]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
2acec8555d0452ba71b4343e3bd42f94d65474e7
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "hw/sysbus.h"
24 #include "exec/address-spaces.h"
25 #include "intel_iommu_internal.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/pci_bus.h"
28 #include "hw/i386/pc.h"
29 #include "hw/boards.h"
30 #include "hw/i386/x86-iommu.h"
31 #include "hw/pci-host/q35.h"
32
33 /*#define DEBUG_INTEL_IOMMU*/
34 #ifdef DEBUG_INTEL_IOMMU
35 enum {
36 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
37 DEBUG_CACHE, DEBUG_IR,
38 };
39 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
40 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
41
42 #define VTD_DPRINTF(what, fmt, ...) do { \
43 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
44 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
45 ## __VA_ARGS__); } \
46 } while (0)
47 #else
48 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
49 #endif
50
51 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
52 uint64_t wmask, uint64_t w1cmask)
53 {
54 stq_le_p(&s->csr[addr], val);
55 stq_le_p(&s->wmask[addr], wmask);
56 stq_le_p(&s->w1cmask[addr], w1cmask);
57 }
58
59 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
60 {
61 stq_le_p(&s->womask[addr], mask);
62 }
63
64 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
65 uint32_t wmask, uint32_t w1cmask)
66 {
67 stl_le_p(&s->csr[addr], val);
68 stl_le_p(&s->wmask[addr], wmask);
69 stl_le_p(&s->w1cmask[addr], w1cmask);
70 }
71
72 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
73 {
74 stl_le_p(&s->womask[addr], mask);
75 }
76
77 /* "External" get/set operations */
78 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
79 {
80 uint64_t oldval = ldq_le_p(&s->csr[addr]);
81 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
82 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
83 stq_le_p(&s->csr[addr],
84 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
85 }
86
87 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
88 {
89 uint32_t oldval = ldl_le_p(&s->csr[addr]);
90 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
91 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
92 stl_le_p(&s->csr[addr],
93 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
94 }
95
96 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
97 {
98 uint64_t val = ldq_le_p(&s->csr[addr]);
99 uint64_t womask = ldq_le_p(&s->womask[addr]);
100 return val & ~womask;
101 }
102
103 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
104 {
105 uint32_t val = ldl_le_p(&s->csr[addr]);
106 uint32_t womask = ldl_le_p(&s->womask[addr]);
107 return val & ~womask;
108 }
109
110 /* "Internal" get/set operations */
111 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
112 {
113 return ldq_le_p(&s->csr[addr]);
114 }
115
116 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
117 {
118 return ldl_le_p(&s->csr[addr]);
119 }
120
121 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
122 {
123 stq_le_p(&s->csr[addr], val);
124 }
125
126 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
127 uint32_t clear, uint32_t mask)
128 {
129 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
130 stl_le_p(&s->csr[addr], new_val);
131 return new_val;
132 }
133
134 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
135 uint64_t clear, uint64_t mask)
136 {
137 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
138 stq_le_p(&s->csr[addr], new_val);
139 return new_val;
140 }
141
142 /* GHashTable functions */
143 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
144 {
145 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
146 }
147
148 static guint vtd_uint64_hash(gconstpointer v)
149 {
150 return (guint)*(const uint64_t *)v;
151 }
152
153 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
154 gpointer user_data)
155 {
156 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
157 uint16_t domain_id = *(uint16_t *)user_data;
158 return entry->domain_id == domain_id;
159 }
160
161 /* The shift of an addr for a certain level of paging structure */
162 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
163 {
164 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
165 }
166
167 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
168 {
169 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
170 }
171
172 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
173 gpointer user_data)
174 {
175 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
176 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
177 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
178 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
179 return (entry->domain_id == info->domain_id) &&
180 (((entry->gfn & info->mask) == gfn) ||
181 (entry->gfn == gfn_tlb));
182 }
183
184 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
185 * IntelIOMMUState to 1.
186 */
187 static void vtd_reset_context_cache(IntelIOMMUState *s)
188 {
189 VTDAddressSpace *vtd_as;
190 VTDBus *vtd_bus;
191 GHashTableIter bus_it;
192 uint32_t devfn_it;
193
194 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
195
196 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
197 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
198 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
199 vtd_as = vtd_bus->dev_as[devfn_it];
200 if (!vtd_as) {
201 continue;
202 }
203 vtd_as->context_cache_entry.context_cache_gen = 0;
204 }
205 }
206 s->context_cache_gen = 1;
207 }
208
209 static void vtd_reset_iotlb(IntelIOMMUState *s)
210 {
211 assert(s->iotlb);
212 g_hash_table_remove_all(s->iotlb);
213 }
214
215 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint8_t source_id,
216 uint32_t level)
217 {
218 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
219 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
220 }
221
222 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
223 {
224 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
225 }
226
227 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
228 hwaddr addr)
229 {
230 VTDIOTLBEntry *entry;
231 uint64_t key;
232 int level;
233
234 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
235 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
236 source_id, level);
237 entry = g_hash_table_lookup(s->iotlb, &key);
238 if (entry) {
239 goto out;
240 }
241 }
242
243 out:
244 return entry;
245 }
246
247 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
248 uint16_t domain_id, hwaddr addr, uint64_t slpte,
249 bool read_flags, bool write_flags,
250 uint32_t level)
251 {
252 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
253 uint64_t *key = g_malloc(sizeof(*key));
254 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
255
256 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
257 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
258 domain_id);
259 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
260 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
261 vtd_reset_iotlb(s);
262 }
263
264 entry->gfn = gfn;
265 entry->domain_id = domain_id;
266 entry->slpte = slpte;
267 entry->read_flags = read_flags;
268 entry->write_flags = write_flags;
269 entry->mask = vtd_slpt_level_page_mask(level);
270 *key = vtd_get_iotlb_key(gfn, source_id, level);
271 g_hash_table_replace(s->iotlb, key, entry);
272 }
273
274 /* Given the reg addr of both the message data and address, generate an
275 * interrupt via MSI.
276 */
277 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
278 hwaddr mesg_data_reg)
279 {
280 hwaddr addr;
281 uint32_t data;
282
283 assert(mesg_data_reg < DMAR_REG_SIZE);
284 assert(mesg_addr_reg < DMAR_REG_SIZE);
285
286 addr = vtd_get_long_raw(s, mesg_addr_reg);
287 data = vtd_get_long_raw(s, mesg_data_reg);
288
289 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
290 address_space_stl_le(&address_space_memory, addr, data,
291 MEMTXATTRS_UNSPECIFIED, NULL);
292 }
293
294 /* Generate a fault event to software via MSI if conditions are met.
295 * Notice that the value of FSTS_REG being passed to it should be the one
296 * before any update.
297 */
298 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
299 {
300 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
301 pre_fsts & VTD_FSTS_IQE) {
302 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
303 "to be serviced by software, fault event is not generated "
304 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
305 return;
306 }
307 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
308 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
309 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
310 } else {
311 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
312 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
313 }
314 }
315
316 /* Check if the Fault (F) field of the Fault Recording Register referenced by
317 * @index is Set.
318 */
319 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
320 {
321 /* Each reg is 128-bit */
322 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
323 addr += 8; /* Access the high 64-bit half */
324
325 assert(index < DMAR_FRCD_REG_NR);
326
327 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
328 }
329
330 /* Update the PPF field of Fault Status Register.
331 * Should be called whenever change the F field of any fault recording
332 * registers.
333 */
334 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
335 {
336 uint32_t i;
337 uint32_t ppf_mask = 0;
338
339 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
340 if (vtd_is_frcd_set(s, i)) {
341 ppf_mask = VTD_FSTS_PPF;
342 break;
343 }
344 }
345 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
346 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
347 }
348
349 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
350 {
351 /* Each reg is 128-bit */
352 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
353 addr += 8; /* Access the high 64-bit half */
354
355 assert(index < DMAR_FRCD_REG_NR);
356
357 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
358 vtd_update_fsts_ppf(s);
359 }
360
361 /* Must not update F field now, should be done later */
362 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
363 uint16_t source_id, hwaddr addr,
364 VTDFaultReason fault, bool is_write)
365 {
366 uint64_t hi = 0, lo;
367 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
368
369 assert(index < DMAR_FRCD_REG_NR);
370
371 lo = VTD_FRCD_FI(addr);
372 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
373 if (!is_write) {
374 hi |= VTD_FRCD_T;
375 }
376 vtd_set_quad_raw(s, frcd_reg_addr, lo);
377 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
378 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
379 ", lo 0x%"PRIx64, index, hi, lo);
380 }
381
382 /* Try to collapse multiple pending faults from the same requester */
383 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
384 {
385 uint32_t i;
386 uint64_t frcd_reg;
387 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
388
389 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
390 frcd_reg = vtd_get_quad_raw(s, addr);
391 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
392 if ((frcd_reg & VTD_FRCD_F) &&
393 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
394 return true;
395 }
396 addr += 16; /* 128-bit for each */
397 }
398 return false;
399 }
400
401 /* Log and report an DMAR (address translation) fault to software */
402 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
403 hwaddr addr, VTDFaultReason fault,
404 bool is_write)
405 {
406 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
407
408 assert(fault < VTD_FR_MAX);
409
410 if (fault == VTD_FR_RESERVED_ERR) {
411 /* This is not a normal fault reason case. Drop it. */
412 return;
413 }
414 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
415 ", is_write %d", source_id, fault, addr, is_write);
416 if (fsts_reg & VTD_FSTS_PFO) {
417 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
418 "Primary Fault Overflow");
419 return;
420 }
421 if (vtd_try_collapse_fault(s, source_id)) {
422 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
423 "compression of faults");
424 return;
425 }
426 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
427 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
428 "new fault is not recorded, set PFO field");
429 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
430 return;
431 }
432
433 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
434
435 if (fsts_reg & VTD_FSTS_PPF) {
436 VTD_DPRINTF(FLOG, "there are pending faults already, "
437 "fault event is not generated");
438 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
439 s->next_frcd_reg++;
440 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
441 s->next_frcd_reg = 0;
442 }
443 } else {
444 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
445 VTD_FSTS_FRI(s->next_frcd_reg));
446 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
447 s->next_frcd_reg++;
448 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
449 s->next_frcd_reg = 0;
450 }
451 /* This case actually cause the PPF to be Set.
452 * So generate fault event (interrupt).
453 */
454 vtd_generate_fault_event(s, fsts_reg);
455 }
456 }
457
458 /* Handle Invalidation Queue Errors of queued invalidation interface error
459 * conditions.
460 */
461 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
462 {
463 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
464
465 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
466 vtd_generate_fault_event(s, fsts_reg);
467 }
468
469 /* Set the IWC field and try to generate an invalidation completion interrupt */
470 static void vtd_generate_completion_event(IntelIOMMUState *s)
471 {
472 VTD_DPRINTF(INV, "completes an invalidation wait command with "
473 "Interrupt Flag");
474 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
475 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
476 "serviced by software, "
477 "new invalidation event is not generated");
478 return;
479 }
480 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
481 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
482 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
483 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
484 "event is not generated");
485 return;
486 } else {
487 /* Generate the interrupt event */
488 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
489 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
490 }
491 }
492
493 static inline bool vtd_root_entry_present(VTDRootEntry *root)
494 {
495 return root->val & VTD_ROOT_ENTRY_P;
496 }
497
498 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
499 VTDRootEntry *re)
500 {
501 dma_addr_t addr;
502
503 addr = s->root + index * sizeof(*re);
504 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
505 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
506 " + %"PRIu8, s->root, index);
507 re->val = 0;
508 return -VTD_FR_ROOT_TABLE_INV;
509 }
510 re->val = le64_to_cpu(re->val);
511 return 0;
512 }
513
514 static inline bool vtd_context_entry_present(VTDContextEntry *context)
515 {
516 return context->lo & VTD_CONTEXT_ENTRY_P;
517 }
518
519 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
520 VTDContextEntry *ce)
521 {
522 dma_addr_t addr;
523
524 if (!vtd_root_entry_present(root)) {
525 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
526 return -VTD_FR_ROOT_ENTRY_P;
527 }
528 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
529 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
530 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
531 " + %"PRIu8,
532 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
533 return -VTD_FR_CONTEXT_TABLE_INV;
534 }
535 ce->lo = le64_to_cpu(ce->lo);
536 ce->hi = le64_to_cpu(ce->hi);
537 return 0;
538 }
539
540 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
541 {
542 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
543 }
544
545 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
546 {
547 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
548 }
549
550 /* Whether the pte indicates the address of the page frame */
551 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
552 {
553 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
554 }
555
556 /* Get the content of a spte located in @base_addr[@index] */
557 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
558 {
559 uint64_t slpte;
560
561 assert(index < VTD_SL_PT_ENTRY_NR);
562
563 if (dma_memory_read(&address_space_memory,
564 base_addr + index * sizeof(slpte), &slpte,
565 sizeof(slpte))) {
566 slpte = (uint64_t)-1;
567 return slpte;
568 }
569 slpte = le64_to_cpu(slpte);
570 return slpte;
571 }
572
573 /* Given a gpa and the level of paging structure, return the offset of current
574 * level.
575 */
576 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
577 {
578 return (gpa >> vtd_slpt_level_shift(level)) &
579 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
580 }
581
582 /* Check Capability Register to see if the @level of page-table is supported */
583 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
584 {
585 return VTD_CAP_SAGAW_MASK & s->cap &
586 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
587 }
588
589 /* Get the page-table level that hardware should use for the second-level
590 * page-table walk from the Address Width field of context-entry.
591 */
592 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
593 {
594 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
595 }
596
597 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
598 {
599 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
600 }
601
602 static const uint64_t vtd_paging_entry_rsvd_field[] = {
603 [0] = ~0ULL,
604 /* For not large page */
605 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
606 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
607 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
608 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
609 /* For large page */
610 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
611 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
612 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
613 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
614 };
615
616 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
617 {
618 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
619 /* Maybe large page */
620 return slpte & vtd_paging_entry_rsvd_field[level + 4];
621 } else {
622 return slpte & vtd_paging_entry_rsvd_field[level];
623 }
624 }
625
626 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
627 * of the translation, can be used for deciding the size of large page.
628 */
629 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
630 uint64_t *slptep, uint32_t *slpte_level,
631 bool *reads, bool *writes)
632 {
633 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
634 uint32_t level = vtd_get_level_from_context_entry(ce);
635 uint32_t offset;
636 uint64_t slpte;
637 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
638 uint64_t access_right_check;
639
640 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
641 * and AW in context-entry.
642 */
643 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
644 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
645 return -VTD_FR_ADDR_BEYOND_MGAW;
646 }
647
648 /* FIXME: what is the Atomics request here? */
649 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
650
651 while (true) {
652 offset = vtd_gpa_level_offset(gpa, level);
653 slpte = vtd_get_slpte(addr, offset);
654
655 if (slpte == (uint64_t)-1) {
656 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
657 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
658 level, gpa);
659 if (level == vtd_get_level_from_context_entry(ce)) {
660 /* Invalid programming of context-entry */
661 return -VTD_FR_CONTEXT_ENTRY_INV;
662 } else {
663 return -VTD_FR_PAGING_ENTRY_INV;
664 }
665 }
666 *reads = (*reads) && (slpte & VTD_SL_R);
667 *writes = (*writes) && (slpte & VTD_SL_W);
668 if (!(slpte & access_right_check)) {
669 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
670 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
671 (is_write ? "write" : "read"), gpa, slpte);
672 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
673 }
674 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
675 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
676 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
677 level, slpte);
678 return -VTD_FR_PAGING_ENTRY_RSVD;
679 }
680
681 if (vtd_is_last_slpte(slpte, level)) {
682 *slptep = slpte;
683 *slpte_level = level;
684 return 0;
685 }
686 addr = vtd_get_slpte_addr(slpte);
687 level--;
688 }
689 }
690
691 /* Map a device to its corresponding domain (context-entry) */
692 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
693 uint8_t devfn, VTDContextEntry *ce)
694 {
695 VTDRootEntry re;
696 int ret_fr;
697
698 ret_fr = vtd_get_root_entry(s, bus_num, &re);
699 if (ret_fr) {
700 return ret_fr;
701 }
702
703 if (!vtd_root_entry_present(&re)) {
704 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
705 bus_num);
706 return -VTD_FR_ROOT_ENTRY_P;
707 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
708 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
709 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
710 return -VTD_FR_ROOT_ENTRY_RSVD;
711 }
712
713 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
714 if (ret_fr) {
715 return ret_fr;
716 }
717
718 if (!vtd_context_entry_present(ce)) {
719 VTD_DPRINTF(GENERAL,
720 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
721 "is not present", devfn, bus_num);
722 return -VTD_FR_CONTEXT_ENTRY_P;
723 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
724 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
725 VTD_DPRINTF(GENERAL,
726 "error: non-zero reserved field in context-entry "
727 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
728 return -VTD_FR_CONTEXT_ENTRY_RSVD;
729 }
730 /* Check if the programming of context-entry is valid */
731 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
732 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
733 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
734 ce->hi, ce->lo);
735 return -VTD_FR_CONTEXT_ENTRY_INV;
736 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
737 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
738 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
739 ce->hi, ce->lo);
740 return -VTD_FR_CONTEXT_ENTRY_INV;
741 }
742 return 0;
743 }
744
745 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
746 {
747 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
748 }
749
750 static const bool vtd_qualified_faults[] = {
751 [VTD_FR_RESERVED] = false,
752 [VTD_FR_ROOT_ENTRY_P] = false,
753 [VTD_FR_CONTEXT_ENTRY_P] = true,
754 [VTD_FR_CONTEXT_ENTRY_INV] = true,
755 [VTD_FR_ADDR_BEYOND_MGAW] = true,
756 [VTD_FR_WRITE] = true,
757 [VTD_FR_READ] = true,
758 [VTD_FR_PAGING_ENTRY_INV] = true,
759 [VTD_FR_ROOT_TABLE_INV] = false,
760 [VTD_FR_CONTEXT_TABLE_INV] = false,
761 [VTD_FR_ROOT_ENTRY_RSVD] = false,
762 [VTD_FR_PAGING_ENTRY_RSVD] = true,
763 [VTD_FR_CONTEXT_ENTRY_TT] = true,
764 [VTD_FR_RESERVED_ERR] = false,
765 [VTD_FR_MAX] = false,
766 };
767
768 /* To see if a fault condition is "qualified", which is reported to software
769 * only if the FPD field in the context-entry used to process the faulting
770 * request is 0.
771 */
772 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
773 {
774 return vtd_qualified_faults[fault];
775 }
776
777 static inline bool vtd_is_interrupt_addr(hwaddr addr)
778 {
779 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
780 }
781
782 /* Map dev to context-entry then do a paging-structures walk to do a iommu
783 * translation.
784 *
785 * Called from RCU critical section.
786 *
787 * @bus_num: The bus number
788 * @devfn: The devfn, which is the combined of device and function number
789 * @is_write: The access is a write operation
790 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
791 */
792 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
793 uint8_t devfn, hwaddr addr, bool is_write,
794 IOMMUTLBEntry *entry)
795 {
796 IntelIOMMUState *s = vtd_as->iommu_state;
797 VTDContextEntry ce;
798 uint8_t bus_num = pci_bus_num(bus);
799 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
800 uint64_t slpte, page_mask;
801 uint32_t level;
802 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
803 int ret_fr;
804 bool is_fpd_set = false;
805 bool reads = true;
806 bool writes = true;
807 VTDIOTLBEntry *iotlb_entry;
808
809 /* Check if the request is in interrupt address range */
810 if (vtd_is_interrupt_addr(addr)) {
811 if (is_write) {
812 /* FIXME: since we don't know the length of the access here, we
813 * treat Non-DWORD length write requests without PASID as
814 * interrupt requests, too. Withoud interrupt remapping support,
815 * we just use 1:1 mapping.
816 */
817 VTD_DPRINTF(MMU, "write request to interrupt address "
818 "gpa 0x%"PRIx64, addr);
819 entry->iova = addr & VTD_PAGE_MASK_4K;
820 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
821 entry->addr_mask = ~VTD_PAGE_MASK_4K;
822 entry->perm = IOMMU_WO;
823 return;
824 } else {
825 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
826 "gpa 0x%"PRIx64, addr);
827 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
828 return;
829 }
830 }
831 /* Try to fetch slpte form IOTLB */
832 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
833 if (iotlb_entry) {
834 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
835 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
836 iotlb_entry->slpte, iotlb_entry->domain_id);
837 slpte = iotlb_entry->slpte;
838 reads = iotlb_entry->read_flags;
839 writes = iotlb_entry->write_flags;
840 page_mask = iotlb_entry->mask;
841 goto out;
842 }
843 /* Try to fetch context-entry from cache first */
844 if (cc_entry->context_cache_gen == s->context_cache_gen) {
845 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
846 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
847 bus_num, devfn, cc_entry->context_entry.hi,
848 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
849 ce = cc_entry->context_entry;
850 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
851 } else {
852 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
853 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
854 if (ret_fr) {
855 ret_fr = -ret_fr;
856 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
857 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
858 "requests through this context-entry "
859 "(with FPD Set)");
860 } else {
861 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
862 }
863 return;
864 }
865 /* Update context-cache */
866 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
867 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
868 bus_num, devfn, ce.hi, ce.lo,
869 cc_entry->context_cache_gen, s->context_cache_gen);
870 cc_entry->context_entry = ce;
871 cc_entry->context_cache_gen = s->context_cache_gen;
872 }
873
874 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
875 &reads, &writes);
876 if (ret_fr) {
877 ret_fr = -ret_fr;
878 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
879 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
880 "through this context-entry (with FPD Set)");
881 } else {
882 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
883 }
884 return;
885 }
886
887 page_mask = vtd_slpt_level_page_mask(level);
888 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
889 reads, writes, level);
890 out:
891 entry->iova = addr & page_mask;
892 entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
893 entry->addr_mask = ~page_mask;
894 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
895 }
896
897 static void vtd_root_table_setup(IntelIOMMUState *s)
898 {
899 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
900 s->root_extended = s->root & VTD_RTADDR_RTT;
901 s->root &= VTD_RTADDR_ADDR_MASK;
902
903 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
904 (s->root_extended ? "(extended)" : ""));
905 }
906
907 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
908 uint32_t index, uint32_t mask)
909 {
910 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
911 }
912
913 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
914 {
915 uint64_t value = 0;
916 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
917 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
918 s->intr_root = value & VTD_IRTA_ADDR_MASK;
919
920 /* Notify global invalidation */
921 vtd_iec_notify_all(s, true, 0, 0);
922
923 VTD_DPRINTF(CSR, "int remap table addr 0x%"PRIx64 " size %"PRIu32,
924 s->intr_root, s->intr_size);
925 }
926
927 static void vtd_context_global_invalidate(IntelIOMMUState *s)
928 {
929 s->context_cache_gen++;
930 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
931 vtd_reset_context_cache(s);
932 }
933 }
934
935
936 /* Find the VTD address space currently associated with a given bus number,
937 */
938 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
939 {
940 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
941 if (!vtd_bus) {
942 /* Iterate over the registered buses to find the one
943 * which currently hold this bus number, and update the bus_num lookup table:
944 */
945 GHashTableIter iter;
946
947 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
948 while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
949 if (pci_bus_num(vtd_bus->bus) == bus_num) {
950 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
951 return vtd_bus;
952 }
953 }
954 }
955 return vtd_bus;
956 }
957
958 /* Do a context-cache device-selective invalidation.
959 * @func_mask: FM field after shifting
960 */
961 static void vtd_context_device_invalidate(IntelIOMMUState *s,
962 uint16_t source_id,
963 uint16_t func_mask)
964 {
965 uint16_t mask;
966 VTDBus *vtd_bus;
967 VTDAddressSpace *vtd_as;
968 uint16_t devfn;
969 uint16_t devfn_it;
970
971 switch (func_mask & 3) {
972 case 0:
973 mask = 0; /* No bits in the SID field masked */
974 break;
975 case 1:
976 mask = 4; /* Mask bit 2 in the SID field */
977 break;
978 case 2:
979 mask = 6; /* Mask bit 2:1 in the SID field */
980 break;
981 case 3:
982 mask = 7; /* Mask bit 2:0 in the SID field */
983 break;
984 }
985 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
986 " mask %"PRIu16, source_id, mask);
987 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
988 if (vtd_bus) {
989 devfn = VTD_SID_TO_DEVFN(source_id);
990 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
991 vtd_as = vtd_bus->dev_as[devfn_it];
992 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
993 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
994 devfn_it);
995 vtd_as->context_cache_entry.context_cache_gen = 0;
996 }
997 }
998 }
999 }
1000
1001 /* Context-cache invalidation
1002 * Returns the Context Actual Invalidation Granularity.
1003 * @val: the content of the CCMD_REG
1004 */
1005 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1006 {
1007 uint64_t caig;
1008 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1009
1010 switch (type) {
1011 case VTD_CCMD_DOMAIN_INVL:
1012 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1013 (uint16_t)VTD_CCMD_DID(val));
1014 /* Fall through */
1015 case VTD_CCMD_GLOBAL_INVL:
1016 VTD_DPRINTF(INV, "global invalidation");
1017 caig = VTD_CCMD_GLOBAL_INVL_A;
1018 vtd_context_global_invalidate(s);
1019 break;
1020
1021 case VTD_CCMD_DEVICE_INVL:
1022 caig = VTD_CCMD_DEVICE_INVL_A;
1023 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1024 break;
1025
1026 default:
1027 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1028 caig = 0;
1029 }
1030 return caig;
1031 }
1032
1033 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1034 {
1035 vtd_reset_iotlb(s);
1036 }
1037
1038 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1039 {
1040 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1041 &domain_id);
1042 }
1043
1044 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1045 hwaddr addr, uint8_t am)
1046 {
1047 VTDIOTLBPageInvInfo info;
1048
1049 assert(am <= VTD_MAMV);
1050 info.domain_id = domain_id;
1051 info.addr = addr;
1052 info.mask = ~((1 << am) - 1);
1053 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1054 }
1055
1056 /* Flush IOTLB
1057 * Returns the IOTLB Actual Invalidation Granularity.
1058 * @val: the content of the IOTLB_REG
1059 */
1060 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1061 {
1062 uint64_t iaig;
1063 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1064 uint16_t domain_id;
1065 hwaddr addr;
1066 uint8_t am;
1067
1068 switch (type) {
1069 case VTD_TLB_GLOBAL_FLUSH:
1070 VTD_DPRINTF(INV, "global invalidation");
1071 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1072 vtd_iotlb_global_invalidate(s);
1073 break;
1074
1075 case VTD_TLB_DSI_FLUSH:
1076 domain_id = VTD_TLB_DID(val);
1077 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1078 domain_id);
1079 iaig = VTD_TLB_DSI_FLUSH_A;
1080 vtd_iotlb_domain_invalidate(s, domain_id);
1081 break;
1082
1083 case VTD_TLB_PSI_FLUSH:
1084 domain_id = VTD_TLB_DID(val);
1085 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1086 am = VTD_IVA_AM(addr);
1087 addr = VTD_IVA_ADDR(addr);
1088 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1089 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1090 if (am > VTD_MAMV) {
1091 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1092 "%"PRIu8, (uint8_t)VTD_MAMV);
1093 iaig = 0;
1094 break;
1095 }
1096 iaig = VTD_TLB_PSI_FLUSH_A;
1097 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1098 break;
1099
1100 default:
1101 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1102 iaig = 0;
1103 }
1104 return iaig;
1105 }
1106
1107 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1108 {
1109 return s->iq_tail == 0;
1110 }
1111
1112 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1113 {
1114 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1115 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1116 }
1117
1118 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1119 {
1120 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1121
1122 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1123 if (en) {
1124 if (vtd_queued_inv_enable_check(s)) {
1125 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1126 /* 2^(x+8) entries */
1127 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1128 s->qi_enabled = true;
1129 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1130 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1131 s->iq, s->iq_size);
1132 /* Ok - report back to driver */
1133 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1134 } else {
1135 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1136 "tail %"PRIu16, s->iq_tail);
1137 }
1138 } else {
1139 if (vtd_queued_inv_disable_check(s)) {
1140 /* disable Queued Invalidation */
1141 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1142 s->iq_head = 0;
1143 s->qi_enabled = false;
1144 /* Ok - report back to driver */
1145 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1146 } else {
1147 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1148 "head %"PRIu16 ", tail %"PRIu16
1149 ", last_descriptor %"PRIu8,
1150 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1151 }
1152 }
1153 }
1154
1155 /* Set Root Table Pointer */
1156 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1157 {
1158 VTD_DPRINTF(CSR, "set Root Table Pointer");
1159
1160 vtd_root_table_setup(s);
1161 /* Ok - report back to driver */
1162 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1163 }
1164
1165 /* Set Interrupt Remap Table Pointer */
1166 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1167 {
1168 VTD_DPRINTF(CSR, "set Interrupt Remap Table Pointer");
1169
1170 vtd_interrupt_remap_table_setup(s);
1171 /* Ok - report back to driver */
1172 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1173 }
1174
1175 /* Handle Translation Enable/Disable */
1176 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1177 {
1178 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1179
1180 if (en) {
1181 s->dmar_enabled = true;
1182 /* Ok - report back to driver */
1183 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1184 } else {
1185 s->dmar_enabled = false;
1186
1187 /* Clear the index of Fault Recording Register */
1188 s->next_frcd_reg = 0;
1189 /* Ok - report back to driver */
1190 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1191 }
1192 }
1193
1194 /* Handle Interrupt Remap Enable/Disable */
1195 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1196 {
1197 VTD_DPRINTF(CSR, "Interrupt Remap Enable %s", (en ? "on" : "off"));
1198
1199 if (en) {
1200 s->intr_enabled = true;
1201 /* Ok - report back to driver */
1202 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1203 } else {
1204 s->intr_enabled = false;
1205 /* Ok - report back to driver */
1206 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1207 }
1208 }
1209
1210 /* Handle write to Global Command Register */
1211 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1212 {
1213 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1214 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1215 uint32_t changed = status ^ val;
1216
1217 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1218 if (changed & VTD_GCMD_TE) {
1219 /* Translation enable/disable */
1220 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1221 }
1222 if (val & VTD_GCMD_SRTP) {
1223 /* Set/update the root-table pointer */
1224 vtd_handle_gcmd_srtp(s);
1225 }
1226 if (changed & VTD_GCMD_QIE) {
1227 /* Queued Invalidation Enable */
1228 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1229 }
1230 if (val & VTD_GCMD_SIRTP) {
1231 /* Set/update the interrupt remapping root-table pointer */
1232 vtd_handle_gcmd_sirtp(s);
1233 }
1234 if (changed & VTD_GCMD_IRE) {
1235 /* Interrupt remap enable/disable */
1236 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1237 }
1238 }
1239
1240 /* Handle write to Context Command Register */
1241 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1242 {
1243 uint64_t ret;
1244 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1245
1246 /* Context-cache invalidation request */
1247 if (val & VTD_CCMD_ICC) {
1248 if (s->qi_enabled) {
1249 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1250 "should not use register-based invalidation");
1251 return;
1252 }
1253 ret = vtd_context_cache_invalidate(s, val);
1254 /* Invalidation completed. Change something to show */
1255 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1256 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1257 ret);
1258 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1259 }
1260 }
1261
1262 /* Handle write to IOTLB Invalidation Register */
1263 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1264 {
1265 uint64_t ret;
1266 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1267
1268 /* IOTLB invalidation request */
1269 if (val & VTD_TLB_IVT) {
1270 if (s->qi_enabled) {
1271 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1272 "should not use register-based invalidation");
1273 return;
1274 }
1275 ret = vtd_iotlb_flush(s, val);
1276 /* Invalidation completed. Change something to show */
1277 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1278 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1279 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1280 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1281 }
1282 }
1283
1284 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1285 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1286 VTDInvDesc *inv_desc)
1287 {
1288 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1289 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1290 sizeof(*inv_desc))) {
1291 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1292 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1293 inv_desc->lo = 0;
1294 inv_desc->hi = 0;
1295
1296 return false;
1297 }
1298 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1299 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1300 return true;
1301 }
1302
1303 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1304 {
1305 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1306 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1307 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1308 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1309 inv_desc->hi, inv_desc->lo);
1310 return false;
1311 }
1312 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1313 /* Status Write */
1314 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1315 VTD_INV_DESC_WAIT_DATA_SHIFT);
1316
1317 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1318
1319 /* FIXME: need to be masked with HAW? */
1320 dma_addr_t status_addr = inv_desc->hi;
1321 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1322 status_data, status_addr);
1323 status_data = cpu_to_le32(status_data);
1324 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1325 sizeof(status_data))) {
1326 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1327 return false;
1328 }
1329 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1330 /* Interrupt flag */
1331 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1332 vtd_generate_completion_event(s);
1333 } else {
1334 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1335 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1336 return false;
1337 }
1338 return true;
1339 }
1340
1341 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1342 VTDInvDesc *inv_desc)
1343 {
1344 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1345 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1346 "Invalidate Descriptor");
1347 return false;
1348 }
1349 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1350 case VTD_INV_DESC_CC_DOMAIN:
1351 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1352 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1353 /* Fall through */
1354 case VTD_INV_DESC_CC_GLOBAL:
1355 VTD_DPRINTF(INV, "global invalidation");
1356 vtd_context_global_invalidate(s);
1357 break;
1358
1359 case VTD_INV_DESC_CC_DEVICE:
1360 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1361 VTD_INV_DESC_CC_FM(inv_desc->lo));
1362 break;
1363
1364 default:
1365 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1366 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1367 inv_desc->hi, inv_desc->lo);
1368 return false;
1369 }
1370 return true;
1371 }
1372
1373 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1374 {
1375 uint16_t domain_id;
1376 uint8_t am;
1377 hwaddr addr;
1378
1379 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1380 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1381 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1382 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1383 inv_desc->hi, inv_desc->lo);
1384 return false;
1385 }
1386
1387 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1388 case VTD_INV_DESC_IOTLB_GLOBAL:
1389 VTD_DPRINTF(INV, "global invalidation");
1390 vtd_iotlb_global_invalidate(s);
1391 break;
1392
1393 case VTD_INV_DESC_IOTLB_DOMAIN:
1394 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1395 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1396 domain_id);
1397 vtd_iotlb_domain_invalidate(s, domain_id);
1398 break;
1399
1400 case VTD_INV_DESC_IOTLB_PAGE:
1401 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1402 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1403 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1404 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1405 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1406 if (am > VTD_MAMV) {
1407 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1408 "%"PRIu8, (uint8_t)VTD_MAMV);
1409 return false;
1410 }
1411 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1412 break;
1413
1414 default:
1415 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1416 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1417 inv_desc->hi, inv_desc->lo);
1418 return false;
1419 }
1420 return true;
1421 }
1422
1423 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1424 VTDInvDesc *inv_desc)
1425 {
1426 VTD_DPRINTF(INV, "inv ir glob %d index %d mask %d",
1427 inv_desc->iec.granularity,
1428 inv_desc->iec.index,
1429 inv_desc->iec.index_mask);
1430
1431 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1432 inv_desc->iec.index,
1433 inv_desc->iec.index_mask);
1434
1435 return true;
1436 }
1437
1438 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1439 {
1440 VTDInvDesc inv_desc;
1441 uint8_t desc_type;
1442
1443 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1444 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1445 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1446 return false;
1447 }
1448 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1449 /* FIXME: should update at first or at last? */
1450 s->iq_last_desc_type = desc_type;
1451
1452 switch (desc_type) {
1453 case VTD_INV_DESC_CC:
1454 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1455 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1456 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1457 return false;
1458 }
1459 break;
1460
1461 case VTD_INV_DESC_IOTLB:
1462 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1463 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1464 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1465 return false;
1466 }
1467 break;
1468
1469 case VTD_INV_DESC_WAIT:
1470 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1471 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1472 if (!vtd_process_wait_desc(s, &inv_desc)) {
1473 return false;
1474 }
1475 break;
1476
1477 case VTD_INV_DESC_IEC:
1478 VTD_DPRINTF(INV, "Invalidation Interrupt Entry Cache "
1479 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1480 inv_desc.hi, inv_desc.lo);
1481 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1482 return false;
1483 }
1484 break;
1485
1486 default:
1487 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1488 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1489 inv_desc.hi, inv_desc.lo, desc_type);
1490 return false;
1491 }
1492 s->iq_head++;
1493 if (s->iq_head == s->iq_size) {
1494 s->iq_head = 0;
1495 }
1496 return true;
1497 }
1498
1499 /* Try to fetch and process more Invalidation Descriptors */
1500 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1501 {
1502 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1503 if (s->iq_tail >= s->iq_size) {
1504 /* Detects an invalid Tail pointer */
1505 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1506 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1507 vtd_handle_inv_queue_error(s);
1508 return;
1509 }
1510 while (s->iq_head != s->iq_tail) {
1511 if (!vtd_process_inv_desc(s)) {
1512 /* Invalidation Queue Errors */
1513 vtd_handle_inv_queue_error(s);
1514 break;
1515 }
1516 /* Must update the IQH_REG in time */
1517 vtd_set_quad_raw(s, DMAR_IQH_REG,
1518 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1519 VTD_IQH_QH_MASK);
1520 }
1521 }
1522
1523 /* Handle write to Invalidation Queue Tail Register */
1524 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1525 {
1526 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1527
1528 s->iq_tail = VTD_IQT_QT(val);
1529 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1530 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1531 /* Process Invalidation Queue here */
1532 vtd_fetch_inv_desc(s);
1533 }
1534 }
1535
1536 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1537 {
1538 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1539 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1540 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1541
1542 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1543 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1544 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1545 "IP field of FECTL_REG");
1546 }
1547 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1548 * Descriptors if there are any when Queued Invalidation is enabled?
1549 */
1550 }
1551
1552 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1553 {
1554 uint32_t fectl_reg;
1555 /* FIXME: when software clears the IM field, check the IP field. But do we
1556 * need to compare the old value and the new value to conclude that
1557 * software clears the IM field? Or just check if the IM field is zero?
1558 */
1559 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1560 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1561 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1562 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1563 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1564 "fault event interrupt");
1565 }
1566 }
1567
1568 static void vtd_handle_ics_write(IntelIOMMUState *s)
1569 {
1570 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1571 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1572
1573 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1574 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1575 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1576 "clear IP field of IECTL_REG");
1577 }
1578 }
1579
1580 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1581 {
1582 uint32_t iectl_reg;
1583 /* FIXME: when software clears the IM field, check the IP field. But do we
1584 * need to compare the old value and the new value to conclude that
1585 * software clears the IM field? Or just check if the IM field is zero?
1586 */
1587 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1588 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1589 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1590 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1591 VTD_DPRINTF(INV, "IM field is cleared, generate "
1592 "invalidation event interrupt");
1593 }
1594 }
1595
1596 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1597 {
1598 IntelIOMMUState *s = opaque;
1599 uint64_t val;
1600
1601 if (addr + size > DMAR_REG_SIZE) {
1602 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1603 ", got 0x%"PRIx64 " %d",
1604 (uint64_t)DMAR_REG_SIZE, addr, size);
1605 return (uint64_t)-1;
1606 }
1607
1608 switch (addr) {
1609 /* Root Table Address Register, 64-bit */
1610 case DMAR_RTADDR_REG:
1611 if (size == 4) {
1612 val = s->root & ((1ULL << 32) - 1);
1613 } else {
1614 val = s->root;
1615 }
1616 break;
1617
1618 case DMAR_RTADDR_REG_HI:
1619 assert(size == 4);
1620 val = s->root >> 32;
1621 break;
1622
1623 /* Invalidation Queue Address Register, 64-bit */
1624 case DMAR_IQA_REG:
1625 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1626 if (size == 4) {
1627 val = val & ((1ULL << 32) - 1);
1628 }
1629 break;
1630
1631 case DMAR_IQA_REG_HI:
1632 assert(size == 4);
1633 val = s->iq >> 32;
1634 break;
1635
1636 default:
1637 if (size == 4) {
1638 val = vtd_get_long(s, addr);
1639 } else {
1640 val = vtd_get_quad(s, addr);
1641 }
1642 }
1643 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1644 addr, size, val);
1645 return val;
1646 }
1647
1648 static void vtd_mem_write(void *opaque, hwaddr addr,
1649 uint64_t val, unsigned size)
1650 {
1651 IntelIOMMUState *s = opaque;
1652
1653 if (addr + size > DMAR_REG_SIZE) {
1654 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1655 ", got 0x%"PRIx64 " %d",
1656 (uint64_t)DMAR_REG_SIZE, addr, size);
1657 return;
1658 }
1659
1660 switch (addr) {
1661 /* Global Command Register, 32-bit */
1662 case DMAR_GCMD_REG:
1663 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1664 ", size %d, val 0x%"PRIx64, addr, size, val);
1665 vtd_set_long(s, addr, val);
1666 vtd_handle_gcmd_write(s);
1667 break;
1668
1669 /* Context Command Register, 64-bit */
1670 case DMAR_CCMD_REG:
1671 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1672 ", size %d, val 0x%"PRIx64, addr, size, val);
1673 if (size == 4) {
1674 vtd_set_long(s, addr, val);
1675 } else {
1676 vtd_set_quad(s, addr, val);
1677 vtd_handle_ccmd_write(s);
1678 }
1679 break;
1680
1681 case DMAR_CCMD_REG_HI:
1682 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1683 ", size %d, val 0x%"PRIx64, addr, size, val);
1684 assert(size == 4);
1685 vtd_set_long(s, addr, val);
1686 vtd_handle_ccmd_write(s);
1687 break;
1688
1689 /* IOTLB Invalidation Register, 64-bit */
1690 case DMAR_IOTLB_REG:
1691 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1692 ", size %d, val 0x%"PRIx64, addr, size, val);
1693 if (size == 4) {
1694 vtd_set_long(s, addr, val);
1695 } else {
1696 vtd_set_quad(s, addr, val);
1697 vtd_handle_iotlb_write(s);
1698 }
1699 break;
1700
1701 case DMAR_IOTLB_REG_HI:
1702 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1703 ", size %d, val 0x%"PRIx64, addr, size, val);
1704 assert(size == 4);
1705 vtd_set_long(s, addr, val);
1706 vtd_handle_iotlb_write(s);
1707 break;
1708
1709 /* Invalidate Address Register, 64-bit */
1710 case DMAR_IVA_REG:
1711 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1712 ", size %d, val 0x%"PRIx64, addr, size, val);
1713 if (size == 4) {
1714 vtd_set_long(s, addr, val);
1715 } else {
1716 vtd_set_quad(s, addr, val);
1717 }
1718 break;
1719
1720 case DMAR_IVA_REG_HI:
1721 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1722 ", size %d, val 0x%"PRIx64, addr, size, val);
1723 assert(size == 4);
1724 vtd_set_long(s, addr, val);
1725 break;
1726
1727 /* Fault Status Register, 32-bit */
1728 case DMAR_FSTS_REG:
1729 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1730 ", size %d, val 0x%"PRIx64, addr, size, val);
1731 assert(size == 4);
1732 vtd_set_long(s, addr, val);
1733 vtd_handle_fsts_write(s);
1734 break;
1735
1736 /* Fault Event Control Register, 32-bit */
1737 case DMAR_FECTL_REG:
1738 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1739 ", size %d, val 0x%"PRIx64, addr, size, val);
1740 assert(size == 4);
1741 vtd_set_long(s, addr, val);
1742 vtd_handle_fectl_write(s);
1743 break;
1744
1745 /* Fault Event Data Register, 32-bit */
1746 case DMAR_FEDATA_REG:
1747 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1748 ", size %d, val 0x%"PRIx64, addr, size, val);
1749 assert(size == 4);
1750 vtd_set_long(s, addr, val);
1751 break;
1752
1753 /* Fault Event Address Register, 32-bit */
1754 case DMAR_FEADDR_REG:
1755 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1756 ", size %d, val 0x%"PRIx64, addr, size, val);
1757 assert(size == 4);
1758 vtd_set_long(s, addr, val);
1759 break;
1760
1761 /* Fault Event Upper Address Register, 32-bit */
1762 case DMAR_FEUADDR_REG:
1763 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1764 ", size %d, val 0x%"PRIx64, addr, size, val);
1765 assert(size == 4);
1766 vtd_set_long(s, addr, val);
1767 break;
1768
1769 /* Protected Memory Enable Register, 32-bit */
1770 case DMAR_PMEN_REG:
1771 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1772 ", size %d, val 0x%"PRIx64, addr, size, val);
1773 assert(size == 4);
1774 vtd_set_long(s, addr, val);
1775 break;
1776
1777 /* Root Table Address Register, 64-bit */
1778 case DMAR_RTADDR_REG:
1779 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1780 ", size %d, val 0x%"PRIx64, addr, size, val);
1781 if (size == 4) {
1782 vtd_set_long(s, addr, val);
1783 } else {
1784 vtd_set_quad(s, addr, val);
1785 }
1786 break;
1787
1788 case DMAR_RTADDR_REG_HI:
1789 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1790 ", size %d, val 0x%"PRIx64, addr, size, val);
1791 assert(size == 4);
1792 vtd_set_long(s, addr, val);
1793 break;
1794
1795 /* Invalidation Queue Tail Register, 64-bit */
1796 case DMAR_IQT_REG:
1797 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1798 ", size %d, val 0x%"PRIx64, addr, size, val);
1799 if (size == 4) {
1800 vtd_set_long(s, addr, val);
1801 } else {
1802 vtd_set_quad(s, addr, val);
1803 }
1804 vtd_handle_iqt_write(s);
1805 break;
1806
1807 case DMAR_IQT_REG_HI:
1808 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1809 ", size %d, val 0x%"PRIx64, addr, size, val);
1810 assert(size == 4);
1811 vtd_set_long(s, addr, val);
1812 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1813 break;
1814
1815 /* Invalidation Queue Address Register, 64-bit */
1816 case DMAR_IQA_REG:
1817 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1818 ", size %d, val 0x%"PRIx64, addr, size, val);
1819 if (size == 4) {
1820 vtd_set_long(s, addr, val);
1821 } else {
1822 vtd_set_quad(s, addr, val);
1823 }
1824 break;
1825
1826 case DMAR_IQA_REG_HI:
1827 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1828 ", size %d, val 0x%"PRIx64, addr, size, val);
1829 assert(size == 4);
1830 vtd_set_long(s, addr, val);
1831 break;
1832
1833 /* Invalidation Completion Status Register, 32-bit */
1834 case DMAR_ICS_REG:
1835 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1836 ", size %d, val 0x%"PRIx64, addr, size, val);
1837 assert(size == 4);
1838 vtd_set_long(s, addr, val);
1839 vtd_handle_ics_write(s);
1840 break;
1841
1842 /* Invalidation Event Control Register, 32-bit */
1843 case DMAR_IECTL_REG:
1844 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1845 ", size %d, val 0x%"PRIx64, addr, size, val);
1846 assert(size == 4);
1847 vtd_set_long(s, addr, val);
1848 vtd_handle_iectl_write(s);
1849 break;
1850
1851 /* Invalidation Event Data Register, 32-bit */
1852 case DMAR_IEDATA_REG:
1853 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1854 ", size %d, val 0x%"PRIx64, addr, size, val);
1855 assert(size == 4);
1856 vtd_set_long(s, addr, val);
1857 break;
1858
1859 /* Invalidation Event Address Register, 32-bit */
1860 case DMAR_IEADDR_REG:
1861 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1862 ", size %d, val 0x%"PRIx64, addr, size, val);
1863 assert(size == 4);
1864 vtd_set_long(s, addr, val);
1865 break;
1866
1867 /* Invalidation Event Upper Address Register, 32-bit */
1868 case DMAR_IEUADDR_REG:
1869 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1870 ", size %d, val 0x%"PRIx64, addr, size, val);
1871 assert(size == 4);
1872 vtd_set_long(s, addr, val);
1873 break;
1874
1875 /* Fault Recording Registers, 128-bit */
1876 case DMAR_FRCD_REG_0_0:
1877 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1878 ", size %d, val 0x%"PRIx64, addr, size, val);
1879 if (size == 4) {
1880 vtd_set_long(s, addr, val);
1881 } else {
1882 vtd_set_quad(s, addr, val);
1883 }
1884 break;
1885
1886 case DMAR_FRCD_REG_0_1:
1887 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1888 ", size %d, val 0x%"PRIx64, addr, size, val);
1889 assert(size == 4);
1890 vtd_set_long(s, addr, val);
1891 break;
1892
1893 case DMAR_FRCD_REG_0_2:
1894 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1895 ", size %d, val 0x%"PRIx64, addr, size, val);
1896 if (size == 4) {
1897 vtd_set_long(s, addr, val);
1898 } else {
1899 vtd_set_quad(s, addr, val);
1900 /* May clear bit 127 (Fault), update PPF */
1901 vtd_update_fsts_ppf(s);
1902 }
1903 break;
1904
1905 case DMAR_FRCD_REG_0_3:
1906 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1907 ", size %d, val 0x%"PRIx64, addr, size, val);
1908 assert(size == 4);
1909 vtd_set_long(s, addr, val);
1910 /* May clear bit 127 (Fault), update PPF */
1911 vtd_update_fsts_ppf(s);
1912 break;
1913
1914 case DMAR_IRTA_REG:
1915 VTD_DPRINTF(IR, "DMAR_IRTA_REG write addr 0x%"PRIx64
1916 ", size %d, val 0x%"PRIx64, addr, size, val);
1917 if (size == 4) {
1918 vtd_set_long(s, addr, val);
1919 } else {
1920 vtd_set_quad(s, addr, val);
1921 }
1922 break;
1923
1924 case DMAR_IRTA_REG_HI:
1925 VTD_DPRINTF(IR, "DMAR_IRTA_REG_HI write addr 0x%"PRIx64
1926 ", size %d, val 0x%"PRIx64, addr, size, val);
1927 assert(size == 4);
1928 vtd_set_long(s, addr, val);
1929 break;
1930
1931 default:
1932 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1933 ", size %d, val 0x%"PRIx64, addr, size, val);
1934 if (size == 4) {
1935 vtd_set_long(s, addr, val);
1936 } else {
1937 vtd_set_quad(s, addr, val);
1938 }
1939 }
1940 }
1941
1942 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1943 bool is_write)
1944 {
1945 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1946 IntelIOMMUState *s = vtd_as->iommu_state;
1947 IOMMUTLBEntry ret = {
1948 .target_as = &address_space_memory,
1949 .iova = addr,
1950 .translated_addr = 0,
1951 .addr_mask = ~(hwaddr)0,
1952 .perm = IOMMU_NONE,
1953 };
1954
1955 if (!s->dmar_enabled) {
1956 /* DMAR disabled, passthrough, use 4k-page*/
1957 ret.iova = addr & VTD_PAGE_MASK_4K;
1958 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1959 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1960 ret.perm = IOMMU_RW;
1961 return ret;
1962 }
1963
1964 vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1965 is_write, &ret);
1966 VTD_DPRINTF(MMU,
1967 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1968 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1969 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1970 vtd_as->devfn, addr, ret.translated_addr);
1971 return ret;
1972 }
1973
1974 static void vtd_iommu_notify_started(MemoryRegion *iommu)
1975 {
1976 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1977
1978 hw_error("Device at bus %s addr %02x.%d requires iommu notifier which "
1979 "is currently not supported by intel-iommu emulation",
1980 vtd_as->bus->qbus.name, PCI_SLOT(vtd_as->devfn),
1981 PCI_FUNC(vtd_as->devfn));
1982 }
1983
1984 static const VMStateDescription vtd_vmstate = {
1985 .name = "iommu-intel",
1986 .unmigratable = 1,
1987 };
1988
1989 static const MemoryRegionOps vtd_mem_ops = {
1990 .read = vtd_mem_read,
1991 .write = vtd_mem_write,
1992 .endianness = DEVICE_LITTLE_ENDIAN,
1993 .impl = {
1994 .min_access_size = 4,
1995 .max_access_size = 8,
1996 },
1997 .valid = {
1998 .min_access_size = 4,
1999 .max_access_size = 8,
2000 },
2001 };
2002
2003 static Property vtd_properties[] = {
2004 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2005 DEFINE_PROP_END_OF_LIST(),
2006 };
2007
2008 /* Read IRTE entry with specific index */
2009 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2010 VTD_IRTE *entry)
2011 {
2012 dma_addr_t addr = 0x00;
2013
2014 addr = iommu->intr_root + index * sizeof(*entry);
2015 if (dma_memory_read(&address_space_memory, addr, entry,
2016 sizeof(*entry))) {
2017 VTD_DPRINTF(GENERAL, "error: fail to access IR root at 0x%"PRIx64
2018 " + %"PRIu16, iommu->intr_root, index);
2019 return -VTD_FR_IR_ROOT_INVAL;
2020 }
2021
2022 if (!entry->present) {
2023 VTD_DPRINTF(GENERAL, "error: present flag not set in IRTE"
2024 " entry index %u value 0x%"PRIx64 " 0x%"PRIx64,
2025 index, le64_to_cpu(entry->data[1]),
2026 le64_to_cpu(entry->data[0]));
2027 return -VTD_FR_IR_ENTRY_P;
2028 }
2029
2030 if (entry->__reserved_0 || entry->__reserved_1 || \
2031 entry->__reserved_2) {
2032 VTD_DPRINTF(GENERAL, "error: IRTE entry index %"PRIu16
2033 " reserved fields non-zero: 0x%"PRIx64 " 0x%"PRIx64,
2034 index, le64_to_cpu(entry->data[1]),
2035 le64_to_cpu(entry->data[0]));
2036 return -VTD_FR_IR_IRTE_RSVD;
2037 }
2038
2039 /*
2040 * TODO: Check Source-ID corresponds to SVT (Source Validation
2041 * Type) bits
2042 */
2043
2044 return 0;
2045 }
2046
2047 /* Fetch IRQ information of specific IR index */
2048 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, VTDIrq *irq)
2049 {
2050 VTD_IRTE irte = {};
2051 int ret = 0;
2052
2053 ret = vtd_irte_get(iommu, index, &irte);
2054 if (ret) {
2055 return ret;
2056 }
2057
2058 irq->trigger_mode = irte.trigger_mode;
2059 irq->vector = irte.vector;
2060 irq->delivery_mode = irte.delivery_mode;
2061 /* Not support EIM yet: please refer to vt-d 9.10 DST bits */
2062 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2063 #define VTD_IR_APIC_DEST_SHIFT (8)
2064 irq->dest = (le32_to_cpu(irte.dest_id) & VTD_IR_APIC_DEST_MASK) >> \
2065 VTD_IR_APIC_DEST_SHIFT;
2066 irq->dest_mode = irte.dest_mode;
2067 irq->redir_hint = irte.redir_hint;
2068
2069 VTD_DPRINTF(IR, "remapping interrupt index %d: trig:%u,vec:%u,"
2070 "deliver:%u,dest:%u,dest_mode:%u", index,
2071 irq->trigger_mode, irq->vector, irq->delivery_mode,
2072 irq->dest, irq->dest_mode);
2073
2074 return 0;
2075 }
2076
2077 /* Generate one MSI message from VTDIrq info */
2078 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2079 {
2080 VTD_MSIMessage msg = {};
2081
2082 /* Generate address bits */
2083 msg.dest_mode = irq->dest_mode;
2084 msg.redir_hint = irq->redir_hint;
2085 msg.dest = irq->dest;
2086 msg.__addr_head = cpu_to_le32(0xfee);
2087 /* Keep this from original MSI address bits */
2088 msg.__not_used = irq->msi_addr_last_bits;
2089
2090 /* Generate data bits */
2091 msg.vector = irq->vector;
2092 msg.delivery_mode = irq->delivery_mode;
2093 msg.level = 1;
2094 msg.trigger_mode = irq->trigger_mode;
2095
2096 msg_out->address = msg.msi_addr;
2097 msg_out->data = msg.msi_data;
2098 }
2099
2100 /* Interrupt remapping for MSI/MSI-X entry */
2101 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2102 MSIMessage *origin,
2103 MSIMessage *translated)
2104 {
2105 int ret = 0;
2106 VTD_IR_MSIAddress addr;
2107 uint16_t index;
2108 VTDIrq irq = {};
2109
2110 assert(origin && translated);
2111
2112 if (!iommu || !iommu->intr_enabled) {
2113 goto do_not_translate;
2114 }
2115
2116 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2117 VTD_DPRINTF(GENERAL, "error: MSI addr high 32 bits nonzero"
2118 " during interrupt remapping: 0x%"PRIx32,
2119 (uint32_t)((origin->address & VTD_MSI_ADDR_HI_MASK) >> \
2120 VTD_MSI_ADDR_HI_SHIFT));
2121 return -VTD_FR_IR_REQ_RSVD;
2122 }
2123
2124 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2125 if (le16_to_cpu(addr.__head) != 0xfee) {
2126 VTD_DPRINTF(GENERAL, "error: MSI addr low 32 bits invalid: "
2127 "0x%"PRIx32, addr.data);
2128 return -VTD_FR_IR_REQ_RSVD;
2129 }
2130
2131 /* This is compatible mode. */
2132 if (addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2133 goto do_not_translate;
2134 }
2135
2136 index = addr.index_h << 15 | le16_to_cpu(addr.index_l);
2137
2138 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2139 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2140
2141 if (addr.sub_valid) {
2142 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2143 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2144 }
2145
2146 ret = vtd_remap_irq_get(iommu, index, &irq);
2147 if (ret) {
2148 return ret;
2149 }
2150
2151 if (addr.sub_valid) {
2152 VTD_DPRINTF(IR, "received MSI interrupt");
2153 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2154 VTD_DPRINTF(GENERAL, "error: MSI data bits non-zero for "
2155 "interrupt remappable entry: 0x%"PRIx32,
2156 origin->data);
2157 return -VTD_FR_IR_REQ_RSVD;
2158 }
2159 } else {
2160 uint8_t vector = origin->data & 0xff;
2161 VTD_DPRINTF(IR, "received IOAPIC interrupt");
2162 /* IOAPIC entry vector should be aligned with IRTE vector
2163 * (see vt-d spec 5.1.5.1). */
2164 if (vector != irq.vector) {
2165 VTD_DPRINTF(GENERAL, "IOAPIC vector inconsistent: "
2166 "entry: %d, IRTE: %d, index: %d",
2167 vector, irq.vector, index);
2168 }
2169 }
2170
2171 /*
2172 * We'd better keep the last two bits, assuming that guest OS
2173 * might modify it. Keep it does not hurt after all.
2174 */
2175 irq.msi_addr_last_bits = addr.__not_care;
2176
2177 /* Translate VTDIrq to MSI message */
2178 vtd_generate_msi_message(&irq, translated);
2179
2180 VTD_DPRINTF(IR, "mapping MSI 0x%"PRIx64":0x%"PRIx32 " -> "
2181 "0x%"PRIx64":0x%"PRIx32, origin->address, origin->data,
2182 translated->address, translated->data);
2183 return 0;
2184
2185 do_not_translate:
2186 memcpy(translated, origin, sizeof(*origin));
2187 return 0;
2188 }
2189
2190 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2191 MSIMessage *dst, uint16_t sid)
2192 {
2193 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), src, dst);
2194 }
2195
2196 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2197 uint64_t *data, unsigned size,
2198 MemTxAttrs attrs)
2199 {
2200 return MEMTX_OK;
2201 }
2202
2203 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2204 uint64_t value, unsigned size,
2205 MemTxAttrs attrs)
2206 {
2207 int ret = 0;
2208 MSIMessage from = {}, to = {};
2209
2210 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2211 from.data = (uint32_t) value;
2212
2213 ret = vtd_interrupt_remap_msi(opaque, &from, &to);
2214 if (ret) {
2215 /* TODO: report error */
2216 VTD_DPRINTF(GENERAL, "int remap fail for addr 0x%"PRIx64
2217 " data 0x%"PRIx32, from.address, from.data);
2218 /* Drop this interrupt */
2219 return MEMTX_ERROR;
2220 }
2221
2222 VTD_DPRINTF(IR, "delivering MSI 0x%"PRIx64":0x%"PRIx32
2223 " for device sid 0x%04x",
2224 to.address, to.data, sid);
2225
2226 if (dma_memory_write(&address_space_memory, to.address,
2227 &to.data, size)) {
2228 VTD_DPRINTF(GENERAL, "error: fail to write 0x%"PRIx64
2229 " value 0x%"PRIx32, to.address, to.data);
2230 }
2231
2232 return MEMTX_OK;
2233 }
2234
2235 static const MemoryRegionOps vtd_mem_ir_ops = {
2236 .read_with_attrs = vtd_mem_ir_read,
2237 .write_with_attrs = vtd_mem_ir_write,
2238 .endianness = DEVICE_LITTLE_ENDIAN,
2239 .impl = {
2240 .min_access_size = 4,
2241 .max_access_size = 4,
2242 },
2243 .valid = {
2244 .min_access_size = 4,
2245 .max_access_size = 4,
2246 },
2247 };
2248
2249 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2250 {
2251 uintptr_t key = (uintptr_t)bus;
2252 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2253 VTDAddressSpace *vtd_dev_as;
2254
2255 if (!vtd_bus) {
2256 /* No corresponding free() */
2257 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2258 X86_IOMMU_PCI_DEVFN_MAX);
2259 vtd_bus->bus = bus;
2260 key = (uintptr_t)bus;
2261 g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
2262 }
2263
2264 vtd_dev_as = vtd_bus->dev_as[devfn];
2265
2266 if (!vtd_dev_as) {
2267 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2268
2269 vtd_dev_as->bus = bus;
2270 vtd_dev_as->devfn = (uint8_t)devfn;
2271 vtd_dev_as->iommu_state = s;
2272 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2273 memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
2274 &s->iommu_ops, "intel_iommu", UINT64_MAX);
2275 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2276 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2277 VTD_INTERRUPT_ADDR_SIZE);
2278 memory_region_add_subregion(&vtd_dev_as->iommu, VTD_INTERRUPT_ADDR_FIRST,
2279 &vtd_dev_as->iommu_ir);
2280 address_space_init(&vtd_dev_as->as,
2281 &vtd_dev_as->iommu, "intel_iommu");
2282 }
2283 return vtd_dev_as;
2284 }
2285
2286 /* Do the initialization. It will also be called when reset, so pay
2287 * attention when adding new initialization stuff.
2288 */
2289 static void vtd_init(IntelIOMMUState *s)
2290 {
2291 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2292
2293 memset(s->csr, 0, DMAR_REG_SIZE);
2294 memset(s->wmask, 0, DMAR_REG_SIZE);
2295 memset(s->w1cmask, 0, DMAR_REG_SIZE);
2296 memset(s->womask, 0, DMAR_REG_SIZE);
2297
2298 s->iommu_ops.translate = vtd_iommu_translate;
2299 s->iommu_ops.notify_started = vtd_iommu_notify_started;
2300 s->root = 0;
2301 s->root_extended = false;
2302 s->dmar_enabled = false;
2303 s->iq_head = 0;
2304 s->iq_tail = 0;
2305 s->iq = 0;
2306 s->iq_size = 0;
2307 s->qi_enabled = false;
2308 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2309 s->next_frcd_reg = 0;
2310 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2311 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2312 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2313
2314 if (x86_iommu->intr_supported) {
2315 s->ecap |= VTD_ECAP_IR;
2316 }
2317
2318 vtd_reset_context_cache(s);
2319 vtd_reset_iotlb(s);
2320
2321 /* Define registers with default values and bit semantics */
2322 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2323 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2324 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2325 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2326 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2327 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2328 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2329 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2330 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2331
2332 /* Advanced Fault Logging not supported */
2333 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2334 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2335 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2336 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2337
2338 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2339 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2340 */
2341 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2342
2343 /* Treated as RO for implementations that PLMR and PHMR fields reported
2344 * as Clear in the CAP_REG.
2345 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2346 */
2347 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2348
2349 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2350 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2351 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2352 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2353 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2354 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2355 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2356 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2357 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2358
2359 /* IOTLB registers */
2360 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2361 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2362 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2363
2364 /* Fault Recording Registers, 128-bit */
2365 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2366 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2367
2368 /*
2369 * Interrupt remapping registers, not support extended interrupt
2370 * mode for now.
2371 */
2372 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff00fULL, 0);
2373 }
2374
2375 /* Should not reset address_spaces when reset because devices will still use
2376 * the address space they got at first (won't ask the bus again).
2377 */
2378 static void vtd_reset(DeviceState *dev)
2379 {
2380 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2381
2382 VTD_DPRINTF(GENERAL, "");
2383 vtd_init(s);
2384 }
2385
2386 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2387 {
2388 IntelIOMMUState *s = opaque;
2389 VTDAddressSpace *vtd_as;
2390
2391 assert(0 <= devfn && devfn <= X86_IOMMU_PCI_DEVFN_MAX);
2392
2393 vtd_as = vtd_find_add_as(s, bus, devfn);
2394 return &vtd_as->as;
2395 }
2396
2397 static void vtd_realize(DeviceState *dev, Error **errp)
2398 {
2399 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
2400 PCIBus *bus = pcms->bus;
2401 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2402
2403 VTD_DPRINTF(GENERAL, "");
2404 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2405 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2406 "intel_iommu", DMAR_REG_SIZE);
2407 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2408 /* No corresponding destroy */
2409 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2410 g_free, g_free);
2411 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2412 g_free, g_free);
2413 vtd_init(s);
2414 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
2415 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
2416 /* Pseudo address space under root PCI bus. */
2417 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
2418 }
2419
2420 static void vtd_class_init(ObjectClass *klass, void *data)
2421 {
2422 DeviceClass *dc = DEVICE_CLASS(klass);
2423 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
2424
2425 dc->reset = vtd_reset;
2426 dc->vmsd = &vtd_vmstate;
2427 dc->props = vtd_properties;
2428 dc->hotpluggable = false;
2429 x86_class->realize = vtd_realize;
2430 x86_class->int_remap = vtd_int_remap;
2431 }
2432
2433 static const TypeInfo vtd_info = {
2434 .name = TYPE_INTEL_IOMMU_DEVICE,
2435 .parent = TYPE_X86_IOMMU_DEVICE,
2436 .instance_size = sizeof(IntelIOMMUState),
2437 .class_init = vtd_class_init,
2438 };
2439
2440 static void vtd_register_types(void)
2441 {
2442 VTD_DPRINTF(GENERAL, "");
2443 type_register_static(&vtd_info);
2444 }
2445
2446 type_init(vtd_register_types)