]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
intel-iommu: Check IOAPIC's Trigger Mode against the one in IRTE
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "hw/sysbus.h"
25 #include "exec/address-spaces.h"
26 #include "intel_iommu_internal.h"
27 #include "hw/pci/pci.h"
28 #include "hw/pci/pci_bus.h"
29 #include "hw/i386/pc.h"
30 #include "hw/i386/apic-msidef.h"
31 #include "hw/boards.h"
32 #include "hw/i386/x86-iommu.h"
33 #include "hw/pci-host/q35.h"
34 #include "sysemu/kvm.h"
35
36 /*#define DEBUG_INTEL_IOMMU*/
37 #ifdef DEBUG_INTEL_IOMMU
38 enum {
39 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
40 DEBUG_CACHE, DEBUG_IR,
41 };
42 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
43 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
44
45 #define VTD_DPRINTF(what, fmt, ...) do { \
46 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
47 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
48 ## __VA_ARGS__); } \
49 } while (0)
50 #else
51 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
52 #endif
53
54 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
55 uint64_t wmask, uint64_t w1cmask)
56 {
57 stq_le_p(&s->csr[addr], val);
58 stq_le_p(&s->wmask[addr], wmask);
59 stq_le_p(&s->w1cmask[addr], w1cmask);
60 }
61
62 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
63 {
64 stq_le_p(&s->womask[addr], mask);
65 }
66
67 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
68 uint32_t wmask, uint32_t w1cmask)
69 {
70 stl_le_p(&s->csr[addr], val);
71 stl_le_p(&s->wmask[addr], wmask);
72 stl_le_p(&s->w1cmask[addr], w1cmask);
73 }
74
75 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
76 {
77 stl_le_p(&s->womask[addr], mask);
78 }
79
80 /* "External" get/set operations */
81 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
82 {
83 uint64_t oldval = ldq_le_p(&s->csr[addr]);
84 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
85 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
86 stq_le_p(&s->csr[addr],
87 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
88 }
89
90 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
91 {
92 uint32_t oldval = ldl_le_p(&s->csr[addr]);
93 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
94 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
95 stl_le_p(&s->csr[addr],
96 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
97 }
98
99 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
100 {
101 uint64_t val = ldq_le_p(&s->csr[addr]);
102 uint64_t womask = ldq_le_p(&s->womask[addr]);
103 return val & ~womask;
104 }
105
106 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
107 {
108 uint32_t val = ldl_le_p(&s->csr[addr]);
109 uint32_t womask = ldl_le_p(&s->womask[addr]);
110 return val & ~womask;
111 }
112
113 /* "Internal" get/set operations */
114 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
115 {
116 return ldq_le_p(&s->csr[addr]);
117 }
118
119 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
120 {
121 return ldl_le_p(&s->csr[addr]);
122 }
123
124 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
125 {
126 stq_le_p(&s->csr[addr], val);
127 }
128
129 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
130 uint32_t clear, uint32_t mask)
131 {
132 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
133 stl_le_p(&s->csr[addr], new_val);
134 return new_val;
135 }
136
137 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
138 uint64_t clear, uint64_t mask)
139 {
140 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
141 stq_le_p(&s->csr[addr], new_val);
142 return new_val;
143 }
144
145 /* GHashTable functions */
146 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
147 {
148 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
149 }
150
151 static guint vtd_uint64_hash(gconstpointer v)
152 {
153 return (guint)*(const uint64_t *)v;
154 }
155
156 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
157 gpointer user_data)
158 {
159 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
160 uint16_t domain_id = *(uint16_t *)user_data;
161 return entry->domain_id == domain_id;
162 }
163
164 /* The shift of an addr for a certain level of paging structure */
165 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
166 {
167 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
168 }
169
170 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
171 {
172 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
173 }
174
175 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
176 gpointer user_data)
177 {
178 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
179 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
180 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
181 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
182 return (entry->domain_id == info->domain_id) &&
183 (((entry->gfn & info->mask) == gfn) ||
184 (entry->gfn == gfn_tlb));
185 }
186
187 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
188 * IntelIOMMUState to 1.
189 */
190 static void vtd_reset_context_cache(IntelIOMMUState *s)
191 {
192 VTDAddressSpace *vtd_as;
193 VTDBus *vtd_bus;
194 GHashTableIter bus_it;
195 uint32_t devfn_it;
196
197 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
198
199 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
200 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
201 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
202 vtd_as = vtd_bus->dev_as[devfn_it];
203 if (!vtd_as) {
204 continue;
205 }
206 vtd_as->context_cache_entry.context_cache_gen = 0;
207 }
208 }
209 s->context_cache_gen = 1;
210 }
211
212 static void vtd_reset_iotlb(IntelIOMMUState *s)
213 {
214 assert(s->iotlb);
215 g_hash_table_remove_all(s->iotlb);
216 }
217
218 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint8_t source_id,
219 uint32_t level)
220 {
221 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
222 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
223 }
224
225 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
226 {
227 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
228 }
229
230 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
231 hwaddr addr)
232 {
233 VTDIOTLBEntry *entry;
234 uint64_t key;
235 int level;
236
237 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
238 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
239 source_id, level);
240 entry = g_hash_table_lookup(s->iotlb, &key);
241 if (entry) {
242 goto out;
243 }
244 }
245
246 out:
247 return entry;
248 }
249
250 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
251 uint16_t domain_id, hwaddr addr, uint64_t slpte,
252 bool read_flags, bool write_flags,
253 uint32_t level)
254 {
255 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
256 uint64_t *key = g_malloc(sizeof(*key));
257 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
258
259 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
260 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
261 domain_id);
262 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
263 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
264 vtd_reset_iotlb(s);
265 }
266
267 entry->gfn = gfn;
268 entry->domain_id = domain_id;
269 entry->slpte = slpte;
270 entry->read_flags = read_flags;
271 entry->write_flags = write_flags;
272 entry->mask = vtd_slpt_level_page_mask(level);
273 *key = vtd_get_iotlb_key(gfn, source_id, level);
274 g_hash_table_replace(s->iotlb, key, entry);
275 }
276
277 /* Given the reg addr of both the message data and address, generate an
278 * interrupt via MSI.
279 */
280 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
281 hwaddr mesg_data_reg)
282 {
283 hwaddr addr;
284 uint32_t data;
285
286 assert(mesg_data_reg < DMAR_REG_SIZE);
287 assert(mesg_addr_reg < DMAR_REG_SIZE);
288
289 addr = vtd_get_long_raw(s, mesg_addr_reg);
290 data = vtd_get_long_raw(s, mesg_data_reg);
291
292 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
293 address_space_stl_le(&address_space_memory, addr, data,
294 MEMTXATTRS_UNSPECIFIED, NULL);
295 }
296
297 /* Generate a fault event to software via MSI if conditions are met.
298 * Notice that the value of FSTS_REG being passed to it should be the one
299 * before any update.
300 */
301 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
302 {
303 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
304 pre_fsts & VTD_FSTS_IQE) {
305 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
306 "to be serviced by software, fault event is not generated "
307 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
308 return;
309 }
310 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
311 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
312 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
313 } else {
314 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
315 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
316 }
317 }
318
319 /* Check if the Fault (F) field of the Fault Recording Register referenced by
320 * @index is Set.
321 */
322 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
323 {
324 /* Each reg is 128-bit */
325 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
326 addr += 8; /* Access the high 64-bit half */
327
328 assert(index < DMAR_FRCD_REG_NR);
329
330 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
331 }
332
333 /* Update the PPF field of Fault Status Register.
334 * Should be called whenever change the F field of any fault recording
335 * registers.
336 */
337 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
338 {
339 uint32_t i;
340 uint32_t ppf_mask = 0;
341
342 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
343 if (vtd_is_frcd_set(s, i)) {
344 ppf_mask = VTD_FSTS_PPF;
345 break;
346 }
347 }
348 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
349 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
350 }
351
352 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
353 {
354 /* Each reg is 128-bit */
355 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
356 addr += 8; /* Access the high 64-bit half */
357
358 assert(index < DMAR_FRCD_REG_NR);
359
360 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
361 vtd_update_fsts_ppf(s);
362 }
363
364 /* Must not update F field now, should be done later */
365 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
366 uint16_t source_id, hwaddr addr,
367 VTDFaultReason fault, bool is_write)
368 {
369 uint64_t hi = 0, lo;
370 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
371
372 assert(index < DMAR_FRCD_REG_NR);
373
374 lo = VTD_FRCD_FI(addr);
375 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
376 if (!is_write) {
377 hi |= VTD_FRCD_T;
378 }
379 vtd_set_quad_raw(s, frcd_reg_addr, lo);
380 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
381 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
382 ", lo 0x%"PRIx64, index, hi, lo);
383 }
384
385 /* Try to collapse multiple pending faults from the same requester */
386 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
387 {
388 uint32_t i;
389 uint64_t frcd_reg;
390 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
391
392 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
393 frcd_reg = vtd_get_quad_raw(s, addr);
394 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
395 if ((frcd_reg & VTD_FRCD_F) &&
396 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
397 return true;
398 }
399 addr += 16; /* 128-bit for each */
400 }
401 return false;
402 }
403
404 /* Log and report an DMAR (address translation) fault to software */
405 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
406 hwaddr addr, VTDFaultReason fault,
407 bool is_write)
408 {
409 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
410
411 assert(fault < VTD_FR_MAX);
412
413 if (fault == VTD_FR_RESERVED_ERR) {
414 /* This is not a normal fault reason case. Drop it. */
415 return;
416 }
417 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
418 ", is_write %d", source_id, fault, addr, is_write);
419 if (fsts_reg & VTD_FSTS_PFO) {
420 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
421 "Primary Fault Overflow");
422 return;
423 }
424 if (vtd_try_collapse_fault(s, source_id)) {
425 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
426 "compression of faults");
427 return;
428 }
429 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
430 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
431 "new fault is not recorded, set PFO field");
432 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
433 return;
434 }
435
436 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
437
438 if (fsts_reg & VTD_FSTS_PPF) {
439 VTD_DPRINTF(FLOG, "there are pending faults already, "
440 "fault event is not generated");
441 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
442 s->next_frcd_reg++;
443 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
444 s->next_frcd_reg = 0;
445 }
446 } else {
447 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
448 VTD_FSTS_FRI(s->next_frcd_reg));
449 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
450 s->next_frcd_reg++;
451 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
452 s->next_frcd_reg = 0;
453 }
454 /* This case actually cause the PPF to be Set.
455 * So generate fault event (interrupt).
456 */
457 vtd_generate_fault_event(s, fsts_reg);
458 }
459 }
460
461 /* Handle Invalidation Queue Errors of queued invalidation interface error
462 * conditions.
463 */
464 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
465 {
466 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
467
468 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
469 vtd_generate_fault_event(s, fsts_reg);
470 }
471
472 /* Set the IWC field and try to generate an invalidation completion interrupt */
473 static void vtd_generate_completion_event(IntelIOMMUState *s)
474 {
475 VTD_DPRINTF(INV, "completes an invalidation wait command with "
476 "Interrupt Flag");
477 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
478 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
479 "serviced by software, "
480 "new invalidation event is not generated");
481 return;
482 }
483 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
484 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
485 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
486 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
487 "event is not generated");
488 return;
489 } else {
490 /* Generate the interrupt event */
491 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
492 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
493 }
494 }
495
496 static inline bool vtd_root_entry_present(VTDRootEntry *root)
497 {
498 return root->val & VTD_ROOT_ENTRY_P;
499 }
500
501 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
502 VTDRootEntry *re)
503 {
504 dma_addr_t addr;
505
506 addr = s->root + index * sizeof(*re);
507 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
508 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
509 " + %"PRIu8, s->root, index);
510 re->val = 0;
511 return -VTD_FR_ROOT_TABLE_INV;
512 }
513 re->val = le64_to_cpu(re->val);
514 return 0;
515 }
516
517 static inline bool vtd_context_entry_present(VTDContextEntry *context)
518 {
519 return context->lo & VTD_CONTEXT_ENTRY_P;
520 }
521
522 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
523 VTDContextEntry *ce)
524 {
525 dma_addr_t addr;
526
527 if (!vtd_root_entry_present(root)) {
528 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
529 return -VTD_FR_ROOT_ENTRY_P;
530 }
531 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
532 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
533 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
534 " + %"PRIu8,
535 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
536 return -VTD_FR_CONTEXT_TABLE_INV;
537 }
538 ce->lo = le64_to_cpu(ce->lo);
539 ce->hi = le64_to_cpu(ce->hi);
540 return 0;
541 }
542
543 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
544 {
545 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
546 }
547
548 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
549 {
550 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
551 }
552
553 /* Whether the pte indicates the address of the page frame */
554 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
555 {
556 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
557 }
558
559 /* Get the content of a spte located in @base_addr[@index] */
560 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
561 {
562 uint64_t slpte;
563
564 assert(index < VTD_SL_PT_ENTRY_NR);
565
566 if (dma_memory_read(&address_space_memory,
567 base_addr + index * sizeof(slpte), &slpte,
568 sizeof(slpte))) {
569 slpte = (uint64_t)-1;
570 return slpte;
571 }
572 slpte = le64_to_cpu(slpte);
573 return slpte;
574 }
575
576 /* Given a gpa and the level of paging structure, return the offset of current
577 * level.
578 */
579 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
580 {
581 return (gpa >> vtd_slpt_level_shift(level)) &
582 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
583 }
584
585 /* Check Capability Register to see if the @level of page-table is supported */
586 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
587 {
588 return VTD_CAP_SAGAW_MASK & s->cap &
589 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
590 }
591
592 /* Get the page-table level that hardware should use for the second-level
593 * page-table walk from the Address Width field of context-entry.
594 */
595 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
596 {
597 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
598 }
599
600 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
601 {
602 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
603 }
604
605 static const uint64_t vtd_paging_entry_rsvd_field[] = {
606 [0] = ~0ULL,
607 /* For not large page */
608 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
609 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
610 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
611 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
612 /* For large page */
613 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
614 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
615 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
616 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
617 };
618
619 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
620 {
621 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
622 /* Maybe large page */
623 return slpte & vtd_paging_entry_rsvd_field[level + 4];
624 } else {
625 return slpte & vtd_paging_entry_rsvd_field[level];
626 }
627 }
628
629 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
630 * of the translation, can be used for deciding the size of large page.
631 */
632 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
633 uint64_t *slptep, uint32_t *slpte_level,
634 bool *reads, bool *writes)
635 {
636 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
637 uint32_t level = vtd_get_level_from_context_entry(ce);
638 uint32_t offset;
639 uint64_t slpte;
640 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
641 uint64_t access_right_check;
642
643 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
644 * and AW in context-entry.
645 */
646 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
647 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
648 return -VTD_FR_ADDR_BEYOND_MGAW;
649 }
650
651 /* FIXME: what is the Atomics request here? */
652 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
653
654 while (true) {
655 offset = vtd_gpa_level_offset(gpa, level);
656 slpte = vtd_get_slpte(addr, offset);
657
658 if (slpte == (uint64_t)-1) {
659 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
660 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
661 level, gpa);
662 if (level == vtd_get_level_from_context_entry(ce)) {
663 /* Invalid programming of context-entry */
664 return -VTD_FR_CONTEXT_ENTRY_INV;
665 } else {
666 return -VTD_FR_PAGING_ENTRY_INV;
667 }
668 }
669 *reads = (*reads) && (slpte & VTD_SL_R);
670 *writes = (*writes) && (slpte & VTD_SL_W);
671 if (!(slpte & access_right_check)) {
672 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
673 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
674 (is_write ? "write" : "read"), gpa, slpte);
675 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
676 }
677 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
678 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
679 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
680 level, slpte);
681 return -VTD_FR_PAGING_ENTRY_RSVD;
682 }
683
684 if (vtd_is_last_slpte(slpte, level)) {
685 *slptep = slpte;
686 *slpte_level = level;
687 return 0;
688 }
689 addr = vtd_get_slpte_addr(slpte);
690 level--;
691 }
692 }
693
694 /* Map a device to its corresponding domain (context-entry) */
695 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
696 uint8_t devfn, VTDContextEntry *ce)
697 {
698 VTDRootEntry re;
699 int ret_fr;
700
701 ret_fr = vtd_get_root_entry(s, bus_num, &re);
702 if (ret_fr) {
703 return ret_fr;
704 }
705
706 if (!vtd_root_entry_present(&re)) {
707 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
708 bus_num);
709 return -VTD_FR_ROOT_ENTRY_P;
710 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
711 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
712 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
713 return -VTD_FR_ROOT_ENTRY_RSVD;
714 }
715
716 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
717 if (ret_fr) {
718 return ret_fr;
719 }
720
721 if (!vtd_context_entry_present(ce)) {
722 VTD_DPRINTF(GENERAL,
723 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
724 "is not present", devfn, bus_num);
725 return -VTD_FR_CONTEXT_ENTRY_P;
726 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
727 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
728 VTD_DPRINTF(GENERAL,
729 "error: non-zero reserved field in context-entry "
730 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
731 return -VTD_FR_CONTEXT_ENTRY_RSVD;
732 }
733 /* Check if the programming of context-entry is valid */
734 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
735 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
736 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
737 ce->hi, ce->lo);
738 return -VTD_FR_CONTEXT_ENTRY_INV;
739 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
740 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
741 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
742 ce->hi, ce->lo);
743 return -VTD_FR_CONTEXT_ENTRY_INV;
744 }
745 return 0;
746 }
747
748 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
749 {
750 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
751 }
752
753 static const bool vtd_qualified_faults[] = {
754 [VTD_FR_RESERVED] = false,
755 [VTD_FR_ROOT_ENTRY_P] = false,
756 [VTD_FR_CONTEXT_ENTRY_P] = true,
757 [VTD_FR_CONTEXT_ENTRY_INV] = true,
758 [VTD_FR_ADDR_BEYOND_MGAW] = true,
759 [VTD_FR_WRITE] = true,
760 [VTD_FR_READ] = true,
761 [VTD_FR_PAGING_ENTRY_INV] = true,
762 [VTD_FR_ROOT_TABLE_INV] = false,
763 [VTD_FR_CONTEXT_TABLE_INV] = false,
764 [VTD_FR_ROOT_ENTRY_RSVD] = false,
765 [VTD_FR_PAGING_ENTRY_RSVD] = true,
766 [VTD_FR_CONTEXT_ENTRY_TT] = true,
767 [VTD_FR_RESERVED_ERR] = false,
768 [VTD_FR_MAX] = false,
769 };
770
771 /* To see if a fault condition is "qualified", which is reported to software
772 * only if the FPD field in the context-entry used to process the faulting
773 * request is 0.
774 */
775 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
776 {
777 return vtd_qualified_faults[fault];
778 }
779
780 static inline bool vtd_is_interrupt_addr(hwaddr addr)
781 {
782 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
783 }
784
785 /* Map dev to context-entry then do a paging-structures walk to do a iommu
786 * translation.
787 *
788 * Called from RCU critical section.
789 *
790 * @bus_num: The bus number
791 * @devfn: The devfn, which is the combined of device and function number
792 * @is_write: The access is a write operation
793 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
794 */
795 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
796 uint8_t devfn, hwaddr addr, bool is_write,
797 IOMMUTLBEntry *entry)
798 {
799 IntelIOMMUState *s = vtd_as->iommu_state;
800 VTDContextEntry ce;
801 uint8_t bus_num = pci_bus_num(bus);
802 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
803 uint64_t slpte, page_mask;
804 uint32_t level;
805 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
806 int ret_fr;
807 bool is_fpd_set = false;
808 bool reads = true;
809 bool writes = true;
810 VTDIOTLBEntry *iotlb_entry;
811
812 /* Check if the request is in interrupt address range */
813 if (vtd_is_interrupt_addr(addr)) {
814 if (is_write) {
815 /* FIXME: since we don't know the length of the access here, we
816 * treat Non-DWORD length write requests without PASID as
817 * interrupt requests, too. Withoud interrupt remapping support,
818 * we just use 1:1 mapping.
819 */
820 VTD_DPRINTF(MMU, "write request to interrupt address "
821 "gpa 0x%"PRIx64, addr);
822 entry->iova = addr & VTD_PAGE_MASK_4K;
823 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
824 entry->addr_mask = ~VTD_PAGE_MASK_4K;
825 entry->perm = IOMMU_WO;
826 return;
827 } else {
828 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
829 "gpa 0x%"PRIx64, addr);
830 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
831 return;
832 }
833 }
834 /* Try to fetch slpte form IOTLB */
835 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
836 if (iotlb_entry) {
837 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
838 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
839 iotlb_entry->slpte, iotlb_entry->domain_id);
840 slpte = iotlb_entry->slpte;
841 reads = iotlb_entry->read_flags;
842 writes = iotlb_entry->write_flags;
843 page_mask = iotlb_entry->mask;
844 goto out;
845 }
846 /* Try to fetch context-entry from cache first */
847 if (cc_entry->context_cache_gen == s->context_cache_gen) {
848 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
849 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
850 bus_num, devfn, cc_entry->context_entry.hi,
851 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
852 ce = cc_entry->context_entry;
853 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
854 } else {
855 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
856 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
857 if (ret_fr) {
858 ret_fr = -ret_fr;
859 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
860 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
861 "requests through this context-entry "
862 "(with FPD Set)");
863 } else {
864 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
865 }
866 return;
867 }
868 /* Update context-cache */
869 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
870 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
871 bus_num, devfn, ce.hi, ce.lo,
872 cc_entry->context_cache_gen, s->context_cache_gen);
873 cc_entry->context_entry = ce;
874 cc_entry->context_cache_gen = s->context_cache_gen;
875 }
876
877 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
878 &reads, &writes);
879 if (ret_fr) {
880 ret_fr = -ret_fr;
881 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
882 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
883 "through this context-entry (with FPD Set)");
884 } else {
885 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
886 }
887 return;
888 }
889
890 page_mask = vtd_slpt_level_page_mask(level);
891 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
892 reads, writes, level);
893 out:
894 entry->iova = addr & page_mask;
895 entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
896 entry->addr_mask = ~page_mask;
897 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
898 }
899
900 static void vtd_root_table_setup(IntelIOMMUState *s)
901 {
902 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
903 s->root_extended = s->root & VTD_RTADDR_RTT;
904 s->root &= VTD_RTADDR_ADDR_MASK;
905
906 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
907 (s->root_extended ? "(extended)" : ""));
908 }
909
910 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
911 uint32_t index, uint32_t mask)
912 {
913 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
914 }
915
916 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
917 {
918 uint64_t value = 0;
919 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
920 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
921 s->intr_root = value & VTD_IRTA_ADDR_MASK;
922 s->intr_eime = value & VTD_IRTA_EIME;
923
924 /* Notify global invalidation */
925 vtd_iec_notify_all(s, true, 0, 0);
926
927 VTD_DPRINTF(CSR, "int remap table addr 0x%"PRIx64 " size %"PRIu32,
928 s->intr_root, s->intr_size);
929 }
930
931 static void vtd_context_global_invalidate(IntelIOMMUState *s)
932 {
933 s->context_cache_gen++;
934 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
935 vtd_reset_context_cache(s);
936 }
937 }
938
939
940 /* Find the VTD address space currently associated with a given bus number,
941 */
942 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
943 {
944 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
945 if (!vtd_bus) {
946 /* Iterate over the registered buses to find the one
947 * which currently hold this bus number, and update the bus_num lookup table:
948 */
949 GHashTableIter iter;
950
951 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
952 while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
953 if (pci_bus_num(vtd_bus->bus) == bus_num) {
954 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
955 return vtd_bus;
956 }
957 }
958 }
959 return vtd_bus;
960 }
961
962 /* Do a context-cache device-selective invalidation.
963 * @func_mask: FM field after shifting
964 */
965 static void vtd_context_device_invalidate(IntelIOMMUState *s,
966 uint16_t source_id,
967 uint16_t func_mask)
968 {
969 uint16_t mask;
970 VTDBus *vtd_bus;
971 VTDAddressSpace *vtd_as;
972 uint16_t devfn;
973 uint16_t devfn_it;
974
975 switch (func_mask & 3) {
976 case 0:
977 mask = 0; /* No bits in the SID field masked */
978 break;
979 case 1:
980 mask = 4; /* Mask bit 2 in the SID field */
981 break;
982 case 2:
983 mask = 6; /* Mask bit 2:1 in the SID field */
984 break;
985 case 3:
986 mask = 7; /* Mask bit 2:0 in the SID field */
987 break;
988 }
989 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
990 " mask %"PRIu16, source_id, mask);
991 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
992 if (vtd_bus) {
993 devfn = VTD_SID_TO_DEVFN(source_id);
994 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
995 vtd_as = vtd_bus->dev_as[devfn_it];
996 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
997 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
998 devfn_it);
999 vtd_as->context_cache_entry.context_cache_gen = 0;
1000 }
1001 }
1002 }
1003 }
1004
1005 /* Context-cache invalidation
1006 * Returns the Context Actual Invalidation Granularity.
1007 * @val: the content of the CCMD_REG
1008 */
1009 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1010 {
1011 uint64_t caig;
1012 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1013
1014 switch (type) {
1015 case VTD_CCMD_DOMAIN_INVL:
1016 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1017 (uint16_t)VTD_CCMD_DID(val));
1018 /* Fall through */
1019 case VTD_CCMD_GLOBAL_INVL:
1020 VTD_DPRINTF(INV, "global invalidation");
1021 caig = VTD_CCMD_GLOBAL_INVL_A;
1022 vtd_context_global_invalidate(s);
1023 break;
1024
1025 case VTD_CCMD_DEVICE_INVL:
1026 caig = VTD_CCMD_DEVICE_INVL_A;
1027 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1028 break;
1029
1030 default:
1031 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1032 caig = 0;
1033 }
1034 return caig;
1035 }
1036
1037 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1038 {
1039 vtd_reset_iotlb(s);
1040 }
1041
1042 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1043 {
1044 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1045 &domain_id);
1046 }
1047
1048 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1049 hwaddr addr, uint8_t am)
1050 {
1051 VTDIOTLBPageInvInfo info;
1052
1053 assert(am <= VTD_MAMV);
1054 info.domain_id = domain_id;
1055 info.addr = addr;
1056 info.mask = ~((1 << am) - 1);
1057 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1058 }
1059
1060 /* Flush IOTLB
1061 * Returns the IOTLB Actual Invalidation Granularity.
1062 * @val: the content of the IOTLB_REG
1063 */
1064 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1065 {
1066 uint64_t iaig;
1067 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1068 uint16_t domain_id;
1069 hwaddr addr;
1070 uint8_t am;
1071
1072 switch (type) {
1073 case VTD_TLB_GLOBAL_FLUSH:
1074 VTD_DPRINTF(INV, "global invalidation");
1075 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1076 vtd_iotlb_global_invalidate(s);
1077 break;
1078
1079 case VTD_TLB_DSI_FLUSH:
1080 domain_id = VTD_TLB_DID(val);
1081 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1082 domain_id);
1083 iaig = VTD_TLB_DSI_FLUSH_A;
1084 vtd_iotlb_domain_invalidate(s, domain_id);
1085 break;
1086
1087 case VTD_TLB_PSI_FLUSH:
1088 domain_id = VTD_TLB_DID(val);
1089 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1090 am = VTD_IVA_AM(addr);
1091 addr = VTD_IVA_ADDR(addr);
1092 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1093 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1094 if (am > VTD_MAMV) {
1095 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1096 "%"PRIu8, (uint8_t)VTD_MAMV);
1097 iaig = 0;
1098 break;
1099 }
1100 iaig = VTD_TLB_PSI_FLUSH_A;
1101 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1102 break;
1103
1104 default:
1105 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1106 iaig = 0;
1107 }
1108 return iaig;
1109 }
1110
1111 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1112 {
1113 return s->iq_tail == 0;
1114 }
1115
1116 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1117 {
1118 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1119 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1120 }
1121
1122 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1123 {
1124 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1125
1126 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1127 if (en) {
1128 if (vtd_queued_inv_enable_check(s)) {
1129 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1130 /* 2^(x+8) entries */
1131 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1132 s->qi_enabled = true;
1133 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1134 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1135 s->iq, s->iq_size);
1136 /* Ok - report back to driver */
1137 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1138 } else {
1139 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1140 "tail %"PRIu16, s->iq_tail);
1141 }
1142 } else {
1143 if (vtd_queued_inv_disable_check(s)) {
1144 /* disable Queued Invalidation */
1145 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1146 s->iq_head = 0;
1147 s->qi_enabled = false;
1148 /* Ok - report back to driver */
1149 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1150 } else {
1151 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1152 "head %"PRIu16 ", tail %"PRIu16
1153 ", last_descriptor %"PRIu8,
1154 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1155 }
1156 }
1157 }
1158
1159 /* Set Root Table Pointer */
1160 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1161 {
1162 VTD_DPRINTF(CSR, "set Root Table Pointer");
1163
1164 vtd_root_table_setup(s);
1165 /* Ok - report back to driver */
1166 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1167 }
1168
1169 /* Set Interrupt Remap Table Pointer */
1170 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1171 {
1172 VTD_DPRINTF(CSR, "set Interrupt Remap Table Pointer");
1173
1174 vtd_interrupt_remap_table_setup(s);
1175 /* Ok - report back to driver */
1176 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1177 }
1178
1179 /* Handle Translation Enable/Disable */
1180 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1181 {
1182 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1183
1184 if (en) {
1185 s->dmar_enabled = true;
1186 /* Ok - report back to driver */
1187 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1188 } else {
1189 s->dmar_enabled = false;
1190
1191 /* Clear the index of Fault Recording Register */
1192 s->next_frcd_reg = 0;
1193 /* Ok - report back to driver */
1194 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1195 }
1196 }
1197
1198 /* Handle Interrupt Remap Enable/Disable */
1199 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1200 {
1201 VTD_DPRINTF(CSR, "Interrupt Remap Enable %s", (en ? "on" : "off"));
1202
1203 if (en) {
1204 s->intr_enabled = true;
1205 /* Ok - report back to driver */
1206 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1207 } else {
1208 s->intr_enabled = false;
1209 /* Ok - report back to driver */
1210 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1211 }
1212 }
1213
1214 /* Handle write to Global Command Register */
1215 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1216 {
1217 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1218 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1219 uint32_t changed = status ^ val;
1220
1221 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1222 if (changed & VTD_GCMD_TE) {
1223 /* Translation enable/disable */
1224 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1225 }
1226 if (val & VTD_GCMD_SRTP) {
1227 /* Set/update the root-table pointer */
1228 vtd_handle_gcmd_srtp(s);
1229 }
1230 if (changed & VTD_GCMD_QIE) {
1231 /* Queued Invalidation Enable */
1232 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1233 }
1234 if (val & VTD_GCMD_SIRTP) {
1235 /* Set/update the interrupt remapping root-table pointer */
1236 vtd_handle_gcmd_sirtp(s);
1237 }
1238 if (changed & VTD_GCMD_IRE) {
1239 /* Interrupt remap enable/disable */
1240 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1241 }
1242 }
1243
1244 /* Handle write to Context Command Register */
1245 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1246 {
1247 uint64_t ret;
1248 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1249
1250 /* Context-cache invalidation request */
1251 if (val & VTD_CCMD_ICC) {
1252 if (s->qi_enabled) {
1253 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1254 "should not use register-based invalidation");
1255 return;
1256 }
1257 ret = vtd_context_cache_invalidate(s, val);
1258 /* Invalidation completed. Change something to show */
1259 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1260 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1261 ret);
1262 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1263 }
1264 }
1265
1266 /* Handle write to IOTLB Invalidation Register */
1267 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1268 {
1269 uint64_t ret;
1270 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1271
1272 /* IOTLB invalidation request */
1273 if (val & VTD_TLB_IVT) {
1274 if (s->qi_enabled) {
1275 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1276 "should not use register-based invalidation");
1277 return;
1278 }
1279 ret = vtd_iotlb_flush(s, val);
1280 /* Invalidation completed. Change something to show */
1281 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1282 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1283 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1284 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1285 }
1286 }
1287
1288 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1289 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1290 VTDInvDesc *inv_desc)
1291 {
1292 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1293 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1294 sizeof(*inv_desc))) {
1295 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1296 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1297 inv_desc->lo = 0;
1298 inv_desc->hi = 0;
1299
1300 return false;
1301 }
1302 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1303 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1304 return true;
1305 }
1306
1307 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1308 {
1309 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1310 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1311 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1312 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1313 inv_desc->hi, inv_desc->lo);
1314 return false;
1315 }
1316 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1317 /* Status Write */
1318 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1319 VTD_INV_DESC_WAIT_DATA_SHIFT);
1320
1321 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1322
1323 /* FIXME: need to be masked with HAW? */
1324 dma_addr_t status_addr = inv_desc->hi;
1325 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1326 status_data, status_addr);
1327 status_data = cpu_to_le32(status_data);
1328 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1329 sizeof(status_data))) {
1330 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1331 return false;
1332 }
1333 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1334 /* Interrupt flag */
1335 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1336 vtd_generate_completion_event(s);
1337 } else {
1338 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1339 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1340 return false;
1341 }
1342 return true;
1343 }
1344
1345 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1346 VTDInvDesc *inv_desc)
1347 {
1348 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1349 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1350 "Invalidate Descriptor");
1351 return false;
1352 }
1353 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1354 case VTD_INV_DESC_CC_DOMAIN:
1355 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1356 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1357 /* Fall through */
1358 case VTD_INV_DESC_CC_GLOBAL:
1359 VTD_DPRINTF(INV, "global invalidation");
1360 vtd_context_global_invalidate(s);
1361 break;
1362
1363 case VTD_INV_DESC_CC_DEVICE:
1364 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1365 VTD_INV_DESC_CC_FM(inv_desc->lo));
1366 break;
1367
1368 default:
1369 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1370 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1371 inv_desc->hi, inv_desc->lo);
1372 return false;
1373 }
1374 return true;
1375 }
1376
1377 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1378 {
1379 uint16_t domain_id;
1380 uint8_t am;
1381 hwaddr addr;
1382
1383 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1384 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1385 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1386 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1387 inv_desc->hi, inv_desc->lo);
1388 return false;
1389 }
1390
1391 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1392 case VTD_INV_DESC_IOTLB_GLOBAL:
1393 VTD_DPRINTF(INV, "global invalidation");
1394 vtd_iotlb_global_invalidate(s);
1395 break;
1396
1397 case VTD_INV_DESC_IOTLB_DOMAIN:
1398 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1399 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1400 domain_id);
1401 vtd_iotlb_domain_invalidate(s, domain_id);
1402 break;
1403
1404 case VTD_INV_DESC_IOTLB_PAGE:
1405 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1406 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1407 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1408 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1409 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1410 if (am > VTD_MAMV) {
1411 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1412 "%"PRIu8, (uint8_t)VTD_MAMV);
1413 return false;
1414 }
1415 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1416 break;
1417
1418 default:
1419 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1420 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1421 inv_desc->hi, inv_desc->lo);
1422 return false;
1423 }
1424 return true;
1425 }
1426
1427 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1428 VTDInvDesc *inv_desc)
1429 {
1430 VTD_DPRINTF(INV, "inv ir glob %d index %d mask %d",
1431 inv_desc->iec.granularity,
1432 inv_desc->iec.index,
1433 inv_desc->iec.index_mask);
1434
1435 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1436 inv_desc->iec.index,
1437 inv_desc->iec.index_mask);
1438
1439 return true;
1440 }
1441
1442 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1443 {
1444 VTDInvDesc inv_desc;
1445 uint8_t desc_type;
1446
1447 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1448 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1449 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1450 return false;
1451 }
1452 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1453 /* FIXME: should update at first or at last? */
1454 s->iq_last_desc_type = desc_type;
1455
1456 switch (desc_type) {
1457 case VTD_INV_DESC_CC:
1458 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1459 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1460 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1461 return false;
1462 }
1463 break;
1464
1465 case VTD_INV_DESC_IOTLB:
1466 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1467 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1468 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1469 return false;
1470 }
1471 break;
1472
1473 case VTD_INV_DESC_WAIT:
1474 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1475 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1476 if (!vtd_process_wait_desc(s, &inv_desc)) {
1477 return false;
1478 }
1479 break;
1480
1481 case VTD_INV_DESC_IEC:
1482 VTD_DPRINTF(INV, "Invalidation Interrupt Entry Cache "
1483 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1484 inv_desc.hi, inv_desc.lo);
1485 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1486 return false;
1487 }
1488 break;
1489
1490 default:
1491 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1492 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1493 inv_desc.hi, inv_desc.lo, desc_type);
1494 return false;
1495 }
1496 s->iq_head++;
1497 if (s->iq_head == s->iq_size) {
1498 s->iq_head = 0;
1499 }
1500 return true;
1501 }
1502
1503 /* Try to fetch and process more Invalidation Descriptors */
1504 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1505 {
1506 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1507 if (s->iq_tail >= s->iq_size) {
1508 /* Detects an invalid Tail pointer */
1509 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1510 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1511 vtd_handle_inv_queue_error(s);
1512 return;
1513 }
1514 while (s->iq_head != s->iq_tail) {
1515 if (!vtd_process_inv_desc(s)) {
1516 /* Invalidation Queue Errors */
1517 vtd_handle_inv_queue_error(s);
1518 break;
1519 }
1520 /* Must update the IQH_REG in time */
1521 vtd_set_quad_raw(s, DMAR_IQH_REG,
1522 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1523 VTD_IQH_QH_MASK);
1524 }
1525 }
1526
1527 /* Handle write to Invalidation Queue Tail Register */
1528 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1529 {
1530 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1531
1532 s->iq_tail = VTD_IQT_QT(val);
1533 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1534 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1535 /* Process Invalidation Queue here */
1536 vtd_fetch_inv_desc(s);
1537 }
1538 }
1539
1540 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1541 {
1542 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1543 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1544 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1545
1546 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1547 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1548 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1549 "IP field of FECTL_REG");
1550 }
1551 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1552 * Descriptors if there are any when Queued Invalidation is enabled?
1553 */
1554 }
1555
1556 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1557 {
1558 uint32_t fectl_reg;
1559 /* FIXME: when software clears the IM field, check the IP field. But do we
1560 * need to compare the old value and the new value to conclude that
1561 * software clears the IM field? Or just check if the IM field is zero?
1562 */
1563 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1564 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1565 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1566 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1567 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1568 "fault event interrupt");
1569 }
1570 }
1571
1572 static void vtd_handle_ics_write(IntelIOMMUState *s)
1573 {
1574 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1575 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1576
1577 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1578 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1579 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1580 "clear IP field of IECTL_REG");
1581 }
1582 }
1583
1584 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1585 {
1586 uint32_t iectl_reg;
1587 /* FIXME: when software clears the IM field, check the IP field. But do we
1588 * need to compare the old value and the new value to conclude that
1589 * software clears the IM field? Or just check if the IM field is zero?
1590 */
1591 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1592 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1593 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1594 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1595 VTD_DPRINTF(INV, "IM field is cleared, generate "
1596 "invalidation event interrupt");
1597 }
1598 }
1599
1600 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1601 {
1602 IntelIOMMUState *s = opaque;
1603 uint64_t val;
1604
1605 if (addr + size > DMAR_REG_SIZE) {
1606 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1607 ", got 0x%"PRIx64 " %d",
1608 (uint64_t)DMAR_REG_SIZE, addr, size);
1609 return (uint64_t)-1;
1610 }
1611
1612 switch (addr) {
1613 /* Root Table Address Register, 64-bit */
1614 case DMAR_RTADDR_REG:
1615 if (size == 4) {
1616 val = s->root & ((1ULL << 32) - 1);
1617 } else {
1618 val = s->root;
1619 }
1620 break;
1621
1622 case DMAR_RTADDR_REG_HI:
1623 assert(size == 4);
1624 val = s->root >> 32;
1625 break;
1626
1627 /* Invalidation Queue Address Register, 64-bit */
1628 case DMAR_IQA_REG:
1629 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1630 if (size == 4) {
1631 val = val & ((1ULL << 32) - 1);
1632 }
1633 break;
1634
1635 case DMAR_IQA_REG_HI:
1636 assert(size == 4);
1637 val = s->iq >> 32;
1638 break;
1639
1640 default:
1641 if (size == 4) {
1642 val = vtd_get_long(s, addr);
1643 } else {
1644 val = vtd_get_quad(s, addr);
1645 }
1646 }
1647 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1648 addr, size, val);
1649 return val;
1650 }
1651
1652 static void vtd_mem_write(void *opaque, hwaddr addr,
1653 uint64_t val, unsigned size)
1654 {
1655 IntelIOMMUState *s = opaque;
1656
1657 if (addr + size > DMAR_REG_SIZE) {
1658 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1659 ", got 0x%"PRIx64 " %d",
1660 (uint64_t)DMAR_REG_SIZE, addr, size);
1661 return;
1662 }
1663
1664 switch (addr) {
1665 /* Global Command Register, 32-bit */
1666 case DMAR_GCMD_REG:
1667 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1668 ", size %d, val 0x%"PRIx64, addr, size, val);
1669 vtd_set_long(s, addr, val);
1670 vtd_handle_gcmd_write(s);
1671 break;
1672
1673 /* Context Command Register, 64-bit */
1674 case DMAR_CCMD_REG:
1675 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1676 ", size %d, val 0x%"PRIx64, addr, size, val);
1677 if (size == 4) {
1678 vtd_set_long(s, addr, val);
1679 } else {
1680 vtd_set_quad(s, addr, val);
1681 vtd_handle_ccmd_write(s);
1682 }
1683 break;
1684
1685 case DMAR_CCMD_REG_HI:
1686 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1687 ", size %d, val 0x%"PRIx64, addr, size, val);
1688 assert(size == 4);
1689 vtd_set_long(s, addr, val);
1690 vtd_handle_ccmd_write(s);
1691 break;
1692
1693 /* IOTLB Invalidation Register, 64-bit */
1694 case DMAR_IOTLB_REG:
1695 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1696 ", size %d, val 0x%"PRIx64, addr, size, val);
1697 if (size == 4) {
1698 vtd_set_long(s, addr, val);
1699 } else {
1700 vtd_set_quad(s, addr, val);
1701 vtd_handle_iotlb_write(s);
1702 }
1703 break;
1704
1705 case DMAR_IOTLB_REG_HI:
1706 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1707 ", size %d, val 0x%"PRIx64, addr, size, val);
1708 assert(size == 4);
1709 vtd_set_long(s, addr, val);
1710 vtd_handle_iotlb_write(s);
1711 break;
1712
1713 /* Invalidate Address Register, 64-bit */
1714 case DMAR_IVA_REG:
1715 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1716 ", size %d, val 0x%"PRIx64, addr, size, val);
1717 if (size == 4) {
1718 vtd_set_long(s, addr, val);
1719 } else {
1720 vtd_set_quad(s, addr, val);
1721 }
1722 break;
1723
1724 case DMAR_IVA_REG_HI:
1725 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1726 ", size %d, val 0x%"PRIx64, addr, size, val);
1727 assert(size == 4);
1728 vtd_set_long(s, addr, val);
1729 break;
1730
1731 /* Fault Status Register, 32-bit */
1732 case DMAR_FSTS_REG:
1733 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1734 ", size %d, val 0x%"PRIx64, addr, size, val);
1735 assert(size == 4);
1736 vtd_set_long(s, addr, val);
1737 vtd_handle_fsts_write(s);
1738 break;
1739
1740 /* Fault Event Control Register, 32-bit */
1741 case DMAR_FECTL_REG:
1742 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1743 ", size %d, val 0x%"PRIx64, addr, size, val);
1744 assert(size == 4);
1745 vtd_set_long(s, addr, val);
1746 vtd_handle_fectl_write(s);
1747 break;
1748
1749 /* Fault Event Data Register, 32-bit */
1750 case DMAR_FEDATA_REG:
1751 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1752 ", size %d, val 0x%"PRIx64, addr, size, val);
1753 assert(size == 4);
1754 vtd_set_long(s, addr, val);
1755 break;
1756
1757 /* Fault Event Address Register, 32-bit */
1758 case DMAR_FEADDR_REG:
1759 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1760 ", size %d, val 0x%"PRIx64, addr, size, val);
1761 assert(size == 4);
1762 vtd_set_long(s, addr, val);
1763 break;
1764
1765 /* Fault Event Upper Address Register, 32-bit */
1766 case DMAR_FEUADDR_REG:
1767 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1768 ", size %d, val 0x%"PRIx64, addr, size, val);
1769 assert(size == 4);
1770 vtd_set_long(s, addr, val);
1771 break;
1772
1773 /* Protected Memory Enable Register, 32-bit */
1774 case DMAR_PMEN_REG:
1775 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1776 ", size %d, val 0x%"PRIx64, addr, size, val);
1777 assert(size == 4);
1778 vtd_set_long(s, addr, val);
1779 break;
1780
1781 /* Root Table Address Register, 64-bit */
1782 case DMAR_RTADDR_REG:
1783 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1784 ", size %d, val 0x%"PRIx64, addr, size, val);
1785 if (size == 4) {
1786 vtd_set_long(s, addr, val);
1787 } else {
1788 vtd_set_quad(s, addr, val);
1789 }
1790 break;
1791
1792 case DMAR_RTADDR_REG_HI:
1793 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1794 ", size %d, val 0x%"PRIx64, addr, size, val);
1795 assert(size == 4);
1796 vtd_set_long(s, addr, val);
1797 break;
1798
1799 /* Invalidation Queue Tail Register, 64-bit */
1800 case DMAR_IQT_REG:
1801 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1802 ", size %d, val 0x%"PRIx64, addr, size, val);
1803 if (size == 4) {
1804 vtd_set_long(s, addr, val);
1805 } else {
1806 vtd_set_quad(s, addr, val);
1807 }
1808 vtd_handle_iqt_write(s);
1809 break;
1810
1811 case DMAR_IQT_REG_HI:
1812 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1813 ", size %d, val 0x%"PRIx64, addr, size, val);
1814 assert(size == 4);
1815 vtd_set_long(s, addr, val);
1816 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1817 break;
1818
1819 /* Invalidation Queue Address Register, 64-bit */
1820 case DMAR_IQA_REG:
1821 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1822 ", size %d, val 0x%"PRIx64, addr, size, val);
1823 if (size == 4) {
1824 vtd_set_long(s, addr, val);
1825 } else {
1826 vtd_set_quad(s, addr, val);
1827 }
1828 break;
1829
1830 case DMAR_IQA_REG_HI:
1831 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1832 ", size %d, val 0x%"PRIx64, addr, size, val);
1833 assert(size == 4);
1834 vtd_set_long(s, addr, val);
1835 break;
1836
1837 /* Invalidation Completion Status Register, 32-bit */
1838 case DMAR_ICS_REG:
1839 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1840 ", size %d, val 0x%"PRIx64, addr, size, val);
1841 assert(size == 4);
1842 vtd_set_long(s, addr, val);
1843 vtd_handle_ics_write(s);
1844 break;
1845
1846 /* Invalidation Event Control Register, 32-bit */
1847 case DMAR_IECTL_REG:
1848 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1849 ", size %d, val 0x%"PRIx64, addr, size, val);
1850 assert(size == 4);
1851 vtd_set_long(s, addr, val);
1852 vtd_handle_iectl_write(s);
1853 break;
1854
1855 /* Invalidation Event Data Register, 32-bit */
1856 case DMAR_IEDATA_REG:
1857 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1858 ", size %d, val 0x%"PRIx64, addr, size, val);
1859 assert(size == 4);
1860 vtd_set_long(s, addr, val);
1861 break;
1862
1863 /* Invalidation Event Address Register, 32-bit */
1864 case DMAR_IEADDR_REG:
1865 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1866 ", size %d, val 0x%"PRIx64, addr, size, val);
1867 assert(size == 4);
1868 vtd_set_long(s, addr, val);
1869 break;
1870
1871 /* Invalidation Event Upper Address Register, 32-bit */
1872 case DMAR_IEUADDR_REG:
1873 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1874 ", size %d, val 0x%"PRIx64, addr, size, val);
1875 assert(size == 4);
1876 vtd_set_long(s, addr, val);
1877 break;
1878
1879 /* Fault Recording Registers, 128-bit */
1880 case DMAR_FRCD_REG_0_0:
1881 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1882 ", size %d, val 0x%"PRIx64, addr, size, val);
1883 if (size == 4) {
1884 vtd_set_long(s, addr, val);
1885 } else {
1886 vtd_set_quad(s, addr, val);
1887 }
1888 break;
1889
1890 case DMAR_FRCD_REG_0_1:
1891 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1892 ", size %d, val 0x%"PRIx64, addr, size, val);
1893 assert(size == 4);
1894 vtd_set_long(s, addr, val);
1895 break;
1896
1897 case DMAR_FRCD_REG_0_2:
1898 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1899 ", size %d, val 0x%"PRIx64, addr, size, val);
1900 if (size == 4) {
1901 vtd_set_long(s, addr, val);
1902 } else {
1903 vtd_set_quad(s, addr, val);
1904 /* May clear bit 127 (Fault), update PPF */
1905 vtd_update_fsts_ppf(s);
1906 }
1907 break;
1908
1909 case DMAR_FRCD_REG_0_3:
1910 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1911 ", size %d, val 0x%"PRIx64, addr, size, val);
1912 assert(size == 4);
1913 vtd_set_long(s, addr, val);
1914 /* May clear bit 127 (Fault), update PPF */
1915 vtd_update_fsts_ppf(s);
1916 break;
1917
1918 case DMAR_IRTA_REG:
1919 VTD_DPRINTF(IR, "DMAR_IRTA_REG write addr 0x%"PRIx64
1920 ", size %d, val 0x%"PRIx64, addr, size, val);
1921 if (size == 4) {
1922 vtd_set_long(s, addr, val);
1923 } else {
1924 vtd_set_quad(s, addr, val);
1925 }
1926 break;
1927
1928 case DMAR_IRTA_REG_HI:
1929 VTD_DPRINTF(IR, "DMAR_IRTA_REG_HI write addr 0x%"PRIx64
1930 ", size %d, val 0x%"PRIx64, addr, size, val);
1931 assert(size == 4);
1932 vtd_set_long(s, addr, val);
1933 break;
1934
1935 default:
1936 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1937 ", size %d, val 0x%"PRIx64, addr, size, val);
1938 if (size == 4) {
1939 vtd_set_long(s, addr, val);
1940 } else {
1941 vtd_set_quad(s, addr, val);
1942 }
1943 }
1944 }
1945
1946 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1947 bool is_write)
1948 {
1949 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1950 IntelIOMMUState *s = vtd_as->iommu_state;
1951 IOMMUTLBEntry ret = {
1952 .target_as = &address_space_memory,
1953 .iova = addr,
1954 .translated_addr = 0,
1955 .addr_mask = ~(hwaddr)0,
1956 .perm = IOMMU_NONE,
1957 };
1958
1959 if (!s->dmar_enabled) {
1960 /* DMAR disabled, passthrough, use 4k-page*/
1961 ret.iova = addr & VTD_PAGE_MASK_4K;
1962 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1963 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1964 ret.perm = IOMMU_RW;
1965 return ret;
1966 }
1967
1968 vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1969 is_write, &ret);
1970 VTD_DPRINTF(MMU,
1971 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1972 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1973 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1974 vtd_as->devfn, addr, ret.translated_addr);
1975 return ret;
1976 }
1977
1978 static void vtd_iommu_notify_flag_changed(MemoryRegion *iommu,
1979 IOMMUNotifierFlag old,
1980 IOMMUNotifierFlag new)
1981 {
1982 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1983
1984 if (new & IOMMU_NOTIFIER_MAP) {
1985 error_report("Device at bus %s addr %02x.%d requires iommu "
1986 "notifier which is currently not supported by "
1987 "intel-iommu emulation",
1988 vtd_as->bus->qbus.name, PCI_SLOT(vtd_as->devfn),
1989 PCI_FUNC(vtd_as->devfn));
1990 exit(1);
1991 }
1992 }
1993
1994 static const VMStateDescription vtd_vmstate = {
1995 .name = "iommu-intel",
1996 .unmigratable = 1,
1997 };
1998
1999 static const MemoryRegionOps vtd_mem_ops = {
2000 .read = vtd_mem_read,
2001 .write = vtd_mem_write,
2002 .endianness = DEVICE_LITTLE_ENDIAN,
2003 .impl = {
2004 .min_access_size = 4,
2005 .max_access_size = 8,
2006 },
2007 .valid = {
2008 .min_access_size = 4,
2009 .max_access_size = 8,
2010 },
2011 };
2012
2013 static Property vtd_properties[] = {
2014 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2015 DEFINE_PROP_END_OF_LIST(),
2016 };
2017
2018 /* Read IRTE entry with specific index */
2019 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2020 VTD_IR_TableEntry *entry, uint16_t sid)
2021 {
2022 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2023 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2024 dma_addr_t addr = 0x00;
2025 uint16_t mask, source_id;
2026 uint8_t bus, bus_max, bus_min;
2027
2028 addr = iommu->intr_root + index * sizeof(*entry);
2029 if (dma_memory_read(&address_space_memory, addr, entry,
2030 sizeof(*entry))) {
2031 VTD_DPRINTF(GENERAL, "error: fail to access IR root at 0x%"PRIx64
2032 " + %"PRIu16, iommu->intr_root, index);
2033 return -VTD_FR_IR_ROOT_INVAL;
2034 }
2035
2036 if (!entry->irte.present) {
2037 VTD_DPRINTF(GENERAL, "error: present flag not set in IRTE"
2038 " entry index %u value 0x%"PRIx64 " 0x%"PRIx64,
2039 index, le64_to_cpu(entry->data[1]),
2040 le64_to_cpu(entry->data[0]));
2041 return -VTD_FR_IR_ENTRY_P;
2042 }
2043
2044 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2045 entry->irte.__reserved_2) {
2046 VTD_DPRINTF(GENERAL, "error: IRTE entry index %"PRIu16
2047 " reserved fields non-zero: 0x%"PRIx64 " 0x%"PRIx64,
2048 index, le64_to_cpu(entry->data[1]),
2049 le64_to_cpu(entry->data[0]));
2050 return -VTD_FR_IR_IRTE_RSVD;
2051 }
2052
2053 if (sid != X86_IOMMU_SID_INVALID) {
2054 /* Validate IRTE SID */
2055 source_id = le32_to_cpu(entry->irte.source_id);
2056 switch (entry->irte.sid_vtype) {
2057 case VTD_SVT_NONE:
2058 VTD_DPRINTF(IR, "No SID validation for IRTE index %d", index);
2059 break;
2060
2061 case VTD_SVT_ALL:
2062 mask = vtd_svt_mask[entry->irte.sid_q];
2063 if ((source_id & mask) != (sid & mask)) {
2064 VTD_DPRINTF(GENERAL, "SID validation for IRTE index "
2065 "%d failed (reqid 0x%04x sid 0x%04x)", index,
2066 sid, source_id);
2067 return -VTD_FR_IR_SID_ERR;
2068 }
2069 break;
2070
2071 case VTD_SVT_BUS:
2072 bus_max = source_id >> 8;
2073 bus_min = source_id & 0xff;
2074 bus = sid >> 8;
2075 if (bus > bus_max || bus < bus_min) {
2076 VTD_DPRINTF(GENERAL, "SID validation for IRTE index %d "
2077 "failed (bus %d outside %d-%d)", index, bus,
2078 bus_min, bus_max);
2079 return -VTD_FR_IR_SID_ERR;
2080 }
2081 break;
2082
2083 default:
2084 VTD_DPRINTF(GENERAL, "Invalid SVT bits (0x%x) in IRTE index "
2085 "%d", entry->irte.sid_vtype, index);
2086 /* Take this as verification failure. */
2087 return -VTD_FR_IR_SID_ERR;
2088 break;
2089 }
2090 }
2091
2092 return 0;
2093 }
2094
2095 /* Fetch IRQ information of specific IR index */
2096 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2097 VTDIrq *irq, uint16_t sid)
2098 {
2099 VTD_IR_TableEntry irte = {};
2100 int ret = 0;
2101
2102 ret = vtd_irte_get(iommu, index, &irte, sid);
2103 if (ret) {
2104 return ret;
2105 }
2106
2107 irq->trigger_mode = irte.irte.trigger_mode;
2108 irq->vector = irte.irte.vector;
2109 irq->delivery_mode = irte.irte.delivery_mode;
2110 irq->dest = le32_to_cpu(irte.irte.dest_id);
2111 if (!iommu->intr_eime) {
2112 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2113 #define VTD_IR_APIC_DEST_SHIFT (8)
2114 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2115 VTD_IR_APIC_DEST_SHIFT;
2116 }
2117 irq->dest_mode = irte.irte.dest_mode;
2118 irq->redir_hint = irte.irte.redir_hint;
2119
2120 VTD_DPRINTF(IR, "remapping interrupt index %d: trig:%u,vec:%u,"
2121 "deliver:%u,dest:%u,dest_mode:%u", index,
2122 irq->trigger_mode, irq->vector, irq->delivery_mode,
2123 irq->dest, irq->dest_mode);
2124
2125 return 0;
2126 }
2127
2128 /* Generate one MSI message from VTDIrq info */
2129 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2130 {
2131 VTD_MSIMessage msg = {};
2132
2133 /* Generate address bits */
2134 msg.dest_mode = irq->dest_mode;
2135 msg.redir_hint = irq->redir_hint;
2136 msg.dest = irq->dest;
2137 msg.__addr_head = cpu_to_le32(0xfee);
2138 /* Keep this from original MSI address bits */
2139 msg.__not_used = irq->msi_addr_last_bits;
2140
2141 /* Generate data bits */
2142 msg.vector = irq->vector;
2143 msg.delivery_mode = irq->delivery_mode;
2144 msg.level = 1;
2145 msg.trigger_mode = irq->trigger_mode;
2146
2147 msg_out->address = msg.msi_addr;
2148 msg_out->data = msg.msi_data;
2149 }
2150
2151 /* Interrupt remapping for MSI/MSI-X entry */
2152 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2153 MSIMessage *origin,
2154 MSIMessage *translated,
2155 uint16_t sid)
2156 {
2157 int ret = 0;
2158 VTD_IR_MSIAddress addr;
2159 uint16_t index;
2160 VTDIrq irq = {};
2161
2162 assert(origin && translated);
2163
2164 if (!iommu || !iommu->intr_enabled) {
2165 goto do_not_translate;
2166 }
2167
2168 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2169 VTD_DPRINTF(GENERAL, "error: MSI addr high 32 bits nonzero"
2170 " during interrupt remapping: 0x%"PRIx32,
2171 (uint32_t)((origin->address & VTD_MSI_ADDR_HI_MASK) >> \
2172 VTD_MSI_ADDR_HI_SHIFT));
2173 return -VTD_FR_IR_REQ_RSVD;
2174 }
2175
2176 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2177 if (le16_to_cpu(addr.addr.__head) != 0xfee) {
2178 VTD_DPRINTF(GENERAL, "error: MSI addr low 32 bits invalid: "
2179 "0x%"PRIx32, addr.data);
2180 return -VTD_FR_IR_REQ_RSVD;
2181 }
2182
2183 /* This is compatible mode. */
2184 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2185 goto do_not_translate;
2186 }
2187
2188 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2189
2190 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2191 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2192
2193 if (addr.addr.sub_valid) {
2194 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2195 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2196 }
2197
2198 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2199 if (ret) {
2200 return ret;
2201 }
2202
2203 if (addr.addr.sub_valid) {
2204 VTD_DPRINTF(IR, "received MSI interrupt");
2205 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2206 VTD_DPRINTF(GENERAL, "error: MSI data bits non-zero for "
2207 "interrupt remappable entry: 0x%"PRIx32,
2208 origin->data);
2209 return -VTD_FR_IR_REQ_RSVD;
2210 }
2211 } else {
2212 uint8_t vector = origin->data & 0xff;
2213 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2214
2215 VTD_DPRINTF(IR, "received IOAPIC interrupt");
2216 /* IOAPIC entry vector should be aligned with IRTE vector
2217 * (see vt-d spec 5.1.5.1). */
2218 if (vector != irq.vector) {
2219 VTD_DPRINTF(GENERAL, "IOAPIC vector inconsistent: "
2220 "entry: %d, IRTE: %d, index: %d",
2221 vector, irq.vector, index);
2222 }
2223
2224 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2225 * (see vt-d spec 5.1.5.1). */
2226 if (trigger_mode != irq.trigger_mode) {
2227 VTD_DPRINTF(GENERAL, "IOAPIC trigger mode inconsistent: "
2228 "entry: %u, IRTE: %u, index: %d",
2229 trigger_mode, irq.trigger_mode, index);
2230 }
2231
2232 }
2233
2234 /*
2235 * We'd better keep the last two bits, assuming that guest OS
2236 * might modify it. Keep it does not hurt after all.
2237 */
2238 irq.msi_addr_last_bits = addr.addr.__not_care;
2239
2240 /* Translate VTDIrq to MSI message */
2241 vtd_generate_msi_message(&irq, translated);
2242
2243 VTD_DPRINTF(IR, "mapping MSI 0x%"PRIx64":0x%"PRIx32 " -> "
2244 "0x%"PRIx64":0x%"PRIx32, origin->address, origin->data,
2245 translated->address, translated->data);
2246 return 0;
2247
2248 do_not_translate:
2249 memcpy(translated, origin, sizeof(*origin));
2250 return 0;
2251 }
2252
2253 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2254 MSIMessage *dst, uint16_t sid)
2255 {
2256 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2257 src, dst, sid);
2258 }
2259
2260 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2261 uint64_t *data, unsigned size,
2262 MemTxAttrs attrs)
2263 {
2264 return MEMTX_OK;
2265 }
2266
2267 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2268 uint64_t value, unsigned size,
2269 MemTxAttrs attrs)
2270 {
2271 int ret = 0;
2272 MSIMessage from = {}, to = {};
2273 uint16_t sid = X86_IOMMU_SID_INVALID;
2274
2275 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2276 from.data = (uint32_t) value;
2277
2278 if (!attrs.unspecified) {
2279 /* We have explicit Source ID */
2280 sid = attrs.requester_id;
2281 }
2282
2283 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2284 if (ret) {
2285 /* TODO: report error */
2286 VTD_DPRINTF(GENERAL, "int remap fail for addr 0x%"PRIx64
2287 " data 0x%"PRIx32, from.address, from.data);
2288 /* Drop this interrupt */
2289 return MEMTX_ERROR;
2290 }
2291
2292 VTD_DPRINTF(IR, "delivering MSI 0x%"PRIx64":0x%"PRIx32
2293 " for device sid 0x%04x",
2294 to.address, to.data, sid);
2295
2296 if (dma_memory_write(&address_space_memory, to.address,
2297 &to.data, size)) {
2298 VTD_DPRINTF(GENERAL, "error: fail to write 0x%"PRIx64
2299 " value 0x%"PRIx32, to.address, to.data);
2300 }
2301
2302 return MEMTX_OK;
2303 }
2304
2305 static const MemoryRegionOps vtd_mem_ir_ops = {
2306 .read_with_attrs = vtd_mem_ir_read,
2307 .write_with_attrs = vtd_mem_ir_write,
2308 .endianness = DEVICE_LITTLE_ENDIAN,
2309 .impl = {
2310 .min_access_size = 4,
2311 .max_access_size = 4,
2312 },
2313 .valid = {
2314 .min_access_size = 4,
2315 .max_access_size = 4,
2316 },
2317 };
2318
2319 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2320 {
2321 uintptr_t key = (uintptr_t)bus;
2322 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2323 VTDAddressSpace *vtd_dev_as;
2324
2325 if (!vtd_bus) {
2326 /* No corresponding free() */
2327 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2328 X86_IOMMU_PCI_DEVFN_MAX);
2329 vtd_bus->bus = bus;
2330 key = (uintptr_t)bus;
2331 g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
2332 }
2333
2334 vtd_dev_as = vtd_bus->dev_as[devfn];
2335
2336 if (!vtd_dev_as) {
2337 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2338
2339 vtd_dev_as->bus = bus;
2340 vtd_dev_as->devfn = (uint8_t)devfn;
2341 vtd_dev_as->iommu_state = s;
2342 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2343 memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
2344 &s->iommu_ops, "intel_iommu", UINT64_MAX);
2345 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2346 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2347 VTD_INTERRUPT_ADDR_SIZE);
2348 memory_region_add_subregion(&vtd_dev_as->iommu, VTD_INTERRUPT_ADDR_FIRST,
2349 &vtd_dev_as->iommu_ir);
2350 address_space_init(&vtd_dev_as->as,
2351 &vtd_dev_as->iommu, "intel_iommu");
2352 }
2353 return vtd_dev_as;
2354 }
2355
2356 /* Do the initialization. It will also be called when reset, so pay
2357 * attention when adding new initialization stuff.
2358 */
2359 static void vtd_init(IntelIOMMUState *s)
2360 {
2361 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2362
2363 memset(s->csr, 0, DMAR_REG_SIZE);
2364 memset(s->wmask, 0, DMAR_REG_SIZE);
2365 memset(s->w1cmask, 0, DMAR_REG_SIZE);
2366 memset(s->womask, 0, DMAR_REG_SIZE);
2367
2368 s->iommu_ops.translate = vtd_iommu_translate;
2369 s->iommu_ops.notify_flag_changed = vtd_iommu_notify_flag_changed;
2370 s->root = 0;
2371 s->root_extended = false;
2372 s->dmar_enabled = false;
2373 s->iq_head = 0;
2374 s->iq_tail = 0;
2375 s->iq = 0;
2376 s->iq_size = 0;
2377 s->qi_enabled = false;
2378 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2379 s->next_frcd_reg = 0;
2380 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2381 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2382 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2383
2384 if (x86_iommu->intr_supported) {
2385 s->ecap |= VTD_ECAP_IR | VTD_ECAP_EIM | VTD_ECAP_MHMV;
2386 }
2387
2388 vtd_reset_context_cache(s);
2389 vtd_reset_iotlb(s);
2390
2391 /* Define registers with default values and bit semantics */
2392 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2393 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2394 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2395 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2396 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2397 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2398 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2399 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2400 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2401
2402 /* Advanced Fault Logging not supported */
2403 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2404 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2405 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2406 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2407
2408 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2409 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2410 */
2411 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2412
2413 /* Treated as RO for implementations that PLMR and PHMR fields reported
2414 * as Clear in the CAP_REG.
2415 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2416 */
2417 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2418
2419 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2420 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2421 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2422 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2423 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2424 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2425 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2426 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2427 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2428
2429 /* IOTLB registers */
2430 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2431 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2432 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2433
2434 /* Fault Recording Registers, 128-bit */
2435 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2436 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2437
2438 /*
2439 * Interrupt remapping registers.
2440 */
2441 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2442 }
2443
2444 /* Should not reset address_spaces when reset because devices will still use
2445 * the address space they got at first (won't ask the bus again).
2446 */
2447 static void vtd_reset(DeviceState *dev)
2448 {
2449 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2450
2451 VTD_DPRINTF(GENERAL, "");
2452 vtd_init(s);
2453 }
2454
2455 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2456 {
2457 IntelIOMMUState *s = opaque;
2458 VTDAddressSpace *vtd_as;
2459
2460 assert(0 <= devfn && devfn <= X86_IOMMU_PCI_DEVFN_MAX);
2461
2462 vtd_as = vtd_find_add_as(s, bus, devfn);
2463 return &vtd_as->as;
2464 }
2465
2466 static void vtd_realize(DeviceState *dev, Error **errp)
2467 {
2468 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
2469 PCIBus *bus = pcms->bus;
2470 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2471 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
2472
2473 VTD_DPRINTF(GENERAL, "");
2474 x86_iommu->type = TYPE_INTEL;
2475 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2476 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2477 "intel_iommu", DMAR_REG_SIZE);
2478 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2479 /* No corresponding destroy */
2480 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2481 g_free, g_free);
2482 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2483 g_free, g_free);
2484 vtd_init(s);
2485 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
2486 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
2487 /* Pseudo address space under root PCI bus. */
2488 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
2489
2490 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2491 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
2492 !kvm_irqchip_is_split()) {
2493 error_report("Intel Interrupt Remapping cannot work with "
2494 "kernel-irqchip=on, please use 'split|off'.");
2495 exit(1);
2496 }
2497 }
2498
2499 static void vtd_class_init(ObjectClass *klass, void *data)
2500 {
2501 DeviceClass *dc = DEVICE_CLASS(klass);
2502 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
2503
2504 dc->reset = vtd_reset;
2505 dc->vmsd = &vtd_vmstate;
2506 dc->props = vtd_properties;
2507 dc->hotpluggable = false;
2508 x86_class->realize = vtd_realize;
2509 x86_class->int_remap = vtd_int_remap;
2510 }
2511
2512 static const TypeInfo vtd_info = {
2513 .name = TYPE_INTEL_IOMMU_DEVICE,
2514 .parent = TYPE_X86_IOMMU_DEVICE,
2515 .instance_size = sizeof(IntelIOMMUState),
2516 .class_init = vtd_class_init,
2517 };
2518
2519 static void vtd_register_types(void)
2520 {
2521 VTD_DPRINTF(GENERAL, "");
2522 type_register_static(&vtd_info);
2523 }
2524
2525 type_init(vtd_register_types)