]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
memory: allow memory_region_register_iommu_notifier() to fail
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "exec/address-spaces.h"
28 #include "intel_iommu_internal.h"
29 #include "hw/pci/pci.h"
30 #include "hw/pci/pci_bus.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/i386/pc.h"
33 #include "hw/i386/apic-msidef.h"
34 #include "hw/boards.h"
35 #include "hw/i386/x86-iommu.h"
36 #include "hw/pci-host/q35.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/sysemu.h"
39 #include "hw/i386/apic_internal.h"
40 #include "kvm_i386.h"
41 #include "migration/vmstate.h"
42 #include "trace.h"
43
44 /* context entry operations */
45 #define VTD_CE_GET_RID2PASID(ce) \
46 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
47 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
48 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49
50 /* pe operations */
51 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
52 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
53 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
54 if (ret_fr) { \
55 ret_fr = -ret_fr; \
56 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
57 trace_vtd_fault_disabled(); \
58 } else { \
59 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
60 } \
61 goto error; \
62 } \
63 }
64
65 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
66 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
67
68 static void vtd_panic_require_caching_mode(void)
69 {
70 error_report("We need to set caching-mode=on for intel-iommu to enable "
71 "device assignment with IOMMU protection.");
72 exit(1);
73 }
74
75 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
76 uint64_t wmask, uint64_t w1cmask)
77 {
78 stq_le_p(&s->csr[addr], val);
79 stq_le_p(&s->wmask[addr], wmask);
80 stq_le_p(&s->w1cmask[addr], w1cmask);
81 }
82
83 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
84 {
85 stq_le_p(&s->womask[addr], mask);
86 }
87
88 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
89 uint32_t wmask, uint32_t w1cmask)
90 {
91 stl_le_p(&s->csr[addr], val);
92 stl_le_p(&s->wmask[addr], wmask);
93 stl_le_p(&s->w1cmask[addr], w1cmask);
94 }
95
96 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
97 {
98 stl_le_p(&s->womask[addr], mask);
99 }
100
101 /* "External" get/set operations */
102 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
103 {
104 uint64_t oldval = ldq_le_p(&s->csr[addr]);
105 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
106 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
107 stq_le_p(&s->csr[addr],
108 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
109 }
110
111 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
112 {
113 uint32_t oldval = ldl_le_p(&s->csr[addr]);
114 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
115 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
116 stl_le_p(&s->csr[addr],
117 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
118 }
119
120 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
121 {
122 uint64_t val = ldq_le_p(&s->csr[addr]);
123 uint64_t womask = ldq_le_p(&s->womask[addr]);
124 return val & ~womask;
125 }
126
127 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
128 {
129 uint32_t val = ldl_le_p(&s->csr[addr]);
130 uint32_t womask = ldl_le_p(&s->womask[addr]);
131 return val & ~womask;
132 }
133
134 /* "Internal" get/set operations */
135 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
136 {
137 return ldq_le_p(&s->csr[addr]);
138 }
139
140 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
141 {
142 return ldl_le_p(&s->csr[addr]);
143 }
144
145 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
146 {
147 stq_le_p(&s->csr[addr], val);
148 }
149
150 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
151 uint32_t clear, uint32_t mask)
152 {
153 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
154 stl_le_p(&s->csr[addr], new_val);
155 return new_val;
156 }
157
158 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
159 uint64_t clear, uint64_t mask)
160 {
161 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
162 stq_le_p(&s->csr[addr], new_val);
163 return new_val;
164 }
165
166 static inline void vtd_iommu_lock(IntelIOMMUState *s)
167 {
168 qemu_mutex_lock(&s->iommu_lock);
169 }
170
171 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
172 {
173 qemu_mutex_unlock(&s->iommu_lock);
174 }
175
176 static void vtd_update_scalable_state(IntelIOMMUState *s)
177 {
178 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
179
180 if (s->scalable_mode) {
181 s->root_scalable = val & VTD_RTADDR_SMT;
182 }
183 }
184
185 /* Whether the address space needs to notify new mappings */
186 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
187 {
188 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
189 }
190
191 /* GHashTable functions */
192 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
193 {
194 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
195 }
196
197 static guint vtd_uint64_hash(gconstpointer v)
198 {
199 return (guint)*(const uint64_t *)v;
200 }
201
202 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
203 gpointer user_data)
204 {
205 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
206 uint16_t domain_id = *(uint16_t *)user_data;
207 return entry->domain_id == domain_id;
208 }
209
210 /* The shift of an addr for a certain level of paging structure */
211 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
212 {
213 assert(level != 0);
214 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
215 }
216
217 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
218 {
219 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
220 }
221
222 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
223 gpointer user_data)
224 {
225 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
226 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
227 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
228 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
229 return (entry->domain_id == info->domain_id) &&
230 (((entry->gfn & info->mask) == gfn) ||
231 (entry->gfn == gfn_tlb));
232 }
233
234 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
235 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
236 */
237 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
238 {
239 VTDAddressSpace *vtd_as;
240 VTDBus *vtd_bus;
241 GHashTableIter bus_it;
242 uint32_t devfn_it;
243
244 trace_vtd_context_cache_reset();
245
246 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
247
248 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
249 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
250 vtd_as = vtd_bus->dev_as[devfn_it];
251 if (!vtd_as) {
252 continue;
253 }
254 vtd_as->context_cache_entry.context_cache_gen = 0;
255 }
256 }
257 s->context_cache_gen = 1;
258 }
259
260 /* Must be called with IOMMU lock held. */
261 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
262 {
263 assert(s->iotlb);
264 g_hash_table_remove_all(s->iotlb);
265 }
266
267 static void vtd_reset_iotlb(IntelIOMMUState *s)
268 {
269 vtd_iommu_lock(s);
270 vtd_reset_iotlb_locked(s);
271 vtd_iommu_unlock(s);
272 }
273
274 static void vtd_reset_caches(IntelIOMMUState *s)
275 {
276 vtd_iommu_lock(s);
277 vtd_reset_iotlb_locked(s);
278 vtd_reset_context_cache_locked(s);
279 vtd_iommu_unlock(s);
280 }
281
282 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
283 uint32_t level)
284 {
285 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
286 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
287 }
288
289 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
290 {
291 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
292 }
293
294 /* Must be called with IOMMU lock held */
295 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
296 hwaddr addr)
297 {
298 VTDIOTLBEntry *entry;
299 uint64_t key;
300 int level;
301
302 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
303 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
304 source_id, level);
305 entry = g_hash_table_lookup(s->iotlb, &key);
306 if (entry) {
307 goto out;
308 }
309 }
310
311 out:
312 return entry;
313 }
314
315 /* Must be with IOMMU lock held */
316 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
317 uint16_t domain_id, hwaddr addr, uint64_t slpte,
318 uint8_t access_flags, uint32_t level)
319 {
320 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
321 uint64_t *key = g_malloc(sizeof(*key));
322 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
323
324 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
325 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
326 trace_vtd_iotlb_reset("iotlb exceeds size limit");
327 vtd_reset_iotlb_locked(s);
328 }
329
330 entry->gfn = gfn;
331 entry->domain_id = domain_id;
332 entry->slpte = slpte;
333 entry->access_flags = access_flags;
334 entry->mask = vtd_slpt_level_page_mask(level);
335 *key = vtd_get_iotlb_key(gfn, source_id, level);
336 g_hash_table_replace(s->iotlb, key, entry);
337 }
338
339 /* Given the reg addr of both the message data and address, generate an
340 * interrupt via MSI.
341 */
342 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
343 hwaddr mesg_data_reg)
344 {
345 MSIMessage msi;
346
347 assert(mesg_data_reg < DMAR_REG_SIZE);
348 assert(mesg_addr_reg < DMAR_REG_SIZE);
349
350 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
351 msi.data = vtd_get_long_raw(s, mesg_data_reg);
352
353 trace_vtd_irq_generate(msi.address, msi.data);
354
355 apic_get_class()->send_msi(&msi);
356 }
357
358 /* Generate a fault event to software via MSI if conditions are met.
359 * Notice that the value of FSTS_REG being passed to it should be the one
360 * before any update.
361 */
362 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
363 {
364 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
365 pre_fsts & VTD_FSTS_IQE) {
366 error_report_once("There are previous interrupt conditions "
367 "to be serviced by software, fault event "
368 "is not generated");
369 return;
370 }
371 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
372 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
373 error_report_once("Interrupt Mask set, irq is not generated");
374 } else {
375 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
376 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
377 }
378 }
379
380 /* Check if the Fault (F) field of the Fault Recording Register referenced by
381 * @index is Set.
382 */
383 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
384 {
385 /* Each reg is 128-bit */
386 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
387 addr += 8; /* Access the high 64-bit half */
388
389 assert(index < DMAR_FRCD_REG_NR);
390
391 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
392 }
393
394 /* Update the PPF field of Fault Status Register.
395 * Should be called whenever change the F field of any fault recording
396 * registers.
397 */
398 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
399 {
400 uint32_t i;
401 uint32_t ppf_mask = 0;
402
403 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
404 if (vtd_is_frcd_set(s, i)) {
405 ppf_mask = VTD_FSTS_PPF;
406 break;
407 }
408 }
409 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
410 trace_vtd_fsts_ppf(!!ppf_mask);
411 }
412
413 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
414 {
415 /* Each reg is 128-bit */
416 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
417 addr += 8; /* Access the high 64-bit half */
418
419 assert(index < DMAR_FRCD_REG_NR);
420
421 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
422 vtd_update_fsts_ppf(s);
423 }
424
425 /* Must not update F field now, should be done later */
426 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
427 uint16_t source_id, hwaddr addr,
428 VTDFaultReason fault, bool is_write)
429 {
430 uint64_t hi = 0, lo;
431 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
432
433 assert(index < DMAR_FRCD_REG_NR);
434
435 lo = VTD_FRCD_FI(addr);
436 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
437 if (!is_write) {
438 hi |= VTD_FRCD_T;
439 }
440 vtd_set_quad_raw(s, frcd_reg_addr, lo);
441 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
442
443 trace_vtd_frr_new(index, hi, lo);
444 }
445
446 /* Try to collapse multiple pending faults from the same requester */
447 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
448 {
449 uint32_t i;
450 uint64_t frcd_reg;
451 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
452
453 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
454 frcd_reg = vtd_get_quad_raw(s, addr);
455 if ((frcd_reg & VTD_FRCD_F) &&
456 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
457 return true;
458 }
459 addr += 16; /* 128-bit for each */
460 }
461 return false;
462 }
463
464 /* Log and report an DMAR (address translation) fault to software */
465 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
466 hwaddr addr, VTDFaultReason fault,
467 bool is_write)
468 {
469 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
470
471 assert(fault < VTD_FR_MAX);
472
473 if (fault == VTD_FR_RESERVED_ERR) {
474 /* This is not a normal fault reason case. Drop it. */
475 return;
476 }
477
478 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
479
480 if (fsts_reg & VTD_FSTS_PFO) {
481 error_report_once("New fault is not recorded due to "
482 "Primary Fault Overflow");
483 return;
484 }
485
486 if (vtd_try_collapse_fault(s, source_id)) {
487 error_report_once("New fault is not recorded due to "
488 "compression of faults");
489 return;
490 }
491
492 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
493 error_report_once("Next Fault Recording Reg is used, "
494 "new fault is not recorded, set PFO field");
495 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
496 return;
497 }
498
499 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
500
501 if (fsts_reg & VTD_FSTS_PPF) {
502 error_report_once("There are pending faults already, "
503 "fault event is not generated");
504 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
505 s->next_frcd_reg++;
506 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
507 s->next_frcd_reg = 0;
508 }
509 } else {
510 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
511 VTD_FSTS_FRI(s->next_frcd_reg));
512 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
513 s->next_frcd_reg++;
514 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
515 s->next_frcd_reg = 0;
516 }
517 /* This case actually cause the PPF to be Set.
518 * So generate fault event (interrupt).
519 */
520 vtd_generate_fault_event(s, fsts_reg);
521 }
522 }
523
524 /* Handle Invalidation Queue Errors of queued invalidation interface error
525 * conditions.
526 */
527 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
528 {
529 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
530
531 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
532 vtd_generate_fault_event(s, fsts_reg);
533 }
534
535 /* Set the IWC field and try to generate an invalidation completion interrupt */
536 static void vtd_generate_completion_event(IntelIOMMUState *s)
537 {
538 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
539 trace_vtd_inv_desc_wait_irq("One pending, skip current");
540 return;
541 }
542 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
543 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
544 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
545 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
546 "new event not generated");
547 return;
548 } else {
549 /* Generate the interrupt event */
550 trace_vtd_inv_desc_wait_irq("Generating complete event");
551 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
552 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
553 }
554 }
555
556 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
557 VTDRootEntry *re,
558 uint8_t devfn)
559 {
560 if (s->root_scalable && devfn > UINT8_MAX / 2) {
561 return re->hi & VTD_ROOT_ENTRY_P;
562 }
563
564 return re->lo & VTD_ROOT_ENTRY_P;
565 }
566
567 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
568 VTDRootEntry *re)
569 {
570 dma_addr_t addr;
571
572 addr = s->root + index * sizeof(*re);
573 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
574 re->lo = 0;
575 return -VTD_FR_ROOT_TABLE_INV;
576 }
577 re->lo = le64_to_cpu(re->lo);
578 re->hi = le64_to_cpu(re->hi);
579 return 0;
580 }
581
582 static inline bool vtd_ce_present(VTDContextEntry *context)
583 {
584 return context->lo & VTD_CONTEXT_ENTRY_P;
585 }
586
587 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
588 VTDRootEntry *re,
589 uint8_t index,
590 VTDContextEntry *ce)
591 {
592 dma_addr_t addr, ce_size;
593
594 /* we have checked that root entry is present */
595 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
596 VTD_CTX_ENTRY_LEGACY_SIZE;
597
598 if (s->root_scalable && index > UINT8_MAX / 2) {
599 index = index & (~VTD_DEVFN_CHECK_MASK);
600 addr = re->hi & VTD_ROOT_ENTRY_CTP;
601 } else {
602 addr = re->lo & VTD_ROOT_ENTRY_CTP;
603 }
604
605 addr = addr + index * ce_size;
606 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
607 return -VTD_FR_CONTEXT_TABLE_INV;
608 }
609
610 ce->lo = le64_to_cpu(ce->lo);
611 ce->hi = le64_to_cpu(ce->hi);
612 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
613 ce->val[2] = le64_to_cpu(ce->val[2]);
614 ce->val[3] = le64_to_cpu(ce->val[3]);
615 }
616 return 0;
617 }
618
619 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
620 {
621 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
622 }
623
624 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
625 {
626 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
627 }
628
629 /* Whether the pte indicates the address of the page frame */
630 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
631 {
632 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
633 }
634
635 /* Get the content of a spte located in @base_addr[@index] */
636 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
637 {
638 uint64_t slpte;
639
640 assert(index < VTD_SL_PT_ENTRY_NR);
641
642 if (dma_memory_read(&address_space_memory,
643 base_addr + index * sizeof(slpte), &slpte,
644 sizeof(slpte))) {
645 slpte = (uint64_t)-1;
646 return slpte;
647 }
648 slpte = le64_to_cpu(slpte);
649 return slpte;
650 }
651
652 /* Given an iova and the level of paging structure, return the offset
653 * of current level.
654 */
655 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
656 {
657 return (iova >> vtd_slpt_level_shift(level)) &
658 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
659 }
660
661 /* Check Capability Register to see if the @level of page-table is supported */
662 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
663 {
664 return VTD_CAP_SAGAW_MASK & s->cap &
665 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
666 }
667
668 /* Return true if check passed, otherwise false */
669 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
670 VTDPASIDEntry *pe)
671 {
672 switch (VTD_PE_GET_TYPE(pe)) {
673 case VTD_SM_PASID_ENTRY_FLT:
674 case VTD_SM_PASID_ENTRY_SLT:
675 case VTD_SM_PASID_ENTRY_NESTED:
676 break;
677 case VTD_SM_PASID_ENTRY_PT:
678 if (!x86_iommu->pt_supported) {
679 return false;
680 }
681 break;
682 default:
683 /* Unknwon type */
684 return false;
685 }
686 return true;
687 }
688
689 static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
690 uint32_t pasid,
691 VTDPASIDDirEntry *pdire)
692 {
693 uint32_t index;
694 dma_addr_t addr, entry_size;
695
696 index = VTD_PASID_DIR_INDEX(pasid);
697 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
698 addr = pasid_dir_base + index * entry_size;
699 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
700 return -VTD_FR_PASID_TABLE_INV;
701 }
702
703 return 0;
704 }
705
706 static int vtd_get_pasid_entry(IntelIOMMUState *s,
707 uint32_t pasid,
708 VTDPASIDDirEntry *pdire,
709 VTDPASIDEntry *pe)
710 {
711 uint32_t index;
712 dma_addr_t addr, entry_size;
713 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
714
715 index = VTD_PASID_TABLE_INDEX(pasid);
716 entry_size = VTD_PASID_ENTRY_SIZE;
717 addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
718 addr = addr + index * entry_size;
719 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
720 return -VTD_FR_PASID_TABLE_INV;
721 }
722
723 /* Do translation type check */
724 if (!vtd_pe_type_check(x86_iommu, pe)) {
725 return -VTD_FR_PASID_TABLE_INV;
726 }
727
728 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
729 return -VTD_FR_PASID_TABLE_INV;
730 }
731
732 return 0;
733 }
734
735 static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
736 dma_addr_t pasid_dir_base,
737 uint32_t pasid,
738 VTDPASIDEntry *pe)
739 {
740 int ret;
741 VTDPASIDDirEntry pdire;
742
743 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
744 if (ret) {
745 return ret;
746 }
747
748 ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
749 if (ret) {
750 return ret;
751 }
752
753 return ret;
754 }
755
756 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
757 VTDContextEntry *ce,
758 VTDPASIDEntry *pe)
759 {
760 uint32_t pasid;
761 dma_addr_t pasid_dir_base;
762 int ret = 0;
763
764 pasid = VTD_CE_GET_RID2PASID(ce);
765 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
766 ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
767
768 return ret;
769 }
770
771 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
772 VTDContextEntry *ce,
773 bool *pe_fpd_set)
774 {
775 int ret;
776 uint32_t pasid;
777 dma_addr_t pasid_dir_base;
778 VTDPASIDDirEntry pdire;
779 VTDPASIDEntry pe;
780
781 pasid = VTD_CE_GET_RID2PASID(ce);
782 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
783
784 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
785 if (ret) {
786 return ret;
787 }
788
789 if (pdire.val & VTD_PASID_DIR_FPD) {
790 *pe_fpd_set = true;
791 return 0;
792 }
793
794 ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
795 if (ret) {
796 return ret;
797 }
798
799 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
800 *pe_fpd_set = true;
801 }
802
803 return 0;
804 }
805
806 /* Get the page-table level that hardware should use for the second-level
807 * page-table walk from the Address Width field of context-entry.
808 */
809 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
810 {
811 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
812 }
813
814 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
815 VTDContextEntry *ce)
816 {
817 VTDPASIDEntry pe;
818
819 if (s->root_scalable) {
820 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
821 return VTD_PE_GET_LEVEL(&pe);
822 }
823
824 return vtd_ce_get_level(ce);
825 }
826
827 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
828 {
829 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
830 }
831
832 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
833 VTDContextEntry *ce)
834 {
835 VTDPASIDEntry pe;
836
837 if (s->root_scalable) {
838 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
839 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
840 }
841
842 return vtd_ce_get_agaw(ce);
843 }
844
845 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
846 {
847 return ce->lo & VTD_CONTEXT_ENTRY_TT;
848 }
849
850 /* Only for Legacy Mode. Return true if check passed, otherwise false */
851 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
852 VTDContextEntry *ce)
853 {
854 switch (vtd_ce_get_type(ce)) {
855 case VTD_CONTEXT_TT_MULTI_LEVEL:
856 /* Always supported */
857 break;
858 case VTD_CONTEXT_TT_DEV_IOTLB:
859 if (!x86_iommu->dt_supported) {
860 error_report_once("%s: DT specified but not supported", __func__);
861 return false;
862 }
863 break;
864 case VTD_CONTEXT_TT_PASS_THROUGH:
865 if (!x86_iommu->pt_supported) {
866 error_report_once("%s: PT specified but not supported", __func__);
867 return false;
868 }
869 break;
870 default:
871 /* Unknown type */
872 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
873 vtd_ce_get_type(ce));
874 return false;
875 }
876 return true;
877 }
878
879 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
880 VTDContextEntry *ce, uint8_t aw)
881 {
882 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
883 return 1ULL << MIN(ce_agaw, aw);
884 }
885
886 /* Return true if IOVA passes range check, otherwise false. */
887 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
888 uint64_t iova, VTDContextEntry *ce,
889 uint8_t aw)
890 {
891 /*
892 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
893 * in CAP_REG and AW in context-entry.
894 */
895 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
896 }
897
898 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
899 VTDContextEntry *ce)
900 {
901 VTDPASIDEntry pe;
902
903 if (s->root_scalable) {
904 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
905 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
906 }
907
908 return vtd_ce_get_slpt_base(ce);
909 }
910
911 /*
912 * Rsvd field masks for spte:
913 * Index [1] to [4] 4k pages
914 * Index [5] to [8] large pages
915 */
916 static uint64_t vtd_paging_entry_rsvd_field[9];
917
918 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
919 {
920 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
921 /* Maybe large page */
922 return slpte & vtd_paging_entry_rsvd_field[level + 4];
923 } else {
924 return slpte & vtd_paging_entry_rsvd_field[level];
925 }
926 }
927
928 /* Find the VTD address space associated with a given bus number */
929 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
930 {
931 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
932 if (!vtd_bus) {
933 /*
934 * Iterate over the registered buses to find the one which
935 * currently hold this bus number, and update the bus_num
936 * lookup table:
937 */
938 GHashTableIter iter;
939
940 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
941 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
942 if (pci_bus_num(vtd_bus->bus) == bus_num) {
943 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
944 return vtd_bus;
945 }
946 }
947 }
948 return vtd_bus;
949 }
950
951 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
952 * of the translation, can be used for deciding the size of large page.
953 */
954 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
955 uint64_t iova, bool is_write,
956 uint64_t *slptep, uint32_t *slpte_level,
957 bool *reads, bool *writes, uint8_t aw_bits)
958 {
959 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
960 uint32_t level = vtd_get_iova_level(s, ce);
961 uint32_t offset;
962 uint64_t slpte;
963 uint64_t access_right_check;
964
965 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
966 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
967 __func__, iova);
968 return -VTD_FR_ADDR_BEYOND_MGAW;
969 }
970
971 /* FIXME: what is the Atomics request here? */
972 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
973
974 while (true) {
975 offset = vtd_iova_level_offset(iova, level);
976 slpte = vtd_get_slpte(addr, offset);
977
978 if (slpte == (uint64_t)-1) {
979 error_report_once("%s: detected read error on DMAR slpte "
980 "(iova=0x%" PRIx64 ")", __func__, iova);
981 if (level == vtd_get_iova_level(s, ce)) {
982 /* Invalid programming of context-entry */
983 return -VTD_FR_CONTEXT_ENTRY_INV;
984 } else {
985 return -VTD_FR_PAGING_ENTRY_INV;
986 }
987 }
988 *reads = (*reads) && (slpte & VTD_SL_R);
989 *writes = (*writes) && (slpte & VTD_SL_W);
990 if (!(slpte & access_right_check)) {
991 error_report_once("%s: detected slpte permission error "
992 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
993 "slpte=0x%" PRIx64 ", write=%d)", __func__,
994 iova, level, slpte, is_write);
995 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
996 }
997 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
998 error_report_once("%s: detected splte reserve non-zero "
999 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1000 "slpte=0x%" PRIx64 ")", __func__, iova,
1001 level, slpte);
1002 return -VTD_FR_PAGING_ENTRY_RSVD;
1003 }
1004
1005 if (vtd_is_last_slpte(slpte, level)) {
1006 *slptep = slpte;
1007 *slpte_level = level;
1008 return 0;
1009 }
1010 addr = vtd_get_slpte_addr(slpte, aw_bits);
1011 level--;
1012 }
1013 }
1014
1015 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
1016
1017 /**
1018 * Constant information used during page walking
1019 *
1020 * @hook_fn: hook func to be called when detected page
1021 * @private: private data to be passed into hook func
1022 * @notify_unmap: whether we should notify invalid entries
1023 * @as: VT-d address space of the device
1024 * @aw: maximum address width
1025 * @domain: domain ID of the page walk
1026 */
1027 typedef struct {
1028 VTDAddressSpace *as;
1029 vtd_page_walk_hook hook_fn;
1030 void *private;
1031 bool notify_unmap;
1032 uint8_t aw;
1033 uint16_t domain_id;
1034 } vtd_page_walk_info;
1035
1036 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1037 {
1038 VTDAddressSpace *as = info->as;
1039 vtd_page_walk_hook hook_fn = info->hook_fn;
1040 void *private = info->private;
1041 DMAMap target = {
1042 .iova = entry->iova,
1043 .size = entry->addr_mask,
1044 .translated_addr = entry->translated_addr,
1045 .perm = entry->perm,
1046 };
1047 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1048
1049 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1050 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1051 return 0;
1052 }
1053
1054 assert(hook_fn);
1055
1056 /* Update local IOVA mapped ranges */
1057 if (entry->perm) {
1058 if (mapped) {
1059 /* If it's exactly the same translation, skip */
1060 if (!memcmp(mapped, &target, sizeof(target))) {
1061 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1062 entry->translated_addr);
1063 return 0;
1064 } else {
1065 /*
1066 * Translation changed. Normally this should not
1067 * happen, but it can happen when with buggy guest
1068 * OSes. Note that there will be a small window that
1069 * we don't have map at all. But that's the best
1070 * effort we can do. The ideal way to emulate this is
1071 * atomically modify the PTE to follow what has
1072 * changed, but we can't. One example is that vfio
1073 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1074 * interface to modify a mapping (meanwhile it seems
1075 * meaningless to even provide one). Anyway, let's
1076 * mark this as a TODO in case one day we'll have
1077 * a better solution.
1078 */
1079 IOMMUAccessFlags cache_perm = entry->perm;
1080 int ret;
1081
1082 /* Emulate an UNMAP */
1083 entry->perm = IOMMU_NONE;
1084 trace_vtd_page_walk_one(info->domain_id,
1085 entry->iova,
1086 entry->translated_addr,
1087 entry->addr_mask,
1088 entry->perm);
1089 ret = hook_fn(entry, private);
1090 if (ret) {
1091 return ret;
1092 }
1093 /* Drop any existing mapping */
1094 iova_tree_remove(as->iova_tree, &target);
1095 /* Recover the correct permission */
1096 entry->perm = cache_perm;
1097 }
1098 }
1099 iova_tree_insert(as->iova_tree, &target);
1100 } else {
1101 if (!mapped) {
1102 /* Skip since we didn't map this range at all */
1103 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1104 return 0;
1105 }
1106 iova_tree_remove(as->iova_tree, &target);
1107 }
1108
1109 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1110 entry->translated_addr, entry->addr_mask,
1111 entry->perm);
1112 return hook_fn(entry, private);
1113 }
1114
1115 /**
1116 * vtd_page_walk_level - walk over specific level for IOVA range
1117 *
1118 * @addr: base GPA addr to start the walk
1119 * @start: IOVA range start address
1120 * @end: IOVA range end address (start <= addr < end)
1121 * @read: whether parent level has read permission
1122 * @write: whether parent level has write permission
1123 * @info: constant information for the page walk
1124 */
1125 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1126 uint64_t end, uint32_t level, bool read,
1127 bool write, vtd_page_walk_info *info)
1128 {
1129 bool read_cur, write_cur, entry_valid;
1130 uint32_t offset;
1131 uint64_t slpte;
1132 uint64_t subpage_size, subpage_mask;
1133 IOMMUTLBEntry entry;
1134 uint64_t iova = start;
1135 uint64_t iova_next;
1136 int ret = 0;
1137
1138 trace_vtd_page_walk_level(addr, level, start, end);
1139
1140 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1141 subpage_mask = vtd_slpt_level_page_mask(level);
1142
1143 while (iova < end) {
1144 iova_next = (iova & subpage_mask) + subpage_size;
1145
1146 offset = vtd_iova_level_offset(iova, level);
1147 slpte = vtd_get_slpte(addr, offset);
1148
1149 if (slpte == (uint64_t)-1) {
1150 trace_vtd_page_walk_skip_read(iova, iova_next);
1151 goto next;
1152 }
1153
1154 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1155 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1156 goto next;
1157 }
1158
1159 /* Permissions are stacked with parents' */
1160 read_cur = read && (slpte & VTD_SL_R);
1161 write_cur = write && (slpte & VTD_SL_W);
1162
1163 /*
1164 * As long as we have either read/write permission, this is a
1165 * valid entry. The rule works for both page entries and page
1166 * table entries.
1167 */
1168 entry_valid = read_cur | write_cur;
1169
1170 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1171 /*
1172 * This is a valid PDE (or even bigger than PDE). We need
1173 * to walk one further level.
1174 */
1175 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1176 iova, MIN(iova_next, end), level - 1,
1177 read_cur, write_cur, info);
1178 } else {
1179 /*
1180 * This means we are either:
1181 *
1182 * (1) the real page entry (either 4K page, or huge page)
1183 * (2) the whole range is invalid
1184 *
1185 * In either case, we send an IOTLB notification down.
1186 */
1187 entry.target_as = &address_space_memory;
1188 entry.iova = iova & subpage_mask;
1189 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1190 entry.addr_mask = ~subpage_mask;
1191 /* NOTE: this is only meaningful if entry_valid == true */
1192 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1193 ret = vtd_page_walk_one(&entry, info);
1194 }
1195
1196 if (ret < 0) {
1197 return ret;
1198 }
1199
1200 next:
1201 iova = iova_next;
1202 }
1203
1204 return 0;
1205 }
1206
1207 /**
1208 * vtd_page_walk - walk specific IOVA range, and call the hook
1209 *
1210 * @s: intel iommu state
1211 * @ce: context entry to walk upon
1212 * @start: IOVA address to start the walk
1213 * @end: IOVA range end address (start <= addr < end)
1214 * @info: page walking information struct
1215 */
1216 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1217 uint64_t start, uint64_t end,
1218 vtd_page_walk_info *info)
1219 {
1220 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1221 uint32_t level = vtd_get_iova_level(s, ce);
1222
1223 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1224 return -VTD_FR_ADDR_BEYOND_MGAW;
1225 }
1226
1227 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1228 /* Fix end so that it reaches the maximum */
1229 end = vtd_iova_limit(s, ce, info->aw);
1230 }
1231
1232 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1233 }
1234
1235 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1236 VTDRootEntry *re)
1237 {
1238 /* Legacy Mode reserved bits check */
1239 if (!s->root_scalable &&
1240 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1241 goto rsvd_err;
1242
1243 /* Scalable Mode reserved bits check */
1244 if (s->root_scalable &&
1245 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1246 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1247 goto rsvd_err;
1248
1249 return 0;
1250
1251 rsvd_err:
1252 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1253 ", lo=0x%"PRIx64,
1254 __func__, re->hi, re->lo);
1255 return -VTD_FR_ROOT_ENTRY_RSVD;
1256 }
1257
1258 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1259 VTDContextEntry *ce)
1260 {
1261 if (!s->root_scalable &&
1262 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1263 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1264 error_report_once("%s: invalid context entry: hi=%"PRIx64
1265 ", lo=%"PRIx64" (reserved nonzero)",
1266 __func__, ce->hi, ce->lo);
1267 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1268 }
1269
1270 if (s->root_scalable &&
1271 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1272 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1273 ce->val[2] ||
1274 ce->val[3])) {
1275 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1276 ", val[2]=%"PRIx64
1277 ", val[1]=%"PRIx64
1278 ", val[0]=%"PRIx64" (reserved nonzero)",
1279 __func__, ce->val[3], ce->val[2],
1280 ce->val[1], ce->val[0]);
1281 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1282 }
1283
1284 return 0;
1285 }
1286
1287 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1288 VTDContextEntry *ce)
1289 {
1290 VTDPASIDEntry pe;
1291
1292 /*
1293 * Make sure in Scalable Mode, a present context entry
1294 * has valid rid2pasid setting, which includes valid
1295 * rid2pasid field and corresponding pasid entry setting
1296 */
1297 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1298 }
1299
1300 /* Map a device to its corresponding domain (context-entry) */
1301 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1302 uint8_t devfn, VTDContextEntry *ce)
1303 {
1304 VTDRootEntry re;
1305 int ret_fr;
1306 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1307
1308 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1309 if (ret_fr) {
1310 return ret_fr;
1311 }
1312
1313 if (!vtd_root_entry_present(s, &re, devfn)) {
1314 /* Not error - it's okay we don't have root entry. */
1315 trace_vtd_re_not_present(bus_num);
1316 return -VTD_FR_ROOT_ENTRY_P;
1317 }
1318
1319 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1320 if (ret_fr) {
1321 return ret_fr;
1322 }
1323
1324 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1325 if (ret_fr) {
1326 return ret_fr;
1327 }
1328
1329 if (!vtd_ce_present(ce)) {
1330 /* Not error - it's okay we don't have context entry. */
1331 trace_vtd_ce_not_present(bus_num, devfn);
1332 return -VTD_FR_CONTEXT_ENTRY_P;
1333 }
1334
1335 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1336 if (ret_fr) {
1337 return ret_fr;
1338 }
1339
1340 /* Check if the programming of context-entry is valid */
1341 if (!s->root_scalable &&
1342 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1343 error_report_once("%s: invalid context entry: hi=%"PRIx64
1344 ", lo=%"PRIx64" (level %d not supported)",
1345 __func__, ce->hi, ce->lo,
1346 vtd_ce_get_level(ce));
1347 return -VTD_FR_CONTEXT_ENTRY_INV;
1348 }
1349
1350 if (!s->root_scalable) {
1351 /* Do translation type check */
1352 if (!vtd_ce_type_check(x86_iommu, ce)) {
1353 /* Errors dumped in vtd_ce_type_check() */
1354 return -VTD_FR_CONTEXT_ENTRY_INV;
1355 }
1356 } else {
1357 /*
1358 * Check if the programming of context-entry.rid2pasid
1359 * and corresponding pasid setting is valid, and thus
1360 * avoids to check pasid entry fetching result in future
1361 * helper function calling.
1362 */
1363 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1364 if (ret_fr) {
1365 return ret_fr;
1366 }
1367 }
1368
1369 return 0;
1370 }
1371
1372 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1373 void *private)
1374 {
1375 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1376 return 0;
1377 }
1378
1379 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1380 VTDContextEntry *ce)
1381 {
1382 VTDPASIDEntry pe;
1383
1384 if (s->root_scalable) {
1385 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1386 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1387 }
1388
1389 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1390 }
1391
1392 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1393 VTDContextEntry *ce,
1394 hwaddr addr, hwaddr size)
1395 {
1396 IntelIOMMUState *s = vtd_as->iommu_state;
1397 vtd_page_walk_info info = {
1398 .hook_fn = vtd_sync_shadow_page_hook,
1399 .private = (void *)&vtd_as->iommu,
1400 .notify_unmap = true,
1401 .aw = s->aw_bits,
1402 .as = vtd_as,
1403 .domain_id = vtd_get_domain_id(s, ce),
1404 };
1405
1406 return vtd_page_walk(s, ce, addr, addr + size, &info);
1407 }
1408
1409 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1410 {
1411 int ret;
1412 VTDContextEntry ce;
1413 IOMMUNotifier *n;
1414
1415 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1416 pci_bus_num(vtd_as->bus),
1417 vtd_as->devfn, &ce);
1418 if (ret) {
1419 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1420 /*
1421 * It's a valid scenario to have a context entry that is
1422 * not present. For example, when a device is removed
1423 * from an existing domain then the context entry will be
1424 * zeroed by the guest before it was put into another
1425 * domain. When this happens, instead of synchronizing
1426 * the shadow pages we should invalidate all existing
1427 * mappings and notify the backends.
1428 */
1429 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1430 vtd_address_space_unmap(vtd_as, n);
1431 }
1432 ret = 0;
1433 }
1434 return ret;
1435 }
1436
1437 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1438 }
1439
1440 /*
1441 * Check if specific device is configed to bypass address
1442 * translation for DMA requests. In Scalable Mode, bypass
1443 * 1st-level translation or 2nd-level translation, it depends
1444 * on PGTT setting.
1445 */
1446 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1447 {
1448 IntelIOMMUState *s;
1449 VTDContextEntry ce;
1450 VTDPASIDEntry pe;
1451 int ret;
1452
1453 assert(as);
1454
1455 s = as->iommu_state;
1456 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1457 as->devfn, &ce);
1458 if (ret) {
1459 /*
1460 * Possibly failed to parse the context entry for some reason
1461 * (e.g., during init, or any guest configuration errors on
1462 * context entries). We should assume PT not enabled for
1463 * safety.
1464 */
1465 return false;
1466 }
1467
1468 if (s->root_scalable) {
1469 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1470 if (ret) {
1471 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1472 __func__, ret);
1473 return false;
1474 }
1475 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1476 }
1477
1478 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1479 }
1480
1481 /* Return whether the device is using IOMMU translation. */
1482 static bool vtd_switch_address_space(VTDAddressSpace *as)
1483 {
1484 bool use_iommu;
1485 /* Whether we need to take the BQL on our own */
1486 bool take_bql = !qemu_mutex_iothread_locked();
1487
1488 assert(as);
1489
1490 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1491
1492 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1493 VTD_PCI_SLOT(as->devfn),
1494 VTD_PCI_FUNC(as->devfn),
1495 use_iommu);
1496
1497 /*
1498 * It's possible that we reach here without BQL, e.g., when called
1499 * from vtd_pt_enable_fast_path(). However the memory APIs need
1500 * it. We'd better make sure we have had it already, or, take it.
1501 */
1502 if (take_bql) {
1503 qemu_mutex_lock_iothread();
1504 }
1505
1506 /* Turn off first then on the other */
1507 if (use_iommu) {
1508 memory_region_set_enabled(&as->nodmar, false);
1509 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1510 } else {
1511 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1512 memory_region_set_enabled(&as->nodmar, true);
1513 }
1514
1515 if (take_bql) {
1516 qemu_mutex_unlock_iothread();
1517 }
1518
1519 return use_iommu;
1520 }
1521
1522 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1523 {
1524 GHashTableIter iter;
1525 VTDBus *vtd_bus;
1526 int i;
1527
1528 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1529 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1530 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1531 if (!vtd_bus->dev_as[i]) {
1532 continue;
1533 }
1534 vtd_switch_address_space(vtd_bus->dev_as[i]);
1535 }
1536 }
1537 }
1538
1539 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1540 {
1541 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1542 }
1543
1544 static const bool vtd_qualified_faults[] = {
1545 [VTD_FR_RESERVED] = false,
1546 [VTD_FR_ROOT_ENTRY_P] = false,
1547 [VTD_FR_CONTEXT_ENTRY_P] = true,
1548 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1549 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1550 [VTD_FR_WRITE] = true,
1551 [VTD_FR_READ] = true,
1552 [VTD_FR_PAGING_ENTRY_INV] = true,
1553 [VTD_FR_ROOT_TABLE_INV] = false,
1554 [VTD_FR_CONTEXT_TABLE_INV] = false,
1555 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1556 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1557 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1558 [VTD_FR_PASID_TABLE_INV] = false,
1559 [VTD_FR_RESERVED_ERR] = false,
1560 [VTD_FR_MAX] = false,
1561 };
1562
1563 /* To see if a fault condition is "qualified", which is reported to software
1564 * only if the FPD field in the context-entry used to process the faulting
1565 * request is 0.
1566 */
1567 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1568 {
1569 return vtd_qualified_faults[fault];
1570 }
1571
1572 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1573 {
1574 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1575 }
1576
1577 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1578 {
1579 VTDBus *vtd_bus;
1580 VTDAddressSpace *vtd_as;
1581 bool success = false;
1582
1583 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1584 if (!vtd_bus) {
1585 goto out;
1586 }
1587
1588 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1589 if (!vtd_as) {
1590 goto out;
1591 }
1592
1593 if (vtd_switch_address_space(vtd_as) == false) {
1594 /* We switched off IOMMU region successfully. */
1595 success = true;
1596 }
1597
1598 out:
1599 trace_vtd_pt_enable_fast_path(source_id, success);
1600 }
1601
1602 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1603 * translation.
1604 *
1605 * Called from RCU critical section.
1606 *
1607 * @bus_num: The bus number
1608 * @devfn: The devfn, which is the combined of device and function number
1609 * @is_write: The access is a write operation
1610 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1611 *
1612 * Returns true if translation is successful, otherwise false.
1613 */
1614 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1615 uint8_t devfn, hwaddr addr, bool is_write,
1616 IOMMUTLBEntry *entry)
1617 {
1618 IntelIOMMUState *s = vtd_as->iommu_state;
1619 VTDContextEntry ce;
1620 uint8_t bus_num = pci_bus_num(bus);
1621 VTDContextCacheEntry *cc_entry;
1622 uint64_t slpte, page_mask;
1623 uint32_t level;
1624 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1625 int ret_fr;
1626 bool is_fpd_set = false;
1627 bool reads = true;
1628 bool writes = true;
1629 uint8_t access_flags;
1630 VTDIOTLBEntry *iotlb_entry;
1631
1632 /*
1633 * We have standalone memory region for interrupt addresses, we
1634 * should never receive translation requests in this region.
1635 */
1636 assert(!vtd_is_interrupt_addr(addr));
1637
1638 vtd_iommu_lock(s);
1639
1640 cc_entry = &vtd_as->context_cache_entry;
1641
1642 /* Try to fetch slpte form IOTLB */
1643 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1644 if (iotlb_entry) {
1645 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1646 iotlb_entry->domain_id);
1647 slpte = iotlb_entry->slpte;
1648 access_flags = iotlb_entry->access_flags;
1649 page_mask = iotlb_entry->mask;
1650 goto out;
1651 }
1652
1653 /* Try to fetch context-entry from cache first */
1654 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1655 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1656 cc_entry->context_entry.lo,
1657 cc_entry->context_cache_gen);
1658 ce = cc_entry->context_entry;
1659 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1660 if (!is_fpd_set && s->root_scalable) {
1661 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1662 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1663 }
1664 } else {
1665 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1666 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1667 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1668 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1669 }
1670 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1671 /* Update context-cache */
1672 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1673 cc_entry->context_cache_gen,
1674 s->context_cache_gen);
1675 cc_entry->context_entry = ce;
1676 cc_entry->context_cache_gen = s->context_cache_gen;
1677 }
1678
1679 /*
1680 * We don't need to translate for pass-through context entries.
1681 * Also, let's ignore IOTLB caching as well for PT devices.
1682 */
1683 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1684 entry->iova = addr & VTD_PAGE_MASK_4K;
1685 entry->translated_addr = entry->iova;
1686 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1687 entry->perm = IOMMU_RW;
1688 trace_vtd_translate_pt(source_id, entry->iova);
1689
1690 /*
1691 * When this happens, it means firstly caching-mode is not
1692 * enabled, and this is the first passthrough translation for
1693 * the device. Let's enable the fast path for passthrough.
1694 *
1695 * When passthrough is disabled again for the device, we can
1696 * capture it via the context entry invalidation, then the
1697 * IOMMU region can be swapped back.
1698 */
1699 vtd_pt_enable_fast_path(s, source_id);
1700 vtd_iommu_unlock(s);
1701 return true;
1702 }
1703
1704 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1705 &reads, &writes, s->aw_bits);
1706 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1707
1708 page_mask = vtd_slpt_level_page_mask(level);
1709 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1710 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1711 access_flags, level);
1712 out:
1713 vtd_iommu_unlock(s);
1714 entry->iova = addr & page_mask;
1715 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1716 entry->addr_mask = ~page_mask;
1717 entry->perm = access_flags;
1718 return true;
1719
1720 error:
1721 vtd_iommu_unlock(s);
1722 entry->iova = 0;
1723 entry->translated_addr = 0;
1724 entry->addr_mask = 0;
1725 entry->perm = IOMMU_NONE;
1726 return false;
1727 }
1728
1729 static void vtd_root_table_setup(IntelIOMMUState *s)
1730 {
1731 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1732 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1733
1734 vtd_update_scalable_state(s);
1735
1736 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1737 }
1738
1739 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1740 uint32_t index, uint32_t mask)
1741 {
1742 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1743 }
1744
1745 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1746 {
1747 uint64_t value = 0;
1748 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1749 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1750 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1751 s->intr_eime = value & VTD_IRTA_EIME;
1752
1753 /* Notify global invalidation */
1754 vtd_iec_notify_all(s, true, 0, 0);
1755
1756 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1757 }
1758
1759 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1760 {
1761 VTDAddressSpace *vtd_as;
1762
1763 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1764 vtd_sync_shadow_page_table(vtd_as);
1765 }
1766 }
1767
1768 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1769 {
1770 trace_vtd_inv_desc_cc_global();
1771 /* Protects context cache */
1772 vtd_iommu_lock(s);
1773 s->context_cache_gen++;
1774 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1775 vtd_reset_context_cache_locked(s);
1776 }
1777 vtd_iommu_unlock(s);
1778 vtd_address_space_refresh_all(s);
1779 /*
1780 * From VT-d spec 6.5.2.1, a global context entry invalidation
1781 * should be followed by a IOTLB global invalidation, so we should
1782 * be safe even without this. Hoewever, let's replay the region as
1783 * well to be safer, and go back here when we need finer tunes for
1784 * VT-d emulation codes.
1785 */
1786 vtd_iommu_replay_all(s);
1787 }
1788
1789 /* Do a context-cache device-selective invalidation.
1790 * @func_mask: FM field after shifting
1791 */
1792 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1793 uint16_t source_id,
1794 uint16_t func_mask)
1795 {
1796 uint16_t mask;
1797 VTDBus *vtd_bus;
1798 VTDAddressSpace *vtd_as;
1799 uint8_t bus_n, devfn;
1800 uint16_t devfn_it;
1801
1802 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1803
1804 switch (func_mask & 3) {
1805 case 0:
1806 mask = 0; /* No bits in the SID field masked */
1807 break;
1808 case 1:
1809 mask = 4; /* Mask bit 2 in the SID field */
1810 break;
1811 case 2:
1812 mask = 6; /* Mask bit 2:1 in the SID field */
1813 break;
1814 case 3:
1815 mask = 7; /* Mask bit 2:0 in the SID field */
1816 break;
1817 }
1818 mask = ~mask;
1819
1820 bus_n = VTD_SID_TO_BUS(source_id);
1821 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1822 if (vtd_bus) {
1823 devfn = VTD_SID_TO_DEVFN(source_id);
1824 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1825 vtd_as = vtd_bus->dev_as[devfn_it];
1826 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1827 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1828 VTD_PCI_FUNC(devfn_it));
1829 vtd_iommu_lock(s);
1830 vtd_as->context_cache_entry.context_cache_gen = 0;
1831 vtd_iommu_unlock(s);
1832 /*
1833 * Do switch address space when needed, in case if the
1834 * device passthrough bit is switched.
1835 */
1836 vtd_switch_address_space(vtd_as);
1837 /*
1838 * So a device is moving out of (or moving into) a
1839 * domain, resync the shadow page table.
1840 * This won't bring bad even if we have no such
1841 * notifier registered - the IOMMU notification
1842 * framework will skip MAP notifications if that
1843 * happened.
1844 */
1845 vtd_sync_shadow_page_table(vtd_as);
1846 }
1847 }
1848 }
1849 }
1850
1851 /* Context-cache invalidation
1852 * Returns the Context Actual Invalidation Granularity.
1853 * @val: the content of the CCMD_REG
1854 */
1855 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1856 {
1857 uint64_t caig;
1858 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1859
1860 switch (type) {
1861 case VTD_CCMD_DOMAIN_INVL:
1862 /* Fall through */
1863 case VTD_CCMD_GLOBAL_INVL:
1864 caig = VTD_CCMD_GLOBAL_INVL_A;
1865 vtd_context_global_invalidate(s);
1866 break;
1867
1868 case VTD_CCMD_DEVICE_INVL:
1869 caig = VTD_CCMD_DEVICE_INVL_A;
1870 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1871 break;
1872
1873 default:
1874 error_report_once("%s: invalid context: 0x%" PRIx64,
1875 __func__, val);
1876 caig = 0;
1877 }
1878 return caig;
1879 }
1880
1881 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1882 {
1883 trace_vtd_inv_desc_iotlb_global();
1884 vtd_reset_iotlb(s);
1885 vtd_iommu_replay_all(s);
1886 }
1887
1888 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1889 {
1890 VTDContextEntry ce;
1891 VTDAddressSpace *vtd_as;
1892
1893 trace_vtd_inv_desc_iotlb_domain(domain_id);
1894
1895 vtd_iommu_lock(s);
1896 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1897 &domain_id);
1898 vtd_iommu_unlock(s);
1899
1900 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1901 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1902 vtd_as->devfn, &ce) &&
1903 domain_id == vtd_get_domain_id(s, &ce)) {
1904 vtd_sync_shadow_page_table(vtd_as);
1905 }
1906 }
1907 }
1908
1909 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1910 uint16_t domain_id, hwaddr addr,
1911 uint8_t am)
1912 {
1913 VTDAddressSpace *vtd_as;
1914 VTDContextEntry ce;
1915 int ret;
1916 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1917
1918 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1919 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1920 vtd_as->devfn, &ce);
1921 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1922 if (vtd_as_has_map_notifier(vtd_as)) {
1923 /*
1924 * As long as we have MAP notifications registered in
1925 * any of our IOMMU notifiers, we need to sync the
1926 * shadow page table.
1927 */
1928 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1929 } else {
1930 /*
1931 * For UNMAP-only notifiers, we don't need to walk the
1932 * page tables. We just deliver the PSI down to
1933 * invalidate caches.
1934 */
1935 IOMMUTLBEntry entry = {
1936 .target_as = &address_space_memory,
1937 .iova = addr,
1938 .translated_addr = 0,
1939 .addr_mask = size - 1,
1940 .perm = IOMMU_NONE,
1941 };
1942 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1943 }
1944 }
1945 }
1946 }
1947
1948 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1949 hwaddr addr, uint8_t am)
1950 {
1951 VTDIOTLBPageInvInfo info;
1952
1953 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1954
1955 assert(am <= VTD_MAMV);
1956 info.domain_id = domain_id;
1957 info.addr = addr;
1958 info.mask = ~((1 << am) - 1);
1959 vtd_iommu_lock(s);
1960 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1961 vtd_iommu_unlock(s);
1962 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1963 }
1964
1965 /* Flush IOTLB
1966 * Returns the IOTLB Actual Invalidation Granularity.
1967 * @val: the content of the IOTLB_REG
1968 */
1969 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1970 {
1971 uint64_t iaig;
1972 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1973 uint16_t domain_id;
1974 hwaddr addr;
1975 uint8_t am;
1976
1977 switch (type) {
1978 case VTD_TLB_GLOBAL_FLUSH:
1979 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1980 vtd_iotlb_global_invalidate(s);
1981 break;
1982
1983 case VTD_TLB_DSI_FLUSH:
1984 domain_id = VTD_TLB_DID(val);
1985 iaig = VTD_TLB_DSI_FLUSH_A;
1986 vtd_iotlb_domain_invalidate(s, domain_id);
1987 break;
1988
1989 case VTD_TLB_PSI_FLUSH:
1990 domain_id = VTD_TLB_DID(val);
1991 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1992 am = VTD_IVA_AM(addr);
1993 addr = VTD_IVA_ADDR(addr);
1994 if (am > VTD_MAMV) {
1995 error_report_once("%s: address mask overflow: 0x%" PRIx64,
1996 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1997 iaig = 0;
1998 break;
1999 }
2000 iaig = VTD_TLB_PSI_FLUSH_A;
2001 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2002 break;
2003
2004 default:
2005 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2006 __func__, val);
2007 iaig = 0;
2008 }
2009 return iaig;
2010 }
2011
2012 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2013
2014 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2015 {
2016 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2017 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2018 }
2019
2020 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2021 {
2022 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2023
2024 trace_vtd_inv_qi_enable(en);
2025
2026 if (en) {
2027 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2028 /* 2^(x+8) entries */
2029 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2030 s->qi_enabled = true;
2031 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2032 /* Ok - report back to driver */
2033 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2034
2035 if (s->iq_tail != 0) {
2036 /*
2037 * This is a spec violation but Windows guests are known to set up
2038 * Queued Invalidation this way so we allow the write and process
2039 * Invalidation Descriptors right away.
2040 */
2041 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2042 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2043 vtd_fetch_inv_desc(s);
2044 }
2045 }
2046 } else {
2047 if (vtd_queued_inv_disable_check(s)) {
2048 /* disable Queued Invalidation */
2049 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2050 s->iq_head = 0;
2051 s->qi_enabled = false;
2052 /* Ok - report back to driver */
2053 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2054 } else {
2055 error_report_once("%s: detected improper state when disable QI "
2056 "(head=0x%x, tail=0x%x, last_type=%d)",
2057 __func__,
2058 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2059 }
2060 }
2061 }
2062
2063 /* Set Root Table Pointer */
2064 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2065 {
2066 vtd_root_table_setup(s);
2067 /* Ok - report back to driver */
2068 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2069 vtd_reset_caches(s);
2070 vtd_address_space_refresh_all(s);
2071 }
2072
2073 /* Set Interrupt Remap Table Pointer */
2074 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2075 {
2076 vtd_interrupt_remap_table_setup(s);
2077 /* Ok - report back to driver */
2078 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2079 }
2080
2081 /* Handle Translation Enable/Disable */
2082 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2083 {
2084 if (s->dmar_enabled == en) {
2085 return;
2086 }
2087
2088 trace_vtd_dmar_enable(en);
2089
2090 if (en) {
2091 s->dmar_enabled = true;
2092 /* Ok - report back to driver */
2093 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2094 } else {
2095 s->dmar_enabled = false;
2096
2097 /* Clear the index of Fault Recording Register */
2098 s->next_frcd_reg = 0;
2099 /* Ok - report back to driver */
2100 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2101 }
2102
2103 vtd_reset_caches(s);
2104 vtd_address_space_refresh_all(s);
2105 }
2106
2107 /* Handle Interrupt Remap Enable/Disable */
2108 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2109 {
2110 trace_vtd_ir_enable(en);
2111
2112 if (en) {
2113 s->intr_enabled = true;
2114 /* Ok - report back to driver */
2115 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2116 } else {
2117 s->intr_enabled = false;
2118 /* Ok - report back to driver */
2119 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2120 }
2121 }
2122
2123 /* Handle write to Global Command Register */
2124 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2125 {
2126 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2127 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2128 uint32_t changed = status ^ val;
2129
2130 trace_vtd_reg_write_gcmd(status, val);
2131 if (changed & VTD_GCMD_TE) {
2132 /* Translation enable/disable */
2133 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2134 }
2135 if (val & VTD_GCMD_SRTP) {
2136 /* Set/update the root-table pointer */
2137 vtd_handle_gcmd_srtp(s);
2138 }
2139 if (changed & VTD_GCMD_QIE) {
2140 /* Queued Invalidation Enable */
2141 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2142 }
2143 if (val & VTD_GCMD_SIRTP) {
2144 /* Set/update the interrupt remapping root-table pointer */
2145 vtd_handle_gcmd_sirtp(s);
2146 }
2147 if (changed & VTD_GCMD_IRE) {
2148 /* Interrupt remap enable/disable */
2149 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2150 }
2151 }
2152
2153 /* Handle write to Context Command Register */
2154 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2155 {
2156 uint64_t ret;
2157 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2158
2159 /* Context-cache invalidation request */
2160 if (val & VTD_CCMD_ICC) {
2161 if (s->qi_enabled) {
2162 error_report_once("Queued Invalidation enabled, "
2163 "should not use register-based invalidation");
2164 return;
2165 }
2166 ret = vtd_context_cache_invalidate(s, val);
2167 /* Invalidation completed. Change something to show */
2168 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2169 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2170 ret);
2171 }
2172 }
2173
2174 /* Handle write to IOTLB Invalidation Register */
2175 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2176 {
2177 uint64_t ret;
2178 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2179
2180 /* IOTLB invalidation request */
2181 if (val & VTD_TLB_IVT) {
2182 if (s->qi_enabled) {
2183 error_report_once("Queued Invalidation enabled, "
2184 "should not use register-based invalidation");
2185 return;
2186 }
2187 ret = vtd_iotlb_flush(s, val);
2188 /* Invalidation completed. Change something to show */
2189 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2190 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2191 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2192 }
2193 }
2194
2195 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2196 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2197 VTDInvDesc *inv_desc)
2198 {
2199 dma_addr_t base_addr = s->iq;
2200 uint32_t offset = s->iq_head;
2201 uint32_t dw = s->iq_dw ? 32 : 16;
2202 dma_addr_t addr = base_addr + offset * dw;
2203
2204 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2205 error_report_once("Read INV DESC failed.");
2206 return false;
2207 }
2208 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2209 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2210 if (dw == 32) {
2211 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2212 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2213 }
2214 return true;
2215 }
2216
2217 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2218 {
2219 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2220 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2221 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2222 " (reserved nonzero)", __func__, inv_desc->hi,
2223 inv_desc->lo);
2224 return false;
2225 }
2226 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2227 /* Status Write */
2228 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2229 VTD_INV_DESC_WAIT_DATA_SHIFT);
2230
2231 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2232
2233 /* FIXME: need to be masked with HAW? */
2234 dma_addr_t status_addr = inv_desc->hi;
2235 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2236 status_data = cpu_to_le32(status_data);
2237 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2238 sizeof(status_data))) {
2239 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2240 return false;
2241 }
2242 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2243 /* Interrupt flag */
2244 vtd_generate_completion_event(s);
2245 } else {
2246 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2247 " (unknown type)", __func__, inv_desc->hi,
2248 inv_desc->lo);
2249 return false;
2250 }
2251 return true;
2252 }
2253
2254 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2255 VTDInvDesc *inv_desc)
2256 {
2257 uint16_t sid, fmask;
2258
2259 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2260 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2261 " (reserved nonzero)", __func__, inv_desc->hi,
2262 inv_desc->lo);
2263 return false;
2264 }
2265 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2266 case VTD_INV_DESC_CC_DOMAIN:
2267 trace_vtd_inv_desc_cc_domain(
2268 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2269 /* Fall through */
2270 case VTD_INV_DESC_CC_GLOBAL:
2271 vtd_context_global_invalidate(s);
2272 break;
2273
2274 case VTD_INV_DESC_CC_DEVICE:
2275 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2276 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2277 vtd_context_device_invalidate(s, sid, fmask);
2278 break;
2279
2280 default:
2281 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2282 " (invalid type)", __func__, inv_desc->hi,
2283 inv_desc->lo);
2284 return false;
2285 }
2286 return true;
2287 }
2288
2289 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2290 {
2291 uint16_t domain_id;
2292 uint8_t am;
2293 hwaddr addr;
2294
2295 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2296 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2297 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2298 ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2299 __func__, inv_desc->hi, inv_desc->lo);
2300 return false;
2301 }
2302
2303 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2304 case VTD_INV_DESC_IOTLB_GLOBAL:
2305 vtd_iotlb_global_invalidate(s);
2306 break;
2307
2308 case VTD_INV_DESC_IOTLB_DOMAIN:
2309 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2310 vtd_iotlb_domain_invalidate(s, domain_id);
2311 break;
2312
2313 case VTD_INV_DESC_IOTLB_PAGE:
2314 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2315 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2316 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2317 if (am > VTD_MAMV) {
2318 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2319 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2320 __func__, inv_desc->hi, inv_desc->lo,
2321 am, (unsigned)VTD_MAMV);
2322 return false;
2323 }
2324 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2325 break;
2326
2327 default:
2328 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2329 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2330 __func__, inv_desc->hi, inv_desc->lo,
2331 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2332 return false;
2333 }
2334 return true;
2335 }
2336
2337 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2338 VTDInvDesc *inv_desc)
2339 {
2340 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2341 inv_desc->iec.index,
2342 inv_desc->iec.index_mask);
2343
2344 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2345 inv_desc->iec.index,
2346 inv_desc->iec.index_mask);
2347 return true;
2348 }
2349
2350 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2351 VTDInvDesc *inv_desc)
2352 {
2353 VTDAddressSpace *vtd_dev_as;
2354 IOMMUTLBEntry entry;
2355 struct VTDBus *vtd_bus;
2356 hwaddr addr;
2357 uint64_t sz;
2358 uint16_t sid;
2359 uint8_t devfn;
2360 bool size;
2361 uint8_t bus_num;
2362
2363 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2364 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2365 devfn = sid & 0xff;
2366 bus_num = sid >> 8;
2367 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2368
2369 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2370 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2371 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2372 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2373 inv_desc->hi, inv_desc->lo);
2374 return false;
2375 }
2376
2377 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2378 if (!vtd_bus) {
2379 goto done;
2380 }
2381
2382 vtd_dev_as = vtd_bus->dev_as[devfn];
2383 if (!vtd_dev_as) {
2384 goto done;
2385 }
2386
2387 /* According to ATS spec table 2.4:
2388 * S = 0, bits 15:12 = xxxx range size: 4K
2389 * S = 1, bits 15:12 = xxx0 range size: 8K
2390 * S = 1, bits 15:12 = xx01 range size: 16K
2391 * S = 1, bits 15:12 = x011 range size: 32K
2392 * S = 1, bits 15:12 = 0111 range size: 64K
2393 * ...
2394 */
2395 if (size) {
2396 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2397 addr &= ~(sz - 1);
2398 } else {
2399 sz = VTD_PAGE_SIZE;
2400 }
2401
2402 entry.target_as = &vtd_dev_as->as;
2403 entry.addr_mask = sz - 1;
2404 entry.iova = addr;
2405 entry.perm = IOMMU_NONE;
2406 entry.translated_addr = 0;
2407 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2408
2409 done:
2410 return true;
2411 }
2412
2413 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2414 {
2415 VTDInvDesc inv_desc;
2416 uint8_t desc_type;
2417
2418 trace_vtd_inv_qi_head(s->iq_head);
2419 if (!vtd_get_inv_desc(s, &inv_desc)) {
2420 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2421 return false;
2422 }
2423
2424 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2425 /* FIXME: should update at first or at last? */
2426 s->iq_last_desc_type = desc_type;
2427
2428 switch (desc_type) {
2429 case VTD_INV_DESC_CC:
2430 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2431 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2432 return false;
2433 }
2434 break;
2435
2436 case VTD_INV_DESC_IOTLB:
2437 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2438 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2439 return false;
2440 }
2441 break;
2442
2443 /*
2444 * TODO: the entity of below two cases will be implemented in future series.
2445 * To make guest (which integrates scalable mode support patch set in
2446 * iommu driver) work, just return true is enough so far.
2447 */
2448 case VTD_INV_DESC_PC:
2449 break;
2450
2451 case VTD_INV_DESC_PIOTLB:
2452 break;
2453
2454 case VTD_INV_DESC_WAIT:
2455 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2456 if (!vtd_process_wait_desc(s, &inv_desc)) {
2457 return false;
2458 }
2459 break;
2460
2461 case VTD_INV_DESC_IEC:
2462 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2463 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2464 return false;
2465 }
2466 break;
2467
2468 case VTD_INV_DESC_DEVICE:
2469 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2470 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2471 return false;
2472 }
2473 break;
2474
2475 default:
2476 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2477 " (unknown type)", __func__, inv_desc.hi,
2478 inv_desc.lo);
2479 return false;
2480 }
2481 s->iq_head++;
2482 if (s->iq_head == s->iq_size) {
2483 s->iq_head = 0;
2484 }
2485 return true;
2486 }
2487
2488 /* Try to fetch and process more Invalidation Descriptors */
2489 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2490 {
2491 trace_vtd_inv_qi_fetch();
2492
2493 if (s->iq_tail >= s->iq_size) {
2494 /* Detects an invalid Tail pointer */
2495 error_report_once("%s: detected invalid QI tail "
2496 "(tail=0x%x, size=0x%x)",
2497 __func__, s->iq_tail, s->iq_size);
2498 vtd_handle_inv_queue_error(s);
2499 return;
2500 }
2501 while (s->iq_head != s->iq_tail) {
2502 if (!vtd_process_inv_desc(s)) {
2503 /* Invalidation Queue Errors */
2504 vtd_handle_inv_queue_error(s);
2505 break;
2506 }
2507 /* Must update the IQH_REG in time */
2508 vtd_set_quad_raw(s, DMAR_IQH_REG,
2509 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2510 VTD_IQH_QH_MASK);
2511 }
2512 }
2513
2514 /* Handle write to Invalidation Queue Tail Register */
2515 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2516 {
2517 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2518
2519 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2520 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2521 __func__, val);
2522 return;
2523 }
2524 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2525 trace_vtd_inv_qi_tail(s->iq_tail);
2526
2527 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2528 /* Process Invalidation Queue here */
2529 vtd_fetch_inv_desc(s);
2530 }
2531 }
2532
2533 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2534 {
2535 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2536 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2537 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2538
2539 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2540 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2541 trace_vtd_fsts_clear_ip();
2542 }
2543 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2544 * Descriptors if there are any when Queued Invalidation is enabled?
2545 */
2546 }
2547
2548 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2549 {
2550 uint32_t fectl_reg;
2551 /* FIXME: when software clears the IM field, check the IP field. But do we
2552 * need to compare the old value and the new value to conclude that
2553 * software clears the IM field? Or just check if the IM field is zero?
2554 */
2555 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2556
2557 trace_vtd_reg_write_fectl(fectl_reg);
2558
2559 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2560 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2561 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2562 }
2563 }
2564
2565 static void vtd_handle_ics_write(IntelIOMMUState *s)
2566 {
2567 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2568 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2569
2570 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2571 trace_vtd_reg_ics_clear_ip();
2572 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2573 }
2574 }
2575
2576 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2577 {
2578 uint32_t iectl_reg;
2579 /* FIXME: when software clears the IM field, check the IP field. But do we
2580 * need to compare the old value and the new value to conclude that
2581 * software clears the IM field? Or just check if the IM field is zero?
2582 */
2583 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2584
2585 trace_vtd_reg_write_iectl(iectl_reg);
2586
2587 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2588 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2589 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2590 }
2591 }
2592
2593 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2594 {
2595 IntelIOMMUState *s = opaque;
2596 uint64_t val;
2597
2598 trace_vtd_reg_read(addr, size);
2599
2600 if (addr + size > DMAR_REG_SIZE) {
2601 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2602 " size=0x%u", __func__, addr, size);
2603 return (uint64_t)-1;
2604 }
2605
2606 switch (addr) {
2607 /* Root Table Address Register, 64-bit */
2608 case DMAR_RTADDR_REG:
2609 if (size == 4) {
2610 val = s->root & ((1ULL << 32) - 1);
2611 } else {
2612 val = s->root;
2613 }
2614 break;
2615
2616 case DMAR_RTADDR_REG_HI:
2617 assert(size == 4);
2618 val = s->root >> 32;
2619 break;
2620
2621 /* Invalidation Queue Address Register, 64-bit */
2622 case DMAR_IQA_REG:
2623 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2624 if (size == 4) {
2625 val = val & ((1ULL << 32) - 1);
2626 }
2627 break;
2628
2629 case DMAR_IQA_REG_HI:
2630 assert(size == 4);
2631 val = s->iq >> 32;
2632 break;
2633
2634 default:
2635 if (size == 4) {
2636 val = vtd_get_long(s, addr);
2637 } else {
2638 val = vtd_get_quad(s, addr);
2639 }
2640 }
2641
2642 return val;
2643 }
2644
2645 static void vtd_mem_write(void *opaque, hwaddr addr,
2646 uint64_t val, unsigned size)
2647 {
2648 IntelIOMMUState *s = opaque;
2649
2650 trace_vtd_reg_write(addr, size, val);
2651
2652 if (addr + size > DMAR_REG_SIZE) {
2653 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2654 " size=0x%u", __func__, addr, size);
2655 return;
2656 }
2657
2658 switch (addr) {
2659 /* Global Command Register, 32-bit */
2660 case DMAR_GCMD_REG:
2661 vtd_set_long(s, addr, val);
2662 vtd_handle_gcmd_write(s);
2663 break;
2664
2665 /* Context Command Register, 64-bit */
2666 case DMAR_CCMD_REG:
2667 if (size == 4) {
2668 vtd_set_long(s, addr, val);
2669 } else {
2670 vtd_set_quad(s, addr, val);
2671 vtd_handle_ccmd_write(s);
2672 }
2673 break;
2674
2675 case DMAR_CCMD_REG_HI:
2676 assert(size == 4);
2677 vtd_set_long(s, addr, val);
2678 vtd_handle_ccmd_write(s);
2679 break;
2680
2681 /* IOTLB Invalidation Register, 64-bit */
2682 case DMAR_IOTLB_REG:
2683 if (size == 4) {
2684 vtd_set_long(s, addr, val);
2685 } else {
2686 vtd_set_quad(s, addr, val);
2687 vtd_handle_iotlb_write(s);
2688 }
2689 break;
2690
2691 case DMAR_IOTLB_REG_HI:
2692 assert(size == 4);
2693 vtd_set_long(s, addr, val);
2694 vtd_handle_iotlb_write(s);
2695 break;
2696
2697 /* Invalidate Address Register, 64-bit */
2698 case DMAR_IVA_REG:
2699 if (size == 4) {
2700 vtd_set_long(s, addr, val);
2701 } else {
2702 vtd_set_quad(s, addr, val);
2703 }
2704 break;
2705
2706 case DMAR_IVA_REG_HI:
2707 assert(size == 4);
2708 vtd_set_long(s, addr, val);
2709 break;
2710
2711 /* Fault Status Register, 32-bit */
2712 case DMAR_FSTS_REG:
2713 assert(size == 4);
2714 vtd_set_long(s, addr, val);
2715 vtd_handle_fsts_write(s);
2716 break;
2717
2718 /* Fault Event Control Register, 32-bit */
2719 case DMAR_FECTL_REG:
2720 assert(size == 4);
2721 vtd_set_long(s, addr, val);
2722 vtd_handle_fectl_write(s);
2723 break;
2724
2725 /* Fault Event Data Register, 32-bit */
2726 case DMAR_FEDATA_REG:
2727 assert(size == 4);
2728 vtd_set_long(s, addr, val);
2729 break;
2730
2731 /* Fault Event Address Register, 32-bit */
2732 case DMAR_FEADDR_REG:
2733 if (size == 4) {
2734 vtd_set_long(s, addr, val);
2735 } else {
2736 /*
2737 * While the register is 32-bit only, some guests (Xen...) write to
2738 * it with 64-bit.
2739 */
2740 vtd_set_quad(s, addr, val);
2741 }
2742 break;
2743
2744 /* Fault Event Upper Address Register, 32-bit */
2745 case DMAR_FEUADDR_REG:
2746 assert(size == 4);
2747 vtd_set_long(s, addr, val);
2748 break;
2749
2750 /* Protected Memory Enable Register, 32-bit */
2751 case DMAR_PMEN_REG:
2752 assert(size == 4);
2753 vtd_set_long(s, addr, val);
2754 break;
2755
2756 /* Root Table Address Register, 64-bit */
2757 case DMAR_RTADDR_REG:
2758 if (size == 4) {
2759 vtd_set_long(s, addr, val);
2760 } else {
2761 vtd_set_quad(s, addr, val);
2762 }
2763 break;
2764
2765 case DMAR_RTADDR_REG_HI:
2766 assert(size == 4);
2767 vtd_set_long(s, addr, val);
2768 break;
2769
2770 /* Invalidation Queue Tail Register, 64-bit */
2771 case DMAR_IQT_REG:
2772 if (size == 4) {
2773 vtd_set_long(s, addr, val);
2774 } else {
2775 vtd_set_quad(s, addr, val);
2776 }
2777 vtd_handle_iqt_write(s);
2778 break;
2779
2780 case DMAR_IQT_REG_HI:
2781 assert(size == 4);
2782 vtd_set_long(s, addr, val);
2783 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2784 break;
2785
2786 /* Invalidation Queue Address Register, 64-bit */
2787 case DMAR_IQA_REG:
2788 if (size == 4) {
2789 vtd_set_long(s, addr, val);
2790 } else {
2791 vtd_set_quad(s, addr, val);
2792 }
2793 if (s->ecap & VTD_ECAP_SMTS &&
2794 val & VTD_IQA_DW_MASK) {
2795 s->iq_dw = true;
2796 } else {
2797 s->iq_dw = false;
2798 }
2799 break;
2800
2801 case DMAR_IQA_REG_HI:
2802 assert(size == 4);
2803 vtd_set_long(s, addr, val);
2804 break;
2805
2806 /* Invalidation Completion Status Register, 32-bit */
2807 case DMAR_ICS_REG:
2808 assert(size == 4);
2809 vtd_set_long(s, addr, val);
2810 vtd_handle_ics_write(s);
2811 break;
2812
2813 /* Invalidation Event Control Register, 32-bit */
2814 case DMAR_IECTL_REG:
2815 assert(size == 4);
2816 vtd_set_long(s, addr, val);
2817 vtd_handle_iectl_write(s);
2818 break;
2819
2820 /* Invalidation Event Data Register, 32-bit */
2821 case DMAR_IEDATA_REG:
2822 assert(size == 4);
2823 vtd_set_long(s, addr, val);
2824 break;
2825
2826 /* Invalidation Event Address Register, 32-bit */
2827 case DMAR_IEADDR_REG:
2828 assert(size == 4);
2829 vtd_set_long(s, addr, val);
2830 break;
2831
2832 /* Invalidation Event Upper Address Register, 32-bit */
2833 case DMAR_IEUADDR_REG:
2834 assert(size == 4);
2835 vtd_set_long(s, addr, val);
2836 break;
2837
2838 /* Fault Recording Registers, 128-bit */
2839 case DMAR_FRCD_REG_0_0:
2840 if (size == 4) {
2841 vtd_set_long(s, addr, val);
2842 } else {
2843 vtd_set_quad(s, addr, val);
2844 }
2845 break;
2846
2847 case DMAR_FRCD_REG_0_1:
2848 assert(size == 4);
2849 vtd_set_long(s, addr, val);
2850 break;
2851
2852 case DMAR_FRCD_REG_0_2:
2853 if (size == 4) {
2854 vtd_set_long(s, addr, val);
2855 } else {
2856 vtd_set_quad(s, addr, val);
2857 /* May clear bit 127 (Fault), update PPF */
2858 vtd_update_fsts_ppf(s);
2859 }
2860 break;
2861
2862 case DMAR_FRCD_REG_0_3:
2863 assert(size == 4);
2864 vtd_set_long(s, addr, val);
2865 /* May clear bit 127 (Fault), update PPF */
2866 vtd_update_fsts_ppf(s);
2867 break;
2868
2869 case DMAR_IRTA_REG:
2870 if (size == 4) {
2871 vtd_set_long(s, addr, val);
2872 } else {
2873 vtd_set_quad(s, addr, val);
2874 }
2875 break;
2876
2877 case DMAR_IRTA_REG_HI:
2878 assert(size == 4);
2879 vtd_set_long(s, addr, val);
2880 break;
2881
2882 default:
2883 if (size == 4) {
2884 vtd_set_long(s, addr, val);
2885 } else {
2886 vtd_set_quad(s, addr, val);
2887 }
2888 }
2889 }
2890
2891 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2892 IOMMUAccessFlags flag, int iommu_idx)
2893 {
2894 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2895 IntelIOMMUState *s = vtd_as->iommu_state;
2896 IOMMUTLBEntry iotlb = {
2897 /* We'll fill in the rest later. */
2898 .target_as = &address_space_memory,
2899 };
2900 bool success;
2901
2902 if (likely(s->dmar_enabled)) {
2903 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2904 addr, flag & IOMMU_WO, &iotlb);
2905 } else {
2906 /* DMAR disabled, passthrough, use 4k-page*/
2907 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2908 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2909 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2910 iotlb.perm = IOMMU_RW;
2911 success = true;
2912 }
2913
2914 if (likely(success)) {
2915 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2916 VTD_PCI_SLOT(vtd_as->devfn),
2917 VTD_PCI_FUNC(vtd_as->devfn),
2918 iotlb.iova, iotlb.translated_addr,
2919 iotlb.addr_mask);
2920 } else {
2921 error_report_once("%s: detected translation failure "
2922 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2923 __func__, pci_bus_num(vtd_as->bus),
2924 VTD_PCI_SLOT(vtd_as->devfn),
2925 VTD_PCI_FUNC(vtd_as->devfn),
2926 addr);
2927 }
2928
2929 return iotlb;
2930 }
2931
2932 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2933 IOMMUNotifierFlag old,
2934 IOMMUNotifierFlag new,
2935 Error **errp)
2936 {
2937 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2938 IntelIOMMUState *s = vtd_as->iommu_state;
2939
2940 /* Update per-address-space notifier flags */
2941 vtd_as->notifier_flags = new;
2942
2943 if (old == IOMMU_NOTIFIER_NONE) {
2944 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2945 } else if (new == IOMMU_NOTIFIER_NONE) {
2946 QLIST_REMOVE(vtd_as, next);
2947 }
2948 return 0;
2949 }
2950
2951 static int vtd_post_load(void *opaque, int version_id)
2952 {
2953 IntelIOMMUState *iommu = opaque;
2954
2955 /*
2956 * Memory regions are dynamically turned on/off depending on
2957 * context entry configurations from the guest. After migration,
2958 * we need to make sure the memory regions are still correct.
2959 */
2960 vtd_switch_address_space_all(iommu);
2961
2962 /*
2963 * We don't need to migrate the root_scalable because we can
2964 * simply do the calculation after the loading is complete. We
2965 * can actually do similar things with root, dmar_enabled, etc.
2966 * however since we've had them already so we'd better keep them
2967 * for compatibility of migration.
2968 */
2969 vtd_update_scalable_state(iommu);
2970
2971 return 0;
2972 }
2973
2974 static const VMStateDescription vtd_vmstate = {
2975 .name = "iommu-intel",
2976 .version_id = 1,
2977 .minimum_version_id = 1,
2978 .priority = MIG_PRI_IOMMU,
2979 .post_load = vtd_post_load,
2980 .fields = (VMStateField[]) {
2981 VMSTATE_UINT64(root, IntelIOMMUState),
2982 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2983 VMSTATE_UINT64(iq, IntelIOMMUState),
2984 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2985 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2986 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2987 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2988 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2989 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2990 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2991 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
2992 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2993 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2994 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2995 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2996 VMSTATE_END_OF_LIST()
2997 }
2998 };
2999
3000 static const MemoryRegionOps vtd_mem_ops = {
3001 .read = vtd_mem_read,
3002 .write = vtd_mem_write,
3003 .endianness = DEVICE_LITTLE_ENDIAN,
3004 .impl = {
3005 .min_access_size = 4,
3006 .max_access_size = 8,
3007 },
3008 .valid = {
3009 .min_access_size = 4,
3010 .max_access_size = 8,
3011 },
3012 };
3013
3014 static Property vtd_properties[] = {
3015 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3016 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3017 ON_OFF_AUTO_AUTO),
3018 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3019 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3020 VTD_HOST_ADDRESS_WIDTH),
3021 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3022 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3023 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3024 DEFINE_PROP_END_OF_LIST(),
3025 };
3026
3027 /* Read IRTE entry with specific index */
3028 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3029 VTD_IR_TableEntry *entry, uint16_t sid)
3030 {
3031 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3032 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3033 dma_addr_t addr = 0x00;
3034 uint16_t mask, source_id;
3035 uint8_t bus, bus_max, bus_min;
3036
3037 addr = iommu->intr_root + index * sizeof(*entry);
3038 if (dma_memory_read(&address_space_memory, addr, entry,
3039 sizeof(*entry))) {
3040 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3041 __func__, index, addr);
3042 return -VTD_FR_IR_ROOT_INVAL;
3043 }
3044
3045 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3046 le64_to_cpu(entry->data[0]));
3047
3048 if (!entry->irte.present) {
3049 error_report_once("%s: detected non-present IRTE "
3050 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3051 __func__, index, le64_to_cpu(entry->data[1]),
3052 le64_to_cpu(entry->data[0]));
3053 return -VTD_FR_IR_ENTRY_P;
3054 }
3055
3056 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3057 entry->irte.__reserved_2) {
3058 error_report_once("%s: detected non-zero reserved IRTE "
3059 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3060 __func__, index, le64_to_cpu(entry->data[1]),
3061 le64_to_cpu(entry->data[0]));
3062 return -VTD_FR_IR_IRTE_RSVD;
3063 }
3064
3065 if (sid != X86_IOMMU_SID_INVALID) {
3066 /* Validate IRTE SID */
3067 source_id = le32_to_cpu(entry->irte.source_id);
3068 switch (entry->irte.sid_vtype) {
3069 case VTD_SVT_NONE:
3070 break;
3071
3072 case VTD_SVT_ALL:
3073 mask = vtd_svt_mask[entry->irte.sid_q];
3074 if ((source_id & mask) != (sid & mask)) {
3075 error_report_once("%s: invalid IRTE SID "
3076 "(index=%u, sid=%u, source_id=%u)",
3077 __func__, index, sid, source_id);
3078 return -VTD_FR_IR_SID_ERR;
3079 }
3080 break;
3081
3082 case VTD_SVT_BUS:
3083 bus_max = source_id >> 8;
3084 bus_min = source_id & 0xff;
3085 bus = sid >> 8;
3086 if (bus > bus_max || bus < bus_min) {
3087 error_report_once("%s: invalid SVT_BUS "
3088 "(index=%u, bus=%u, min=%u, max=%u)",
3089 __func__, index, bus, bus_min, bus_max);
3090 return -VTD_FR_IR_SID_ERR;
3091 }
3092 break;
3093
3094 default:
3095 error_report_once("%s: detected invalid IRTE SVT "
3096 "(index=%u, type=%d)", __func__,
3097 index, entry->irte.sid_vtype);
3098 /* Take this as verification failure. */
3099 return -VTD_FR_IR_SID_ERR;
3100 break;
3101 }
3102 }
3103
3104 return 0;
3105 }
3106
3107 /* Fetch IRQ information of specific IR index */
3108 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3109 X86IOMMUIrq *irq, uint16_t sid)
3110 {
3111 VTD_IR_TableEntry irte = {};
3112 int ret = 0;
3113
3114 ret = vtd_irte_get(iommu, index, &irte, sid);
3115 if (ret) {
3116 return ret;
3117 }
3118
3119 irq->trigger_mode = irte.irte.trigger_mode;
3120 irq->vector = irte.irte.vector;
3121 irq->delivery_mode = irte.irte.delivery_mode;
3122 irq->dest = le32_to_cpu(irte.irte.dest_id);
3123 if (!iommu->intr_eime) {
3124 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3125 #define VTD_IR_APIC_DEST_SHIFT (8)
3126 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3127 VTD_IR_APIC_DEST_SHIFT;
3128 }
3129 irq->dest_mode = irte.irte.dest_mode;
3130 irq->redir_hint = irte.irte.redir_hint;
3131
3132 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3133 irq->delivery_mode, irq->dest, irq->dest_mode);
3134
3135 return 0;
3136 }
3137
3138 /* Interrupt remapping for MSI/MSI-X entry */
3139 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3140 MSIMessage *origin,
3141 MSIMessage *translated,
3142 uint16_t sid)
3143 {
3144 int ret = 0;
3145 VTD_IR_MSIAddress addr;
3146 uint16_t index;
3147 X86IOMMUIrq irq = {};
3148
3149 assert(origin && translated);
3150
3151 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3152
3153 if (!iommu || !iommu->intr_enabled) {
3154 memcpy(translated, origin, sizeof(*origin));
3155 goto out;
3156 }
3157
3158 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3159 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3160 "address=0x%" PRIx64, __func__, origin->address);
3161 return -VTD_FR_IR_REQ_RSVD;
3162 }
3163
3164 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3165 if (addr.addr.__head != 0xfee) {
3166 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3167 __func__, addr.data);
3168 return -VTD_FR_IR_REQ_RSVD;
3169 }
3170
3171 /* This is compatible mode. */
3172 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3173 memcpy(translated, origin, sizeof(*origin));
3174 goto out;
3175 }
3176
3177 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3178
3179 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3180 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3181
3182 if (addr.addr.sub_valid) {
3183 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3184 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3185 }
3186
3187 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3188 if (ret) {
3189 return ret;
3190 }
3191
3192 if (addr.addr.sub_valid) {
3193 trace_vtd_ir_remap_type("MSI");
3194 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3195 error_report_once("%s: invalid IR MSI "
3196 "(sid=%u, address=0x%" PRIx64
3197 ", data=0x%" PRIx32 ")",
3198 __func__, sid, origin->address, origin->data);
3199 return -VTD_FR_IR_REQ_RSVD;
3200 }
3201 } else {
3202 uint8_t vector = origin->data & 0xff;
3203 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3204
3205 trace_vtd_ir_remap_type("IOAPIC");
3206 /* IOAPIC entry vector should be aligned with IRTE vector
3207 * (see vt-d spec 5.1.5.1). */
3208 if (vector != irq.vector) {
3209 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3210 }
3211
3212 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3213 * (see vt-d spec 5.1.5.1). */
3214 if (trigger_mode != irq.trigger_mode) {
3215 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3216 irq.trigger_mode);
3217 }
3218 }
3219
3220 /*
3221 * We'd better keep the last two bits, assuming that guest OS
3222 * might modify it. Keep it does not hurt after all.
3223 */
3224 irq.msi_addr_last_bits = addr.addr.__not_care;
3225
3226 /* Translate X86IOMMUIrq to MSI message */
3227 x86_iommu_irq_to_msi_message(&irq, translated);
3228
3229 out:
3230 trace_vtd_ir_remap_msi(origin->address, origin->data,
3231 translated->address, translated->data);
3232 return 0;
3233 }
3234
3235 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3236 MSIMessage *dst, uint16_t sid)
3237 {
3238 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3239 src, dst, sid);
3240 }
3241
3242 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3243 uint64_t *data, unsigned size,
3244 MemTxAttrs attrs)
3245 {
3246 return MEMTX_OK;
3247 }
3248
3249 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3250 uint64_t value, unsigned size,
3251 MemTxAttrs attrs)
3252 {
3253 int ret = 0;
3254 MSIMessage from = {}, to = {};
3255 uint16_t sid = X86_IOMMU_SID_INVALID;
3256
3257 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3258 from.data = (uint32_t) value;
3259
3260 if (!attrs.unspecified) {
3261 /* We have explicit Source ID */
3262 sid = attrs.requester_id;
3263 }
3264
3265 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3266 if (ret) {
3267 /* TODO: report error */
3268 /* Drop this interrupt */
3269 return MEMTX_ERROR;
3270 }
3271
3272 apic_get_class()->send_msi(&to);
3273
3274 return MEMTX_OK;
3275 }
3276
3277 static const MemoryRegionOps vtd_mem_ir_ops = {
3278 .read_with_attrs = vtd_mem_ir_read,
3279 .write_with_attrs = vtd_mem_ir_write,
3280 .endianness = DEVICE_LITTLE_ENDIAN,
3281 .impl = {
3282 .min_access_size = 4,
3283 .max_access_size = 4,
3284 },
3285 .valid = {
3286 .min_access_size = 4,
3287 .max_access_size = 4,
3288 },
3289 };
3290
3291 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3292 {
3293 uintptr_t key = (uintptr_t)bus;
3294 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3295 VTDAddressSpace *vtd_dev_as;
3296 char name[128];
3297
3298 if (!vtd_bus) {
3299 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3300 *new_key = (uintptr_t)bus;
3301 /* No corresponding free() */
3302 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3303 PCI_DEVFN_MAX);
3304 vtd_bus->bus = bus;
3305 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3306 }
3307
3308 vtd_dev_as = vtd_bus->dev_as[devfn];
3309
3310 if (!vtd_dev_as) {
3311 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3312 PCI_FUNC(devfn));
3313 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3314
3315 vtd_dev_as->bus = bus;
3316 vtd_dev_as->devfn = (uint8_t)devfn;
3317 vtd_dev_as->iommu_state = s;
3318 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3319 vtd_dev_as->iova_tree = iova_tree_new();
3320
3321 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3322 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3323
3324 /*
3325 * Build the DMAR-disabled container with aliases to the
3326 * shared MRs. Note that aliasing to a shared memory region
3327 * could help the memory API to detect same FlatViews so we
3328 * can have devices to share the same FlatView when DMAR is
3329 * disabled (either by not providing "intel_iommu=on" or with
3330 * "iommu=pt"). It will greatly reduce the total number of
3331 * FlatViews of the system hence VM runs faster.
3332 */
3333 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3334 "vtd-nodmar", &s->mr_nodmar, 0,
3335 memory_region_size(&s->mr_nodmar));
3336
3337 /*
3338 * Build the per-device DMAR-enabled container.
3339 *
3340 * TODO: currently we have per-device IOMMU memory region only
3341 * because we have per-device IOMMU notifiers for devices. If
3342 * one day we can abstract the IOMMU notifiers out of the
3343 * memory regions then we can also share the same memory
3344 * region here just like what we've done above with the nodmar
3345 * region.
3346 */
3347 strcat(name, "-dmar");
3348 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3349 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3350 name, UINT64_MAX);
3351 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3352 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3353 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3354 VTD_INTERRUPT_ADDR_FIRST,
3355 &vtd_dev_as->iommu_ir, 1);
3356
3357 /*
3358 * Hook both the containers under the root container, we
3359 * switch between DMAR & noDMAR by enable/disable
3360 * corresponding sub-containers
3361 */
3362 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3363 MEMORY_REGION(&vtd_dev_as->iommu),
3364 0);
3365 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3366 &vtd_dev_as->nodmar, 0);
3367
3368 vtd_switch_address_space(vtd_dev_as);
3369 }
3370 return vtd_dev_as;
3371 }
3372
3373 static uint64_t get_naturally_aligned_size(uint64_t start,
3374 uint64_t size, int gaw)
3375 {
3376 uint64_t max_mask = 1ULL << gaw;
3377 uint64_t alignment = start ? start & -start : max_mask;
3378
3379 alignment = MIN(alignment, max_mask);
3380 size = MIN(size, max_mask);
3381
3382 if (alignment <= size) {
3383 /* Increase the alignment of start */
3384 return alignment;
3385 } else {
3386 /* Find the largest page mask from size */
3387 return 1ULL << (63 - clz64(size));
3388 }
3389 }
3390
3391 /* Unmap the whole range in the notifier's scope. */
3392 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3393 {
3394 hwaddr size, remain;
3395 hwaddr start = n->start;
3396 hwaddr end = n->end;
3397 IntelIOMMUState *s = as->iommu_state;
3398 DMAMap map;
3399
3400 /*
3401 * Note: all the codes in this function has a assumption that IOVA
3402 * bits are no more than VTD_MGAW bits (which is restricted by
3403 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3404 */
3405
3406 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3407 /*
3408 * Don't need to unmap regions that is bigger than the whole
3409 * VT-d supported address space size
3410 */
3411 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3412 }
3413
3414 assert(start <= end);
3415 size = remain = end - start + 1;
3416
3417 while (remain >= VTD_PAGE_SIZE) {
3418 IOMMUTLBEntry entry;
3419 uint64_t mask = get_naturally_aligned_size(start, remain, s->aw_bits);
3420
3421 assert(mask);
3422
3423 entry.iova = start;
3424 entry.addr_mask = mask - 1;
3425 entry.target_as = &address_space_memory;
3426 entry.perm = IOMMU_NONE;
3427 /* This field is meaningless for unmap */
3428 entry.translated_addr = 0;
3429
3430 memory_region_notify_one(n, &entry);
3431
3432 start += mask;
3433 remain -= mask;
3434 }
3435
3436 assert(!remain);
3437
3438 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3439 VTD_PCI_SLOT(as->devfn),
3440 VTD_PCI_FUNC(as->devfn),
3441 n->start, size);
3442
3443 map.iova = n->start;
3444 map.size = size;
3445 iova_tree_remove(as->iova_tree, &map);
3446 }
3447
3448 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3449 {
3450 VTDAddressSpace *vtd_as;
3451 IOMMUNotifier *n;
3452
3453 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3454 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3455 vtd_address_space_unmap(vtd_as, n);
3456 }
3457 }
3458 }
3459
3460 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3461 {
3462 vtd_address_space_unmap_all(s);
3463 vtd_switch_address_space_all(s);
3464 }
3465
3466 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3467 {
3468 memory_region_notify_one((IOMMUNotifier *)private, entry);
3469 return 0;
3470 }
3471
3472 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3473 {
3474 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3475 IntelIOMMUState *s = vtd_as->iommu_state;
3476 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3477 VTDContextEntry ce;
3478
3479 /*
3480 * The replay can be triggered by either a invalidation or a newly
3481 * created entry. No matter what, we release existing mappings
3482 * (it means flushing caches for UNMAP-only registers).
3483 */
3484 vtd_address_space_unmap(vtd_as, n);
3485
3486 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3487 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3488 "legacy mode",
3489 bus_n, PCI_SLOT(vtd_as->devfn),
3490 PCI_FUNC(vtd_as->devfn),
3491 vtd_get_domain_id(s, &ce),
3492 ce.hi, ce.lo);
3493 if (vtd_as_has_map_notifier(vtd_as)) {
3494 /* This is required only for MAP typed notifiers */
3495 vtd_page_walk_info info = {
3496 .hook_fn = vtd_replay_hook,
3497 .private = (void *)n,
3498 .notify_unmap = false,
3499 .aw = s->aw_bits,
3500 .as = vtd_as,
3501 .domain_id = vtd_get_domain_id(s, &ce),
3502 };
3503
3504 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3505 }
3506 } else {
3507 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3508 PCI_FUNC(vtd_as->devfn));
3509 }
3510
3511 return;
3512 }
3513
3514 /* Do the initialization. It will also be called when reset, so pay
3515 * attention when adding new initialization stuff.
3516 */
3517 static void vtd_init(IntelIOMMUState *s)
3518 {
3519 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3520
3521 memset(s->csr, 0, DMAR_REG_SIZE);
3522 memset(s->wmask, 0, DMAR_REG_SIZE);
3523 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3524 memset(s->womask, 0, DMAR_REG_SIZE);
3525
3526 s->root = 0;
3527 s->root_scalable = false;
3528 s->dmar_enabled = false;
3529 s->intr_enabled = false;
3530 s->iq_head = 0;
3531 s->iq_tail = 0;
3532 s->iq = 0;
3533 s->iq_size = 0;
3534 s->qi_enabled = false;
3535 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3536 s->iq_dw = false;
3537 s->next_frcd_reg = 0;
3538 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3539 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3540 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3541 if (s->dma_drain) {
3542 s->cap |= VTD_CAP_DRAIN;
3543 }
3544 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3545 s->cap |= VTD_CAP_SAGAW_48bit;
3546 }
3547 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3548
3549 /*
3550 * Rsvd field masks for spte
3551 */
3552 vtd_paging_entry_rsvd_field[0] = ~0ULL;
3553 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3554 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3555 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3556 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3557 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3558 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3559 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3560 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3561
3562 if (x86_iommu_ir_supported(x86_iommu)) {
3563 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3564 if (s->intr_eim == ON_OFF_AUTO_ON) {
3565 s->ecap |= VTD_ECAP_EIM;
3566 }
3567 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3568 }
3569
3570 if (x86_iommu->dt_supported) {
3571 s->ecap |= VTD_ECAP_DT;
3572 }
3573
3574 if (x86_iommu->pt_supported) {
3575 s->ecap |= VTD_ECAP_PT;
3576 }
3577
3578 if (s->caching_mode) {
3579 s->cap |= VTD_CAP_CM;
3580 }
3581
3582 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3583 if (s->scalable_mode) {
3584 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3585 }
3586
3587 vtd_reset_caches(s);
3588
3589 /* Define registers with default values and bit semantics */
3590 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3591 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3592 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3593 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3594 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3595 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3596 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3597 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3598 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3599
3600 /* Advanced Fault Logging not supported */
3601 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3602 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3603 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3604 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3605
3606 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3607 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3608 */
3609 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3610
3611 /* Treated as RO for implementations that PLMR and PHMR fields reported
3612 * as Clear in the CAP_REG.
3613 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3614 */
3615 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3616
3617 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3618 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3619 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3620 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3621 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3622 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3623 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3624 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3625 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3626
3627 /* IOTLB registers */
3628 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3629 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3630 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3631
3632 /* Fault Recording Registers, 128-bit */
3633 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3634 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3635
3636 /*
3637 * Interrupt remapping registers.
3638 */
3639 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3640 }
3641
3642 /* Should not reset address_spaces when reset because devices will still use
3643 * the address space they got at first (won't ask the bus again).
3644 */
3645 static void vtd_reset(DeviceState *dev)
3646 {
3647 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3648
3649 vtd_init(s);
3650 vtd_address_space_refresh_all(s);
3651 }
3652
3653 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3654 {
3655 IntelIOMMUState *s = opaque;
3656 VTDAddressSpace *vtd_as;
3657
3658 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3659
3660 vtd_as = vtd_find_add_as(s, bus, devfn);
3661 return &vtd_as->as;
3662 }
3663
3664 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3665 {
3666 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3667
3668 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3669 error_setg(errp, "eim=on cannot be selected without intremap=on");
3670 return false;
3671 }
3672
3673 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3674 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3675 && x86_iommu_ir_supported(x86_iommu) ?
3676 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3677 }
3678 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3679 if (!kvm_irqchip_in_kernel()) {
3680 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3681 return false;
3682 }
3683 if (!kvm_enable_x2apic()) {
3684 error_setg(errp, "eim=on requires support on the KVM side"
3685 "(X2APIC_API, first shipped in v4.7)");
3686 return false;
3687 }
3688 }
3689
3690 /* Currently only address widths supported are 39 and 48 bits */
3691 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3692 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3693 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3694 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3695 return false;
3696 }
3697
3698 if (s->scalable_mode && !s->dma_drain) {
3699 error_setg(errp, "Need to set dma_drain for scalable mode");
3700 return false;
3701 }
3702
3703 return true;
3704 }
3705
3706 static int vtd_machine_done_notify_one(Object *child, void *unused)
3707 {
3708 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3709
3710 /*
3711 * We hard-coded here because vfio-pci is the only special case
3712 * here. Let's be more elegant in the future when we can, but so
3713 * far there seems to be no better way.
3714 */
3715 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3716 vtd_panic_require_caching_mode();
3717 }
3718
3719 return 0;
3720 }
3721
3722 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3723 {
3724 object_child_foreach_recursive(object_get_root(),
3725 vtd_machine_done_notify_one, NULL);
3726 }
3727
3728 static Notifier vtd_machine_done_notify = {
3729 .notify = vtd_machine_done_hook,
3730 };
3731
3732 static void vtd_realize(DeviceState *dev, Error **errp)
3733 {
3734 MachineState *ms = MACHINE(qdev_get_machine());
3735 PCMachineState *pcms = PC_MACHINE(ms);
3736 PCIBus *bus = pcms->bus;
3737 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3738 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3739
3740 x86_iommu->type = TYPE_INTEL;
3741
3742 if (!vtd_decide_config(s, errp)) {
3743 return;
3744 }
3745
3746 QLIST_INIT(&s->vtd_as_with_notifiers);
3747 qemu_mutex_init(&s->iommu_lock);
3748 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3749 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3750 "intel_iommu", DMAR_REG_SIZE);
3751
3752 /* Create the shared memory regions by all devices */
3753 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3754 UINT64_MAX);
3755 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3756 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3757 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3758 "vtd-sys-alias", get_system_memory(), 0,
3759 memory_region_size(get_system_memory()));
3760 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3761 &s->mr_sys_alias, 0);
3762 memory_region_add_subregion_overlap(&s->mr_nodmar,
3763 VTD_INTERRUPT_ADDR_FIRST,
3764 &s->mr_ir, 1);
3765
3766 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3767 /* No corresponding destroy */
3768 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3769 g_free, g_free);
3770 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3771 g_free, g_free);
3772 vtd_init(s);
3773 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3774 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3775 /* Pseudo address space under root PCI bus. */
3776 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3777 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3778 }
3779
3780 static void vtd_class_init(ObjectClass *klass, void *data)
3781 {
3782 DeviceClass *dc = DEVICE_CLASS(klass);
3783 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3784
3785 dc->reset = vtd_reset;
3786 dc->vmsd = &vtd_vmstate;
3787 dc->props = vtd_properties;
3788 dc->hotpluggable = false;
3789 x86_class->realize = vtd_realize;
3790 x86_class->int_remap = vtd_int_remap;
3791 /* Supported by the pc-q35-* machine types */
3792 dc->user_creatable = true;
3793 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3794 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3795 }
3796
3797 static const TypeInfo vtd_info = {
3798 .name = TYPE_INTEL_IOMMU_DEVICE,
3799 .parent = TYPE_X86_IOMMU_DEVICE,
3800 .instance_size = sizeof(IntelIOMMUState),
3801 .class_init = vtd_class_init,
3802 };
3803
3804 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3805 void *data)
3806 {
3807 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3808
3809 imrc->translate = vtd_iommu_translate;
3810 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3811 imrc->replay = vtd_iommu_replay;
3812 }
3813
3814 static const TypeInfo vtd_iommu_memory_region_info = {
3815 .parent = TYPE_IOMMU_MEMORY_REGION,
3816 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3817 .class_init = vtd_iommu_memory_region_class_init,
3818 };
3819
3820 static void vtd_register_types(void)
3821 {
3822 type_register_static(&vtd_info);
3823 type_register_static(&vtd_iommu_memory_region_info);
3824 }
3825
3826 type_init(vtd_register_types)