]> git.proxmox.com Git - qemu.git/blob - hw/eepro100.c
6c11209295c373068300f4a189243ae6b45bc633
[qemu.git] / hw / eepro100.c
1 /*
2 * QEMU i8255x (PRO100) emulation
3 *
4 * Copyright (C) 2006-2010 Stefan Weil
5 *
6 * Portions of the code are copies from grub / etherboot eepro100.c
7 * and linux e100.c.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) version 3 or any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 *
22 * Tested features (i82559):
23 * PXE boot (i386) ok
24 * Linux networking (i386) ok
25 *
26 * Untested:
27 * non-i386 platforms
28 * Windows networking
29 *
30 * References:
31 *
32 * Intel 8255x 10/100 Mbps Ethernet Controller Family
33 * Open Source Software Developer Manual
34 *
35 * TODO:
36 * * PHY emulation should be separated from nic emulation.
37 * Most nic emulations could share the same phy code.
38 * * i82550 is untested. It is programmed like the i82559.
39 * * i82562 is untested. It is programmed like the i82559.
40 * * Power management (i82558 and later) is not implemented.
41 * * Wake-on-LAN is not implemented.
42 */
43
44 #include <stddef.h> /* offsetof */
45 #include <stdbool.h>
46 #include "hw.h"
47 #include "pci.h"
48 #include "net.h"
49 #include "eeprom93xx.h"
50
51 /* Common declarations for all PCI devices. */
52
53 #define PCI_CONFIG_8(offset, value) \
54 (pci_conf[offset] = (value))
55 #define PCI_CONFIG_16(offset, value) \
56 (*(uint16_t *)&pci_conf[offset] = cpu_to_le16(value))
57 #define PCI_CONFIG_32(offset, value) \
58 (*(uint32_t *)&pci_conf[offset] = cpu_to_le32(value))
59
60 #define KiB 1024
61
62 /* Debug EEPRO100 card. */
63 #if 0
64 # define DEBUG_EEPRO100
65 #endif
66
67 #ifdef DEBUG_EEPRO100
68 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
69 #else
70 #define logout(fmt, ...) ((void)0)
71 #endif
72
73 /* Set flags to 0 to disable debug output. */
74 #define INT 1 /* interrupt related actions */
75 #define MDI 1 /* mdi related actions */
76 #define OTHER 1
77 #define RXTX 1
78 #define EEPROM 1 /* eeprom related actions */
79
80 #define TRACE(flag, command) ((flag) ? (command) : (void)0)
81
82 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
83
84 #define MAX_ETH_FRAME_SIZE 1514
85
86 /* This driver supports several different devices which are declared here. */
87 #define i82550 0x82550
88 #define i82551 0x82551
89 #define i82557A 0x82557a
90 #define i82557B 0x82557b
91 #define i82557C 0x82557c
92 #define i82558A 0x82558a
93 #define i82558B 0x82558b
94 #define i82559A 0x82559a
95 #define i82559B 0x82559b
96 #define i82559C 0x82559c
97 #define i82559ER 0x82559e
98 #define i82562 0x82562
99
100 /* Use 64 word EEPROM. TODO: could be a runtime option. */
101 #define EEPROM_SIZE 64
102
103 #define PCI_MEM_SIZE (4 * KiB)
104 #define PCI_IO_SIZE 64
105 #define PCI_FLASH_SIZE (128 * KiB)
106
107 #define BIT(n) (1 << (n))
108 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
109
110 /* The SCB accepts the following controls for the Tx and Rx units: */
111 #define CU_NOP 0x0000 /* No operation. */
112 #define CU_START 0x0010 /* CU start. */
113 #define CU_RESUME 0x0020 /* CU resume. */
114 #define CU_STATSADDR 0x0040 /* Load dump counters address. */
115 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
116 #define CU_CMD_BASE 0x0060 /* Load CU base address. */
117 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
118 #define CU_SRESUME 0x00a0 /* CU static resume. */
119
120 #define RU_NOP 0x0000
121 #define RX_START 0x0001
122 #define RX_RESUME 0x0002
123 #define RX_ABORT 0x0004
124 #define RX_ADDR_LOAD 0x0006
125 #define RX_RESUMENR 0x0007
126 #define INT_MASK 0x0100
127 #define DRVR_INT 0x0200 /* Driver generated interrupt. */
128
129 /* Offsets to the various registers.
130 All accesses need not be longword aligned. */
131 enum speedo_offsets {
132 SCBStatus = 0, /* Status Word. */
133 SCBAck = 1,
134 SCBCmd = 2, /* Rx/Command Unit command and status. */
135 SCBIntmask = 3,
136 SCBPointer = 4, /* General purpose pointer. */
137 SCBPort = 8, /* Misc. commands and operands. */
138 SCBflash = 12, /* Flash memory control. */
139 SCBeeprom = 14, /* EEPROM control. */
140 SCBCtrlMDI = 16, /* MDI interface control. */
141 SCBEarlyRx = 20, /* Early receive byte count. */
142 SCBFlow = 24, /* Flow Control. */
143 SCBpmdr = 27, /* Power Management Driver. */
144 SCBgctrl = 28, /* General Control. */
145 SCBgstat = 29, /* General Status. */
146 };
147
148 /* A speedo3 transmit buffer descriptor with two buffers... */
149 typedef struct {
150 uint16_t status;
151 uint16_t command;
152 uint32_t link; /* void * */
153 uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */
154 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
155 uint8_t tx_threshold; /* transmit threshold */
156 uint8_t tbd_count; /* TBD number */
157 //~ /* This constitutes two "TBD" entries: hdr and data */
158 //~ uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
159 //~ int32_t tx_buf_size0; /* Length of Tx hdr. */
160 //~ uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
161 //~ int32_t tx_buf_size1; /* Length of Tx data. */
162 } eepro100_tx_t;
163
164 /* Receive frame descriptor. */
165 typedef struct {
166 int16_t status;
167 uint16_t command;
168 uint32_t link; /* struct RxFD * */
169 uint32_t rx_buf_addr; /* void * */
170 uint16_t count;
171 uint16_t size;
172 char packet[MAX_ETH_FRAME_SIZE + 4];
173 } eepro100_rx_t;
174
175 typedef struct {
176 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
177 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
178 tx_multiple_collisions, tx_total_collisions;
179 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
180 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
181 rx_short_frame_errors;
182 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
183 uint16_t xmt_tco_frames, rcv_tco_frames;
184 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
185 uint32_t reserved[4];
186 } eepro100_stats_t;
187
188 typedef enum {
189 cu_idle = 0,
190 cu_suspended = 1,
191 cu_active = 2,
192 cu_lpq_active = 2,
193 cu_hqp_active = 3
194 } cu_state_t;
195
196 typedef enum {
197 ru_idle = 0,
198 ru_suspended = 1,
199 ru_no_resources = 2,
200 ru_ready = 4
201 } ru_state_t;
202
203 typedef struct {
204 PCIDevice dev;
205 uint8_t mult[8]; /* multicast mask array */
206 int mmio_index;
207 NICState *nic;
208 NICConf conf;
209 uint8_t scb_stat; /* SCB stat/ack byte */
210 uint8_t int_stat; /* PCI interrupt status */
211 /* region must not be saved by nic_save. */
212 uint32_t region[3]; /* PCI region addresses */
213 uint16_t mdimem[32];
214 eeprom_t *eeprom;
215 uint32_t device; /* device variant */
216 uint32_t pointer;
217 /* (cu_base + cu_offset) address the next command block in the command block list. */
218 uint32_t cu_base; /* CU base address */
219 uint32_t cu_offset; /* CU address offset */
220 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
221 uint32_t ru_base; /* RU base address */
222 uint32_t ru_offset; /* RU address offset */
223 uint32_t statsaddr; /* pointer to eepro100_stats_t */
224
225 /* Temporary status information (no need to save these values),
226 * used while processing CU commands. */
227 eepro100_tx_t tx; /* transmit buffer descriptor */
228 uint32_t cb_address; /* = cu_base + cu_offset */
229
230 /* Statistical counters. Also used for wake-up packet (i82559). */
231 eepro100_stats_t statistics;
232
233 #if 0
234 uint16_t status;
235 #endif
236
237 /* Configuration bytes. */
238 uint8_t configuration[22];
239
240 /* Data in mem is always in the byte order of the controller (le). */
241 uint8_t mem[PCI_MEM_SIZE];
242 /* vmstate for each particular nic */
243 VMStateDescription *vmstate;
244
245 /* Quasi static device properties (no need to save them). */
246 uint16_t stats_size;
247 bool has_extended_tcb_support;
248 } EEPRO100State;
249
250 /* Word indices in EEPROM. */
251 typedef enum {
252 EEPROM_CNFG_MDIX = 0x03,
253 EEPROM_ID = 0x05,
254 EEPROM_PHY_ID = 0x06,
255 EEPROM_VENDOR_ID = 0x0c,
256 EEPROM_CONFIG_ASF = 0x0d,
257 EEPROM_DEVICE_ID = 0x23,
258 EEPROM_SMBUS_ADDR = 0x90,
259 } EEPROMOffset;
260
261 /* Default values for MDI (PHY) registers */
262 static const uint16_t eepro100_mdi_default[] = {
263 /* MDI Registers 0 - 6, 7 */
264 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
265 /* MDI Registers 8 - 15 */
266 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
267 /* MDI Registers 16 - 31 */
268 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
269 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
270 };
271
272 /* Readonly mask for MDI (PHY) registers */
273 static const uint16_t eepro100_mdi_mask[] = {
274 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
275 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
276 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
277 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
278 };
279
280 /* XXX: optimize */
281 static void stl_le_phys(target_phys_addr_t addr, uint32_t val)
282 {
283 val = cpu_to_le32(val);
284 cpu_physical_memory_write(addr, (const uint8_t *)&val, sizeof(val));
285 }
286
287 #define POLYNOMIAL 0x04c11db6
288
289 /* From FreeBSD */
290 /* XXX: optimize */
291 static unsigned compute_mcast_idx(const uint8_t * ep)
292 {
293 uint32_t crc;
294 int carry, i, j;
295 uint8_t b;
296
297 crc = 0xffffffff;
298 for (i = 0; i < 6; i++) {
299 b = *ep++;
300 for (j = 0; j < 8; j++) {
301 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
302 crc <<= 1;
303 b >>= 1;
304 if (carry) {
305 crc = ((crc ^ POLYNOMIAL) | carry);
306 }
307 }
308 }
309 return (crc & BITS(7, 2)) >> 2;
310 }
311
312 #if defined(DEBUG_EEPRO100)
313 static const char *nic_dump(const uint8_t * buf, unsigned size)
314 {
315 static char dump[3 * 16 + 1];
316 char *p = &dump[0];
317 if (size > 16) {
318 size = 16;
319 }
320 while (size-- > 0) {
321 p += sprintf(p, " %02x", *buf++);
322 }
323 return dump;
324 }
325 #endif /* DEBUG_EEPRO100 */
326
327 enum scb_stat_ack {
328 stat_ack_not_ours = 0x00,
329 stat_ack_sw_gen = 0x04,
330 stat_ack_rnr = 0x10,
331 stat_ack_cu_idle = 0x20,
332 stat_ack_frame_rx = 0x40,
333 stat_ack_cu_cmd_done = 0x80,
334 stat_ack_not_present = 0xFF,
335 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
336 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
337 };
338
339 static void disable_interrupt(EEPRO100State * s)
340 {
341 if (s->int_stat) {
342 TRACE(INT, logout("interrupt disabled\n"));
343 qemu_irq_lower(s->dev.irq[0]);
344 s->int_stat = 0;
345 }
346 }
347
348 static void enable_interrupt(EEPRO100State * s)
349 {
350 if (!s->int_stat) {
351 TRACE(INT, logout("interrupt enabled\n"));
352 qemu_irq_raise(s->dev.irq[0]);
353 s->int_stat = 1;
354 }
355 }
356
357 static void eepro100_acknowledge(EEPRO100State * s)
358 {
359 s->scb_stat &= ~s->mem[SCBAck];
360 s->mem[SCBAck] = s->scb_stat;
361 if (s->scb_stat == 0) {
362 disable_interrupt(s);
363 }
364 }
365
366 static void eepro100_interrupt(EEPRO100State * s, uint8_t stat)
367 {
368 uint8_t mask = ~s->mem[SCBIntmask];
369 s->mem[SCBAck] |= stat;
370 stat = s->scb_stat = s->mem[SCBAck];
371 stat &= (mask | 0x0f);
372 //~ stat &= (~s->mem[SCBIntmask] | 0x0xf);
373 if (stat && (mask & 0x01)) {
374 /* SCB mask and SCB Bit M do not disable interrupt. */
375 enable_interrupt(s);
376 } else if (s->int_stat) {
377 disable_interrupt(s);
378 }
379 }
380
381 static void eepro100_cx_interrupt(EEPRO100State * s)
382 {
383 /* CU completed action command. */
384 /* Transmit not ok (82557 only, not in emulation). */
385 eepro100_interrupt(s, 0x80);
386 }
387
388 static void eepro100_cna_interrupt(EEPRO100State * s)
389 {
390 /* CU left the active state. */
391 eepro100_interrupt(s, 0x20);
392 }
393
394 static void eepro100_fr_interrupt(EEPRO100State * s)
395 {
396 /* RU received a complete frame. */
397 eepro100_interrupt(s, 0x40);
398 }
399
400 #if 0
401 static void eepro100_rnr_interrupt(EEPRO100State * s)
402 {
403 /* RU is not ready. */
404 eepro100_interrupt(s, 0x10);
405 }
406 #endif
407
408 static void eepro100_mdi_interrupt(EEPRO100State * s)
409 {
410 /* MDI completed read or write cycle. */
411 eepro100_interrupt(s, 0x08);
412 }
413
414 static void eepro100_swi_interrupt(EEPRO100State * s)
415 {
416 /* Software has requested an interrupt. */
417 eepro100_interrupt(s, 0x04);
418 }
419
420 #if 0
421 static void eepro100_fcp_interrupt(EEPRO100State * s)
422 {
423 /* Flow control pause interrupt (82558 and later). */
424 eepro100_interrupt(s, 0x01);
425 }
426 #endif
427
428 static void pci_reset(EEPRO100State * s)
429 {
430 uint32_t device = s->device;
431 uint8_t *pci_conf = s->dev.config;
432 bool power_management = 1;
433
434 TRACE(OTHER, logout("%p\n", s));
435
436 /* PCI Vendor ID */
437 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
438 /* PCI Device ID depends on device and is set below. */
439 /* PCI Command */
440 /* TODO: this is the default, do not override. */
441 PCI_CONFIG_16(PCI_COMMAND, 0x0000);
442 /* PCI Status */
443 /* TODO: Value at RST# should be 0. */
444 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM | PCI_STATUS_FAST_BACK);
445 /* PCI Revision ID */
446 PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
447 /* TODO: this is the default, do not override. */
448 /* PCI Class Code */
449 PCI_CONFIG_8(PCI_CLASS_PROG, 0x00);
450 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
451 /* PCI Cache Line Size */
452 /* check cache line size!!! */
453 //~ PCI_CONFIG_8(0x0c, 0x00);
454 /* PCI Latency Timer */
455 PCI_CONFIG_8(PCI_LATENCY_TIMER, 0x20); // latency timer = 32 clocks
456 /* PCI Header Type */
457 /* BIST (built-in self test) */
458 #if defined(TARGET_I386)
459 // !!! workaround for buggy bios
460 //~ #define PCI_BASE_ADDRESS_MEM_PREFETCH 0
461 #endif
462 #if 0
463 /* PCI Base Address Registers */
464 /* CSR Memory Mapped Base Address */
465 PCI_CONFIG_32(PCI_BASE_ADDRESS_0,
466 PCI_BASE_ADDRESS_SPACE_MEMORY |
467 PCI_BASE_ADDRESS_MEM_PREFETCH);
468 /* CSR I/O Mapped Base Address */
469 PCI_CONFIG_32(PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_SPACE_IO);
470 #if 0
471 /* Flash Memory Mapped Base Address */
472 PCI_CONFIG_32(PCI_BASE_ADDRESS_2,
473 0xfffe0000 | PCI_BASE_ADDRESS_SPACE_MEMORY);
474 #endif
475 #endif
476 /* Expansion ROM Base Address (depends on boot disable!!!) */
477 /* TODO: not needed, set when BAR is registered */
478 PCI_CONFIG_32(PCI_ROM_ADDRESS, PCI_BASE_ADDRESS_SPACE_MEMORY);
479 /* Capability Pointer */
480 /* TODO: revisions with power_management 1 use this but
481 * do not set new capability list bit in status register. */
482 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0xdc);
483 /* Interrupt Line */
484 /* Interrupt Pin */
485 /* TODO: RST# value should be 0 */
486 PCI_CONFIG_8(PCI_INTERRUPT_PIN, 1); // interrupt pin 0
487 /* Minimum Grant */
488 PCI_CONFIG_8(PCI_MIN_GNT, 0x08);
489 /* Maximum Latency */
490 PCI_CONFIG_8(PCI_MAX_LAT, 0x18);
491
492 switch (device) {
493 case i82550:
494 // TODO: check device id.
495 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
496 /* Revision ID: 0x0c, 0x0d, 0x0e. */
497 PCI_CONFIG_8(PCI_REVISION_ID, 0x0e);
498 // TODO: check size of statistical counters.
499 s->stats_size = 80;
500 // TODO: check extended tcb support.
501 s->has_extended_tcb_support = 1;
502 break;
503 case i82551:
504 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
505 /* Revision ID: 0x0f, 0x10. */
506 PCI_CONFIG_8(PCI_REVISION_ID, 0x0f);
507 // TODO: check size of statistical counters.
508 s->stats_size = 80;
509 s->has_extended_tcb_support = 1;
510 break;
511 case i82557A:
512 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
513 PCI_CONFIG_8(PCI_REVISION_ID, 0x01);
514 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0x00);
515 power_management = 0;
516 break;
517 case i82557B:
518 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
519 PCI_CONFIG_8(PCI_REVISION_ID, 0x02);
520 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0x00);
521 power_management = 0;
522 break;
523 case i82557C:
524 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
525 PCI_CONFIG_8(PCI_REVISION_ID, 0x03);
526 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0x00);
527 power_management = 0;
528 break;
529 case i82558A:
530 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
531 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
532 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
533 PCI_CONFIG_8(PCI_REVISION_ID, 0x04);
534 s->stats_size = 76;
535 s->has_extended_tcb_support = 1;
536 break;
537 case i82558B:
538 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
539 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
540 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
541 PCI_CONFIG_8(PCI_REVISION_ID, 0x05);
542 s->stats_size = 76;
543 s->has_extended_tcb_support = 1;
544 break;
545 case i82559A:
546 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
547 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
548 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
549 PCI_CONFIG_8(PCI_REVISION_ID, 0x06);
550 s->stats_size = 80;
551 s->has_extended_tcb_support = 1;
552 break;
553 case i82559B:
554 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
555 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
556 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
557 PCI_CONFIG_8(PCI_REVISION_ID, 0x07);
558 s->stats_size = 80;
559 s->has_extended_tcb_support = 1;
560 break;
561 case i82559C:
562 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
563 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
564 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
565 PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
566 // TODO: Windows wants revision id 0x0c.
567 PCI_CONFIG_8(PCI_REVISION_ID, 0x0c);
568 #if EEPROM_SIZE > 0
569 PCI_CONFIG_16(PCI_SUBSYSTEM_VENDOR_ID, 0x8086);
570 PCI_CONFIG_16(PCI_SUBSYSTEM_ID, 0x0040);
571 #endif
572 s->stats_size = 80;
573 s->has_extended_tcb_support = 1;
574 break;
575 case i82559ER:
576 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
577 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
578 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
579 PCI_CONFIG_8(PCI_REVISION_ID, 0x09);
580 s->stats_size = 80;
581 s->has_extended_tcb_support = 1;
582 break;
583 case i82562:
584 // TODO: check device id.
585 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
586 /* TODO: wrong revision id. */
587 PCI_CONFIG_8(PCI_REVISION_ID, 0x0e);
588 s->stats_size = 80;
589 s->has_extended_tcb_support = 1;
590 break;
591 default:
592 logout("Device %X is undefined!\n", device);
593 }
594
595 s->configuration[6] |= BIT(5);
596
597 if (s->stats_size == 80) {
598 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */
599 if (s->configuration[6] & BIT(2)) {
600 /* TCO statistical counters. */
601 assert(s->configuration[6] & BIT(5));
602 } else {
603 if (s->configuration[6] & BIT(5)) {
604 /* No extended statistical counters, i82557 compatible. */
605 s->stats_size = 64;
606 } else {
607 /* i82558 compatible. */
608 s->stats_size = 76;
609 }
610 }
611 } else {
612 if (s->configuration[6] & BIT(5)) {
613 /* No extended statistical counters. */
614 s->stats_size = 64;
615 }
616 }
617 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
618
619 if (power_management) {
620 /* Power Management Capabilities */
621 PCI_CONFIG_8(0xdc, 0x01);
622 /* Next Item Pointer */
623 /* Capability ID */
624 PCI_CONFIG_16(0xde, 0x7e21);
625 /* TODO: Power Management Control / Status. */
626 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */
627 }
628
629 #if EEPROM_SIZE > 0
630 if (device == i82557C || device == i82558B || device == i82559C) {
631 // TODO: get vendor id from EEPROM for i82557C or later.
632 // TODO: get device id from EEPROM for i82557C or later.
633 // TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
634 // TODO: header type is determined by EEPROM for i82559.
635 // TODO: get subsystem id from EEPROM for i82557C or later.
636 // TODO: get subsystem vendor id from EEPROM for i82557C or later.
637 // TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
638 // TODO: capability pointer depends on EEPROM for i82558.
639 logout("Get device id and revision from EEPROM!!!\n");
640 }
641 #endif /* EEPROM_SIZE > 0 */
642 }
643
644 static void nic_selective_reset(EEPRO100State * s)
645 {
646 size_t i;
647 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
648 //~ eeprom93xx_reset(s->eeprom);
649 memcpy(eeprom_contents, s->conf.macaddr.a, 6);
650 eeprom_contents[EEPROM_ID] = 0x4000;
651 if (s->device == i82557B || s->device == i82557C)
652 eeprom_contents[5] = 0x0100;
653 eeprom_contents[EEPROM_PHY_ID] = 1;
654 uint16_t sum = 0;
655 for (i = 0; i < EEPROM_SIZE - 1; i++) {
656 sum += eeprom_contents[i];
657 }
658 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
659 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
660
661 memset(s->mem, 0, sizeof(s->mem));
662 uint32_t val = BIT(21);
663 memcpy(&s->mem[SCBCtrlMDI], &val, sizeof(val));
664
665 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
666 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
667 }
668
669 static void nic_reset(void *opaque)
670 {
671 EEPRO100State *s = opaque;
672 TRACE(OTHER, logout("%p\n", s));
673 /* TODO: Clearing of multicast table for selective reset, too? */
674 memset(&s->mult[0], 0, sizeof(s->mult));
675 nic_selective_reset(s);
676 }
677
678 #if defined(DEBUG_EEPRO100)
679 static const char * const e100_reg[PCI_IO_SIZE / 4] = {
680 "Command/Status",
681 "General Pointer",
682 "Port",
683 "EEPROM/Flash Control",
684 "MDI Control",
685 "Receive DMA Byte Count",
686 "Flow Control",
687 "General Status/Control"
688 };
689
690 static char *regname(uint32_t addr)
691 {
692 static char buf[32];
693 if (addr < PCI_IO_SIZE) {
694 const char *r = e100_reg[addr / 4];
695 if (r != 0) {
696 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
697 } else {
698 snprintf(buf, sizeof(buf), "0x%02x", addr);
699 }
700 } else {
701 snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
702 }
703 return buf;
704 }
705 #endif /* DEBUG_EEPRO100 */
706
707 #if 0
708 static uint16_t eepro100_read_status(EEPRO100State * s)
709 {
710 uint16_t val = s->status;
711 TRACE(OTHER, logout("val=0x%04x\n", val));
712 return val;
713 }
714
715 static void eepro100_write_status(EEPRO100State * s, uint16_t val)
716 {
717 TRACE(OTHER, logout("val=0x%04x\n", val));
718 s->status = val;
719 }
720 #endif
721
722 /*****************************************************************************
723 *
724 * Command emulation.
725 *
726 ****************************************************************************/
727
728 #if 0
729 static uint16_t eepro100_read_command(EEPRO100State * s)
730 {
731 uint16_t val = 0xffff;
732 //~ TRACE(OTHER, logout("val=0x%04x\n", val));
733 return val;
734 }
735 #endif
736
737 /* Commands that can be put in a command list entry. */
738 enum commands {
739 CmdNOp = 0,
740 CmdIASetup = 1,
741 CmdConfigure = 2,
742 CmdMulticastList = 3,
743 CmdTx = 4,
744 CmdTDR = 5, /* load microcode */
745 CmdDump = 6,
746 CmdDiagnose = 7,
747
748 /* And some extra flags: */
749 CmdSuspend = 0x4000, /* Suspend after completion. */
750 CmdIntr = 0x2000, /* Interrupt after completion. */
751 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
752 };
753
754 static cu_state_t get_cu_state(EEPRO100State * s)
755 {
756 return ((s->mem[SCBStatus] >> 6) & 0x03);
757 }
758
759 static void set_cu_state(EEPRO100State * s, cu_state_t state)
760 {
761 s->mem[SCBStatus] = (s->mem[SCBStatus] & 0x3f) + (state << 6);
762 }
763
764 static ru_state_t get_ru_state(EEPRO100State * s)
765 {
766 return ((s->mem[SCBStatus] >> 2) & 0x0f);
767 }
768
769 static void set_ru_state(EEPRO100State * s, ru_state_t state)
770 {
771 s->mem[SCBStatus] = (s->mem[SCBStatus] & 0xc3) + (state << 2);
772 }
773
774 static void dump_statistics(EEPRO100State * s)
775 {
776 /* Dump statistical data. Most data is never changed by the emulation
777 * and always 0, so we first just copy the whole block and then those
778 * values which really matter.
779 * Number of data should check configuration!!!
780 */
781 cpu_physical_memory_write(s->statsaddr,
782 (uint8_t *) & s->statistics, s->stats_size);
783 stl_le_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
784 stl_le_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
785 stl_le_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
786 stl_le_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
787 //~ stw_le_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
788 //~ stw_le_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
789 //~ missing("CU dump statistical counters");
790 }
791
792 static void tx_command(EEPRO100State *s)
793 {
794 uint32_t tbd_array = le32_to_cpu(s->tx.tbd_array_addr);
795 uint16_t tcb_bytes = (le16_to_cpu(s->tx.tcb_bytes) & 0x3fff);
796 /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */
797 uint8_t buf[2600];
798 uint16_t size = 0;
799 uint32_t tbd_address = s->cb_address + 0x10;
800 TRACE(RXTX, logout
801 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
802 tbd_array, tcb_bytes, s->tx.tbd_count));
803
804 if (tcb_bytes > 2600) {
805 logout("TCB byte count too large, using 2600\n");
806 tcb_bytes = 2600;
807 }
808 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
809 logout
810 ("illegal values of TBD array address and TCB byte count!\n");
811 }
812 assert(tcb_bytes <= sizeof(buf));
813 while (size < tcb_bytes) {
814 uint32_t tx_buffer_address = ldl_phys(tbd_address);
815 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
816 //~ uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
817 tbd_address += 8;
818 TRACE(RXTX, logout
819 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
820 tx_buffer_address, tx_buffer_size));
821 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
822 cpu_physical_memory_read(tx_buffer_address, &buf[size],
823 tx_buffer_size);
824 size += tx_buffer_size;
825 }
826 if (tbd_array == 0xffffffff) {
827 /* Simplified mode. Was already handled by code above. */
828 } else {
829 /* Flexible mode. */
830 uint8_t tbd_count = 0;
831 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
832 /* Extended Flexible TCB. */
833 for (; tbd_count < 2; tbd_count++) {
834 uint32_t tx_buffer_address = ldl_phys(tbd_address);
835 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
836 uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
837 tbd_address += 8;
838 TRACE(RXTX, logout
839 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
840 tx_buffer_address, tx_buffer_size));
841 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
842 cpu_physical_memory_read(tx_buffer_address, &buf[size],
843 tx_buffer_size);
844 size += tx_buffer_size;
845 if (tx_buffer_el & 1) {
846 break;
847 }
848 }
849 }
850 tbd_address = tbd_array;
851 for (; tbd_count < s->tx.tbd_count; tbd_count++) {
852 uint32_t tx_buffer_address = ldl_phys(tbd_address);
853 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
854 uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
855 tbd_address += 8;
856 TRACE(RXTX, logout
857 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
858 tx_buffer_address, tx_buffer_size));
859 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
860 cpu_physical_memory_read(tx_buffer_address, &buf[size],
861 tx_buffer_size);
862 size += tx_buffer_size;
863 if (tx_buffer_el & 1) {
864 break;
865 }
866 }
867 }
868 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
869 qemu_send_packet(&s->nic->nc, buf, size);
870 s->statistics.tx_good_frames++;
871 /* Transmit with bad status would raise an CX/TNO interrupt.
872 * (82557 only). Emulation never has bad status. */
873 //~ eepro100_cx_interrupt(s);
874 }
875
876 static void set_multicast_list(EEPRO100State *s)
877 {
878 uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0);
879 uint16_t i;
880 memset(&s->mult[0], 0, sizeof(s->mult));
881 TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count));
882 for (i = 0; i < multicast_count; i += 6) {
883 uint8_t multicast_addr[6];
884 cpu_physical_memory_read(s->cb_address + 10 + i, multicast_addr, 6);
885 TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6)));
886 unsigned mcast_idx = compute_mcast_idx(multicast_addr);
887 assert(mcast_idx < 64);
888 s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7));
889 }
890 }
891
892 static void action_command(EEPRO100State *s)
893 {
894 for (;;) {
895 s->cb_address = s->cu_base + s->cu_offset;
896 cpu_physical_memory_read(s->cb_address, (uint8_t *)&s->tx, sizeof(s->tx));
897 uint16_t status = le16_to_cpu(s->tx.status);
898 uint16_t command = le16_to_cpu(s->tx.command);
899 logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
900 status, command, s->tx.link);
901 bool bit_el = ((command & 0x8000) != 0);
902 bool bit_s = ((command & 0x4000) != 0);
903 bool bit_i = ((command & 0x2000) != 0);
904 bool bit_nc = ((command & 0x0010) != 0);
905 bool success = true;
906 //~ bool bit_sf = ((command & 0x0008) != 0);
907 uint16_t cmd = command & 0x0007;
908 s->cu_offset = le32_to_cpu(s->tx.link);
909 switch (cmd) {
910 case CmdNOp:
911 /* Do nothing. */
912 break;
913 case CmdIASetup:
914 cpu_physical_memory_read(s->cb_address + 8, &s->conf.macaddr.a[0], 6);
915 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)));
916 break;
917 case CmdConfigure:
918 cpu_physical_memory_read(s->cb_address + 8, &s->configuration[0],
919 sizeof(s->configuration));
920 TRACE(OTHER, logout("configuration: %s\n", nic_dump(&s->configuration[0], 16)));
921 break;
922 case CmdMulticastList:
923 set_multicast_list(s);
924 break;
925 case CmdTx:
926 if (bit_nc) {
927 missing("CmdTx: NC = 0");
928 success = false;
929 break;
930 }
931 tx_command(s);
932 break;
933 case CmdTDR:
934 TRACE(OTHER, logout("load microcode\n"));
935 /* Starting with offset 8, the command contains
936 * 64 dwords microcode which we just ignore here. */
937 break;
938 default:
939 missing("undefined command");
940 success = false;
941 break;
942 }
943 /* Write new status. */
944 stw_phys(s->cb_address, status | 0x8000 | (success ? 0x2000 : 0));
945 if (bit_i) {
946 /* CU completed action. */
947 eepro100_cx_interrupt(s);
948 }
949 if (bit_el) {
950 /* CU becomes idle. Terminate command loop. */
951 set_cu_state(s, cu_idle);
952 eepro100_cna_interrupt(s);
953 break;
954 } else if (bit_s) {
955 /* CU becomes suspended. Terminate command loop. */
956 set_cu_state(s, cu_suspended);
957 eepro100_cna_interrupt(s);
958 break;
959 } else {
960 /* More entries in list. */
961 TRACE(OTHER, logout("CU list with at least one more entry\n"));
962 }
963 }
964 TRACE(OTHER, logout("CU list empty\n"));
965 /* List is empty. Now CU is idle or suspended. */
966 }
967
968 static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
969 {
970 switch (val) {
971 case CU_NOP:
972 /* No operation. */
973 break;
974 case CU_START:
975 if (get_cu_state(s) != cu_idle) {
976 /* Intel documentation says that CU must be idle for the CU
977 * start command. Intel driver for Linux also starts the CU
978 * from suspended state. */
979 logout("CU state is %u, should be %u\n", get_cu_state(s), cu_idle);
980 //~ assert(!"wrong CU state");
981 }
982 set_cu_state(s, cu_active);
983 s->cu_offset = s->pointer;
984 action_command(s);
985 break;
986 case CU_RESUME:
987 if (get_cu_state(s) != cu_suspended) {
988 logout("bad CU resume from CU state %u\n", get_cu_state(s));
989 /* Workaround for bad Linux eepro100 driver which resumes
990 * from idle state. */
991 //~ missing("cu resume");
992 set_cu_state(s, cu_suspended);
993 }
994 if (get_cu_state(s) == cu_suspended) {
995 TRACE(OTHER, logout("CU resuming\n"));
996 set_cu_state(s, cu_active);
997 action_command(s);
998 }
999 break;
1000 case CU_STATSADDR:
1001 /* Load dump counters address. */
1002 s->statsaddr = s->pointer;
1003 TRACE(OTHER, logout("val=0x%02x (status address)\n", val));
1004 break;
1005 case CU_SHOWSTATS:
1006 /* Dump statistical counters. */
1007 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
1008 dump_statistics(s);
1009 stl_le_phys(s->statsaddr + s->stats_size, 0xa005);
1010 break;
1011 case CU_CMD_BASE:
1012 /* Load CU base. */
1013 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
1014 s->cu_base = s->pointer;
1015 break;
1016 case CU_DUMPSTATS:
1017 /* Dump and reset statistical counters. */
1018 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
1019 dump_statistics(s);
1020 stl_le_phys(s->statsaddr + s->stats_size, 0xa007);
1021 memset(&s->statistics, 0, sizeof(s->statistics));
1022 break;
1023 case CU_SRESUME:
1024 /* CU static resume. */
1025 missing("CU static resume");
1026 break;
1027 default:
1028 missing("Undefined CU command");
1029 }
1030 }
1031
1032 static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
1033 {
1034 switch (val) {
1035 case RU_NOP:
1036 /* No operation. */
1037 break;
1038 case RX_START:
1039 /* RU start. */
1040 if (get_ru_state(s) != ru_idle) {
1041 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
1042 //~ assert(!"wrong RU state");
1043 }
1044 set_ru_state(s, ru_ready);
1045 s->ru_offset = s->pointer;
1046 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
1047 break;
1048 case RX_RESUME:
1049 /* Restart RU. */
1050 if (get_ru_state(s) != ru_suspended) {
1051 logout("RU state is %u, should be %u\n", get_ru_state(s),
1052 ru_suspended);
1053 //~ assert(!"wrong RU state");
1054 }
1055 set_ru_state(s, ru_ready);
1056 break;
1057 case RX_ADDR_LOAD:
1058 /* Load RU base. */
1059 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
1060 s->ru_base = s->pointer;
1061 break;
1062 default:
1063 logout("val=0x%02x (undefined RU command)\n", val);
1064 missing("Undefined SU command");
1065 }
1066 }
1067
1068 static void eepro100_write_command(EEPRO100State * s, uint8_t val)
1069 {
1070 eepro100_ru_command(s, val & 0x0f);
1071 eepro100_cu_command(s, val & 0xf0);
1072 if ((val) == 0) {
1073 TRACE(OTHER, logout("val=0x%02x\n", val));
1074 }
1075 /* Clear command byte after command was accepted. */
1076 s->mem[SCBCmd] = 0;
1077 }
1078
1079 /*****************************************************************************
1080 *
1081 * EEPROM emulation.
1082 *
1083 ****************************************************************************/
1084
1085 #define EEPROM_CS 0x02
1086 #define EEPROM_SK 0x01
1087 #define EEPROM_DI 0x04
1088 #define EEPROM_DO 0x08
1089
1090 static uint16_t eepro100_read_eeprom(EEPRO100State * s)
1091 {
1092 uint16_t val;
1093 memcpy(&val, &s->mem[SCBeeprom], sizeof(val));
1094 if (eeprom93xx_read(s->eeprom)) {
1095 val |= EEPROM_DO;
1096 } else {
1097 val &= ~EEPROM_DO;
1098 }
1099 TRACE(EEPROM, logout("val=0x%04x\n", val));
1100 return val;
1101 }
1102
1103 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
1104 {
1105 TRACE(EEPROM, logout("val=0x%02x\n", val));
1106
1107 /* mask unwriteable bits */
1108 //~ val = SET_MASKED(val, 0x31, eeprom->value);
1109
1110 int eecs = ((val & EEPROM_CS) != 0);
1111 int eesk = ((val & EEPROM_SK) != 0);
1112 int eedi = ((val & EEPROM_DI) != 0);
1113 eeprom93xx_write(eeprom, eecs, eesk, eedi);
1114 }
1115
1116 static void eepro100_write_pointer(EEPRO100State * s, uint32_t val)
1117 {
1118 s->pointer = le32_to_cpu(val);
1119 TRACE(OTHER, logout("val=0x%08x\n", val));
1120 }
1121
1122 /*****************************************************************************
1123 *
1124 * MDI emulation.
1125 *
1126 ****************************************************************************/
1127
1128 #if defined(DEBUG_EEPRO100)
1129 static const char * const mdi_op_name[] = {
1130 "opcode 0",
1131 "write",
1132 "read",
1133 "opcode 3"
1134 };
1135
1136 static const char * const mdi_reg_name[] = {
1137 "Control",
1138 "Status",
1139 "PHY Identification (Word 1)",
1140 "PHY Identification (Word 2)",
1141 "Auto-Negotiation Advertisement",
1142 "Auto-Negotiation Link Partner Ability",
1143 "Auto-Negotiation Expansion"
1144 };
1145
1146 static const char *reg2name(uint8_t reg)
1147 {
1148 static char buffer[10];
1149 const char *p = buffer;
1150 if (reg < ARRAY_SIZE(mdi_reg_name)) {
1151 p = mdi_reg_name[reg];
1152 } else {
1153 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
1154 }
1155 return p;
1156 }
1157 #endif /* DEBUG_EEPRO100 */
1158
1159 static uint32_t eepro100_read_mdi(EEPRO100State * s)
1160 {
1161 uint32_t val;
1162 memcpy(&val, &s->mem[0x10], sizeof(val));
1163
1164 #ifdef DEBUG_EEPRO100
1165 uint8_t raiseint = (val & BIT(29)) >> 29;
1166 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1167 uint8_t phy = (val & BITS(25, 21)) >> 21;
1168 uint8_t reg = (val & BITS(20, 16)) >> 16;
1169 uint16_t data = (val & BITS(15, 0));
1170 #endif
1171 /* Emulation takes no time to finish MDI transaction. */
1172 val |= BIT(28);
1173 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1174 val, raiseint, mdi_op_name[opcode], phy,
1175 reg2name(reg), data));
1176 return val;
1177 }
1178
1179 static void eepro100_write_mdi(EEPRO100State * s, uint32_t val)
1180 {
1181 uint8_t raiseint = (val & BIT(29)) >> 29;
1182 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1183 uint8_t phy = (val & BITS(25, 21)) >> 21;
1184 uint8_t reg = (val & BITS(20, 16)) >> 16;
1185 uint16_t data = (val & BITS(15, 0));
1186 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1187 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
1188 if (phy != 1) {
1189 /* Unsupported PHY address. */
1190 //~ logout("phy must be 1 but is %u\n", phy);
1191 data = 0;
1192 } else if (opcode != 1 && opcode != 2) {
1193 /* Unsupported opcode. */
1194 logout("opcode must be 1 or 2 but is %u\n", opcode);
1195 data = 0;
1196 } else if (reg > 6) {
1197 /* Unsupported register. */
1198 logout("register must be 0...6 but is %u\n", reg);
1199 data = 0;
1200 } else {
1201 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1202 val, raiseint, mdi_op_name[opcode], phy,
1203 reg2name(reg), data));
1204 if (opcode == 1) {
1205 /* MDI write */
1206 switch (reg) {
1207 case 0: /* Control Register */
1208 if (data & 0x8000) {
1209 /* Reset status and control registers to default. */
1210 s->mdimem[0] = eepro100_mdi_default[0];
1211 s->mdimem[1] = eepro100_mdi_default[1];
1212 data = s->mdimem[reg];
1213 } else {
1214 /* Restart Auto Configuration = Normal Operation */
1215 data &= ~0x0200;
1216 }
1217 break;
1218 case 1: /* Status Register */
1219 missing("not writable");
1220 data = s->mdimem[reg];
1221 break;
1222 case 2: /* PHY Identification Register (Word 1) */
1223 case 3: /* PHY Identification Register (Word 2) */
1224 missing("not implemented");
1225 break;
1226 case 4: /* Auto-Negotiation Advertisement Register */
1227 case 5: /* Auto-Negotiation Link Partner Ability Register */
1228 break;
1229 case 6: /* Auto-Negotiation Expansion Register */
1230 default:
1231 missing("not implemented");
1232 }
1233 s->mdimem[reg] = data;
1234 } else if (opcode == 2) {
1235 /* MDI read */
1236 switch (reg) {
1237 case 0: /* Control Register */
1238 if (data & 0x8000) {
1239 /* Reset status and control registers to default. */
1240 s->mdimem[0] = eepro100_mdi_default[0];
1241 s->mdimem[1] = eepro100_mdi_default[1];
1242 }
1243 break;
1244 case 1: /* Status Register */
1245 s->mdimem[reg] |= 0x0020;
1246 break;
1247 case 2: /* PHY Identification Register (Word 1) */
1248 case 3: /* PHY Identification Register (Word 2) */
1249 case 4: /* Auto-Negotiation Advertisement Register */
1250 break;
1251 case 5: /* Auto-Negotiation Link Partner Ability Register */
1252 s->mdimem[reg] = 0x41fe;
1253 break;
1254 case 6: /* Auto-Negotiation Expansion Register */
1255 s->mdimem[reg] = 0x0001;
1256 break;
1257 }
1258 data = s->mdimem[reg];
1259 }
1260 /* Emulation takes no time to finish MDI transaction.
1261 * Set MDI bit in SCB status register. */
1262 s->mem[SCBAck] |= 0x08;
1263 val |= BIT(28);
1264 if (raiseint) {
1265 eepro100_mdi_interrupt(s);
1266 }
1267 }
1268 val = (val & 0xffff0000) + data;
1269 memcpy(&s->mem[0x10], &val, sizeof(val));
1270 }
1271
1272 /*****************************************************************************
1273 *
1274 * Port emulation.
1275 *
1276 ****************************************************************************/
1277
1278 #define PORT_SOFTWARE_RESET 0
1279 #define PORT_SELFTEST 1
1280 #define PORT_SELECTIVE_RESET 2
1281 #define PORT_DUMP 3
1282 #define PORT_SELECTION_MASK 3
1283
1284 typedef struct {
1285 uint32_t st_sign; /* Self Test Signature */
1286 uint32_t st_result; /* Self Test Results */
1287 } eepro100_selftest_t;
1288
1289 static uint32_t eepro100_read_port(EEPRO100State * s)
1290 {
1291 return 0;
1292 }
1293
1294 static void eepro100_write_port(EEPRO100State * s, uint32_t val)
1295 {
1296 val = le32_to_cpu(val);
1297 uint32_t address = (val & ~PORT_SELECTION_MASK);
1298 uint8_t selection = (val & PORT_SELECTION_MASK);
1299 switch (selection) {
1300 case PORT_SOFTWARE_RESET:
1301 nic_reset(s);
1302 break;
1303 case PORT_SELFTEST:
1304 TRACE(OTHER, logout("selftest address=0x%08x\n", address));
1305 eepro100_selftest_t data;
1306 cpu_physical_memory_read(address, (uint8_t *) & data, sizeof(data));
1307 data.st_sign = 0xffffffff;
1308 data.st_result = 0;
1309 cpu_physical_memory_write(address, (uint8_t *) & data, sizeof(data));
1310 break;
1311 case PORT_SELECTIVE_RESET:
1312 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
1313 nic_selective_reset(s);
1314 break;
1315 default:
1316 logout("val=0x%08x\n", val);
1317 missing("unknown port selection");
1318 }
1319 }
1320
1321 /*****************************************************************************
1322 *
1323 * General hardware emulation.
1324 *
1325 ****************************************************************************/
1326
1327 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1328 {
1329 uint8_t val;
1330 if (addr <= sizeof(s->mem) - sizeof(val)) {
1331 memcpy(&val, &s->mem[addr], sizeof(val));
1332 }
1333
1334 switch (addr) {
1335 case SCBStatus:
1336 //~ val = eepro100_read_status(s);
1337 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1338 break;
1339 case SCBAck:
1340 //~ val = eepro100_read_status(s);
1341 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1342 break;
1343 case SCBCmd:
1344 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1345 //~ val = eepro100_read_command(s);
1346 break;
1347 case SCBIntmask:
1348 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1349 break;
1350 case SCBPort + 3:
1351 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1352 break;
1353 case SCBeeprom:
1354 val = eepro100_read_eeprom(s);
1355 break;
1356 case SCBpmdr: /* Power Management Driver Register */
1357 val = 0;
1358 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1359 break;
1360 case SCBgstat: /* General Status Register */
1361 /* 100 Mbps full duplex, valid link */
1362 val = 0x07;
1363 TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
1364 break;
1365 default:
1366 logout("addr=%s val=0x%02x\n", regname(addr), val);
1367 missing("unknown byte read");
1368 }
1369 return val;
1370 }
1371
1372 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1373 {
1374 uint16_t val;
1375 if (addr <= sizeof(s->mem) - sizeof(val)) {
1376 memcpy(&val, &s->mem[addr], sizeof(val));
1377 }
1378
1379 switch (addr) {
1380 case SCBStatus:
1381 //~ val = eepro100_read_status(s);
1382 case SCBCmd:
1383 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1384 break;
1385 case SCBeeprom:
1386 val = eepro100_read_eeprom(s);
1387 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1388 break;
1389 default:
1390 logout("addr=%s val=0x%04x\n", regname(addr), val);
1391 missing("unknown word read");
1392 }
1393 return val;
1394 }
1395
1396 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1397 {
1398 uint32_t val;
1399 if (addr <= sizeof(s->mem) - sizeof(val)) {
1400 memcpy(&val, &s->mem[addr], sizeof(val));
1401 }
1402
1403 switch (addr) {
1404 case SCBStatus:
1405 //~ val = eepro100_read_status(s);
1406 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1407 break;
1408 case SCBPointer:
1409 //~ val = eepro100_read_pointer(s);
1410 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1411 break;
1412 case SCBPort:
1413 val = eepro100_read_port(s);
1414 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1415 break;
1416 case SCBCtrlMDI:
1417 val = eepro100_read_mdi(s);
1418 break;
1419 default:
1420 logout("addr=%s val=0x%08x\n", regname(addr), val);
1421 missing("unknown longword read");
1422 }
1423 return val;
1424 }
1425
1426 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1427 {
1428 if (addr <= sizeof(s->mem) - sizeof(val)) {
1429 memcpy(&s->mem[addr], &val, sizeof(val));
1430 }
1431
1432 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1433
1434 switch (addr) {
1435 case SCBStatus:
1436 //~ eepro100_write_status(s, val);
1437 break;
1438 case SCBAck:
1439 eepro100_acknowledge(s);
1440 break;
1441 case SCBCmd:
1442 eepro100_write_command(s, val);
1443 break;
1444 case SCBIntmask:
1445 if (val & BIT(1)) {
1446 eepro100_swi_interrupt(s);
1447 }
1448 eepro100_interrupt(s, 0);
1449 break;
1450 case SCBPort + 3:
1451 case SCBFlow: /* does not exist on 82557 */
1452 case SCBFlow + 1:
1453 case SCBFlow + 2:
1454 case SCBpmdr: /* does not exist on 82557 */
1455 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1456 break;
1457 case SCBeeprom:
1458 eepro100_write_eeprom(s->eeprom, val);
1459 break;
1460 default:
1461 logout("addr=%s val=0x%02x\n", regname(addr), val);
1462 missing("unknown byte write");
1463 }
1464 }
1465
1466 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1467 {
1468 if (addr <= sizeof(s->mem) - sizeof(val)) {
1469 memcpy(&s->mem[addr], &val, sizeof(val));
1470 }
1471
1472 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1473
1474 switch (addr) {
1475 case SCBStatus:
1476 //~ eepro100_write_status(s, val);
1477 eepro100_acknowledge(s);
1478 break;
1479 case SCBCmd:
1480 eepro100_write_command(s, val);
1481 eepro100_write1(s, SCBIntmask, val >> 8);
1482 break;
1483 case SCBeeprom:
1484 eepro100_write_eeprom(s->eeprom, val);
1485 break;
1486 default:
1487 logout("addr=%s val=0x%04x\n", regname(addr), val);
1488 missing("unknown word write");
1489 }
1490 }
1491
1492 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1493 {
1494 if (addr <= sizeof(s->mem) - sizeof(val)) {
1495 memcpy(&s->mem[addr], &val, sizeof(val));
1496 }
1497
1498 switch (addr) {
1499 case SCBPointer:
1500 eepro100_write_pointer(s, val);
1501 break;
1502 case SCBPort:
1503 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1504 eepro100_write_port(s, val);
1505 break;
1506 case SCBCtrlMDI:
1507 eepro100_write_mdi(s, val);
1508 break;
1509 default:
1510 logout("addr=%s val=0x%08x\n", regname(addr), val);
1511 missing("unknown longword write");
1512 }
1513 }
1514
1515 /*****************************************************************************
1516 *
1517 * Port mapped I/O.
1518 *
1519 ****************************************************************************/
1520
1521 static uint32_t ioport_read1(void *opaque, uint32_t addr)
1522 {
1523 EEPRO100State *s = opaque;
1524 //~ logout("addr=%s\n", regname(addr));
1525 return eepro100_read1(s, addr - s->region[1]);
1526 }
1527
1528 static uint32_t ioport_read2(void *opaque, uint32_t addr)
1529 {
1530 EEPRO100State *s = opaque;
1531 return eepro100_read2(s, addr - s->region[1]);
1532 }
1533
1534 static uint32_t ioport_read4(void *opaque, uint32_t addr)
1535 {
1536 EEPRO100State *s = opaque;
1537 return eepro100_read4(s, addr - s->region[1]);
1538 }
1539
1540 static void ioport_write1(void *opaque, uint32_t addr, uint32_t val)
1541 {
1542 EEPRO100State *s = opaque;
1543 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1544 eepro100_write1(s, addr - s->region[1], val);
1545 }
1546
1547 static void ioport_write2(void *opaque, uint32_t addr, uint32_t val)
1548 {
1549 EEPRO100State *s = opaque;
1550 eepro100_write2(s, addr - s->region[1], val);
1551 }
1552
1553 static void ioport_write4(void *opaque, uint32_t addr, uint32_t val)
1554 {
1555 EEPRO100State *s = opaque;
1556 eepro100_write4(s, addr - s->region[1], val);
1557 }
1558
1559 /***********************************************************/
1560 /* PCI EEPRO100 definitions */
1561
1562 static void pci_map(PCIDevice * pci_dev, int region_num,
1563 pcibus_t addr, pcibus_t size, int type)
1564 {
1565 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1566
1567 TRACE(OTHER, logout("region %d, addr=0x%08"FMT_PCIBUS", "
1568 "size=0x%08"FMT_PCIBUS", type=%d\n",
1569 region_num, addr, size, type));
1570
1571 assert(region_num == 1);
1572 register_ioport_write(addr, size, 1, ioport_write1, s);
1573 register_ioport_read(addr, size, 1, ioport_read1, s);
1574 register_ioport_write(addr, size, 2, ioport_write2, s);
1575 register_ioport_read(addr, size, 2, ioport_read2, s);
1576 register_ioport_write(addr, size, 4, ioport_write4, s);
1577 register_ioport_read(addr, size, 4, ioport_read4, s);
1578
1579 s->region[region_num] = addr;
1580 }
1581
1582 /*****************************************************************************
1583 *
1584 * Memory mapped I/O.
1585 *
1586 ****************************************************************************/
1587
1588 static void pci_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1589 {
1590 EEPRO100State *s = opaque;
1591 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1592 eepro100_write1(s, addr, val);
1593 }
1594
1595 static void pci_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1596 {
1597 EEPRO100State *s = opaque;
1598 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1599 eepro100_write2(s, addr, val);
1600 }
1601
1602 static void pci_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1603 {
1604 EEPRO100State *s = opaque;
1605 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1606 eepro100_write4(s, addr, val);
1607 }
1608
1609 static uint32_t pci_mmio_readb(void *opaque, target_phys_addr_t addr)
1610 {
1611 EEPRO100State *s = opaque;
1612 //~ logout("addr=%s\n", regname(addr));
1613 return eepro100_read1(s, addr);
1614 }
1615
1616 static uint32_t pci_mmio_readw(void *opaque, target_phys_addr_t addr)
1617 {
1618 EEPRO100State *s = opaque;
1619 //~ logout("addr=%s\n", regname(addr));
1620 return eepro100_read2(s, addr);
1621 }
1622
1623 static uint32_t pci_mmio_readl(void *opaque, target_phys_addr_t addr)
1624 {
1625 EEPRO100State *s = opaque;
1626 //~ logout("addr=%s\n", regname(addr));
1627 return eepro100_read4(s, addr);
1628 }
1629
1630 static CPUWriteMemoryFunc * const pci_mmio_write[] = {
1631 pci_mmio_writeb,
1632 pci_mmio_writew,
1633 pci_mmio_writel
1634 };
1635
1636 static CPUReadMemoryFunc * const pci_mmio_read[] = {
1637 pci_mmio_readb,
1638 pci_mmio_readw,
1639 pci_mmio_readl
1640 };
1641
1642 static void pci_mmio_map(PCIDevice * pci_dev, int region_num,
1643 pcibus_t addr, pcibus_t size, int type)
1644 {
1645 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1646
1647 TRACE(OTHER, logout("region %d, addr=0x%08"FMT_PCIBUS", "
1648 "size=0x%08"FMT_PCIBUS", type=%d\n",
1649 region_num, addr, size, type));
1650
1651 if (region_num == 0) {
1652 /* Map control / status registers. */
1653 cpu_register_physical_memory(addr, size, s->mmio_index);
1654 s->region[region_num] = addr;
1655 }
1656 }
1657
1658 static int nic_can_receive(VLANClientState *nc)
1659 {
1660 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1661 TRACE(RXTX, logout("%p\n", s));
1662 return get_ru_state(s) == ru_ready;
1663 //~ return !eepro100_buffer_full(s);
1664 }
1665
1666 static ssize_t nic_receive(VLANClientState *nc, const uint8_t * buf, size_t size)
1667 {
1668 /* TODO:
1669 * - Magic packets should set bit 30 in power management driver register.
1670 * - Interesting packets should set bit 29 in power management driver register.
1671 */
1672 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1673 uint16_t rfd_status = 0xa000;
1674 static const uint8_t broadcast_macaddr[6] =
1675 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1676
1677 /* TODO: check multiple IA bit. */
1678 if (s->configuration[20] & BIT(6)) {
1679 missing("Multiple IA bit");
1680 return -1;
1681 }
1682
1683 if (s->configuration[8] & 0x80) {
1684 /* CSMA is disabled. */
1685 logout("%p received while CSMA is disabled\n", s);
1686 return -1;
1687 } else if (size < 64 && (s->configuration[7] & 1)) {
1688 /* Short frame and configuration byte 7/0 (discard short receive) set:
1689 * Short frame is discarded */
1690 logout("%p received short frame (%zu byte)\n", s, size);
1691 s->statistics.rx_short_frame_errors++;
1692 //~ return -1;
1693 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & 8)) {
1694 /* Long frame and configuration byte 18/3 (long receive ok) not set:
1695 * Long frames are discarded. */
1696 logout("%p received long frame (%zu byte), ignored\n", s, size);
1697 return -1;
1698 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { // !!!
1699 /* Frame matches individual address. */
1700 /* TODO: check configuration byte 15/4 (ignore U/L). */
1701 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
1702 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1703 /* Broadcast frame. */
1704 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
1705 rfd_status |= 0x0002;
1706 } else if (buf[0] & 0x01) {
1707 /* Multicast frame. */
1708 TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size)));
1709 if (s->configuration[21] & BIT(3)) {
1710 /* Multicast all bit is set, receive all multicast frames. */
1711 } else {
1712 unsigned mcast_idx = compute_mcast_idx(buf);
1713 assert(mcast_idx < 64);
1714 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
1715 /* Multicast frame is allowed in hash table. */
1716 } else if (s->configuration[15] & 1) {
1717 /* Promiscuous: receive all. */
1718 rfd_status |= 0x0004;
1719 } else {
1720 TRACE(RXTX, logout("%p multicast ignored\n", s));
1721 return -1;
1722 }
1723 }
1724 /* TODO: Next not for promiscuous mode? */
1725 rfd_status |= 0x0002;
1726 } else if (s->configuration[15] & 1) {
1727 /* Promiscuous: receive all. */
1728 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
1729 rfd_status |= 0x0004;
1730 } else {
1731 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
1732 nic_dump(buf, size)));
1733 return size;
1734 }
1735
1736 if (get_ru_state(s) != ru_ready) {
1737 /* No resources available. */
1738 logout("no resources, state=%u\n", get_ru_state(s));
1739 s->statistics.rx_resource_errors++;
1740 //~ assert(!"no resources");
1741 return -1;
1742 }
1743 //~ !!!
1744 //~ $3 = {status = 0x0, command = 0xc000, link = 0x2d220, rx_buf_addr = 0x207dc, count = 0x0, size = 0x5f8, packet = {0x0 <repeats 1518 times>}}
1745 eepro100_rx_t rx;
1746 cpu_physical_memory_read(s->ru_base + s->ru_offset, (uint8_t *) & rx,
1747 offsetof(eepro100_rx_t, packet));
1748 uint16_t rfd_command = le16_to_cpu(rx.command);
1749 uint16_t rfd_size = le16_to_cpu(rx.size);
1750
1751 if (size > rfd_size) {
1752 logout("Receive buffer (%" PRId16 " bytes) too small for data "
1753 "(%zu bytes); data truncated\n", rfd_size, size);
1754 size = rfd_size;
1755 }
1756 if (size < 64) {
1757 rfd_status |= 0x0080;
1758 }
1759 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
1760 rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
1761 stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status),
1762 rfd_status);
1763 stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size);
1764 /* Early receive interrupt not supported. */
1765 //~ eepro100_er_interrupt(s);
1766 /* Receive CRC Transfer not supported. */
1767 if (s->configuration[18] & 4) {
1768 missing("Receive CRC Transfer");
1769 return -1;
1770 }
1771 /* TODO: check stripping enable bit. */
1772 //~ assert(!(s->configuration[17] & 1));
1773 cpu_physical_memory_write(s->ru_base + s->ru_offset +
1774 offsetof(eepro100_rx_t, packet), buf, size);
1775 s->statistics.rx_good_frames++;
1776 eepro100_fr_interrupt(s);
1777 s->ru_offset = le32_to_cpu(rx.link);
1778 if (rfd_command & 0x8000) {
1779 /* EL bit is set, so this was the last frame. */
1780 logout("receive: Running out of frames\n");
1781 set_ru_state(s, ru_suspended);
1782 }
1783 if (rfd_command & 0x4000) {
1784 /* S bit is set. */
1785 set_ru_state(s, ru_suspended);
1786 }
1787 return size;
1788 }
1789
1790 static const VMStateDescription vmstate_eepro100 = {
1791 .version_id = 3,
1792 .minimum_version_id = 2,
1793 .minimum_version_id_old = 2,
1794 .fields = (VMStateField []) {
1795 VMSTATE_PCI_DEVICE(dev, EEPRO100State),
1796 VMSTATE_UNUSED(32),
1797 VMSTATE_BUFFER(mult, EEPRO100State),
1798 VMSTATE_BUFFER(mem, EEPRO100State),
1799 /* Save all members of struct between scb_stat and mem. */
1800 VMSTATE_UINT8(scb_stat, EEPRO100State),
1801 VMSTATE_UINT8(int_stat, EEPRO100State),
1802 VMSTATE_UNUSED(3*4),
1803 VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
1804 VMSTATE_UNUSED(19*4),
1805 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
1806 /* The eeprom should be saved and restored by its own routines. */
1807 VMSTATE_UINT32(device, EEPRO100State),
1808 /* TODO check device. */
1809 VMSTATE_UINT32(pointer, EEPRO100State),
1810 VMSTATE_UINT32(cu_base, EEPRO100State),
1811 VMSTATE_UINT32(cu_offset, EEPRO100State),
1812 VMSTATE_UINT32(ru_base, EEPRO100State),
1813 VMSTATE_UINT32(ru_offset, EEPRO100State),
1814 VMSTATE_UINT32(statsaddr, EEPRO100State),
1815 /* Save eepro100_stats_t statistics. */
1816 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
1817 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
1818 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
1819 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
1820 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
1821 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
1822 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
1823 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
1824 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
1825 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
1826 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
1827 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
1828 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
1829 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
1830 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
1831 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
1832 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
1833 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
1834 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
1835 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
1836 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
1837 #if 0
1838 VMSTATE_UINT16(status, EEPRO100State),
1839 #endif
1840 /* Configuration bytes. */
1841 VMSTATE_BUFFER(configuration, EEPRO100State),
1842 VMSTATE_END_OF_LIST()
1843 }
1844 };
1845
1846 static void nic_cleanup(VLANClientState *nc)
1847 {
1848 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1849
1850 s->nic = NULL;
1851 }
1852
1853 static int pci_nic_uninit(PCIDevice *pci_dev)
1854 {
1855 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1856
1857 cpu_unregister_io_memory(s->mmio_index);
1858 vmstate_unregister(s->vmstate, s);
1859 eeprom93xx_free(s->eeprom);
1860 qemu_del_vlan_client(&s->nic->nc);
1861 return 0;
1862 }
1863
1864 static NetClientInfo net_eepro100_info = {
1865 .type = NET_CLIENT_TYPE_NIC,
1866 .size = sizeof(NICState),
1867 .can_receive = nic_can_receive,
1868 .receive = nic_receive,
1869 .cleanup = nic_cleanup,
1870 };
1871
1872 static int nic_init(PCIDevice *pci_dev, uint32_t device)
1873 {
1874 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1875
1876 TRACE(OTHER, logout("\n"));
1877
1878 s->device = device;
1879
1880 pci_reset(s);
1881
1882 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1883 * i82559 and later support 64 or 256 word EEPROM. */
1884 s->eeprom = eeprom93xx_new(EEPROM_SIZE);
1885
1886 /* Handler for memory-mapped I/O */
1887 s->mmio_index =
1888 cpu_register_io_memory(pci_mmio_read, pci_mmio_write, s);
1889
1890 pci_register_bar(&s->dev, 0, PCI_MEM_SIZE,
1891 PCI_BASE_ADDRESS_SPACE_MEMORY |
1892 PCI_BASE_ADDRESS_MEM_PREFETCH, pci_mmio_map);
1893 pci_register_bar(&s->dev, 1, PCI_IO_SIZE, PCI_BASE_ADDRESS_SPACE_IO,
1894 pci_map);
1895 pci_register_bar(&s->dev, 2, PCI_FLASH_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
1896 pci_mmio_map);
1897
1898 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1899 logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6));
1900 assert(s->region[1] == 0);
1901
1902 nic_reset(s);
1903
1904 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
1905 pci_dev->qdev.info->name, pci_dev->qdev.id, s);
1906
1907 qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
1908 TRACE(OTHER, logout("%s\n", s->nic->nc.info_str));
1909
1910 qemu_register_reset(nic_reset, s);
1911
1912 s->vmstate = qemu_malloc(sizeof(vmstate_eepro100));
1913 memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100));
1914 s->vmstate->name = s->nic->nc.model;
1915 vmstate_register(-1, s->vmstate, s);
1916
1917 return 0;
1918 }
1919
1920 static int pci_i82550_init(PCIDevice *pci_dev)
1921 {
1922 return nic_init(pci_dev, i82550);
1923 }
1924
1925 static int pci_i82551_init(PCIDevice *pci_dev)
1926 {
1927 return nic_init(pci_dev, i82551);
1928 }
1929
1930 static int pci_i82557a_init(PCIDevice *pci_dev)
1931 {
1932 return nic_init(pci_dev, i82557A);
1933 }
1934
1935 static int pci_i82557b_init(PCIDevice *pci_dev)
1936 {
1937 return nic_init(pci_dev, i82557B);
1938 }
1939
1940 static int pci_i82557c_init(PCIDevice *pci_dev)
1941 {
1942 return nic_init(pci_dev, i82557C);
1943 }
1944
1945 static int pci_i82558a_init(PCIDevice *pci_dev)
1946 {
1947 return nic_init(pci_dev, i82558A);
1948 }
1949
1950 static int pci_i82558b_init(PCIDevice *pci_dev)
1951 {
1952 return nic_init(pci_dev, i82558B);
1953 }
1954
1955 static int pci_i82559a_init(PCIDevice *pci_dev)
1956 {
1957 return nic_init(pci_dev, i82559A);
1958 }
1959
1960 static int pci_i82559b_init(PCIDevice *pci_dev)
1961 {
1962 return nic_init(pci_dev, i82559B);
1963 }
1964
1965 static int pci_i82559c_init(PCIDevice *pci_dev)
1966 {
1967 return nic_init(pci_dev, i82559C);
1968 }
1969
1970 static int pci_i82559er_init(PCIDevice *pci_dev)
1971 {
1972 return nic_init(pci_dev, i82559ER);
1973 }
1974
1975 static int pci_i82562_init(PCIDevice *pci_dev)
1976 {
1977 return nic_init(pci_dev, i82562);
1978 }
1979
1980 static PCIDeviceInfo eepro100_info[] = {
1981 {
1982 .qdev.name = "i82550",
1983 .qdev.size = sizeof(EEPRO100State),
1984 .init = pci_i82550_init,
1985 .exit = pci_nic_uninit,
1986 .romfile = "gpxe-eepro100-80861209.rom",
1987 .qdev.props = (Property[]) {
1988 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1989 DEFINE_PROP_END_OF_LIST(),
1990 },
1991 },{
1992 .qdev.name = "i82551",
1993 .qdev.size = sizeof(EEPRO100State),
1994 .init = pci_i82551_init,
1995 .exit = pci_nic_uninit,
1996 .romfile = "gpxe-eepro100-80861209.rom",
1997 .qdev.props = (Property[]) {
1998 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1999 DEFINE_PROP_END_OF_LIST(),
2000 },
2001 },{
2002 .qdev.name = "i82557a",
2003 .qdev.size = sizeof(EEPRO100State),
2004 .init = pci_i82557a_init,
2005 .exit = pci_nic_uninit,
2006 .romfile = "gpxe-eepro100-80861229.rom",
2007 .qdev.props = (Property[]) {
2008 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2009 DEFINE_PROP_END_OF_LIST(),
2010 },
2011 },{
2012 .qdev.name = "i82557b",
2013 .qdev.size = sizeof(EEPRO100State),
2014 .init = pci_i82557b_init,
2015 .exit = pci_nic_uninit,
2016 .romfile = "gpxe-eepro100-80861229.rom",
2017 .qdev.props = (Property[]) {
2018 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2019 DEFINE_PROP_END_OF_LIST(),
2020 },
2021 },{
2022 .qdev.name = "i82557c",
2023 .qdev.size = sizeof(EEPRO100State),
2024 .init = pci_i82557c_init,
2025 .exit = pci_nic_uninit,
2026 .romfile = "gpxe-eepro100-80861229.rom",
2027 .qdev.props = (Property[]) {
2028 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2029 DEFINE_PROP_END_OF_LIST(),
2030 },
2031 },{
2032 .qdev.name = "i82558a",
2033 .qdev.size = sizeof(EEPRO100State),
2034 .init = pci_i82558a_init,
2035 .exit = pci_nic_uninit,
2036 .romfile = "gpxe-eepro100-80861229.rom",
2037 .qdev.props = (Property[]) {
2038 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2039 DEFINE_PROP_END_OF_LIST(),
2040 },
2041 },{
2042 .qdev.name = "i82558b",
2043 .qdev.size = sizeof(EEPRO100State),
2044 .init = pci_i82558b_init,
2045 .exit = pci_nic_uninit,
2046 .romfile = "gpxe-eepro100-80861229.rom",
2047 .qdev.props = (Property[]) {
2048 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2049 DEFINE_PROP_END_OF_LIST(),
2050 },
2051 },{
2052 .qdev.name = "i82559a",
2053 .qdev.size = sizeof(EEPRO100State),
2054 .init = pci_i82559a_init,
2055 .exit = pci_nic_uninit,
2056 .romfile = "gpxe-eepro100-80861229.rom",
2057 .qdev.props = (Property[]) {
2058 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2059 DEFINE_PROP_END_OF_LIST(),
2060 },
2061 },{
2062 .qdev.name = "i82559b",
2063 .qdev.size = sizeof(EEPRO100State),
2064 .init = pci_i82559b_init,
2065 .exit = pci_nic_uninit,
2066 .romfile = "gpxe-eepro100-80861229.rom",
2067 .qdev.props = (Property[]) {
2068 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2069 DEFINE_PROP_END_OF_LIST(),
2070 },
2071 },{
2072 .qdev.name = "i82559c",
2073 .qdev.size = sizeof(EEPRO100State),
2074 .init = pci_i82559c_init,
2075 .exit = pci_nic_uninit,
2076 .romfile = "gpxe-eepro100-80861229.rom",
2077 .qdev.props = (Property[]) {
2078 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2079 DEFINE_PROP_END_OF_LIST(),
2080 },
2081 },{
2082 .qdev.name = "i82559er",
2083 .qdev.size = sizeof(EEPRO100State),
2084 .init = pci_i82559er_init,
2085 .exit = pci_nic_uninit,
2086 .romfile = "gpxe-eepro100-80861209.rom",
2087 .qdev.props = (Property[]) {
2088 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2089 DEFINE_PROP_END_OF_LIST(),
2090 },
2091 },{
2092 .qdev.name = "i82562",
2093 .qdev.size = sizeof(EEPRO100State),
2094 .init = pci_i82562_init,
2095 .exit = pci_nic_uninit,
2096 .romfile = "gpxe-eepro100-80861209.rom",
2097 .qdev.props = (Property[]) {
2098 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2099 DEFINE_PROP_END_OF_LIST(),
2100 },
2101 },{
2102 /* end of list */
2103 }
2104 };
2105
2106 static void eepro100_register_devices(void)
2107 {
2108 pci_qdev_register_many(eepro100_info);
2109 }
2110
2111 device_init(eepro100_register_devices)