]> git.proxmox.com Git - mirror_qemu.git/blob - hw/eccmemctl.c
Remove unwanted executable properties
[mirror_qemu.git] / hw / eccmemctl.c
1 /*
2 * QEMU Sparc Sun4m ECC memory controller emulation
3 *
4 * Copyright (c) 2007 Robert Reif
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "sysemu.h"
27
28 //#define DEBUG_ECC
29
30 #ifdef DEBUG_ECC
31 #define DPRINTF(fmt, args...) \
32 do { printf("ECC: " fmt , ##args); } while (0)
33 #else
34 #define DPRINTF(fmt, args...)
35 #endif
36
37 /* There are 3 versions of this chip used in SMP sun4m systems:
38 * MCC (version 0, implementation 0) SS-600MP
39 * EMC (version 0, implementation 1) SS-10
40 * SMC (version 0, implementation 2) SS-10SX and SS-20
41 */
42
43 /* Register offsets */
44 #define ECC_FCR_REG 0
45 #define ECC_FSR_REG 8
46 #define ECC_FAR0_REG 16
47 #define ECC_FAR1_REG 20
48 #define ECC_DIAG_REG 24
49
50 /* ECC fault control register */
51 #define ECC_FCR_EE 0x00000001 /* Enable ECC checking */
52 #define ECC_FCR_EI 0x00000010 /* Enable Interrupts on correctable errors */
53 #define ECC_FCR_VER 0x0f000000 /* Version */
54 #define ECC_FCR_IMPL 0xf0000000 /* Implementation */
55
56 /* ECC fault status register */
57 #define ECC_FSR_CE 0x00000001 /* Correctable error */
58 #define ECC_FSR_BS 0x00000002 /* C2 graphics bad slot access */
59 #define ECC_FSR_TO 0x00000004 /* Timeout on write */
60 #define ECC_FSR_UE 0x00000008 /* Uncorrectable error */
61 #define ECC_FSR_DW 0x000000f0 /* Index of double word in block */
62 #define ECC_FSR_SYND 0x0000ff00 /* Syndrome for correctable error */
63 #define ECC_FSR_ME 0x00010000 /* Multiple errors */
64 #define ECC_FSR_C2ERR 0x00020000 /* C2 graphics error */
65
66 /* ECC fault address register 0 */
67 #define ECC_FAR0_PADDR 0x0000000f /* PA[32-35] */
68 #define ECC_FAR0_TYPE 0x000000f0 /* Transaction type */
69 #define ECC_FAR0_SIZE 0x00000700 /* Transaction size */
70 #define ECC_FAR0_CACHE 0x00000800 /* Mapped cacheable */
71 #define ECC_FAR0_LOCK 0x00001000 /* Error occurred in atomic cycle */
72 #define ECC_FAR0_BMODE 0x00002000 /* Boot mode */
73 #define ECC_FAR0_VADDR 0x003fc000 /* VA[12-19] (superset bits) */
74 #define ECC_FAR0_S 0x08000000 /* Supervisor mode */
75 #define ECC_FARO_MID 0xf0000000 /* Module ID */
76
77 /* ECC diagnostic register */
78 #define ECC_DIAG_CBX 0x00000001
79 #define ECC_DIAG_CB0 0x00000002
80 #define ECC_DIAG_CB1 0x00000004
81 #define ECC_DIAG_CB2 0x00000008
82 #define ECC_DIAG_CB4 0x00000010
83 #define ECC_DIAG_CB8 0x00000020
84 #define ECC_DIAG_CB16 0x00000040
85 #define ECC_DIAG_CB32 0x00000080
86 #define ECC_DIAG_DMODE 0x00000c00
87
88 #define ECC_NREGS 8
89 #define ECC_SIZE (ECC_NREGS * sizeof(uint32_t))
90 #define ECC_ADDR_MASK (ECC_SIZE - 1)
91
92 typedef struct ECCState {
93 qemu_irq irq;
94 uint32_t regs[ECC_NREGS];
95 } ECCState;
96
97 static void ecc_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
98 {
99 ECCState *s = opaque;
100
101 switch (addr & ECC_ADDR_MASK) {
102 case ECC_FCR_REG:
103 s->regs[0] = (s->regs[0] & (ECC_FCR_VER | ECC_FCR_IMPL)) |
104 (val & ~(ECC_FCR_VER | ECC_FCR_IMPL));
105 DPRINTF("Write fault control %08x\n", val);
106 break;
107 case 4:
108 s->regs[1] = val;
109 DPRINTF("Write reg[1] %08x\n", val);
110 break;
111 case ECC_FSR_REG:
112 s->regs[2] = val;
113 DPRINTF("Write fault status %08x\n", val);
114 break;
115 case 12:
116 s->regs[3] = val;
117 DPRINTF("Write reg[3] %08x\n", val);
118 break;
119 case ECC_FAR0_REG:
120 s->regs[4] = val;
121 DPRINTF("Write fault address 0 %08x\n", val);
122 break;
123 case ECC_FAR1_REG:
124 s->regs[5] = val;
125 DPRINTF("Write fault address 1 %08x\n", val);
126 break;
127 case ECC_DIAG_REG:
128 s->regs[6] = val;
129 DPRINTF("Write diag %08x\n", val);
130 break;
131 case 28:
132 s->regs[7] = val;
133 DPRINTF("Write reg[7] %08x\n", val);
134 break;
135 }
136 }
137
138 static uint32_t ecc_mem_readl(void *opaque, target_phys_addr_t addr)
139 {
140 ECCState *s = opaque;
141 uint32_t ret = 0;
142
143 switch (addr & ECC_ADDR_MASK) {
144 case ECC_FCR_REG:
145 ret = s->regs[0];
146 DPRINTF("Read enable %08x\n", ret);
147 break;
148 case 4:
149 ret = s->regs[1];
150 DPRINTF("Read register[1] %08x\n", ret);
151 break;
152 case ECC_FSR_REG:
153 ret = s->regs[2];
154 DPRINTF("Read fault status %08x\n", ret);
155 break;
156 case 12:
157 ret = s->regs[3];
158 DPRINTF("Read reg[3] %08x\n", ret);
159 break;
160 case ECC_FAR0_REG:
161 ret = s->regs[4];
162 DPRINTF("Read fault address 0 %08x\n", ret);
163 break;
164 case ECC_FAR1_REG:
165 ret = s->regs[5];
166 DPRINTF("Read fault address 1 %08x\n", ret);
167 break;
168 case ECC_DIAG_REG:
169 ret = s->regs[6];
170 DPRINTF("Read diag %08x\n", ret);
171 break;
172 case 28:
173 ret = s->regs[7];
174 DPRINTF("Read reg[7] %08x\n", ret);
175 break;
176 }
177 return ret;
178 }
179
180 static CPUReadMemoryFunc *ecc_mem_read[3] = {
181 NULL,
182 NULL,
183 ecc_mem_readl,
184 };
185
186 static CPUWriteMemoryFunc *ecc_mem_write[3] = {
187 NULL,
188 NULL,
189 ecc_mem_writel,
190 };
191
192 static int ecc_load(QEMUFile *f, void *opaque, int version_id)
193 {
194 ECCState *s = opaque;
195 int i;
196
197 if (version_id != 1)
198 return -EINVAL;
199
200 for (i = 0; i < ECC_NREGS; i++)
201 qemu_get_be32s(f, &s->regs[i]);
202
203 return 0;
204 }
205
206 static void ecc_save(QEMUFile *f, void *opaque)
207 {
208 ECCState *s = opaque;
209 int i;
210
211 for (i = 0; i < ECC_NREGS; i++)
212 qemu_put_be32s(f, &s->regs[i]);
213 }
214
215 static void ecc_reset(void *opaque)
216 {
217 ECCState *s = opaque;
218 int i;
219
220 s->regs[ECC_FCR_REG] &= (ECC_FCR_VER | ECC_FCR_IMPL);
221
222 for (i = 1; i < ECC_NREGS; i++)
223 s->regs[i] = 0;
224 }
225
226 void * ecc_init(target_phys_addr_t base, qemu_irq irq, uint32_t version)
227 {
228 int ecc_io_memory;
229 ECCState *s;
230
231 s = qemu_mallocz(sizeof(ECCState));
232 if (!s)
233 return NULL;
234
235 s->regs[0] = version;
236 s->irq = irq;
237
238 ecc_io_memory = cpu_register_io_memory(0, ecc_mem_read, ecc_mem_write, s);
239 cpu_register_physical_memory(base, ECC_SIZE, ecc_io_memory);
240 register_savevm("ECC", base, 1, ecc_save, ecc_load, s);
241 qemu_register_reset(ecc_reset, s);
242 ecc_reset(s);
243 return s;
244 }