]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
mmap-alloc: tweak a comment on ppc64
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "hw/sysbus.h"
23 #include "exec/address-spaces.h"
24 #include "intel_iommu_internal.h"
25 #include "hw/pci/pci.h"
26
27 /*#define DEBUG_INTEL_IOMMU*/
28 #ifdef DEBUG_INTEL_IOMMU
29 enum {
30 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
31 DEBUG_CACHE,
32 };
33 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
34 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
35
36 #define VTD_DPRINTF(what, fmt, ...) do { \
37 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
38 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
39 ## __VA_ARGS__); } \
40 } while (0)
41 #else
42 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
43 #endif
44
45 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
46 uint64_t wmask, uint64_t w1cmask)
47 {
48 stq_le_p(&s->csr[addr], val);
49 stq_le_p(&s->wmask[addr], wmask);
50 stq_le_p(&s->w1cmask[addr], w1cmask);
51 }
52
53 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
54 {
55 stq_le_p(&s->womask[addr], mask);
56 }
57
58 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
59 uint32_t wmask, uint32_t w1cmask)
60 {
61 stl_le_p(&s->csr[addr], val);
62 stl_le_p(&s->wmask[addr], wmask);
63 stl_le_p(&s->w1cmask[addr], w1cmask);
64 }
65
66 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
67 {
68 stl_le_p(&s->womask[addr], mask);
69 }
70
71 /* "External" get/set operations */
72 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
73 {
74 uint64_t oldval = ldq_le_p(&s->csr[addr]);
75 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
76 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
77 stq_le_p(&s->csr[addr],
78 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
79 }
80
81 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
82 {
83 uint32_t oldval = ldl_le_p(&s->csr[addr]);
84 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
85 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
86 stl_le_p(&s->csr[addr],
87 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
88 }
89
90 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
91 {
92 uint64_t val = ldq_le_p(&s->csr[addr]);
93 uint64_t womask = ldq_le_p(&s->womask[addr]);
94 return val & ~womask;
95 }
96
97 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
98 {
99 uint32_t val = ldl_le_p(&s->csr[addr]);
100 uint32_t womask = ldl_le_p(&s->womask[addr]);
101 return val & ~womask;
102 }
103
104 /* "Internal" get/set operations */
105 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
106 {
107 return ldq_le_p(&s->csr[addr]);
108 }
109
110 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
111 {
112 return ldl_le_p(&s->csr[addr]);
113 }
114
115 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
116 {
117 stq_le_p(&s->csr[addr], val);
118 }
119
120 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
121 uint32_t clear, uint32_t mask)
122 {
123 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
124 stl_le_p(&s->csr[addr], new_val);
125 return new_val;
126 }
127
128 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
129 uint64_t clear, uint64_t mask)
130 {
131 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
132 stq_le_p(&s->csr[addr], new_val);
133 return new_val;
134 }
135
136 /* GHashTable functions */
137 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
138 {
139 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
140 }
141
142 static guint vtd_uint64_hash(gconstpointer v)
143 {
144 return (guint)*(const uint64_t *)v;
145 }
146
147 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
148 gpointer user_data)
149 {
150 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
151 uint16_t domain_id = *(uint16_t *)user_data;
152 return entry->domain_id == domain_id;
153 }
154
155 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
156 gpointer user_data)
157 {
158 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
159 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
160 uint64_t gfn = info->gfn & info->mask;
161 return (entry->domain_id == info->domain_id) &&
162 ((entry->gfn & info->mask) == gfn);
163 }
164
165 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
166 * IntelIOMMUState to 1.
167 */
168 static void vtd_reset_context_cache(IntelIOMMUState *s)
169 {
170 VTDAddressSpace *vtd_as;
171 VTDBus *vtd_bus;
172 GHashTableIter bus_it;
173 uint32_t devfn_it;
174
175 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
176
177 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
178 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
179 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
180 vtd_as = vtd_bus->dev_as[devfn_it];
181 if (!vtd_as) {
182 continue;
183 }
184 vtd_as->context_cache_entry.context_cache_gen = 0;
185 }
186 }
187 s->context_cache_gen = 1;
188 }
189
190 static void vtd_reset_iotlb(IntelIOMMUState *s)
191 {
192 assert(s->iotlb);
193 g_hash_table_remove_all(s->iotlb);
194 }
195
196 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
197 hwaddr addr)
198 {
199 uint64_t key;
200
201 key = (addr >> VTD_PAGE_SHIFT_4K) |
202 ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
203 return g_hash_table_lookup(s->iotlb, &key);
204
205 }
206
207 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
208 uint16_t domain_id, hwaddr addr, uint64_t slpte,
209 bool read_flags, bool write_flags)
210 {
211 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
212 uint64_t *key = g_malloc(sizeof(*key));
213 uint64_t gfn = addr >> VTD_PAGE_SHIFT_4K;
214
215 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
216 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
217 domain_id);
218 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
219 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
220 vtd_reset_iotlb(s);
221 }
222
223 entry->gfn = gfn;
224 entry->domain_id = domain_id;
225 entry->slpte = slpte;
226 entry->read_flags = read_flags;
227 entry->write_flags = write_flags;
228 *key = gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
229 g_hash_table_replace(s->iotlb, key, entry);
230 }
231
232 /* Given the reg addr of both the message data and address, generate an
233 * interrupt via MSI.
234 */
235 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
236 hwaddr mesg_data_reg)
237 {
238 hwaddr addr;
239 uint32_t data;
240
241 assert(mesg_data_reg < DMAR_REG_SIZE);
242 assert(mesg_addr_reg < DMAR_REG_SIZE);
243
244 addr = vtd_get_long_raw(s, mesg_addr_reg);
245 data = vtd_get_long_raw(s, mesg_data_reg);
246
247 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
248 address_space_stl_le(&address_space_memory, addr, data,
249 MEMTXATTRS_UNSPECIFIED, NULL);
250 }
251
252 /* Generate a fault event to software via MSI if conditions are met.
253 * Notice that the value of FSTS_REG being passed to it should be the one
254 * before any update.
255 */
256 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
257 {
258 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
259 pre_fsts & VTD_FSTS_IQE) {
260 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
261 "to be serviced by software, fault event is not generated "
262 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
263 return;
264 }
265 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
266 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
267 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
268 } else {
269 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
270 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
271 }
272 }
273
274 /* Check if the Fault (F) field of the Fault Recording Register referenced by
275 * @index is Set.
276 */
277 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
278 {
279 /* Each reg is 128-bit */
280 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
281 addr += 8; /* Access the high 64-bit half */
282
283 assert(index < DMAR_FRCD_REG_NR);
284
285 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
286 }
287
288 /* Update the PPF field of Fault Status Register.
289 * Should be called whenever change the F field of any fault recording
290 * registers.
291 */
292 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
293 {
294 uint32_t i;
295 uint32_t ppf_mask = 0;
296
297 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
298 if (vtd_is_frcd_set(s, i)) {
299 ppf_mask = VTD_FSTS_PPF;
300 break;
301 }
302 }
303 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
304 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
305 }
306
307 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
308 {
309 /* Each reg is 128-bit */
310 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
311 addr += 8; /* Access the high 64-bit half */
312
313 assert(index < DMAR_FRCD_REG_NR);
314
315 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
316 vtd_update_fsts_ppf(s);
317 }
318
319 /* Must not update F field now, should be done later */
320 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
321 uint16_t source_id, hwaddr addr,
322 VTDFaultReason fault, bool is_write)
323 {
324 uint64_t hi = 0, lo;
325 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
326
327 assert(index < DMAR_FRCD_REG_NR);
328
329 lo = VTD_FRCD_FI(addr);
330 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
331 if (!is_write) {
332 hi |= VTD_FRCD_T;
333 }
334 vtd_set_quad_raw(s, frcd_reg_addr, lo);
335 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
336 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
337 ", lo 0x%"PRIx64, index, hi, lo);
338 }
339
340 /* Try to collapse multiple pending faults from the same requester */
341 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
342 {
343 uint32_t i;
344 uint64_t frcd_reg;
345 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
346
347 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
348 frcd_reg = vtd_get_quad_raw(s, addr);
349 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
350 if ((frcd_reg & VTD_FRCD_F) &&
351 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
352 return true;
353 }
354 addr += 16; /* 128-bit for each */
355 }
356 return false;
357 }
358
359 /* Log and report an DMAR (address translation) fault to software */
360 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
361 hwaddr addr, VTDFaultReason fault,
362 bool is_write)
363 {
364 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
365
366 assert(fault < VTD_FR_MAX);
367
368 if (fault == VTD_FR_RESERVED_ERR) {
369 /* This is not a normal fault reason case. Drop it. */
370 return;
371 }
372 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
373 ", is_write %d", source_id, fault, addr, is_write);
374 if (fsts_reg & VTD_FSTS_PFO) {
375 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
376 "Primary Fault Overflow");
377 return;
378 }
379 if (vtd_try_collapse_fault(s, source_id)) {
380 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
381 "compression of faults");
382 return;
383 }
384 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
385 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
386 "new fault is not recorded, set PFO field");
387 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
388 return;
389 }
390
391 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
392
393 if (fsts_reg & VTD_FSTS_PPF) {
394 VTD_DPRINTF(FLOG, "there are pending faults already, "
395 "fault event is not generated");
396 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
397 s->next_frcd_reg++;
398 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
399 s->next_frcd_reg = 0;
400 }
401 } else {
402 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
403 VTD_FSTS_FRI(s->next_frcd_reg));
404 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
405 s->next_frcd_reg++;
406 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
407 s->next_frcd_reg = 0;
408 }
409 /* This case actually cause the PPF to be Set.
410 * So generate fault event (interrupt).
411 */
412 vtd_generate_fault_event(s, fsts_reg);
413 }
414 }
415
416 /* Handle Invalidation Queue Errors of queued invalidation interface error
417 * conditions.
418 */
419 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
420 {
421 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
422
423 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
424 vtd_generate_fault_event(s, fsts_reg);
425 }
426
427 /* Set the IWC field and try to generate an invalidation completion interrupt */
428 static void vtd_generate_completion_event(IntelIOMMUState *s)
429 {
430 VTD_DPRINTF(INV, "completes an invalidation wait command with "
431 "Interrupt Flag");
432 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
433 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
434 "serviced by software, "
435 "new invalidation event is not generated");
436 return;
437 }
438 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
439 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
440 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
441 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
442 "event is not generated");
443 return;
444 } else {
445 /* Generate the interrupt event */
446 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
447 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
448 }
449 }
450
451 static inline bool vtd_root_entry_present(VTDRootEntry *root)
452 {
453 return root->val & VTD_ROOT_ENTRY_P;
454 }
455
456 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
457 VTDRootEntry *re)
458 {
459 dma_addr_t addr;
460
461 addr = s->root + index * sizeof(*re);
462 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
463 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
464 " + %"PRIu8, s->root, index);
465 re->val = 0;
466 return -VTD_FR_ROOT_TABLE_INV;
467 }
468 re->val = le64_to_cpu(re->val);
469 return 0;
470 }
471
472 static inline bool vtd_context_entry_present(VTDContextEntry *context)
473 {
474 return context->lo & VTD_CONTEXT_ENTRY_P;
475 }
476
477 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
478 VTDContextEntry *ce)
479 {
480 dma_addr_t addr;
481
482 if (!vtd_root_entry_present(root)) {
483 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
484 return -VTD_FR_ROOT_ENTRY_P;
485 }
486 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
487 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
488 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
489 " + %"PRIu8,
490 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
491 return -VTD_FR_CONTEXT_TABLE_INV;
492 }
493 ce->lo = le64_to_cpu(ce->lo);
494 ce->hi = le64_to_cpu(ce->hi);
495 return 0;
496 }
497
498 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
499 {
500 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
501 }
502
503 /* The shift of an addr for a certain level of paging structure */
504 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
505 {
506 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
507 }
508
509 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
510 {
511 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
512 }
513
514 /* Whether the pte indicates the address of the page frame */
515 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
516 {
517 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
518 }
519
520 /* Get the content of a spte located in @base_addr[@index] */
521 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
522 {
523 uint64_t slpte;
524
525 assert(index < VTD_SL_PT_ENTRY_NR);
526
527 if (dma_memory_read(&address_space_memory,
528 base_addr + index * sizeof(slpte), &slpte,
529 sizeof(slpte))) {
530 slpte = (uint64_t)-1;
531 return slpte;
532 }
533 slpte = le64_to_cpu(slpte);
534 return slpte;
535 }
536
537 /* Given a gpa and the level of paging structure, return the offset of current
538 * level.
539 */
540 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
541 {
542 return (gpa >> vtd_slpt_level_shift(level)) &
543 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
544 }
545
546 /* Check Capability Register to see if the @level of page-table is supported */
547 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
548 {
549 return VTD_CAP_SAGAW_MASK & s->cap &
550 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
551 }
552
553 /* Get the page-table level that hardware should use for the second-level
554 * page-table walk from the Address Width field of context-entry.
555 */
556 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
557 {
558 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
559 }
560
561 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
562 {
563 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
564 }
565
566 static const uint64_t vtd_paging_entry_rsvd_field[] = {
567 [0] = ~0ULL,
568 /* For not large page */
569 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
570 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
571 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
572 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
573 /* For large page */
574 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
575 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
576 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
577 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
578 };
579
580 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
581 {
582 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
583 /* Maybe large page */
584 return slpte & vtd_paging_entry_rsvd_field[level + 4];
585 } else {
586 return slpte & vtd_paging_entry_rsvd_field[level];
587 }
588 }
589
590 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
591 * of the translation, can be used for deciding the size of large page.
592 */
593 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
594 uint64_t *slptep, uint32_t *slpte_level,
595 bool *reads, bool *writes)
596 {
597 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
598 uint32_t level = vtd_get_level_from_context_entry(ce);
599 uint32_t offset;
600 uint64_t slpte;
601 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
602 uint64_t access_right_check;
603
604 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
605 * and AW in context-entry.
606 */
607 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
608 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
609 return -VTD_FR_ADDR_BEYOND_MGAW;
610 }
611
612 /* FIXME: what is the Atomics request here? */
613 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
614
615 while (true) {
616 offset = vtd_gpa_level_offset(gpa, level);
617 slpte = vtd_get_slpte(addr, offset);
618
619 if (slpte == (uint64_t)-1) {
620 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
621 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
622 level, gpa);
623 if (level == vtd_get_level_from_context_entry(ce)) {
624 /* Invalid programming of context-entry */
625 return -VTD_FR_CONTEXT_ENTRY_INV;
626 } else {
627 return -VTD_FR_PAGING_ENTRY_INV;
628 }
629 }
630 *reads = (*reads) && (slpte & VTD_SL_R);
631 *writes = (*writes) && (slpte & VTD_SL_W);
632 if (!(slpte & access_right_check)) {
633 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
634 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
635 (is_write ? "write" : "read"), gpa, slpte);
636 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
637 }
638 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
639 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
640 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
641 level, slpte);
642 return -VTD_FR_PAGING_ENTRY_RSVD;
643 }
644
645 if (vtd_is_last_slpte(slpte, level)) {
646 *slptep = slpte;
647 *slpte_level = level;
648 return 0;
649 }
650 addr = vtd_get_slpte_addr(slpte);
651 level--;
652 }
653 }
654
655 /* Map a device to its corresponding domain (context-entry) */
656 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
657 uint8_t devfn, VTDContextEntry *ce)
658 {
659 VTDRootEntry re;
660 int ret_fr;
661
662 ret_fr = vtd_get_root_entry(s, bus_num, &re);
663 if (ret_fr) {
664 return ret_fr;
665 }
666
667 if (!vtd_root_entry_present(&re)) {
668 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
669 bus_num);
670 return -VTD_FR_ROOT_ENTRY_P;
671 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
672 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
673 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
674 return -VTD_FR_ROOT_ENTRY_RSVD;
675 }
676
677 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
678 if (ret_fr) {
679 return ret_fr;
680 }
681
682 if (!vtd_context_entry_present(ce)) {
683 VTD_DPRINTF(GENERAL,
684 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
685 "is not present", devfn, bus_num);
686 return -VTD_FR_CONTEXT_ENTRY_P;
687 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
688 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
689 VTD_DPRINTF(GENERAL,
690 "error: non-zero reserved field in context-entry "
691 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
692 return -VTD_FR_CONTEXT_ENTRY_RSVD;
693 }
694 /* Check if the programming of context-entry is valid */
695 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
696 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
697 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
698 ce->hi, ce->lo);
699 return -VTD_FR_CONTEXT_ENTRY_INV;
700 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
701 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
702 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
703 ce->hi, ce->lo);
704 return -VTD_FR_CONTEXT_ENTRY_INV;
705 }
706 return 0;
707 }
708
709 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
710 {
711 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
712 }
713
714 static const bool vtd_qualified_faults[] = {
715 [VTD_FR_RESERVED] = false,
716 [VTD_FR_ROOT_ENTRY_P] = false,
717 [VTD_FR_CONTEXT_ENTRY_P] = true,
718 [VTD_FR_CONTEXT_ENTRY_INV] = true,
719 [VTD_FR_ADDR_BEYOND_MGAW] = true,
720 [VTD_FR_WRITE] = true,
721 [VTD_FR_READ] = true,
722 [VTD_FR_PAGING_ENTRY_INV] = true,
723 [VTD_FR_ROOT_TABLE_INV] = false,
724 [VTD_FR_CONTEXT_TABLE_INV] = false,
725 [VTD_FR_ROOT_ENTRY_RSVD] = false,
726 [VTD_FR_PAGING_ENTRY_RSVD] = true,
727 [VTD_FR_CONTEXT_ENTRY_TT] = true,
728 [VTD_FR_RESERVED_ERR] = false,
729 [VTD_FR_MAX] = false,
730 };
731
732 /* To see if a fault condition is "qualified", which is reported to software
733 * only if the FPD field in the context-entry used to process the faulting
734 * request is 0.
735 */
736 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
737 {
738 return vtd_qualified_faults[fault];
739 }
740
741 static inline bool vtd_is_interrupt_addr(hwaddr addr)
742 {
743 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
744 }
745
746 /* Map dev to context-entry then do a paging-structures walk to do a iommu
747 * translation.
748 *
749 * Called from RCU critical section.
750 *
751 * @bus_num: The bus number
752 * @devfn: The devfn, which is the combined of device and function number
753 * @is_write: The access is a write operation
754 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
755 */
756 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
757 uint8_t devfn, hwaddr addr, bool is_write,
758 IOMMUTLBEntry *entry)
759 {
760 IntelIOMMUState *s = vtd_as->iommu_state;
761 VTDContextEntry ce;
762 uint8_t bus_num = pci_bus_num(bus);
763 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
764 uint64_t slpte;
765 uint32_t level;
766 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
767 int ret_fr;
768 bool is_fpd_set = false;
769 bool reads = true;
770 bool writes = true;
771 VTDIOTLBEntry *iotlb_entry;
772
773 /* Check if the request is in interrupt address range */
774 if (vtd_is_interrupt_addr(addr)) {
775 if (is_write) {
776 /* FIXME: since we don't know the length of the access here, we
777 * treat Non-DWORD length write requests without PASID as
778 * interrupt requests, too. Withoud interrupt remapping support,
779 * we just use 1:1 mapping.
780 */
781 VTD_DPRINTF(MMU, "write request to interrupt address "
782 "gpa 0x%"PRIx64, addr);
783 entry->iova = addr & VTD_PAGE_MASK_4K;
784 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
785 entry->addr_mask = ~VTD_PAGE_MASK_4K;
786 entry->perm = IOMMU_WO;
787 return;
788 } else {
789 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
790 "gpa 0x%"PRIx64, addr);
791 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
792 return;
793 }
794 }
795 /* Try to fetch slpte form IOTLB */
796 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
797 if (iotlb_entry) {
798 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
799 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
800 iotlb_entry->slpte, iotlb_entry->domain_id);
801 slpte = iotlb_entry->slpte;
802 reads = iotlb_entry->read_flags;
803 writes = iotlb_entry->write_flags;
804 goto out;
805 }
806 /* Try to fetch context-entry from cache first */
807 if (cc_entry->context_cache_gen == s->context_cache_gen) {
808 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
809 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
810 bus_num, devfn, cc_entry->context_entry.hi,
811 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
812 ce = cc_entry->context_entry;
813 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
814 } else {
815 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
816 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
817 if (ret_fr) {
818 ret_fr = -ret_fr;
819 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
820 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
821 "requests through this context-entry "
822 "(with FPD Set)");
823 } else {
824 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
825 }
826 return;
827 }
828 /* Update context-cache */
829 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
830 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
831 bus_num, devfn, ce.hi, ce.lo,
832 cc_entry->context_cache_gen, s->context_cache_gen);
833 cc_entry->context_entry = ce;
834 cc_entry->context_cache_gen = s->context_cache_gen;
835 }
836
837 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
838 &reads, &writes);
839 if (ret_fr) {
840 ret_fr = -ret_fr;
841 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
842 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
843 "through this context-entry (with FPD Set)");
844 } else {
845 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
846 }
847 return;
848 }
849
850 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
851 reads, writes);
852 out:
853 entry->iova = addr & VTD_PAGE_MASK_4K;
854 entry->translated_addr = vtd_get_slpte_addr(slpte) & VTD_PAGE_MASK_4K;
855 entry->addr_mask = ~VTD_PAGE_MASK_4K;
856 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
857 }
858
859 static void vtd_root_table_setup(IntelIOMMUState *s)
860 {
861 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
862 s->root_extended = s->root & VTD_RTADDR_RTT;
863 s->root &= VTD_RTADDR_ADDR_MASK;
864
865 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
866 (s->root_extended ? "(extended)" : ""));
867 }
868
869 static void vtd_context_global_invalidate(IntelIOMMUState *s)
870 {
871 s->context_cache_gen++;
872 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
873 vtd_reset_context_cache(s);
874 }
875 }
876
877
878 /* Find the VTD address space currently associated with a given bus number,
879 */
880 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
881 {
882 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
883 if (!vtd_bus) {
884 /* Iterate over the registered buses to find the one
885 * which currently hold this bus number, and update the bus_num lookup table:
886 */
887 GHashTableIter iter;
888
889 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
890 while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
891 if (pci_bus_num(vtd_bus->bus) == bus_num) {
892 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
893 return vtd_bus;
894 }
895 }
896 }
897 return vtd_bus;
898 }
899
900 /* Do a context-cache device-selective invalidation.
901 * @func_mask: FM field after shifting
902 */
903 static void vtd_context_device_invalidate(IntelIOMMUState *s,
904 uint16_t source_id,
905 uint16_t func_mask)
906 {
907 uint16_t mask;
908 VTDBus *vtd_bus;
909 VTDAddressSpace *vtd_as;
910 uint16_t devfn;
911 uint16_t devfn_it;
912
913 switch (func_mask & 3) {
914 case 0:
915 mask = 0; /* No bits in the SID field masked */
916 break;
917 case 1:
918 mask = 4; /* Mask bit 2 in the SID field */
919 break;
920 case 2:
921 mask = 6; /* Mask bit 2:1 in the SID field */
922 break;
923 case 3:
924 mask = 7; /* Mask bit 2:0 in the SID field */
925 break;
926 }
927 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
928 " mask %"PRIu16, source_id, mask);
929 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
930 if (vtd_bus) {
931 devfn = VTD_SID_TO_DEVFN(source_id);
932 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
933 vtd_as = vtd_bus->dev_as[devfn_it];
934 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
935 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
936 devfn_it);
937 vtd_as->context_cache_entry.context_cache_gen = 0;
938 }
939 }
940 }
941 }
942
943 /* Context-cache invalidation
944 * Returns the Context Actual Invalidation Granularity.
945 * @val: the content of the CCMD_REG
946 */
947 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
948 {
949 uint64_t caig;
950 uint64_t type = val & VTD_CCMD_CIRG_MASK;
951
952 switch (type) {
953 case VTD_CCMD_DOMAIN_INVL:
954 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
955 (uint16_t)VTD_CCMD_DID(val));
956 /* Fall through */
957 case VTD_CCMD_GLOBAL_INVL:
958 VTD_DPRINTF(INV, "global invalidation");
959 caig = VTD_CCMD_GLOBAL_INVL_A;
960 vtd_context_global_invalidate(s);
961 break;
962
963 case VTD_CCMD_DEVICE_INVL:
964 caig = VTD_CCMD_DEVICE_INVL_A;
965 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
966 break;
967
968 default:
969 VTD_DPRINTF(GENERAL, "error: invalid granularity");
970 caig = 0;
971 }
972 return caig;
973 }
974
975 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
976 {
977 vtd_reset_iotlb(s);
978 }
979
980 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
981 {
982 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
983 &domain_id);
984 }
985
986 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
987 hwaddr addr, uint8_t am)
988 {
989 VTDIOTLBPageInvInfo info;
990
991 assert(am <= VTD_MAMV);
992 info.domain_id = domain_id;
993 info.gfn = addr >> VTD_PAGE_SHIFT_4K;
994 info.mask = ~((1 << am) - 1);
995 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
996 }
997
998 /* Flush IOTLB
999 * Returns the IOTLB Actual Invalidation Granularity.
1000 * @val: the content of the IOTLB_REG
1001 */
1002 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1003 {
1004 uint64_t iaig;
1005 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1006 uint16_t domain_id;
1007 hwaddr addr;
1008 uint8_t am;
1009
1010 switch (type) {
1011 case VTD_TLB_GLOBAL_FLUSH:
1012 VTD_DPRINTF(INV, "global invalidation");
1013 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1014 vtd_iotlb_global_invalidate(s);
1015 break;
1016
1017 case VTD_TLB_DSI_FLUSH:
1018 domain_id = VTD_TLB_DID(val);
1019 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1020 domain_id);
1021 iaig = VTD_TLB_DSI_FLUSH_A;
1022 vtd_iotlb_domain_invalidate(s, domain_id);
1023 break;
1024
1025 case VTD_TLB_PSI_FLUSH:
1026 domain_id = VTD_TLB_DID(val);
1027 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1028 am = VTD_IVA_AM(addr);
1029 addr = VTD_IVA_ADDR(addr);
1030 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1031 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1032 if (am > VTD_MAMV) {
1033 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1034 "%"PRIu8, (uint8_t)VTD_MAMV);
1035 iaig = 0;
1036 break;
1037 }
1038 iaig = VTD_TLB_PSI_FLUSH_A;
1039 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1040 break;
1041
1042 default:
1043 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1044 iaig = 0;
1045 }
1046 return iaig;
1047 }
1048
1049 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1050 {
1051 return s->iq_tail == 0;
1052 }
1053
1054 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1055 {
1056 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1057 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1058 }
1059
1060 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1061 {
1062 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1063
1064 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1065 if (en) {
1066 if (vtd_queued_inv_enable_check(s)) {
1067 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1068 /* 2^(x+8) entries */
1069 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1070 s->qi_enabled = true;
1071 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1072 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1073 s->iq, s->iq_size);
1074 /* Ok - report back to driver */
1075 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1076 } else {
1077 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1078 "tail %"PRIu16, s->iq_tail);
1079 }
1080 } else {
1081 if (vtd_queued_inv_disable_check(s)) {
1082 /* disable Queued Invalidation */
1083 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1084 s->iq_head = 0;
1085 s->qi_enabled = false;
1086 /* Ok - report back to driver */
1087 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1088 } else {
1089 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1090 "head %"PRIu16 ", tail %"PRIu16
1091 ", last_descriptor %"PRIu8,
1092 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1093 }
1094 }
1095 }
1096
1097 /* Set Root Table Pointer */
1098 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1099 {
1100 VTD_DPRINTF(CSR, "set Root Table Pointer");
1101
1102 vtd_root_table_setup(s);
1103 /* Ok - report back to driver */
1104 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1105 }
1106
1107 /* Handle Translation Enable/Disable */
1108 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1109 {
1110 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1111
1112 if (en) {
1113 s->dmar_enabled = true;
1114 /* Ok - report back to driver */
1115 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1116 } else {
1117 s->dmar_enabled = false;
1118
1119 /* Clear the index of Fault Recording Register */
1120 s->next_frcd_reg = 0;
1121 /* Ok - report back to driver */
1122 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1123 }
1124 }
1125
1126 /* Handle write to Global Command Register */
1127 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1128 {
1129 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1130 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1131 uint32_t changed = status ^ val;
1132
1133 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1134 if (changed & VTD_GCMD_TE) {
1135 /* Translation enable/disable */
1136 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1137 }
1138 if (val & VTD_GCMD_SRTP) {
1139 /* Set/update the root-table pointer */
1140 vtd_handle_gcmd_srtp(s);
1141 }
1142 if (changed & VTD_GCMD_QIE) {
1143 /* Queued Invalidation Enable */
1144 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1145 }
1146 }
1147
1148 /* Handle write to Context Command Register */
1149 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1150 {
1151 uint64_t ret;
1152 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1153
1154 /* Context-cache invalidation request */
1155 if (val & VTD_CCMD_ICC) {
1156 if (s->qi_enabled) {
1157 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1158 "should not use register-based invalidation");
1159 return;
1160 }
1161 ret = vtd_context_cache_invalidate(s, val);
1162 /* Invalidation completed. Change something to show */
1163 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1164 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1165 ret);
1166 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1167 }
1168 }
1169
1170 /* Handle write to IOTLB Invalidation Register */
1171 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1172 {
1173 uint64_t ret;
1174 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1175
1176 /* IOTLB invalidation request */
1177 if (val & VTD_TLB_IVT) {
1178 if (s->qi_enabled) {
1179 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1180 "should not use register-based invalidation");
1181 return;
1182 }
1183 ret = vtd_iotlb_flush(s, val);
1184 /* Invalidation completed. Change something to show */
1185 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1186 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1187 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1188 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1189 }
1190 }
1191
1192 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1193 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1194 VTDInvDesc *inv_desc)
1195 {
1196 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1197 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1198 sizeof(*inv_desc))) {
1199 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1200 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1201 inv_desc->lo = 0;
1202 inv_desc->hi = 0;
1203
1204 return false;
1205 }
1206 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1207 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1208 return true;
1209 }
1210
1211 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1212 {
1213 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1214 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1215 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1216 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1217 inv_desc->hi, inv_desc->lo);
1218 return false;
1219 }
1220 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1221 /* Status Write */
1222 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1223 VTD_INV_DESC_WAIT_DATA_SHIFT);
1224
1225 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1226
1227 /* FIXME: need to be masked with HAW? */
1228 dma_addr_t status_addr = inv_desc->hi;
1229 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1230 status_data, status_addr);
1231 status_data = cpu_to_le32(status_data);
1232 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1233 sizeof(status_data))) {
1234 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1235 return false;
1236 }
1237 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1238 /* Interrupt flag */
1239 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1240 vtd_generate_completion_event(s);
1241 } else {
1242 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1243 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1244 return false;
1245 }
1246 return true;
1247 }
1248
1249 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1250 VTDInvDesc *inv_desc)
1251 {
1252 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1253 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1254 "Invalidate Descriptor");
1255 return false;
1256 }
1257 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1258 case VTD_INV_DESC_CC_DOMAIN:
1259 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1260 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1261 /* Fall through */
1262 case VTD_INV_DESC_CC_GLOBAL:
1263 VTD_DPRINTF(INV, "global invalidation");
1264 vtd_context_global_invalidate(s);
1265 break;
1266
1267 case VTD_INV_DESC_CC_DEVICE:
1268 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1269 VTD_INV_DESC_CC_FM(inv_desc->lo));
1270 break;
1271
1272 default:
1273 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1274 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1275 inv_desc->hi, inv_desc->lo);
1276 return false;
1277 }
1278 return true;
1279 }
1280
1281 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1282 {
1283 uint16_t domain_id;
1284 uint8_t am;
1285 hwaddr addr;
1286
1287 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1288 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1289 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1290 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1291 inv_desc->hi, inv_desc->lo);
1292 return false;
1293 }
1294
1295 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1296 case VTD_INV_DESC_IOTLB_GLOBAL:
1297 VTD_DPRINTF(INV, "global invalidation");
1298 vtd_iotlb_global_invalidate(s);
1299 break;
1300
1301 case VTD_INV_DESC_IOTLB_DOMAIN:
1302 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1303 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1304 domain_id);
1305 vtd_iotlb_domain_invalidate(s, domain_id);
1306 break;
1307
1308 case VTD_INV_DESC_IOTLB_PAGE:
1309 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1310 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1311 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1312 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1313 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1314 if (am > VTD_MAMV) {
1315 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1316 "%"PRIu8, (uint8_t)VTD_MAMV);
1317 return false;
1318 }
1319 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1320 break;
1321
1322 default:
1323 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1324 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1325 inv_desc->hi, inv_desc->lo);
1326 return false;
1327 }
1328 return true;
1329 }
1330
1331 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1332 {
1333 VTDInvDesc inv_desc;
1334 uint8_t desc_type;
1335
1336 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1337 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1338 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1339 return false;
1340 }
1341 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1342 /* FIXME: should update at first or at last? */
1343 s->iq_last_desc_type = desc_type;
1344
1345 switch (desc_type) {
1346 case VTD_INV_DESC_CC:
1347 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1348 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1349 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1350 return false;
1351 }
1352 break;
1353
1354 case VTD_INV_DESC_IOTLB:
1355 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1356 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1357 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1358 return false;
1359 }
1360 break;
1361
1362 case VTD_INV_DESC_WAIT:
1363 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1364 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1365 if (!vtd_process_wait_desc(s, &inv_desc)) {
1366 return false;
1367 }
1368 break;
1369
1370 default:
1371 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1372 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1373 inv_desc.hi, inv_desc.lo, desc_type);
1374 return false;
1375 }
1376 s->iq_head++;
1377 if (s->iq_head == s->iq_size) {
1378 s->iq_head = 0;
1379 }
1380 return true;
1381 }
1382
1383 /* Try to fetch and process more Invalidation Descriptors */
1384 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1385 {
1386 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1387 if (s->iq_tail >= s->iq_size) {
1388 /* Detects an invalid Tail pointer */
1389 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1390 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1391 vtd_handle_inv_queue_error(s);
1392 return;
1393 }
1394 while (s->iq_head != s->iq_tail) {
1395 if (!vtd_process_inv_desc(s)) {
1396 /* Invalidation Queue Errors */
1397 vtd_handle_inv_queue_error(s);
1398 break;
1399 }
1400 /* Must update the IQH_REG in time */
1401 vtd_set_quad_raw(s, DMAR_IQH_REG,
1402 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1403 VTD_IQH_QH_MASK);
1404 }
1405 }
1406
1407 /* Handle write to Invalidation Queue Tail Register */
1408 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1409 {
1410 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1411
1412 s->iq_tail = VTD_IQT_QT(val);
1413 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1414 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1415 /* Process Invalidation Queue here */
1416 vtd_fetch_inv_desc(s);
1417 }
1418 }
1419
1420 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1421 {
1422 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1423 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1424 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1425
1426 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1427 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1428 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1429 "IP field of FECTL_REG");
1430 }
1431 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1432 * Descriptors if there are any when Queued Invalidation is enabled?
1433 */
1434 }
1435
1436 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1437 {
1438 uint32_t fectl_reg;
1439 /* FIXME: when software clears the IM field, check the IP field. But do we
1440 * need to compare the old value and the new value to conclude that
1441 * software clears the IM field? Or just check if the IM field is zero?
1442 */
1443 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1444 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1445 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1446 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1447 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1448 "fault event interrupt");
1449 }
1450 }
1451
1452 static void vtd_handle_ics_write(IntelIOMMUState *s)
1453 {
1454 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1455 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1456
1457 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1458 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1459 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1460 "clear IP field of IECTL_REG");
1461 }
1462 }
1463
1464 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1465 {
1466 uint32_t iectl_reg;
1467 /* FIXME: when software clears the IM field, check the IP field. But do we
1468 * need to compare the old value and the new value to conclude that
1469 * software clears the IM field? Or just check if the IM field is zero?
1470 */
1471 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1472 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1473 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1474 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1475 VTD_DPRINTF(INV, "IM field is cleared, generate "
1476 "invalidation event interrupt");
1477 }
1478 }
1479
1480 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1481 {
1482 IntelIOMMUState *s = opaque;
1483 uint64_t val;
1484
1485 if (addr + size > DMAR_REG_SIZE) {
1486 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1487 ", got 0x%"PRIx64 " %d",
1488 (uint64_t)DMAR_REG_SIZE, addr, size);
1489 return (uint64_t)-1;
1490 }
1491
1492 switch (addr) {
1493 /* Root Table Address Register, 64-bit */
1494 case DMAR_RTADDR_REG:
1495 if (size == 4) {
1496 val = s->root & ((1ULL << 32) - 1);
1497 } else {
1498 val = s->root;
1499 }
1500 break;
1501
1502 case DMAR_RTADDR_REG_HI:
1503 assert(size == 4);
1504 val = s->root >> 32;
1505 break;
1506
1507 /* Invalidation Queue Address Register, 64-bit */
1508 case DMAR_IQA_REG:
1509 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1510 if (size == 4) {
1511 val = val & ((1ULL << 32) - 1);
1512 }
1513 break;
1514
1515 case DMAR_IQA_REG_HI:
1516 assert(size == 4);
1517 val = s->iq >> 32;
1518 break;
1519
1520 default:
1521 if (size == 4) {
1522 val = vtd_get_long(s, addr);
1523 } else {
1524 val = vtd_get_quad(s, addr);
1525 }
1526 }
1527 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1528 addr, size, val);
1529 return val;
1530 }
1531
1532 static void vtd_mem_write(void *opaque, hwaddr addr,
1533 uint64_t val, unsigned size)
1534 {
1535 IntelIOMMUState *s = opaque;
1536
1537 if (addr + size > DMAR_REG_SIZE) {
1538 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1539 ", got 0x%"PRIx64 " %d",
1540 (uint64_t)DMAR_REG_SIZE, addr, size);
1541 return;
1542 }
1543
1544 switch (addr) {
1545 /* Global Command Register, 32-bit */
1546 case DMAR_GCMD_REG:
1547 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1548 ", size %d, val 0x%"PRIx64, addr, size, val);
1549 vtd_set_long(s, addr, val);
1550 vtd_handle_gcmd_write(s);
1551 break;
1552
1553 /* Context Command Register, 64-bit */
1554 case DMAR_CCMD_REG:
1555 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1556 ", size %d, val 0x%"PRIx64, addr, size, val);
1557 if (size == 4) {
1558 vtd_set_long(s, addr, val);
1559 } else {
1560 vtd_set_quad(s, addr, val);
1561 vtd_handle_ccmd_write(s);
1562 }
1563 break;
1564
1565 case DMAR_CCMD_REG_HI:
1566 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1567 ", size %d, val 0x%"PRIx64, addr, size, val);
1568 assert(size == 4);
1569 vtd_set_long(s, addr, val);
1570 vtd_handle_ccmd_write(s);
1571 break;
1572
1573 /* IOTLB Invalidation Register, 64-bit */
1574 case DMAR_IOTLB_REG:
1575 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1576 ", size %d, val 0x%"PRIx64, addr, size, val);
1577 if (size == 4) {
1578 vtd_set_long(s, addr, val);
1579 } else {
1580 vtd_set_quad(s, addr, val);
1581 vtd_handle_iotlb_write(s);
1582 }
1583 break;
1584
1585 case DMAR_IOTLB_REG_HI:
1586 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1587 ", size %d, val 0x%"PRIx64, addr, size, val);
1588 assert(size == 4);
1589 vtd_set_long(s, addr, val);
1590 vtd_handle_iotlb_write(s);
1591 break;
1592
1593 /* Invalidate Address Register, 64-bit */
1594 case DMAR_IVA_REG:
1595 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1596 ", size %d, val 0x%"PRIx64, addr, size, val);
1597 if (size == 4) {
1598 vtd_set_long(s, addr, val);
1599 } else {
1600 vtd_set_quad(s, addr, val);
1601 }
1602 break;
1603
1604 case DMAR_IVA_REG_HI:
1605 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1606 ", size %d, val 0x%"PRIx64, addr, size, val);
1607 assert(size == 4);
1608 vtd_set_long(s, addr, val);
1609 break;
1610
1611 /* Fault Status Register, 32-bit */
1612 case DMAR_FSTS_REG:
1613 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1614 ", size %d, val 0x%"PRIx64, addr, size, val);
1615 assert(size == 4);
1616 vtd_set_long(s, addr, val);
1617 vtd_handle_fsts_write(s);
1618 break;
1619
1620 /* Fault Event Control Register, 32-bit */
1621 case DMAR_FECTL_REG:
1622 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1623 ", size %d, val 0x%"PRIx64, addr, size, val);
1624 assert(size == 4);
1625 vtd_set_long(s, addr, val);
1626 vtd_handle_fectl_write(s);
1627 break;
1628
1629 /* Fault Event Data Register, 32-bit */
1630 case DMAR_FEDATA_REG:
1631 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1632 ", size %d, val 0x%"PRIx64, addr, size, val);
1633 assert(size == 4);
1634 vtd_set_long(s, addr, val);
1635 break;
1636
1637 /* Fault Event Address Register, 32-bit */
1638 case DMAR_FEADDR_REG:
1639 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1640 ", size %d, val 0x%"PRIx64, addr, size, val);
1641 assert(size == 4);
1642 vtd_set_long(s, addr, val);
1643 break;
1644
1645 /* Fault Event Upper Address Register, 32-bit */
1646 case DMAR_FEUADDR_REG:
1647 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1648 ", size %d, val 0x%"PRIx64, addr, size, val);
1649 assert(size == 4);
1650 vtd_set_long(s, addr, val);
1651 break;
1652
1653 /* Protected Memory Enable Register, 32-bit */
1654 case DMAR_PMEN_REG:
1655 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1656 ", size %d, val 0x%"PRIx64, addr, size, val);
1657 assert(size == 4);
1658 vtd_set_long(s, addr, val);
1659 break;
1660
1661 /* Root Table Address Register, 64-bit */
1662 case DMAR_RTADDR_REG:
1663 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1664 ", size %d, val 0x%"PRIx64, addr, size, val);
1665 if (size == 4) {
1666 vtd_set_long(s, addr, val);
1667 } else {
1668 vtd_set_quad(s, addr, val);
1669 }
1670 break;
1671
1672 case DMAR_RTADDR_REG_HI:
1673 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1674 ", size %d, val 0x%"PRIx64, addr, size, val);
1675 assert(size == 4);
1676 vtd_set_long(s, addr, val);
1677 break;
1678
1679 /* Invalidation Queue Tail Register, 64-bit */
1680 case DMAR_IQT_REG:
1681 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1682 ", size %d, val 0x%"PRIx64, addr, size, val);
1683 if (size == 4) {
1684 vtd_set_long(s, addr, val);
1685 } else {
1686 vtd_set_quad(s, addr, val);
1687 }
1688 vtd_handle_iqt_write(s);
1689 break;
1690
1691 case DMAR_IQT_REG_HI:
1692 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1693 ", size %d, val 0x%"PRIx64, addr, size, val);
1694 assert(size == 4);
1695 vtd_set_long(s, addr, val);
1696 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1697 break;
1698
1699 /* Invalidation Queue Address Register, 64-bit */
1700 case DMAR_IQA_REG:
1701 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1702 ", size %d, val 0x%"PRIx64, addr, size, val);
1703 if (size == 4) {
1704 vtd_set_long(s, addr, val);
1705 } else {
1706 vtd_set_quad(s, addr, val);
1707 }
1708 break;
1709
1710 case DMAR_IQA_REG_HI:
1711 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1712 ", size %d, val 0x%"PRIx64, addr, size, val);
1713 assert(size == 4);
1714 vtd_set_long(s, addr, val);
1715 break;
1716
1717 /* Invalidation Completion Status Register, 32-bit */
1718 case DMAR_ICS_REG:
1719 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1720 ", size %d, val 0x%"PRIx64, addr, size, val);
1721 assert(size == 4);
1722 vtd_set_long(s, addr, val);
1723 vtd_handle_ics_write(s);
1724 break;
1725
1726 /* Invalidation Event Control Register, 32-bit */
1727 case DMAR_IECTL_REG:
1728 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1729 ", size %d, val 0x%"PRIx64, addr, size, val);
1730 assert(size == 4);
1731 vtd_set_long(s, addr, val);
1732 vtd_handle_iectl_write(s);
1733 break;
1734
1735 /* Invalidation Event Data Register, 32-bit */
1736 case DMAR_IEDATA_REG:
1737 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1738 ", size %d, val 0x%"PRIx64, addr, size, val);
1739 assert(size == 4);
1740 vtd_set_long(s, addr, val);
1741 break;
1742
1743 /* Invalidation Event Address Register, 32-bit */
1744 case DMAR_IEADDR_REG:
1745 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1746 ", size %d, val 0x%"PRIx64, addr, size, val);
1747 assert(size == 4);
1748 vtd_set_long(s, addr, val);
1749 break;
1750
1751 /* Invalidation Event Upper Address Register, 32-bit */
1752 case DMAR_IEUADDR_REG:
1753 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1754 ", size %d, val 0x%"PRIx64, addr, size, val);
1755 assert(size == 4);
1756 vtd_set_long(s, addr, val);
1757 break;
1758
1759 /* Fault Recording Registers, 128-bit */
1760 case DMAR_FRCD_REG_0_0:
1761 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1762 ", size %d, val 0x%"PRIx64, addr, size, val);
1763 if (size == 4) {
1764 vtd_set_long(s, addr, val);
1765 } else {
1766 vtd_set_quad(s, addr, val);
1767 }
1768 break;
1769
1770 case DMAR_FRCD_REG_0_1:
1771 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1772 ", size %d, val 0x%"PRIx64, addr, size, val);
1773 assert(size == 4);
1774 vtd_set_long(s, addr, val);
1775 break;
1776
1777 case DMAR_FRCD_REG_0_2:
1778 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1779 ", size %d, val 0x%"PRIx64, addr, size, val);
1780 if (size == 4) {
1781 vtd_set_long(s, addr, val);
1782 } else {
1783 vtd_set_quad(s, addr, val);
1784 /* May clear bit 127 (Fault), update PPF */
1785 vtd_update_fsts_ppf(s);
1786 }
1787 break;
1788
1789 case DMAR_FRCD_REG_0_3:
1790 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1791 ", size %d, val 0x%"PRIx64, addr, size, val);
1792 assert(size == 4);
1793 vtd_set_long(s, addr, val);
1794 /* May clear bit 127 (Fault), update PPF */
1795 vtd_update_fsts_ppf(s);
1796 break;
1797
1798 default:
1799 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1800 ", size %d, val 0x%"PRIx64, addr, size, val);
1801 if (size == 4) {
1802 vtd_set_long(s, addr, val);
1803 } else {
1804 vtd_set_quad(s, addr, val);
1805 }
1806 }
1807 }
1808
1809 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1810 bool is_write)
1811 {
1812 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1813 IntelIOMMUState *s = vtd_as->iommu_state;
1814 IOMMUTLBEntry ret = {
1815 .target_as = &address_space_memory,
1816 .iova = addr,
1817 .translated_addr = 0,
1818 .addr_mask = ~(hwaddr)0,
1819 .perm = IOMMU_NONE,
1820 };
1821
1822 if (!s->dmar_enabled) {
1823 /* DMAR disabled, passthrough, use 4k-page*/
1824 ret.iova = addr & VTD_PAGE_MASK_4K;
1825 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1826 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1827 ret.perm = IOMMU_RW;
1828 return ret;
1829 }
1830
1831 vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1832 is_write, &ret);
1833 VTD_DPRINTF(MMU,
1834 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1835 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1836 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1837 vtd_as->devfn, addr, ret.translated_addr);
1838 return ret;
1839 }
1840
1841 static const VMStateDescription vtd_vmstate = {
1842 .name = "iommu-intel",
1843 .unmigratable = 1,
1844 };
1845
1846 static const MemoryRegionOps vtd_mem_ops = {
1847 .read = vtd_mem_read,
1848 .write = vtd_mem_write,
1849 .endianness = DEVICE_LITTLE_ENDIAN,
1850 .impl = {
1851 .min_access_size = 4,
1852 .max_access_size = 8,
1853 },
1854 .valid = {
1855 .min_access_size = 4,
1856 .max_access_size = 8,
1857 },
1858 };
1859
1860 static Property vtd_properties[] = {
1861 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1862 DEFINE_PROP_END_OF_LIST(),
1863 };
1864
1865
1866 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
1867 {
1868 uintptr_t key = (uintptr_t)bus;
1869 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
1870 VTDAddressSpace *vtd_dev_as;
1871
1872 if (!vtd_bus) {
1873 /* No corresponding free() */
1874 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * VTD_PCI_DEVFN_MAX);
1875 vtd_bus->bus = bus;
1876 key = (uintptr_t)bus;
1877 g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
1878 }
1879
1880 vtd_dev_as = vtd_bus->dev_as[devfn];
1881
1882 if (!vtd_dev_as) {
1883 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
1884
1885 vtd_dev_as->bus = bus;
1886 vtd_dev_as->devfn = (uint8_t)devfn;
1887 vtd_dev_as->iommu_state = s;
1888 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
1889 memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
1890 &s->iommu_ops, "intel_iommu", UINT64_MAX);
1891 address_space_init(&vtd_dev_as->as,
1892 &vtd_dev_as->iommu, "intel_iommu");
1893 }
1894 return vtd_dev_as;
1895 }
1896
1897 /* Do the initialization. It will also be called when reset, so pay
1898 * attention when adding new initialization stuff.
1899 */
1900 static void vtd_init(IntelIOMMUState *s)
1901 {
1902 memset(s->csr, 0, DMAR_REG_SIZE);
1903 memset(s->wmask, 0, DMAR_REG_SIZE);
1904 memset(s->w1cmask, 0, DMAR_REG_SIZE);
1905 memset(s->womask, 0, DMAR_REG_SIZE);
1906
1907 s->iommu_ops.translate = vtd_iommu_translate;
1908 s->root = 0;
1909 s->root_extended = false;
1910 s->dmar_enabled = false;
1911 s->iq_head = 0;
1912 s->iq_tail = 0;
1913 s->iq = 0;
1914 s->iq_size = 0;
1915 s->qi_enabled = false;
1916 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1917 s->next_frcd_reg = 0;
1918 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
1919 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI;
1920 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1921
1922 vtd_reset_context_cache(s);
1923 vtd_reset_iotlb(s);
1924
1925 /* Define registers with default values and bit semantics */
1926 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
1927 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
1928 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
1929 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
1930 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
1931 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
1932 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
1933 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
1934 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
1935
1936 /* Advanced Fault Logging not supported */
1937 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
1938 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1939 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
1940 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
1941
1942 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
1943 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
1944 */
1945 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
1946
1947 /* Treated as RO for implementations that PLMR and PHMR fields reported
1948 * as Clear in the CAP_REG.
1949 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
1950 */
1951 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
1952
1953 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
1954 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
1955 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
1956 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
1957 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1958 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
1959 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
1960 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
1961 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
1962
1963 /* IOTLB registers */
1964 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
1965 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
1966 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
1967
1968 /* Fault Recording Registers, 128-bit */
1969 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
1970 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
1971 }
1972
1973 /* Should not reset address_spaces when reset because devices will still use
1974 * the address space they got at first (won't ask the bus again).
1975 */
1976 static void vtd_reset(DeviceState *dev)
1977 {
1978 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1979
1980 VTD_DPRINTF(GENERAL, "");
1981 vtd_init(s);
1982 }
1983
1984 static void vtd_realize(DeviceState *dev, Error **errp)
1985 {
1986 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1987
1988 VTD_DPRINTF(GENERAL, "");
1989 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
1990 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
1991 "intel_iommu", DMAR_REG_SIZE);
1992 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
1993 /* No corresponding destroy */
1994 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
1995 g_free, g_free);
1996 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
1997 g_free, g_free);
1998 vtd_init(s);
1999 }
2000
2001 static void vtd_class_init(ObjectClass *klass, void *data)
2002 {
2003 DeviceClass *dc = DEVICE_CLASS(klass);
2004
2005 dc->reset = vtd_reset;
2006 dc->realize = vtd_realize;
2007 dc->vmsd = &vtd_vmstate;
2008 dc->props = vtd_properties;
2009 }
2010
2011 static const TypeInfo vtd_info = {
2012 .name = TYPE_INTEL_IOMMU_DEVICE,
2013 .parent = TYPE_SYS_BUS_DEVICE,
2014 .instance_size = sizeof(IntelIOMMUState),
2015 .class_init = vtd_class_init,
2016 };
2017
2018 static void vtd_register_types(void)
2019 {
2020 VTD_DPRINTF(GENERAL, "");
2021 type_register_static(&vtd_info);
2022 }
2023
2024 type_init(vtd_register_types)