_write (addr + pos, buf, len);
455
456 return len;
457 }
458
459 /* request the emulator to transfer a new DMA memory block ASAP */
460 void DMA_schedule(int nchan)
461 {
462 struct dma_cont *d = &dma_controllers[nchan > 3];
463
464 qemu_irq_pulse(*d->cpu_request_exit);
465 }
466
467 static void dma_reset(void *opaque)
468 {
469 struct dma_cont *d = opaque;
470 write_cont(d, (0x06 << d->dshift), 0, 1);
471 }
472
473 static int dma_phony_handler (void *opaque, int nchan, int dma_pos, int dma_len)
474 {
475 dolog ("unregistered DMA channel used nchan=%d dma_pos=%d dma_len=%d\n",
476 nchan, dma_pos, dma_len);
477 return dma_pos;
478 }
479
480
481 static const MemoryRegionOps channel_io_ops = {
482 .read = read_chan,
483 .write = write_chan,
484 .endianness = DEVICE_NATIVE_ENDIAN,
485 .impl = {
486 .min_access_size = 1,
487 .max_access_size = 1,
488 },
489 };
490
491 /* IOport from page_base */
492 static const MemoryRegionPortio page_portio_list[] = {
493 { 0x01, 3, 1, .write = write_page, .read = read_page, },
494 { 0x07, 1, 1, .write = write_page, .read = read_page, },
495 PORTIO_END_OF_LIST(),
496 };
497
498 /* IOport from pageh_base */
499 static const MemoryRegionPortio pageh_portio_list[] = {
500 { 0x01, 3, 1, .write = write_pageh, .read = read_pageh, },
501 { 0x07, 3, 1, .write = write_pageh, .read = read_pageh, },
502 PORTIO_END_OF_LIST(),
503 };
504
505 static const MemoryRegionOps cont_io_ops = {
506 .read = read_cont,
507 .write = write_cont,
508 .endianness = DEVICE_NATIVE_ENDIAN,
509 .impl = {
510 .min_access_size = 1,
511 .max_access_size = 1,
512 },
513 };
514
515 /* dshift = 0: 8 bit DMA, 1 = 16 bit DMA */
516 static void dma_init2(struct dma_cont *d, int base, int dshift,
517 int page_base, int pageh_base,
518 qemu_irq *cpu_request_exit)
519 {
520 int i;
521
522 d->dshift = dshift;
523 d->cpu_request_exit = cpu_request_exit;
524
525 memory_region_init_io(&d->channel_io, &channel_io_ops, d,
526 "dma-chan", 8 << d->dshift);
527 memory_region_add_subregion(isa_address_space_io(NULL),
528 base, &d->channel_io);
529
530 isa_register_portio_list(NULL, page_base, page_portio_list, d,
531 "dma-page");
532 if (pageh_base >= 0) {
533 isa_register_portio_list(NULL, pageh_base, pageh_portio_list, d,
534 "dma-pageh");
535 }
536
537 memory_region_init_io(&d->cont_io, &cont_io_ops, d, "dma-cont",
538 8 << d->dshift);
539 memory_region_add_subregion(isa_address_space_io(NULL),
540 base + (8 << d->dshift), &d->cont_io);
541
542 qemu_register_reset(dma_reset, d);
543 dma_reset(d);
544 for (i = 0; i < ARRAY_SIZE (d->regs); ++i) {
545 d->regs[i].transfer_handler = dma_phony_handler;
546 }
547 }
548
549 static const VMStateDescription vmstate_dma_regs = {
550 .name = "dma_regs",
551 .version_id = 1,
552 .minimum_version_id = 1,
553 .minimum_version_id_old = 1,
554 .fields = (VMStateField []) {
555 VMSTATE_INT32_ARRAY(now, struct dma_regs, 2),
556 VMSTATE_UINT16_ARRAY(base, struct dma_regs, 2),
557 VMSTATE_UINT8(mode, struct dma_regs),
558 VMSTATE_UINT8(page, struct dma_regs),
559 VMSTATE_UINT8(pageh, struct dma_regs),
560 VMSTATE_UINT8(dack, struct dma_regs),
561 VMSTATE_UINT8(eop, struct dma_regs),
562 VMSTATE_END_OF_LIST()
563 }
564 };
565
566 static int dma_post_load(void *opaque, int version_id)
567 {
568 DMA_run();
569
570 return 0;
571 }
572
573 static const VMStateDescription vmstate_dma = {
574 .name = "dma",
575 .version_id = 1,
576 .minimum_version_id = 1,
577 .minimum_version_id_old = 1,
578 .post_load = dma_post_load,
579 .fields = (VMStateField []) {
580 VMSTATE_UINT8(command, struct dma_cont),
581 VMSTATE_UINT8(mask, struct dma_cont),
582 VMSTATE_UINT8(flip_flop, struct dma_cont),
583 VMSTATE_INT32(dshift, struct dma_cont),
584 VMSTATE_STRUCT_ARRAY(regs, struct dma_cont, 4, 1, vmstate_dma_regs, struct dma_regs),
585 VMSTATE_END_OF_LIST()
586 }
587 };
588
589 void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
590 {
591 dma_init2(&dma_controllers[0], 0x00, 0, 0x80,
592 high_page_enable ? 0x480 : -1, cpu_request_exit);
593 dma_init2(&dma_controllers[1], 0xc0, 1, 0x88,
594 high_page_enable ? 0x488 : -1, cpu_request_exit);
595 vmstate_register (NULL, 0, &vmstate_dma, &dma_controllers[0]);
596 vmstate_register (NULL, 1, &vmstate_dma, &dma_controllers[1]);
597
598 dma_bh = qemu_bh_new(DMA_run_bh, NULL);
599 }