]> git.proxmox.com Git - mirror_qemu.git/blob - hw/eepro100.c
net: Rename VLANClientState to NetClientState
[mirror_qemu.git] / hw / eepro100.c
1 /*
2 * QEMU i8255x (PRO100) emulation
3 *
4 * Copyright (C) 2006-2011 Stefan Weil
5 *
6 * Portions of the code are copies from grub / etherboot eepro100.c
7 * and linux e100.c.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) version 3 or any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 *
22 * Tested features (i82559):
23 * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok
24 * Linux networking (i386) ok
25 *
26 * Untested:
27 * Windows networking
28 *
29 * References:
30 *
31 * Intel 8255x 10/100 Mbps Ethernet Controller Family
32 * Open Source Software Developer Manual
33 *
34 * TODO:
35 * * PHY emulation should be separated from nic emulation.
36 * Most nic emulations could share the same phy code.
37 * * i82550 is untested. It is programmed like the i82559.
38 * * i82562 is untested. It is programmed like the i82559.
39 * * Power management (i82558 and later) is not implemented.
40 * * Wake-on-LAN is not implemented.
41 */
42
43 #include <stddef.h> /* offsetof */
44 #include "hw.h"
45 #include "pci.h"
46 #include "net.h"
47 #include "eeprom93xx.h"
48 #include "sysemu.h"
49 #include "dma.h"
50
51 /* QEMU sends frames smaller than 60 bytes to ethernet nics.
52 * Such frames are rejected by real nics and their emulations.
53 * To avoid this behaviour, other nic emulations pad received
54 * frames. The following definition enables this padding for
55 * eepro100, too. We keep the define around in case it might
56 * become useful the future if the core networking is ever
57 * changed to pad short packets itself. */
58 #define CONFIG_PAD_RECEIVED_FRAMES
59
60 #define KiB 1024
61
62 /* Debug EEPRO100 card. */
63 #if 0
64 # define DEBUG_EEPRO100
65 #endif
66
67 #ifdef DEBUG_EEPRO100
68 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
69 #else
70 #define logout(fmt, ...) ((void)0)
71 #endif
72
73 /* Set flags to 0 to disable debug output. */
74 #define INT 1 /* interrupt related actions */
75 #define MDI 1 /* mdi related actions */
76 #define OTHER 1
77 #define RXTX 1
78 #define EEPROM 1 /* eeprom related actions */
79
80 #define TRACE(flag, command) ((flag) ? (command) : (void)0)
81
82 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
83
84 #define MAX_ETH_FRAME_SIZE 1514
85
86 /* This driver supports several different devices which are declared here. */
87 #define i82550 0x82550
88 #define i82551 0x82551
89 #define i82557A 0x82557a
90 #define i82557B 0x82557b
91 #define i82557C 0x82557c
92 #define i82558A 0x82558a
93 #define i82558B 0x82558b
94 #define i82559A 0x82559a
95 #define i82559B 0x82559b
96 #define i82559C 0x82559c
97 #define i82559ER 0x82559e
98 #define i82562 0x82562
99 #define i82801 0x82801
100
101 /* Use 64 word EEPROM. TODO: could be a runtime option. */
102 #define EEPROM_SIZE 64
103
104 #define PCI_MEM_SIZE (4 * KiB)
105 #define PCI_IO_SIZE 64
106 #define PCI_FLASH_SIZE (128 * KiB)
107
108 #define BIT(n) (1 << (n))
109 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
110
111 /* The SCB accepts the following controls for the Tx and Rx units: */
112 #define CU_NOP 0x0000 /* No operation. */
113 #define CU_START 0x0010 /* CU start. */
114 #define CU_RESUME 0x0020 /* CU resume. */
115 #define CU_STATSADDR 0x0040 /* Load dump counters address. */
116 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
117 #define CU_CMD_BASE 0x0060 /* Load CU base address. */
118 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
119 #define CU_SRESUME 0x00a0 /* CU static resume. */
120
121 #define RU_NOP 0x0000
122 #define RX_START 0x0001
123 #define RX_RESUME 0x0002
124 #define RU_ABORT 0x0004
125 #define RX_ADDR_LOAD 0x0006
126 #define RX_RESUMENR 0x0007
127 #define INT_MASK 0x0100
128 #define DRVR_INT 0x0200 /* Driver generated interrupt. */
129
130 typedef struct {
131 const char *name;
132 const char *desc;
133 uint16_t device_id;
134 uint8_t revision;
135 uint16_t subsystem_vendor_id;
136 uint16_t subsystem_id;
137
138 uint32_t device;
139 uint8_t stats_size;
140 bool has_extended_tcb_support;
141 bool power_management;
142 } E100PCIDeviceInfo;
143
144 /* Offsets to the various registers.
145 All accesses need not be longword aligned. */
146 typedef enum {
147 SCBStatus = 0, /* Status Word. */
148 SCBAck = 1,
149 SCBCmd = 2, /* Rx/Command Unit command and status. */
150 SCBIntmask = 3,
151 SCBPointer = 4, /* General purpose pointer. */
152 SCBPort = 8, /* Misc. commands and operands. */
153 SCBflash = 12, /* Flash memory control. */
154 SCBeeprom = 14, /* EEPROM control. */
155 SCBCtrlMDI = 16, /* MDI interface control. */
156 SCBEarlyRx = 20, /* Early receive byte count. */
157 SCBFlow = 24, /* Flow Control. */
158 SCBpmdr = 27, /* Power Management Driver. */
159 SCBgctrl = 28, /* General Control. */
160 SCBgstat = 29, /* General Status. */
161 } E100RegisterOffset;
162
163 /* A speedo3 transmit buffer descriptor with two buffers... */
164 typedef struct {
165 uint16_t status;
166 uint16_t command;
167 uint32_t link; /* void * */
168 uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */
169 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
170 uint8_t tx_threshold; /* transmit threshold */
171 uint8_t tbd_count; /* TBD number */
172 #if 0
173 /* This constitutes two "TBD" entries: hdr and data */
174 uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
175 int32_t tx_buf_size0; /* Length of Tx hdr. */
176 uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
177 int32_t tx_buf_size1; /* Length of Tx data. */
178 #endif
179 } eepro100_tx_t;
180
181 /* Receive frame descriptor. */
182 typedef struct {
183 int16_t status;
184 uint16_t command;
185 uint32_t link; /* struct RxFD * */
186 uint32_t rx_buf_addr; /* void * */
187 uint16_t count;
188 uint16_t size;
189 /* Ethernet frame data follows. */
190 } eepro100_rx_t;
191
192 typedef enum {
193 COMMAND_EL = BIT(15),
194 COMMAND_S = BIT(14),
195 COMMAND_I = BIT(13),
196 COMMAND_NC = BIT(4),
197 COMMAND_SF = BIT(3),
198 COMMAND_CMD = BITS(2, 0),
199 } scb_command_bit;
200
201 typedef enum {
202 STATUS_C = BIT(15),
203 STATUS_OK = BIT(13),
204 } scb_status_bit;
205
206 typedef struct {
207 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
208 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
209 tx_multiple_collisions, tx_total_collisions;
210 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
211 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
212 rx_short_frame_errors;
213 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
214 uint16_t xmt_tco_frames, rcv_tco_frames;
215 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
216 uint32_t reserved[4];
217 } eepro100_stats_t;
218
219 typedef enum {
220 cu_idle = 0,
221 cu_suspended = 1,
222 cu_active = 2,
223 cu_lpq_active = 2,
224 cu_hqp_active = 3
225 } cu_state_t;
226
227 typedef enum {
228 ru_idle = 0,
229 ru_suspended = 1,
230 ru_no_resources = 2,
231 ru_ready = 4
232 } ru_state_t;
233
234 typedef struct {
235 PCIDevice dev;
236 /* Hash register (multicast mask array, multiple individual addresses). */
237 uint8_t mult[8];
238 MemoryRegion mmio_bar;
239 MemoryRegion io_bar;
240 MemoryRegion flash_bar;
241 NICState *nic;
242 NICConf conf;
243 uint8_t scb_stat; /* SCB stat/ack byte */
244 uint8_t int_stat; /* PCI interrupt status */
245 /* region must not be saved by nic_save. */
246 uint16_t mdimem[32];
247 eeprom_t *eeprom;
248 uint32_t device; /* device variant */
249 /* (cu_base + cu_offset) address the next command block in the command block list. */
250 uint32_t cu_base; /* CU base address */
251 uint32_t cu_offset; /* CU address offset */
252 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
253 uint32_t ru_base; /* RU base address */
254 uint32_t ru_offset; /* RU address offset */
255 uint32_t statsaddr; /* pointer to eepro100_stats_t */
256
257 /* Temporary status information (no need to save these values),
258 * used while processing CU commands. */
259 eepro100_tx_t tx; /* transmit buffer descriptor */
260 uint32_t cb_address; /* = cu_base + cu_offset */
261
262 /* Statistical counters. Also used for wake-up packet (i82559). */
263 eepro100_stats_t statistics;
264
265 /* Data in mem is always in the byte order of the controller (le).
266 * It must be dword aligned to allow direct access to 32 bit values. */
267 uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8)));
268
269 /* Configuration bytes. */
270 uint8_t configuration[22];
271
272 /* vmstate for each particular nic */
273 VMStateDescription *vmstate;
274
275 /* Quasi static device properties (no need to save them). */
276 uint16_t stats_size;
277 bool has_extended_tcb_support;
278 } EEPRO100State;
279
280 /* Word indices in EEPROM. */
281 typedef enum {
282 EEPROM_CNFG_MDIX = 0x03,
283 EEPROM_ID = 0x05,
284 EEPROM_PHY_ID = 0x06,
285 EEPROM_VENDOR_ID = 0x0c,
286 EEPROM_CONFIG_ASF = 0x0d,
287 EEPROM_DEVICE_ID = 0x23,
288 EEPROM_SMBUS_ADDR = 0x90,
289 } EEPROMOffset;
290
291 /* Bit values for EEPROM ID word. */
292 typedef enum {
293 EEPROM_ID_MDM = BIT(0), /* Modem */
294 EEPROM_ID_STB = BIT(1), /* Standby Enable */
295 EEPROM_ID_WMR = BIT(2), /* ??? */
296 EEPROM_ID_WOL = BIT(5), /* Wake on LAN */
297 EEPROM_ID_DPD = BIT(6), /* Deep Power Down */
298 EEPROM_ID_ALT = BIT(7), /* */
299 /* BITS(10, 8) device revision */
300 EEPROM_ID_BD = BIT(11), /* boot disable */
301 EEPROM_ID_ID = BIT(13), /* id bit */
302 /* BITS(15, 14) signature */
303 EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */
304 } eeprom_id_bit;
305
306 /* Default values for MDI (PHY) registers */
307 static const uint16_t eepro100_mdi_default[] = {
308 /* MDI Registers 0 - 6, 7 */
309 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
310 /* MDI Registers 8 - 15 */
311 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
312 /* MDI Registers 16 - 31 */
313 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
314 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
315 };
316
317 /* Readonly mask for MDI (PHY) registers */
318 static const uint16_t eepro100_mdi_mask[] = {
319 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
320 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
321 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
322 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
323 };
324
325 #define POLYNOMIAL 0x04c11db6
326
327 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s);
328
329 /* From FreeBSD (locally modified). */
330 static unsigned e100_compute_mcast_idx(const uint8_t *ep)
331 {
332 uint32_t crc;
333 int carry, i, j;
334 uint8_t b;
335
336 crc = 0xffffffff;
337 for (i = 0; i < 6; i++) {
338 b = *ep++;
339 for (j = 0; j < 8; j++) {
340 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
341 crc <<= 1;
342 b >>= 1;
343 if (carry) {
344 crc = ((crc ^ POLYNOMIAL) | carry);
345 }
346 }
347 }
348 return (crc & BITS(7, 2)) >> 2;
349 }
350
351 /* Read a 16 bit control/status (CSR) register. */
352 static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr)
353 {
354 assert(!((uintptr_t)&s->mem[addr] & 1));
355 return le16_to_cpup((uint16_t *)&s->mem[addr]);
356 }
357
358 /* Read a 32 bit control/status (CSR) register. */
359 static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr)
360 {
361 assert(!((uintptr_t)&s->mem[addr] & 3));
362 return le32_to_cpup((uint32_t *)&s->mem[addr]);
363 }
364
365 /* Write a 16 bit control/status (CSR) register. */
366 static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr,
367 uint16_t val)
368 {
369 assert(!((uintptr_t)&s->mem[addr] & 1));
370 cpu_to_le16w((uint16_t *)&s->mem[addr], val);
371 }
372
373 /* Read a 32 bit control/status (CSR) register. */
374 static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr,
375 uint32_t val)
376 {
377 assert(!((uintptr_t)&s->mem[addr] & 3));
378 cpu_to_le32w((uint32_t *)&s->mem[addr], val);
379 }
380
381 #if defined(DEBUG_EEPRO100)
382 static const char *nic_dump(const uint8_t * buf, unsigned size)
383 {
384 static char dump[3 * 16 + 1];
385 char *p = &dump[0];
386 if (size > 16) {
387 size = 16;
388 }
389 while (size-- > 0) {
390 p += sprintf(p, " %02x", *buf++);
391 }
392 return dump;
393 }
394 #endif /* DEBUG_EEPRO100 */
395
396 enum scb_stat_ack {
397 stat_ack_not_ours = 0x00,
398 stat_ack_sw_gen = 0x04,
399 stat_ack_rnr = 0x10,
400 stat_ack_cu_idle = 0x20,
401 stat_ack_frame_rx = 0x40,
402 stat_ack_cu_cmd_done = 0x80,
403 stat_ack_not_present = 0xFF,
404 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
405 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
406 };
407
408 static void disable_interrupt(EEPRO100State * s)
409 {
410 if (s->int_stat) {
411 TRACE(INT, logout("interrupt disabled\n"));
412 qemu_irq_lower(s->dev.irq[0]);
413 s->int_stat = 0;
414 }
415 }
416
417 static void enable_interrupt(EEPRO100State * s)
418 {
419 if (!s->int_stat) {
420 TRACE(INT, logout("interrupt enabled\n"));
421 qemu_irq_raise(s->dev.irq[0]);
422 s->int_stat = 1;
423 }
424 }
425
426 static void eepro100_acknowledge(EEPRO100State * s)
427 {
428 s->scb_stat &= ~s->mem[SCBAck];
429 s->mem[SCBAck] = s->scb_stat;
430 if (s->scb_stat == 0) {
431 disable_interrupt(s);
432 }
433 }
434
435 static void eepro100_interrupt(EEPRO100State * s, uint8_t status)
436 {
437 uint8_t mask = ~s->mem[SCBIntmask];
438 s->mem[SCBAck] |= status;
439 status = s->scb_stat = s->mem[SCBAck];
440 status &= (mask | 0x0f);
441 #if 0
442 status &= (~s->mem[SCBIntmask] | 0x0xf);
443 #endif
444 if (status && (mask & 0x01)) {
445 /* SCB mask and SCB Bit M do not disable interrupt. */
446 enable_interrupt(s);
447 } else if (s->int_stat) {
448 disable_interrupt(s);
449 }
450 }
451
452 static void eepro100_cx_interrupt(EEPRO100State * s)
453 {
454 /* CU completed action command. */
455 /* Transmit not ok (82557 only, not in emulation). */
456 eepro100_interrupt(s, 0x80);
457 }
458
459 static void eepro100_cna_interrupt(EEPRO100State * s)
460 {
461 /* CU left the active state. */
462 eepro100_interrupt(s, 0x20);
463 }
464
465 static void eepro100_fr_interrupt(EEPRO100State * s)
466 {
467 /* RU received a complete frame. */
468 eepro100_interrupt(s, 0x40);
469 }
470
471 static void eepro100_rnr_interrupt(EEPRO100State * s)
472 {
473 /* RU is not ready. */
474 eepro100_interrupt(s, 0x10);
475 }
476
477 static void eepro100_mdi_interrupt(EEPRO100State * s)
478 {
479 /* MDI completed read or write cycle. */
480 eepro100_interrupt(s, 0x08);
481 }
482
483 static void eepro100_swi_interrupt(EEPRO100State * s)
484 {
485 /* Software has requested an interrupt. */
486 eepro100_interrupt(s, 0x04);
487 }
488
489 #if 0
490 static void eepro100_fcp_interrupt(EEPRO100State * s)
491 {
492 /* Flow control pause interrupt (82558 and later). */
493 eepro100_interrupt(s, 0x01);
494 }
495 #endif
496
497 static void e100_pci_reset(EEPRO100State * s)
498 {
499 E100PCIDeviceInfo *info = eepro100_get_class(s);
500 uint32_t device = s->device;
501 uint8_t *pci_conf = s->dev.config;
502
503 TRACE(OTHER, logout("%p\n", s));
504
505 /* PCI Status */
506 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
507 PCI_STATUS_FAST_BACK);
508 /* PCI Latency Timer */
509 pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */
510 /* Capability Pointer is set by PCI framework. */
511 /* Interrupt Line */
512 /* Interrupt Pin */
513 pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */
514 /* Minimum Grant */
515 pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08);
516 /* Maximum Latency */
517 pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18);
518
519 s->stats_size = info->stats_size;
520 s->has_extended_tcb_support = info->has_extended_tcb_support;
521
522 switch (device) {
523 case i82550:
524 case i82551:
525 case i82557A:
526 case i82557B:
527 case i82557C:
528 case i82558A:
529 case i82558B:
530 case i82559A:
531 case i82559B:
532 case i82559ER:
533 case i82562:
534 case i82801:
535 case i82559C:
536 break;
537 default:
538 logout("Device %X is undefined!\n", device);
539 }
540
541 /* Standard TxCB. */
542 s->configuration[6] |= BIT(4);
543
544 /* Standard statistical counters. */
545 s->configuration[6] |= BIT(5);
546
547 if (s->stats_size == 80) {
548 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */
549 if (s->configuration[6] & BIT(2)) {
550 /* TCO statistical counters. */
551 assert(s->configuration[6] & BIT(5));
552 } else {
553 if (s->configuration[6] & BIT(5)) {
554 /* No extended statistical counters, i82557 compatible. */
555 s->stats_size = 64;
556 } else {
557 /* i82558 compatible. */
558 s->stats_size = 76;
559 }
560 }
561 } else {
562 if (s->configuration[6] & BIT(5)) {
563 /* No extended statistical counters. */
564 s->stats_size = 64;
565 }
566 }
567 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
568
569 if (info->power_management) {
570 /* Power Management Capabilities */
571 int cfg_offset = 0xdc;
572 int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM,
573 cfg_offset, PCI_PM_SIZEOF);
574 assert(r >= 0);
575 pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21);
576 #if 0 /* TODO: replace dummy code for power management emulation. */
577 /* TODO: Power Management Control / Status. */
578 pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000);
579 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */
580 pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000);
581 #endif
582 }
583
584 #if EEPROM_SIZE > 0
585 if (device == i82557C || device == i82558B || device == i82559C) {
586 /*
587 TODO: get vendor id from EEPROM for i82557C or later.
588 TODO: get device id from EEPROM for i82557C or later.
589 TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
590 TODO: header type is determined by EEPROM for i82559.
591 TODO: get subsystem id from EEPROM for i82557C or later.
592 TODO: get subsystem vendor id from EEPROM for i82557C or later.
593 TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
594 TODO: capability pointer depends on EEPROM for i82558.
595 */
596 logout("Get device id and revision from EEPROM!!!\n");
597 }
598 #endif /* EEPROM_SIZE > 0 */
599 }
600
601 static void nic_selective_reset(EEPRO100State * s)
602 {
603 size_t i;
604 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
605 #if 0
606 eeprom93xx_reset(s->eeprom);
607 #endif
608 memcpy(eeprom_contents, s->conf.macaddr.a, 6);
609 eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID;
610 if (s->device == i82557B || s->device == i82557C)
611 eeprom_contents[5] = 0x0100;
612 eeprom_contents[EEPROM_PHY_ID] = 1;
613 uint16_t sum = 0;
614 for (i = 0; i < EEPROM_SIZE - 1; i++) {
615 sum += eeprom_contents[i];
616 }
617 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
618 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
619
620 memset(s->mem, 0, sizeof(s->mem));
621 e100_write_reg4(s, SCBCtrlMDI, BIT(21));
622
623 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
624 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
625 }
626
627 static void nic_reset(void *opaque)
628 {
629 EEPRO100State *s = opaque;
630 TRACE(OTHER, logout("%p\n", s));
631 /* TODO: Clearing of hash register for selective reset, too? */
632 memset(&s->mult[0], 0, sizeof(s->mult));
633 nic_selective_reset(s);
634 }
635
636 #if defined(DEBUG_EEPRO100)
637 static const char * const e100_reg[PCI_IO_SIZE / 4] = {
638 "Command/Status",
639 "General Pointer",
640 "Port",
641 "EEPROM/Flash Control",
642 "MDI Control",
643 "Receive DMA Byte Count",
644 "Flow Control",
645 "General Status/Control"
646 };
647
648 static char *regname(uint32_t addr)
649 {
650 static char buf[32];
651 if (addr < PCI_IO_SIZE) {
652 const char *r = e100_reg[addr / 4];
653 if (r != 0) {
654 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
655 } else {
656 snprintf(buf, sizeof(buf), "0x%02x", addr);
657 }
658 } else {
659 snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
660 }
661 return buf;
662 }
663 #endif /* DEBUG_EEPRO100 */
664
665 /*****************************************************************************
666 *
667 * Command emulation.
668 *
669 ****************************************************************************/
670
671 #if 0
672 static uint16_t eepro100_read_command(EEPRO100State * s)
673 {
674 uint16_t val = 0xffff;
675 TRACE(OTHER, logout("val=0x%04x\n", val));
676 return val;
677 }
678 #endif
679
680 /* Commands that can be put in a command list entry. */
681 enum commands {
682 CmdNOp = 0,
683 CmdIASetup = 1,
684 CmdConfigure = 2,
685 CmdMulticastList = 3,
686 CmdTx = 4,
687 CmdTDR = 5, /* load microcode */
688 CmdDump = 6,
689 CmdDiagnose = 7,
690
691 /* And some extra flags: */
692 CmdSuspend = 0x4000, /* Suspend after completion. */
693 CmdIntr = 0x2000, /* Interrupt after completion. */
694 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
695 };
696
697 static cu_state_t get_cu_state(EEPRO100State * s)
698 {
699 return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6);
700 }
701
702 static void set_cu_state(EEPRO100State * s, cu_state_t state)
703 {
704 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6);
705 }
706
707 static ru_state_t get_ru_state(EEPRO100State * s)
708 {
709 return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2);
710 }
711
712 static void set_ru_state(EEPRO100State * s, ru_state_t state)
713 {
714 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2);
715 }
716
717 static void dump_statistics(EEPRO100State * s)
718 {
719 /* Dump statistical data. Most data is never changed by the emulation
720 * and always 0, so we first just copy the whole block and then those
721 * values which really matter.
722 * Number of data should check configuration!!!
723 */
724 pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size);
725 stl_le_pci_dma(&s->dev, s->statsaddr + 0,
726 s->statistics.tx_good_frames);
727 stl_le_pci_dma(&s->dev, s->statsaddr + 36,
728 s->statistics.rx_good_frames);
729 stl_le_pci_dma(&s->dev, s->statsaddr + 48,
730 s->statistics.rx_resource_errors);
731 stl_le_pci_dma(&s->dev, s->statsaddr + 60,
732 s->statistics.rx_short_frame_errors);
733 #if 0
734 stw_le_pci_dma(&s->dev, s->statsaddr + 76, s->statistics.xmt_tco_frames);
735 stw_le_pci_dma(&s->dev, s->statsaddr + 78, s->statistics.rcv_tco_frames);
736 missing("CU dump statistical counters");
737 #endif
738 }
739
740 static void read_cb(EEPRO100State *s)
741 {
742 pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx));
743 s->tx.status = le16_to_cpu(s->tx.status);
744 s->tx.command = le16_to_cpu(s->tx.command);
745 s->tx.link = le32_to_cpu(s->tx.link);
746 s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr);
747 s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes);
748 }
749
750 static void tx_command(EEPRO100State *s)
751 {
752 uint32_t tbd_array = le32_to_cpu(s->tx.tbd_array_addr);
753 uint16_t tcb_bytes = (le16_to_cpu(s->tx.tcb_bytes) & 0x3fff);
754 /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */
755 uint8_t buf[2600];
756 uint16_t size = 0;
757 uint32_t tbd_address = s->cb_address + 0x10;
758 TRACE(RXTX, logout
759 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
760 tbd_array, tcb_bytes, s->tx.tbd_count));
761
762 if (tcb_bytes > 2600) {
763 logout("TCB byte count too large, using 2600\n");
764 tcb_bytes = 2600;
765 }
766 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
767 logout
768 ("illegal values of TBD array address and TCB byte count!\n");
769 }
770 assert(tcb_bytes <= sizeof(buf));
771 while (size < tcb_bytes) {
772 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address);
773 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4);
774 #if 0
775 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6);
776 #endif
777 tbd_address += 8;
778 TRACE(RXTX, logout
779 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
780 tx_buffer_address, tx_buffer_size));
781 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
782 pci_dma_read(&s->dev, tx_buffer_address, &buf[size], tx_buffer_size);
783 size += tx_buffer_size;
784 }
785 if (tbd_array == 0xffffffff) {
786 /* Simplified mode. Was already handled by code above. */
787 } else {
788 /* Flexible mode. */
789 uint8_t tbd_count = 0;
790 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
791 /* Extended Flexible TCB. */
792 for (; tbd_count < 2; tbd_count++) {
793 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev,
794 tbd_address);
795 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev,
796 tbd_address + 4);
797 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev,
798 tbd_address + 6);
799 tbd_address += 8;
800 TRACE(RXTX, logout
801 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
802 tx_buffer_address, tx_buffer_size));
803 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
804 pci_dma_read(&s->dev, tx_buffer_address,
805 &buf[size], tx_buffer_size);
806 size += tx_buffer_size;
807 if (tx_buffer_el & 1) {
808 break;
809 }
810 }
811 }
812 tbd_address = tbd_array;
813 for (; tbd_count < s->tx.tbd_count; tbd_count++) {
814 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address);
815 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4);
816 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6);
817 tbd_address += 8;
818 TRACE(RXTX, logout
819 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
820 tx_buffer_address, tx_buffer_size));
821 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
822 pci_dma_read(&s->dev, tx_buffer_address,
823 &buf[size], tx_buffer_size);
824 size += tx_buffer_size;
825 if (tx_buffer_el & 1) {
826 break;
827 }
828 }
829 }
830 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
831 qemu_send_packet(&s->nic->nc, buf, size);
832 s->statistics.tx_good_frames++;
833 /* Transmit with bad status would raise an CX/TNO interrupt.
834 * (82557 only). Emulation never has bad status. */
835 #if 0
836 eepro100_cx_interrupt(s);
837 #endif
838 }
839
840 static void set_multicast_list(EEPRO100State *s)
841 {
842 uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0);
843 uint16_t i;
844 memset(&s->mult[0], 0, sizeof(s->mult));
845 TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count));
846 for (i = 0; i < multicast_count; i += 6) {
847 uint8_t multicast_addr[6];
848 pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6);
849 TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6)));
850 unsigned mcast_idx = e100_compute_mcast_idx(multicast_addr);
851 assert(mcast_idx < 64);
852 s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7));
853 }
854 }
855
856 static void action_command(EEPRO100State *s)
857 {
858 for (;;) {
859 bool bit_el;
860 bool bit_s;
861 bool bit_i;
862 bool bit_nc;
863 uint16_t ok_status = STATUS_OK;
864 s->cb_address = s->cu_base + s->cu_offset;
865 read_cb(s);
866 bit_el = ((s->tx.command & COMMAND_EL) != 0);
867 bit_s = ((s->tx.command & COMMAND_S) != 0);
868 bit_i = ((s->tx.command & COMMAND_I) != 0);
869 bit_nc = ((s->tx.command & COMMAND_NC) != 0);
870 #if 0
871 bool bit_sf = ((s->tx.command & COMMAND_SF) != 0);
872 #endif
873 s->cu_offset = s->tx.link;
874 TRACE(OTHER,
875 logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
876 s->tx.status, s->tx.command, s->tx.link));
877 switch (s->tx.command & COMMAND_CMD) {
878 case CmdNOp:
879 /* Do nothing. */
880 break;
881 case CmdIASetup:
882 pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6);
883 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)));
884 break;
885 case CmdConfigure:
886 pci_dma_read(&s->dev, s->cb_address + 8,
887 &s->configuration[0], sizeof(s->configuration));
888 TRACE(OTHER, logout("configuration: %s\n",
889 nic_dump(&s->configuration[0], 16)));
890 TRACE(OTHER, logout("configuration: %s\n",
891 nic_dump(&s->configuration[16],
892 ARRAY_SIZE(s->configuration) - 16)));
893 if (s->configuration[20] & BIT(6)) {
894 TRACE(OTHER, logout("Multiple IA bit\n"));
895 }
896 break;
897 case CmdMulticastList:
898 set_multicast_list(s);
899 break;
900 case CmdTx:
901 if (bit_nc) {
902 missing("CmdTx: NC = 0");
903 ok_status = 0;
904 break;
905 }
906 tx_command(s);
907 break;
908 case CmdTDR:
909 TRACE(OTHER, logout("load microcode\n"));
910 /* Starting with offset 8, the command contains
911 * 64 dwords microcode which we just ignore here. */
912 break;
913 case CmdDiagnose:
914 TRACE(OTHER, logout("diagnose\n"));
915 /* Make sure error flag is not set. */
916 s->tx.status = 0;
917 break;
918 default:
919 missing("undefined command");
920 ok_status = 0;
921 break;
922 }
923 /* Write new status. */
924 stw_le_pci_dma(&s->dev, s->cb_address,
925 s->tx.status | ok_status | STATUS_C);
926 if (bit_i) {
927 /* CU completed action. */
928 eepro100_cx_interrupt(s);
929 }
930 if (bit_el) {
931 /* CU becomes idle. Terminate command loop. */
932 set_cu_state(s, cu_idle);
933 eepro100_cna_interrupt(s);
934 break;
935 } else if (bit_s) {
936 /* CU becomes suspended. Terminate command loop. */
937 set_cu_state(s, cu_suspended);
938 eepro100_cna_interrupt(s);
939 break;
940 } else {
941 /* More entries in list. */
942 TRACE(OTHER, logout("CU list with at least one more entry\n"));
943 }
944 }
945 TRACE(OTHER, logout("CU list empty\n"));
946 /* List is empty. Now CU is idle or suspended. */
947 }
948
949 static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
950 {
951 cu_state_t cu_state;
952 switch (val) {
953 case CU_NOP:
954 /* No operation. */
955 break;
956 case CU_START:
957 cu_state = get_cu_state(s);
958 if (cu_state != cu_idle && cu_state != cu_suspended) {
959 /* Intel documentation says that CU must be idle or suspended
960 * for the CU start command. */
961 logout("unexpected CU state is %u\n", cu_state);
962 }
963 set_cu_state(s, cu_active);
964 s->cu_offset = e100_read_reg4(s, SCBPointer);
965 action_command(s);
966 break;
967 case CU_RESUME:
968 if (get_cu_state(s) != cu_suspended) {
969 logout("bad CU resume from CU state %u\n", get_cu_state(s));
970 /* Workaround for bad Linux eepro100 driver which resumes
971 * from idle state. */
972 #if 0
973 missing("cu resume");
974 #endif
975 set_cu_state(s, cu_suspended);
976 }
977 if (get_cu_state(s) == cu_suspended) {
978 TRACE(OTHER, logout("CU resuming\n"));
979 set_cu_state(s, cu_active);
980 action_command(s);
981 }
982 break;
983 case CU_STATSADDR:
984 /* Load dump counters address. */
985 s->statsaddr = e100_read_reg4(s, SCBPointer);
986 TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val));
987 if (s->statsaddr & 3) {
988 /* Memory must be Dword aligned. */
989 logout("unaligned dump counters address\n");
990 /* Handling of misaligned addresses is undefined.
991 * Here we align the address by ignoring the lower bits. */
992 /* TODO: Test unaligned dump counter address on real hardware. */
993 s->statsaddr &= ~3;
994 }
995 break;
996 case CU_SHOWSTATS:
997 /* Dump statistical counters. */
998 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
999 dump_statistics(s);
1000 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005);
1001 break;
1002 case CU_CMD_BASE:
1003 /* Load CU base. */
1004 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
1005 s->cu_base = e100_read_reg4(s, SCBPointer);
1006 break;
1007 case CU_DUMPSTATS:
1008 /* Dump and reset statistical counters. */
1009 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
1010 dump_statistics(s);
1011 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007);
1012 memset(&s->statistics, 0, sizeof(s->statistics));
1013 break;
1014 case CU_SRESUME:
1015 /* CU static resume. */
1016 missing("CU static resume");
1017 break;
1018 default:
1019 missing("Undefined CU command");
1020 }
1021 }
1022
1023 static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
1024 {
1025 switch (val) {
1026 case RU_NOP:
1027 /* No operation. */
1028 break;
1029 case RX_START:
1030 /* RU start. */
1031 if (get_ru_state(s) != ru_idle) {
1032 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
1033 #if 0
1034 assert(!"wrong RU state");
1035 #endif
1036 }
1037 set_ru_state(s, ru_ready);
1038 s->ru_offset = e100_read_reg4(s, SCBPointer);
1039 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
1040 break;
1041 case RX_RESUME:
1042 /* Restart RU. */
1043 if (get_ru_state(s) != ru_suspended) {
1044 logout("RU state is %u, should be %u\n", get_ru_state(s),
1045 ru_suspended);
1046 #if 0
1047 assert(!"wrong RU state");
1048 #endif
1049 }
1050 set_ru_state(s, ru_ready);
1051 break;
1052 case RU_ABORT:
1053 /* RU abort. */
1054 if (get_ru_state(s) == ru_ready) {
1055 eepro100_rnr_interrupt(s);
1056 }
1057 set_ru_state(s, ru_idle);
1058 break;
1059 case RX_ADDR_LOAD:
1060 /* Load RU base. */
1061 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
1062 s->ru_base = e100_read_reg4(s, SCBPointer);
1063 break;
1064 default:
1065 logout("val=0x%02x (undefined RU command)\n", val);
1066 missing("Undefined SU command");
1067 }
1068 }
1069
1070 static void eepro100_write_command(EEPRO100State * s, uint8_t val)
1071 {
1072 eepro100_ru_command(s, val & 0x0f);
1073 eepro100_cu_command(s, val & 0xf0);
1074 if ((val) == 0) {
1075 TRACE(OTHER, logout("val=0x%02x\n", val));
1076 }
1077 /* Clear command byte after command was accepted. */
1078 s->mem[SCBCmd] = 0;
1079 }
1080
1081 /*****************************************************************************
1082 *
1083 * EEPROM emulation.
1084 *
1085 ****************************************************************************/
1086
1087 #define EEPROM_CS 0x02
1088 #define EEPROM_SK 0x01
1089 #define EEPROM_DI 0x04
1090 #define EEPROM_DO 0x08
1091
1092 static uint16_t eepro100_read_eeprom(EEPRO100State * s)
1093 {
1094 uint16_t val = e100_read_reg2(s, SCBeeprom);
1095 if (eeprom93xx_read(s->eeprom)) {
1096 val |= EEPROM_DO;
1097 } else {
1098 val &= ~EEPROM_DO;
1099 }
1100 TRACE(EEPROM, logout("val=0x%04x\n", val));
1101 return val;
1102 }
1103
1104 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
1105 {
1106 TRACE(EEPROM, logout("val=0x%02x\n", val));
1107
1108 /* mask unwritable bits */
1109 #if 0
1110 val = SET_MASKED(val, 0x31, eeprom->value);
1111 #endif
1112
1113 int eecs = ((val & EEPROM_CS) != 0);
1114 int eesk = ((val & EEPROM_SK) != 0);
1115 int eedi = ((val & EEPROM_DI) != 0);
1116 eeprom93xx_write(eeprom, eecs, eesk, eedi);
1117 }
1118
1119 /*****************************************************************************
1120 *
1121 * MDI emulation.
1122 *
1123 ****************************************************************************/
1124
1125 #if defined(DEBUG_EEPRO100)
1126 static const char * const mdi_op_name[] = {
1127 "opcode 0",
1128 "write",
1129 "read",
1130 "opcode 3"
1131 };
1132
1133 static const char * const mdi_reg_name[] = {
1134 "Control",
1135 "Status",
1136 "PHY Identification (Word 1)",
1137 "PHY Identification (Word 2)",
1138 "Auto-Negotiation Advertisement",
1139 "Auto-Negotiation Link Partner Ability",
1140 "Auto-Negotiation Expansion"
1141 };
1142
1143 static const char *reg2name(uint8_t reg)
1144 {
1145 static char buffer[10];
1146 const char *p = buffer;
1147 if (reg < ARRAY_SIZE(mdi_reg_name)) {
1148 p = mdi_reg_name[reg];
1149 } else {
1150 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
1151 }
1152 return p;
1153 }
1154 #endif /* DEBUG_EEPRO100 */
1155
1156 static uint32_t eepro100_read_mdi(EEPRO100State * s)
1157 {
1158 uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
1159
1160 #ifdef DEBUG_EEPRO100
1161 uint8_t raiseint = (val & BIT(29)) >> 29;
1162 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1163 uint8_t phy = (val & BITS(25, 21)) >> 21;
1164 uint8_t reg = (val & BITS(20, 16)) >> 16;
1165 uint16_t data = (val & BITS(15, 0));
1166 #endif
1167 /* Emulation takes no time to finish MDI transaction. */
1168 val |= BIT(28);
1169 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1170 val, raiseint, mdi_op_name[opcode], phy,
1171 reg2name(reg), data));
1172 return val;
1173 }
1174
1175 static void eepro100_write_mdi(EEPRO100State *s)
1176 {
1177 uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
1178 uint8_t raiseint = (val & BIT(29)) >> 29;
1179 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1180 uint8_t phy = (val & BITS(25, 21)) >> 21;
1181 uint8_t reg = (val & BITS(20, 16)) >> 16;
1182 uint16_t data = (val & BITS(15, 0));
1183 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1184 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
1185 if (phy != 1) {
1186 /* Unsupported PHY address. */
1187 #if 0
1188 logout("phy must be 1 but is %u\n", phy);
1189 #endif
1190 data = 0;
1191 } else if (opcode != 1 && opcode != 2) {
1192 /* Unsupported opcode. */
1193 logout("opcode must be 1 or 2 but is %u\n", opcode);
1194 data = 0;
1195 } else if (reg > 6) {
1196 /* Unsupported register. */
1197 logout("register must be 0...6 but is %u\n", reg);
1198 data = 0;
1199 } else {
1200 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1201 val, raiseint, mdi_op_name[opcode], phy,
1202 reg2name(reg), data));
1203 if (opcode == 1) {
1204 /* MDI write */
1205 switch (reg) {
1206 case 0: /* Control Register */
1207 if (data & 0x8000) {
1208 /* Reset status and control registers to default. */
1209 s->mdimem[0] = eepro100_mdi_default[0];
1210 s->mdimem[1] = eepro100_mdi_default[1];
1211 data = s->mdimem[reg];
1212 } else {
1213 /* Restart Auto Configuration = Normal Operation */
1214 data &= ~0x0200;
1215 }
1216 break;
1217 case 1: /* Status Register */
1218 missing("not writable");
1219 data = s->mdimem[reg];
1220 break;
1221 case 2: /* PHY Identification Register (Word 1) */
1222 case 3: /* PHY Identification Register (Word 2) */
1223 missing("not implemented");
1224 break;
1225 case 4: /* Auto-Negotiation Advertisement Register */
1226 case 5: /* Auto-Negotiation Link Partner Ability Register */
1227 break;
1228 case 6: /* Auto-Negotiation Expansion Register */
1229 default:
1230 missing("not implemented");
1231 }
1232 s->mdimem[reg] = data;
1233 } else if (opcode == 2) {
1234 /* MDI read */
1235 switch (reg) {
1236 case 0: /* Control Register */
1237 if (data & 0x8000) {
1238 /* Reset status and control registers to default. */
1239 s->mdimem[0] = eepro100_mdi_default[0];
1240 s->mdimem[1] = eepro100_mdi_default[1];
1241 }
1242 break;
1243 case 1: /* Status Register */
1244 s->mdimem[reg] |= 0x0020;
1245 break;
1246 case 2: /* PHY Identification Register (Word 1) */
1247 case 3: /* PHY Identification Register (Word 2) */
1248 case 4: /* Auto-Negotiation Advertisement Register */
1249 break;
1250 case 5: /* Auto-Negotiation Link Partner Ability Register */
1251 s->mdimem[reg] = 0x41fe;
1252 break;
1253 case 6: /* Auto-Negotiation Expansion Register */
1254 s->mdimem[reg] = 0x0001;
1255 break;
1256 }
1257 data = s->mdimem[reg];
1258 }
1259 /* Emulation takes no time to finish MDI transaction.
1260 * Set MDI bit in SCB status register. */
1261 s->mem[SCBAck] |= 0x08;
1262 val |= BIT(28);
1263 if (raiseint) {
1264 eepro100_mdi_interrupt(s);
1265 }
1266 }
1267 val = (val & 0xffff0000) + data;
1268 e100_write_reg4(s, SCBCtrlMDI, val);
1269 }
1270
1271 /*****************************************************************************
1272 *
1273 * Port emulation.
1274 *
1275 ****************************************************************************/
1276
1277 #define PORT_SOFTWARE_RESET 0
1278 #define PORT_SELFTEST 1
1279 #define PORT_SELECTIVE_RESET 2
1280 #define PORT_DUMP 3
1281 #define PORT_SELECTION_MASK 3
1282
1283 typedef struct {
1284 uint32_t st_sign; /* Self Test Signature */
1285 uint32_t st_result; /* Self Test Results */
1286 } eepro100_selftest_t;
1287
1288 static uint32_t eepro100_read_port(EEPRO100State * s)
1289 {
1290 return 0;
1291 }
1292
1293 static void eepro100_write_port(EEPRO100State *s)
1294 {
1295 uint32_t val = e100_read_reg4(s, SCBPort);
1296 uint32_t address = (val & ~PORT_SELECTION_MASK);
1297 uint8_t selection = (val & PORT_SELECTION_MASK);
1298 switch (selection) {
1299 case PORT_SOFTWARE_RESET:
1300 nic_reset(s);
1301 break;
1302 case PORT_SELFTEST:
1303 TRACE(OTHER, logout("selftest address=0x%08x\n", address));
1304 eepro100_selftest_t data;
1305 pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data));
1306 data.st_sign = 0xffffffff;
1307 data.st_result = 0;
1308 pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data));
1309 break;
1310 case PORT_SELECTIVE_RESET:
1311 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
1312 nic_selective_reset(s);
1313 break;
1314 default:
1315 logout("val=0x%08x\n", val);
1316 missing("unknown port selection");
1317 }
1318 }
1319
1320 /*****************************************************************************
1321 *
1322 * General hardware emulation.
1323 *
1324 ****************************************************************************/
1325
1326 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1327 {
1328 uint8_t val = 0;
1329 if (addr <= sizeof(s->mem) - sizeof(val)) {
1330 val = s->mem[addr];
1331 }
1332
1333 switch (addr) {
1334 case SCBStatus:
1335 case SCBAck:
1336 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1337 break;
1338 case SCBCmd:
1339 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1340 #if 0
1341 val = eepro100_read_command(s);
1342 #endif
1343 break;
1344 case SCBIntmask:
1345 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1346 break;
1347 case SCBPort + 3:
1348 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1349 break;
1350 case SCBeeprom:
1351 val = eepro100_read_eeprom(s);
1352 break;
1353 case SCBCtrlMDI:
1354 case SCBCtrlMDI + 1:
1355 case SCBCtrlMDI + 2:
1356 case SCBCtrlMDI + 3:
1357 val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
1358 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1359 break;
1360 case SCBpmdr: /* Power Management Driver Register */
1361 val = 0;
1362 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1363 break;
1364 case SCBgctrl: /* General Control Register */
1365 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1366 break;
1367 case SCBgstat: /* General Status Register */
1368 /* 100 Mbps full duplex, valid link */
1369 val = 0x07;
1370 TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
1371 break;
1372 default:
1373 logout("addr=%s val=0x%02x\n", regname(addr), val);
1374 missing("unknown byte read");
1375 }
1376 return val;
1377 }
1378
1379 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1380 {
1381 uint16_t val = 0;
1382 if (addr <= sizeof(s->mem) - sizeof(val)) {
1383 val = e100_read_reg2(s, addr);
1384 }
1385
1386 switch (addr) {
1387 case SCBStatus:
1388 case SCBCmd:
1389 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1390 break;
1391 case SCBeeprom:
1392 val = eepro100_read_eeprom(s);
1393 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1394 break;
1395 case SCBCtrlMDI:
1396 case SCBCtrlMDI + 2:
1397 val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
1398 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1399 break;
1400 default:
1401 logout("addr=%s val=0x%04x\n", regname(addr), val);
1402 missing("unknown word read");
1403 }
1404 return val;
1405 }
1406
1407 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1408 {
1409 uint32_t val = 0;
1410 if (addr <= sizeof(s->mem) - sizeof(val)) {
1411 val = e100_read_reg4(s, addr);
1412 }
1413
1414 switch (addr) {
1415 case SCBStatus:
1416 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1417 break;
1418 case SCBPointer:
1419 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1420 break;
1421 case SCBPort:
1422 val = eepro100_read_port(s);
1423 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1424 break;
1425 case SCBflash:
1426 val = eepro100_read_eeprom(s);
1427 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1428 break;
1429 case SCBCtrlMDI:
1430 val = eepro100_read_mdi(s);
1431 break;
1432 default:
1433 logout("addr=%s val=0x%08x\n", regname(addr), val);
1434 missing("unknown longword read");
1435 }
1436 return val;
1437 }
1438
1439 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1440 {
1441 /* SCBStatus is readonly. */
1442 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
1443 s->mem[addr] = val;
1444 }
1445
1446 switch (addr) {
1447 case SCBStatus:
1448 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1449 break;
1450 case SCBAck:
1451 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1452 eepro100_acknowledge(s);
1453 break;
1454 case SCBCmd:
1455 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1456 eepro100_write_command(s, val);
1457 break;
1458 case SCBIntmask:
1459 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1460 if (val & BIT(1)) {
1461 eepro100_swi_interrupt(s);
1462 }
1463 eepro100_interrupt(s, 0);
1464 break;
1465 case SCBPointer:
1466 case SCBPointer + 1:
1467 case SCBPointer + 2:
1468 case SCBPointer + 3:
1469 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1470 break;
1471 case SCBPort:
1472 case SCBPort + 1:
1473 case SCBPort + 2:
1474 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1475 break;
1476 case SCBPort + 3:
1477 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1478 eepro100_write_port(s);
1479 break;
1480 case SCBFlow: /* does not exist on 82557 */
1481 case SCBFlow + 1:
1482 case SCBFlow + 2:
1483 case SCBpmdr: /* does not exist on 82557 */
1484 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1485 break;
1486 case SCBeeprom:
1487 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1488 eepro100_write_eeprom(s->eeprom, val);
1489 break;
1490 case SCBCtrlMDI:
1491 case SCBCtrlMDI + 1:
1492 case SCBCtrlMDI + 2:
1493 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1494 break;
1495 case SCBCtrlMDI + 3:
1496 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1497 eepro100_write_mdi(s);
1498 break;
1499 default:
1500 logout("addr=%s val=0x%02x\n", regname(addr), val);
1501 missing("unknown byte write");
1502 }
1503 }
1504
1505 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1506 {
1507 /* SCBStatus is readonly. */
1508 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
1509 e100_write_reg2(s, addr, val);
1510 }
1511
1512 switch (addr) {
1513 case SCBStatus:
1514 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1515 s->mem[SCBAck] = (val >> 8);
1516 eepro100_acknowledge(s);
1517 break;
1518 case SCBCmd:
1519 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1520 eepro100_write_command(s, val);
1521 eepro100_write1(s, SCBIntmask, val >> 8);
1522 break;
1523 case SCBPointer:
1524 case SCBPointer + 2:
1525 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1526 break;
1527 case SCBPort:
1528 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1529 break;
1530 case SCBPort + 2:
1531 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1532 eepro100_write_port(s);
1533 break;
1534 case SCBeeprom:
1535 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1536 eepro100_write_eeprom(s->eeprom, val);
1537 break;
1538 case SCBCtrlMDI:
1539 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1540 break;
1541 case SCBCtrlMDI + 2:
1542 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1543 eepro100_write_mdi(s);
1544 break;
1545 default:
1546 logout("addr=%s val=0x%04x\n", regname(addr), val);
1547 missing("unknown word write");
1548 }
1549 }
1550
1551 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1552 {
1553 if (addr <= sizeof(s->mem) - sizeof(val)) {
1554 e100_write_reg4(s, addr, val);
1555 }
1556
1557 switch (addr) {
1558 case SCBPointer:
1559 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1560 break;
1561 case SCBPort:
1562 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1563 eepro100_write_port(s);
1564 break;
1565 case SCBflash:
1566 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1567 val = val >> 16;
1568 eepro100_write_eeprom(s->eeprom, val);
1569 break;
1570 case SCBCtrlMDI:
1571 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1572 eepro100_write_mdi(s);
1573 break;
1574 default:
1575 logout("addr=%s val=0x%08x\n", regname(addr), val);
1576 missing("unknown longword write");
1577 }
1578 }
1579
1580 static uint64_t eepro100_read(void *opaque, target_phys_addr_t addr,
1581 unsigned size)
1582 {
1583 EEPRO100State *s = opaque;
1584
1585 switch (size) {
1586 case 1: return eepro100_read1(s, addr);
1587 case 2: return eepro100_read2(s, addr);
1588 case 4: return eepro100_read4(s, addr);
1589 default: abort();
1590 }
1591 }
1592
1593 static void eepro100_write(void *opaque, target_phys_addr_t addr,
1594 uint64_t data, unsigned size)
1595 {
1596 EEPRO100State *s = opaque;
1597
1598 switch (size) {
1599 case 1:
1600 eepro100_write1(s, addr, data);
1601 break;
1602 case 2:
1603 eepro100_write2(s, addr, data);
1604 break;
1605 case 4:
1606 eepro100_write4(s, addr, data);
1607 break;
1608 default:
1609 abort();
1610 }
1611 }
1612
1613 static const MemoryRegionOps eepro100_ops = {
1614 .read = eepro100_read,
1615 .write = eepro100_write,
1616 .endianness = DEVICE_LITTLE_ENDIAN,
1617 };
1618
1619 static int nic_can_receive(NetClientState *nc)
1620 {
1621 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1622 TRACE(RXTX, logout("%p\n", s));
1623 return get_ru_state(s) == ru_ready;
1624 #if 0
1625 return !eepro100_buffer_full(s);
1626 #endif
1627 }
1628
1629 static ssize_t nic_receive(NetClientState *nc, const uint8_t * buf, size_t size)
1630 {
1631 /* TODO:
1632 * - Magic packets should set bit 30 in power management driver register.
1633 * - Interesting packets should set bit 29 in power management driver register.
1634 */
1635 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1636 uint16_t rfd_status = 0xa000;
1637 #if defined(CONFIG_PAD_RECEIVED_FRAMES)
1638 uint8_t min_buf[60];
1639 #endif
1640 static const uint8_t broadcast_macaddr[6] =
1641 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1642
1643 #if defined(CONFIG_PAD_RECEIVED_FRAMES)
1644 /* Pad to minimum Ethernet frame length */
1645 if (size < sizeof(min_buf)) {
1646 memcpy(min_buf, buf, size);
1647 memset(&min_buf[size], 0, sizeof(min_buf) - size);
1648 buf = min_buf;
1649 size = sizeof(min_buf);
1650 }
1651 #endif
1652
1653 if (s->configuration[8] & 0x80) {
1654 /* CSMA is disabled. */
1655 logout("%p received while CSMA is disabled\n", s);
1656 return -1;
1657 #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
1658 } else if (size < 64 && (s->configuration[7] & BIT(0))) {
1659 /* Short frame and configuration byte 7/0 (discard short receive) set:
1660 * Short frame is discarded */
1661 logout("%p received short frame (%zu byte)\n", s, size);
1662 s->statistics.rx_short_frame_errors++;
1663 return -1;
1664 #endif
1665 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) {
1666 /* Long frame and configuration byte 18/3 (long receive ok) not set:
1667 * Long frames are discarded. */
1668 logout("%p received long frame (%zu byte), ignored\n", s, size);
1669 return -1;
1670 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */
1671 /* Frame matches individual address. */
1672 /* TODO: check configuration byte 15/4 (ignore U/L). */
1673 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
1674 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1675 /* Broadcast frame. */
1676 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
1677 rfd_status |= 0x0002;
1678 } else if (buf[0] & 0x01) {
1679 /* Multicast frame. */
1680 TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size)));
1681 if (s->configuration[21] & BIT(3)) {
1682 /* Multicast all bit is set, receive all multicast frames. */
1683 } else {
1684 unsigned mcast_idx = e100_compute_mcast_idx(buf);
1685 assert(mcast_idx < 64);
1686 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
1687 /* Multicast frame is allowed in hash table. */
1688 } else if (s->configuration[15] & BIT(0)) {
1689 /* Promiscuous: receive all. */
1690 rfd_status |= 0x0004;
1691 } else {
1692 TRACE(RXTX, logout("%p multicast ignored\n", s));
1693 return -1;
1694 }
1695 }
1696 /* TODO: Next not for promiscuous mode? */
1697 rfd_status |= 0x0002;
1698 } else if (s->configuration[15] & BIT(0)) {
1699 /* Promiscuous: receive all. */
1700 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
1701 rfd_status |= 0x0004;
1702 } else if (s->configuration[20] & BIT(6)) {
1703 /* Multiple IA bit set. */
1704 unsigned mcast_idx = compute_mcast_idx(buf);
1705 assert(mcast_idx < 64);
1706 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
1707 TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s));
1708 } else {
1709 TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s));
1710 return -1;
1711 }
1712 } else {
1713 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
1714 nic_dump(buf, size)));
1715 return size;
1716 }
1717
1718 if (get_ru_state(s) != ru_ready) {
1719 /* No resources available. */
1720 logout("no resources, state=%u\n", get_ru_state(s));
1721 /* TODO: RNR interrupt only at first failed frame? */
1722 eepro100_rnr_interrupt(s);
1723 s->statistics.rx_resource_errors++;
1724 #if 0
1725 assert(!"no resources");
1726 #endif
1727 return -1;
1728 }
1729 /* !!! */
1730 eepro100_rx_t rx;
1731 pci_dma_read(&s->dev, s->ru_base + s->ru_offset,
1732 &rx, sizeof(eepro100_rx_t));
1733 uint16_t rfd_command = le16_to_cpu(rx.command);
1734 uint16_t rfd_size = le16_to_cpu(rx.size);
1735
1736 if (size > rfd_size) {
1737 logout("Receive buffer (%" PRId16 " bytes) too small for data "
1738 "(%zu bytes); data truncated\n", rfd_size, size);
1739 size = rfd_size;
1740 }
1741 #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
1742 if (size < 64) {
1743 rfd_status |= 0x0080;
1744 }
1745 #endif
1746 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
1747 rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
1748 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
1749 offsetof(eepro100_rx_t, status), rfd_status);
1750 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
1751 offsetof(eepro100_rx_t, count), size);
1752 /* Early receive interrupt not supported. */
1753 #if 0
1754 eepro100_er_interrupt(s);
1755 #endif
1756 /* Receive CRC Transfer not supported. */
1757 if (s->configuration[18] & BIT(2)) {
1758 missing("Receive CRC Transfer");
1759 return -1;
1760 }
1761 /* TODO: check stripping enable bit. */
1762 #if 0
1763 assert(!(s->configuration[17] & BIT(0)));
1764 #endif
1765 pci_dma_write(&s->dev, s->ru_base + s->ru_offset +
1766 sizeof(eepro100_rx_t), buf, size);
1767 s->statistics.rx_good_frames++;
1768 eepro100_fr_interrupt(s);
1769 s->ru_offset = le32_to_cpu(rx.link);
1770 if (rfd_command & COMMAND_EL) {
1771 /* EL bit is set, so this was the last frame. */
1772 logout("receive: Running out of frames\n");
1773 set_ru_state(s, ru_suspended);
1774 }
1775 if (rfd_command & COMMAND_S) {
1776 /* S bit is set. */
1777 set_ru_state(s, ru_suspended);
1778 }
1779 return size;
1780 }
1781
1782 static const VMStateDescription vmstate_eepro100 = {
1783 .version_id = 3,
1784 .minimum_version_id = 2,
1785 .minimum_version_id_old = 2,
1786 .fields = (VMStateField []) {
1787 VMSTATE_PCI_DEVICE(dev, EEPRO100State),
1788 VMSTATE_UNUSED(32),
1789 VMSTATE_BUFFER(mult, EEPRO100State),
1790 VMSTATE_BUFFER(mem, EEPRO100State),
1791 /* Save all members of struct between scb_stat and mem. */
1792 VMSTATE_UINT8(scb_stat, EEPRO100State),
1793 VMSTATE_UINT8(int_stat, EEPRO100State),
1794 VMSTATE_UNUSED(3*4),
1795 VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
1796 VMSTATE_UNUSED(19*4),
1797 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
1798 /* The eeprom should be saved and restored by its own routines. */
1799 VMSTATE_UINT32(device, EEPRO100State),
1800 /* TODO check device. */
1801 VMSTATE_UINT32(cu_base, EEPRO100State),
1802 VMSTATE_UINT32(cu_offset, EEPRO100State),
1803 VMSTATE_UINT32(ru_base, EEPRO100State),
1804 VMSTATE_UINT32(ru_offset, EEPRO100State),
1805 VMSTATE_UINT32(statsaddr, EEPRO100State),
1806 /* Save eepro100_stats_t statistics. */
1807 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
1808 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
1809 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
1810 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
1811 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
1812 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
1813 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
1814 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
1815 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
1816 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
1817 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
1818 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
1819 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
1820 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
1821 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
1822 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
1823 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
1824 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
1825 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
1826 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
1827 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
1828 /* Configuration bytes. */
1829 VMSTATE_BUFFER(configuration, EEPRO100State),
1830 VMSTATE_END_OF_LIST()
1831 }
1832 };
1833
1834 static void nic_cleanup(NetClientState *nc)
1835 {
1836 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1837
1838 s->nic = NULL;
1839 }
1840
1841 static void pci_nic_uninit(PCIDevice *pci_dev)
1842 {
1843 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1844
1845 memory_region_destroy(&s->mmio_bar);
1846 memory_region_destroy(&s->io_bar);
1847 memory_region_destroy(&s->flash_bar);
1848 vmstate_unregister(&pci_dev->qdev, s->vmstate, s);
1849 eeprom93xx_free(&pci_dev->qdev, s->eeprom);
1850 qemu_del_vlan_client(&s->nic->nc);
1851 }
1852
1853 static NetClientInfo net_eepro100_info = {
1854 .type = NET_CLIENT_OPTIONS_KIND_NIC,
1855 .size = sizeof(NICState),
1856 .can_receive = nic_can_receive,
1857 .receive = nic_receive,
1858 .cleanup = nic_cleanup,
1859 };
1860
1861 static int e100_nic_init(PCIDevice *pci_dev)
1862 {
1863 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1864 E100PCIDeviceInfo *info = eepro100_get_class(s);
1865
1866 TRACE(OTHER, logout("\n"));
1867
1868 s->device = info->device;
1869
1870 e100_pci_reset(s);
1871
1872 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1873 * i82559 and later support 64 or 256 word EEPROM. */
1874 s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE);
1875
1876 /* Handler for memory-mapped I/O */
1877 memory_region_init_io(&s->mmio_bar, &eepro100_ops, s, "eepro100-mmio",
1878 PCI_MEM_SIZE);
1879 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar);
1880 memory_region_init_io(&s->io_bar, &eepro100_ops, s, "eepro100-io",
1881 PCI_IO_SIZE);
1882 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar);
1883 /* FIXME: flash aliases to mmio?! */
1884 memory_region_init_io(&s->flash_bar, &eepro100_ops, s, "eepro100-flash",
1885 PCI_FLASH_SIZE);
1886 pci_register_bar(&s->dev, 2, 0, &s->flash_bar);
1887
1888 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1889 logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6));
1890
1891 nic_reset(s);
1892
1893 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
1894 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
1895
1896 qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
1897 TRACE(OTHER, logout("%s\n", s->nic->nc.info_str));
1898
1899 qemu_register_reset(nic_reset, s);
1900
1901 s->vmstate = g_malloc(sizeof(vmstate_eepro100));
1902 memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100));
1903 s->vmstate->name = s->nic->nc.model;
1904 vmstate_register(&pci_dev->qdev, -1, s->vmstate, s);
1905
1906 add_boot_device_path(s->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
1907
1908 return 0;
1909 }
1910
1911 static E100PCIDeviceInfo e100_devices[] = {
1912 {
1913 .name = "i82550",
1914 .desc = "Intel i82550 Ethernet",
1915 .device = i82550,
1916 /* TODO: check device id. */
1917 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1918 /* Revision ID: 0x0c, 0x0d, 0x0e. */
1919 .revision = 0x0e,
1920 /* TODO: check size of statistical counters. */
1921 .stats_size = 80,
1922 /* TODO: check extended tcb support. */
1923 .has_extended_tcb_support = true,
1924 .power_management = true,
1925 },{
1926 .name = "i82551",
1927 .desc = "Intel i82551 Ethernet",
1928 .device = i82551,
1929 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1930 /* Revision ID: 0x0f, 0x10. */
1931 .revision = 0x0f,
1932 /* TODO: check size of statistical counters. */
1933 .stats_size = 80,
1934 .has_extended_tcb_support = true,
1935 .power_management = true,
1936 },{
1937 .name = "i82557a",
1938 .desc = "Intel i82557A Ethernet",
1939 .device = i82557A,
1940 .device_id = PCI_DEVICE_ID_INTEL_82557,
1941 .revision = 0x01,
1942 .power_management = false,
1943 },{
1944 .name = "i82557b",
1945 .desc = "Intel i82557B Ethernet",
1946 .device = i82557B,
1947 .device_id = PCI_DEVICE_ID_INTEL_82557,
1948 .revision = 0x02,
1949 .power_management = false,
1950 },{
1951 .name = "i82557c",
1952 .desc = "Intel i82557C Ethernet",
1953 .device = i82557C,
1954 .device_id = PCI_DEVICE_ID_INTEL_82557,
1955 .revision = 0x03,
1956 .power_management = false,
1957 },{
1958 .name = "i82558a",
1959 .desc = "Intel i82558A Ethernet",
1960 .device = i82558A,
1961 .device_id = PCI_DEVICE_ID_INTEL_82557,
1962 .revision = 0x04,
1963 .stats_size = 76,
1964 .has_extended_tcb_support = true,
1965 .power_management = true,
1966 },{
1967 .name = "i82558b",
1968 .desc = "Intel i82558B Ethernet",
1969 .device = i82558B,
1970 .device_id = PCI_DEVICE_ID_INTEL_82557,
1971 .revision = 0x05,
1972 .stats_size = 76,
1973 .has_extended_tcb_support = true,
1974 .power_management = true,
1975 },{
1976 .name = "i82559a",
1977 .desc = "Intel i82559A Ethernet",
1978 .device = i82559A,
1979 .device_id = PCI_DEVICE_ID_INTEL_82557,
1980 .revision = 0x06,
1981 .stats_size = 80,
1982 .has_extended_tcb_support = true,
1983 .power_management = true,
1984 },{
1985 .name = "i82559b",
1986 .desc = "Intel i82559B Ethernet",
1987 .device = i82559B,
1988 .device_id = PCI_DEVICE_ID_INTEL_82557,
1989 .revision = 0x07,
1990 .stats_size = 80,
1991 .has_extended_tcb_support = true,
1992 .power_management = true,
1993 },{
1994 .name = "i82559c",
1995 .desc = "Intel i82559C Ethernet",
1996 .device = i82559C,
1997 .device_id = PCI_DEVICE_ID_INTEL_82557,
1998 #if 0
1999 .revision = 0x08,
2000 #endif
2001 /* TODO: Windows wants revision id 0x0c. */
2002 .revision = 0x0c,
2003 #if EEPROM_SIZE > 0
2004 .subsystem_vendor_id = PCI_VENDOR_ID_INTEL,
2005 .subsystem_id = 0x0040,
2006 #endif
2007 .stats_size = 80,
2008 .has_extended_tcb_support = true,
2009 .power_management = true,
2010 },{
2011 .name = "i82559er",
2012 .desc = "Intel i82559ER Ethernet",
2013 .device = i82559ER,
2014 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
2015 .revision = 0x09,
2016 .stats_size = 80,
2017 .has_extended_tcb_support = true,
2018 .power_management = true,
2019 },{
2020 .name = "i82562",
2021 .desc = "Intel i82562 Ethernet",
2022 .device = i82562,
2023 /* TODO: check device id. */
2024 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
2025 /* TODO: wrong revision id. */
2026 .revision = 0x0e,
2027 .stats_size = 80,
2028 .has_extended_tcb_support = true,
2029 .power_management = true,
2030 },{
2031 /* Toshiba Tecra 8200. */
2032 .name = "i82801",
2033 .desc = "Intel i82801 Ethernet",
2034 .device = i82801,
2035 .device_id = 0x2449,
2036 .revision = 0x03,
2037 .stats_size = 80,
2038 .has_extended_tcb_support = true,
2039 .power_management = true,
2040 }
2041 };
2042
2043 static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename)
2044 {
2045 E100PCIDeviceInfo *info = NULL;
2046 int i;
2047
2048 /* This is admittedly awkward but also temporary. QOM allows for
2049 * parameterized typing and for subclassing both of which would suitable
2050 * handle what's going on here. But class_data is already being used as
2051 * a stop-gap hack to allow incremental qdev conversion so we cannot use it
2052 * right now. Once we merge the final QOM series, we can come back here and
2053 * do this in a much more elegant fashion.
2054 */
2055 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
2056 if (strcmp(e100_devices[i].name, typename) == 0) {
2057 info = &e100_devices[i];
2058 break;
2059 }
2060 }
2061 assert(info != NULL);
2062
2063 return info;
2064 }
2065
2066 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s)
2067 {
2068 return eepro100_get_class_by_name(object_get_typename(OBJECT(s)));
2069 }
2070
2071 static Property e100_properties[] = {
2072 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2073 DEFINE_PROP_END_OF_LIST(),
2074 };
2075
2076 static void eepro100_class_init(ObjectClass *klass, void *data)
2077 {
2078 DeviceClass *dc = DEVICE_CLASS(klass);
2079 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2080 E100PCIDeviceInfo *info;
2081
2082 info = eepro100_get_class_by_name(object_class_get_name(klass));
2083
2084 dc->props = e100_properties;
2085 dc->desc = info->desc;
2086 k->vendor_id = PCI_VENDOR_ID_INTEL;
2087 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
2088 k->romfile = "pxe-eepro100.rom";
2089 k->init = e100_nic_init;
2090 k->exit = pci_nic_uninit;
2091 k->device_id = info->device_id;
2092 k->revision = info->revision;
2093 k->subsystem_vendor_id = info->subsystem_vendor_id;
2094 k->subsystem_id = info->subsystem_id;
2095 }
2096
2097 static void eepro100_register_types(void)
2098 {
2099 size_t i;
2100 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
2101 TypeInfo type_info = {};
2102 E100PCIDeviceInfo *info = &e100_devices[i];
2103
2104 type_info.name = info->name;
2105 type_info.parent = TYPE_PCI_DEVICE;
2106 type_info.class_init = eepro100_class_init;
2107 type_info.instance_size = sizeof(EEPRO100State);
2108
2109 type_register(&type_info);
2110 }
2111 }
2112
2113 type_init(eepro100_register_types)