]> git.proxmox.com Git - mirror_qemu.git/blob - hw/etraxfs_eth.c
Introduce TCP live migration protocol
[mirror_qemu.git] / hw / etraxfs_eth.c
1 /*
2 * QEMU ETRAX Ethernet Controller.
3 *
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <stdio.h>
26 #include "hw.h"
27 #include "net.h"
28
29 #include "etraxfs_dma.h"
30
31 #define D(x)
32
33 /* Advertisement control register. */
34 #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
35 #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
36 #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
37 #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
38
39 /*
40 * The MDIO extensions in the TDK PHY model were reversed engineered from the
41 * linux driver (PHYID and Diagnostics reg).
42 * TODO: Add friendly names for the register nums.
43 */
44 struct qemu_phy
45 {
46 uint32_t regs[32];
47
48 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
49 void (*write)(struct qemu_phy *phy, unsigned int req,
50 unsigned int data);
51 };
52
53 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
54 {
55 int regnum;
56 unsigned r = 0;
57
58 regnum = req & 0x1f;
59
60 switch (regnum) {
61 case 1:
62 /* MR1. */
63 /* Speeds and modes. */
64 r |= (1 << 13) | (1 << 14);
65 r |= (1 << 11) | (1 << 12);
66 r |= (1 << 5); /* Autoneg complete. */
67 r |= (1 << 3); /* Autoneg able. */
68 r |= (1 << 2); /* Link. */
69 break;
70 case 5:
71 /* Link partner ability.
72 We are kind; always agree with whatever best mode
73 the guest advertises. */
74 r = 1 << 14; /* Success. */
75 /* Copy advertised modes. */
76 r |= phy->regs[4] & (15 << 5);
77 /* Autoneg support. */
78 r |= 1;
79 break;
80 case 18:
81 {
82 /* Diagnostics reg. */
83 int duplex = 0;
84 int speed_100 = 0;
85
86 /* Are we advertising 100 half or 100 duplex ? */
87 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
88 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
89
90 /* Are we advertising 10 duplex or 100 duplex ? */
91 duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
92 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
93 r = (speed_100 << 10) | (duplex << 11);
94 }
95 break;
96
97 default:
98 r = phy->regs[regnum];
99 break;
100 }
101 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
102 return r;
103 }
104
105 static void
106 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
107 {
108 int regnum;
109
110 regnum = req & 0x1f;
111 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
112 switch (regnum) {
113 default:
114 phy->regs[regnum] = data;
115 break;
116 }
117 }
118
119 static void
120 tdk_init(struct qemu_phy *phy)
121 {
122 phy->regs[0] = 0x3100;
123 /* PHY Id. */
124 phy->regs[2] = 0x0300;
125 phy->regs[3] = 0xe400;
126 /* Autonegotiation advertisement reg. */
127 phy->regs[4] = 0x01E1;
128
129 phy->read = tdk_read;
130 phy->write = tdk_write;
131 }
132
133 struct qemu_mdio
134 {
135 /* bus. */
136 int mdc;
137 int mdio;
138
139 /* decoder. */
140 enum {
141 PREAMBLE,
142 SOF,
143 OPC,
144 ADDR,
145 REQ,
146 TURNAROUND,
147 DATA
148 } state;
149 unsigned int drive;
150
151 unsigned int cnt;
152 unsigned int addr;
153 unsigned int opc;
154 unsigned int req;
155 unsigned int data;
156
157 struct qemu_phy *devs[32];
158 };
159
160 static void
161 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
162 {
163 bus->devs[addr & 0x1f] = phy;
164 }
165
166 #ifdef USE_THIS_DEAD_CODE
167 static void
168 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
169 {
170 bus->devs[addr & 0x1f] = NULL;
171 }
172 #endif
173
174 static void mdio_read_req(struct qemu_mdio *bus)
175 {
176 struct qemu_phy *phy;
177
178 phy = bus->devs[bus->addr];
179 if (phy && phy->read)
180 bus->data = phy->read(phy, bus->req);
181 else
182 bus->data = 0xffff;
183 }
184
185 static void mdio_write_req(struct qemu_mdio *bus)
186 {
187 struct qemu_phy *phy;
188
189 phy = bus->devs[bus->addr];
190 if (phy && phy->write)
191 phy->write(phy, bus->req, bus->data);
192 }
193
194 static void mdio_cycle(struct qemu_mdio *bus)
195 {
196 bus->cnt++;
197
198 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
199 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
200 #if 0
201 if (bus->mdc)
202 printf("%d", bus->mdio);
203 #endif
204 switch (bus->state)
205 {
206 case PREAMBLE:
207 if (bus->mdc) {
208 if (bus->cnt >= (32 * 2) && !bus->mdio) {
209 bus->cnt = 0;
210 bus->state = SOF;
211 bus->data = 0;
212 }
213 }
214 break;
215 case SOF:
216 if (bus->mdc) {
217 if (bus->mdio != 1)
218 printf("WARNING: no SOF\n");
219 if (bus->cnt == 1*2) {
220 bus->cnt = 0;
221 bus->opc = 0;
222 bus->state = OPC;
223 }
224 }
225 break;
226 case OPC:
227 if (bus->mdc) {
228 bus->opc <<= 1;
229 bus->opc |= bus->mdio & 1;
230 if (bus->cnt == 2*2) {
231 bus->cnt = 0;
232 bus->addr = 0;
233 bus->state = ADDR;
234 }
235 }
236 break;
237 case ADDR:
238 if (bus->mdc) {
239 bus->addr <<= 1;
240 bus->addr |= bus->mdio & 1;
241
242 if (bus->cnt == 5*2) {
243 bus->cnt = 0;
244 bus->req = 0;
245 bus->state = REQ;
246 }
247 }
248 break;
249 case REQ:
250 if (bus->mdc) {
251 bus->req <<= 1;
252 bus->req |= bus->mdio & 1;
253 if (bus->cnt == 5*2) {
254 bus->cnt = 0;
255 bus->state = TURNAROUND;
256 }
257 }
258 break;
259 case TURNAROUND:
260 if (bus->mdc && bus->cnt == 2*2) {
261 bus->mdio = 0;
262 bus->cnt = 0;
263
264 if (bus->opc == 2) {
265 bus->drive = 1;
266 mdio_read_req(bus);
267 bus->mdio = bus->data & 1;
268 }
269 bus->state = DATA;
270 }
271 break;
272 case DATA:
273 if (!bus->mdc) {
274 if (bus->drive) {
275 bus->mdio = !!(bus->data & (1 << 15));
276 bus->data <<= 1;
277 }
278 } else {
279 if (!bus->drive) {
280 bus->data <<= 1;
281 bus->data |= bus->mdio;
282 }
283 if (bus->cnt == 16 * 2) {
284 bus->cnt = 0;
285 bus->state = PREAMBLE;
286 if (!bus->drive)
287 mdio_write_req(bus);
288 bus->drive = 0;
289 }
290 }
291 break;
292 default:
293 break;
294 }
295 }
296
297 /* ETRAX-FS Ethernet MAC block starts here. */
298
299 #define RW_MA0_LO 0x00
300 #define RW_MA0_HI 0x04
301 #define RW_MA1_LO 0x08
302 #define RW_MA1_HI 0x0c
303 #define RW_GA_LO 0x10
304 #define RW_GA_HI 0x14
305 #define RW_GEN_CTRL 0x18
306 #define RW_REC_CTRL 0x1c
307 #define RW_TR_CTRL 0x20
308 #define RW_CLR_ERR 0x24
309 #define RW_MGM_CTRL 0x28
310 #define R_STAT 0x2c
311 #define FS_ETH_MAX_REGS 0x5c
312
313 struct fs_eth
314 {
315 CPUState *env;
316 qemu_irq *irq;
317 target_phys_addr_t base;
318 VLANClientState *vc;
319 int ethregs;
320
321 /* Two addrs in the filter. */
322 uint8_t macaddr[2][6];
323 uint32_t regs[FS_ETH_MAX_REGS];
324
325 unsigned char rx_fifo[1536];
326 int rx_fifo_len;
327 int rx_fifo_pos;
328
329 struct etraxfs_dma_client *dma_out;
330 struct etraxfs_dma_client *dma_in;
331
332 /* MDIO bus. */
333 struct qemu_mdio mdio_bus;
334 unsigned int phyaddr;
335 int duplex_mismatch;
336
337 /* PHY. */
338 struct qemu_phy phy;
339 };
340
341 static void eth_validate_duplex(struct fs_eth *eth)
342 {
343 struct qemu_phy *phy;
344 unsigned int phy_duplex;
345 unsigned int mac_duplex;
346 int new_mm = 0;
347
348 phy = eth->mdio_bus.devs[eth->phyaddr];
349 phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
350 mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
351
352 if (mac_duplex != phy_duplex)
353 new_mm = 1;
354
355 if (eth->regs[RW_GEN_CTRL] & 1) {
356 if (new_mm != eth->duplex_mismatch) {
357 if (new_mm)
358 printf("HW: WARNING "
359 "ETH duplex mismatch MAC=%d PHY=%d\n",
360 mac_duplex, phy_duplex);
361 else
362 printf("HW: ETH duplex ok.\n");
363 }
364 eth->duplex_mismatch = new_mm;
365 }
366 }
367
368 static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
369 {
370 struct fs_eth *eth = opaque;
371 CPUState *env = eth->env;
372 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
373 addr);
374 return 0;
375 }
376
377 static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
378 {
379 struct fs_eth *eth = opaque;
380 uint32_t r = 0;
381
382 /* Make addr relative to this instances base. */
383 addr -= eth->base;
384 switch (addr) {
385 case R_STAT:
386 /* Attach an MDIO/PHY abstraction. */
387 r = eth->mdio_bus.mdio & 1;
388 break;
389 default:
390 r = eth->regs[addr];
391 D(printf ("%s %x\n", __func__, addr));
392 break;
393 }
394 return r;
395 }
396
397 static void
398 eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
399 {
400 struct fs_eth *eth = opaque;
401 CPUState *env = eth->env;
402 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
403 addr);
404 }
405
406 static void eth_update_ma(struct fs_eth *eth, int ma)
407 {
408 int reg;
409 int i = 0;
410
411 ma &= 1;
412
413 reg = RW_MA0_LO;
414 if (ma)
415 reg = RW_MA1_LO;
416
417 eth->macaddr[ma][i++] = eth->regs[reg];
418 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
419 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
420 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
421 eth->macaddr[ma][i++] = eth->regs[reg + 4];
422 eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
423
424 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
425 eth->macaddr[ma][0], eth->macaddr[ma][1],
426 eth->macaddr[ma][2], eth->macaddr[ma][3],
427 eth->macaddr[ma][4], eth->macaddr[ma][5]));
428 }
429
430 static void
431 eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
432 {
433 struct fs_eth *eth = opaque;
434
435 /* Make addr relative to this instances base. */
436 addr -= eth->base;
437 switch (addr)
438 {
439 case RW_MA0_LO:
440 eth->regs[addr] = value;
441 eth_update_ma(eth, 0);
442 break;
443 case RW_MA0_HI:
444 eth->regs[addr] = value;
445 eth_update_ma(eth, 0);
446 break;
447 case RW_MA1_LO:
448 eth->regs[addr] = value;
449 eth_update_ma(eth, 1);
450 break;
451 case RW_MA1_HI:
452 eth->regs[addr] = value;
453 eth_update_ma(eth, 1);
454 break;
455
456 case RW_MGM_CTRL:
457 /* Attach an MDIO/PHY abstraction. */
458 if (value & 2)
459 eth->mdio_bus.mdio = value & 1;
460 if (eth->mdio_bus.mdc != (value & 4)) {
461 mdio_cycle(&eth->mdio_bus);
462 eth_validate_duplex(eth);
463 }
464 eth->mdio_bus.mdc = !!(value & 4);
465 break;
466
467 case RW_REC_CTRL:
468 eth->regs[addr] = value;
469 eth_validate_duplex(eth);
470 break;
471
472 default:
473 eth->regs[addr] = value;
474 D(printf ("%s %x %x\n",
475 __func__, addr, value));
476 break;
477 }
478 }
479
480 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
481 filter dropping group addresses we have not joined. The filter has 64
482 bits (m). The has function is a simple nible xor of the group addr. */
483 static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
484 {
485 unsigned int hsh;
486 int m_individual = eth->regs[RW_REC_CTRL] & 4;
487 int match;
488
489 /* First bit on the wire of a MAC address signals multicast or
490 physical address. */
491 if (!m_individual && !sa[0] & 1)
492 return 0;
493
494 /* Calculate the hash index for the GA registers. */
495 hsh = 0;
496 hsh ^= (*sa) & 0x3f;
497 hsh ^= ((*sa) >> 6) & 0x03;
498 ++sa;
499 hsh ^= ((*sa) << 2) & 0x03c;
500 hsh ^= ((*sa) >> 4) & 0xf;
501 ++sa;
502 hsh ^= ((*sa) << 4) & 0x30;
503 hsh ^= ((*sa) >> 2) & 0x3f;
504 ++sa;
505 hsh ^= (*sa) & 0x3f;
506 hsh ^= ((*sa) >> 6) & 0x03;
507 ++sa;
508 hsh ^= ((*sa) << 2) & 0x03c;
509 hsh ^= ((*sa) >> 4) & 0xf;
510 ++sa;
511 hsh ^= ((*sa) << 4) & 0x30;
512 hsh ^= ((*sa) >> 2) & 0x3f;
513
514 hsh &= 63;
515 if (hsh > 31)
516 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
517 else
518 match = eth->regs[RW_GA_LO] & (1 << hsh);
519 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
520 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
521 return match;
522 }
523
524 static int eth_can_receive(void *opaque)
525 {
526 struct fs_eth *eth = opaque;
527 int r;
528
529 r = eth->rx_fifo_len == 0;
530 if (!r) {
531 /* TODO: signal fifo overrun. */
532 printf("PACKET LOSS!\n");
533 }
534 return r;
535 }
536
537 static void eth_receive(void *opaque, const uint8_t *buf, int size)
538 {
539 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
540 struct fs_eth *eth = opaque;
541 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
542 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
543 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
544
545 if (size < 12)
546 return;
547
548 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
549 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
550 use_ma0, use_ma1, r_bcast));
551
552 /* Does the frame get through the address filters? */
553 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
554 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
555 && (!r_bcast || memcmp(buf, sa_bcast, 6))
556 && !eth_match_groupaddr(eth, buf))
557 return;
558
559 if (size > sizeof(eth->rx_fifo)) {
560 /* TODO: signal error. */
561 } else if (eth->rx_fifo_len) {
562 /* FIFO overrun. */
563 } else {
564 memcpy(eth->rx_fifo, buf, size);
565 /* +4, HW passes the CRC to sw. */
566 eth->rx_fifo_len = size + 4;
567 eth->rx_fifo_pos = 0;
568 }
569 }
570
571 static void eth_rx_pull(void *opaque)
572 {
573 struct fs_eth *eth = opaque;
574 int len;
575 if (eth->rx_fifo_len) {
576 D(printf("%s %d\n", __func__, eth->rx_fifo_len));
577 #if 0
578 {
579 int i;
580 for (i = 0; i < 32; i++)
581 printf("%2.2x", eth->rx_fifo[i]);
582 printf("\n");
583 }
584 #endif
585 len = etraxfs_dmac_input(eth->dma_in,
586 eth->rx_fifo + eth->rx_fifo_pos,
587 eth->rx_fifo_len, 1);
588 eth->rx_fifo_len -= len;
589 eth->rx_fifo_pos += len;
590 }
591 }
592
593 static int eth_tx_push(void *opaque, unsigned char *buf, int len)
594 {
595 struct fs_eth *eth = opaque;
596
597 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
598 qemu_send_packet(eth->vc, buf, len);
599 return len;
600 }
601
602 static CPUReadMemoryFunc *eth_read[] = {
603 &eth_rinvalid,
604 &eth_rinvalid,
605 &eth_readl,
606 };
607
608 static CPUWriteMemoryFunc *eth_write[] = {
609 &eth_winvalid,
610 &eth_winvalid,
611 &eth_writel,
612 };
613
614 void *etraxfs_eth_init(NICInfo *nd, CPUState *env,
615 qemu_irq *irq, target_phys_addr_t base)
616 {
617 struct etraxfs_dma_client *dma = NULL;
618 struct fs_eth *eth = NULL;
619
620 dma = qemu_mallocz(sizeof *dma * 2);
621 if (!dma)
622 return NULL;
623
624 eth = qemu_mallocz(sizeof *eth);
625 if (!eth)
626 goto err;
627
628 dma[0].client.push = eth_tx_push;
629 dma[0].client.opaque = eth;
630 dma[1].client.opaque = eth;
631 dma[1].client.pull = eth_rx_pull;
632
633 eth->env = env;
634 eth->base = base;
635 eth->irq = irq;
636 eth->dma_out = dma;
637 eth->dma_in = dma + 1;
638
639 /* Connect the phy. */
640 eth->phyaddr = 1;
641 tdk_init(&eth->phy);
642 mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
643
644 eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
645 cpu_register_physical_memory (base, 0x5c, eth->ethregs);
646
647 eth->vc = qemu_new_vlan_client(nd->vlan,
648 eth_receive, eth_can_receive, eth);
649
650 return dma;
651 err:
652 qemu_free(eth);
653 qemu_free(dma);
654 return NULL;
655 }