]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
9c0f525408ed5f4d0a8ac9d33c24eb525ad716e1
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39
40 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41 uint64_t wmask, uint64_t w1cmask)
42 {
43 stq_le_p(&s->csr[addr], val);
44 stq_le_p(&s->wmask[addr], wmask);
45 stq_le_p(&s->w1cmask[addr], w1cmask);
46 }
47
48 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
49 {
50 stq_le_p(&s->womask[addr], mask);
51 }
52
53 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54 uint32_t wmask, uint32_t w1cmask)
55 {
56 stl_le_p(&s->csr[addr], val);
57 stl_le_p(&s->wmask[addr], wmask);
58 stl_le_p(&s->w1cmask[addr], w1cmask);
59 }
60
61 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
62 {
63 stl_le_p(&s->womask[addr], mask);
64 }
65
66 /* "External" get/set operations */
67 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
68 {
69 uint64_t oldval = ldq_le_p(&s->csr[addr]);
70 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72 stq_le_p(&s->csr[addr],
73 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
74 }
75
76 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
77 {
78 uint32_t oldval = ldl_le_p(&s->csr[addr]);
79 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81 stl_le_p(&s->csr[addr],
82 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
83 }
84
85 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
86 {
87 uint64_t val = ldq_le_p(&s->csr[addr]);
88 uint64_t womask = ldq_le_p(&s->womask[addr]);
89 return val & ~womask;
90 }
91
92 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
93 {
94 uint32_t val = ldl_le_p(&s->csr[addr]);
95 uint32_t womask = ldl_le_p(&s->womask[addr]);
96 return val & ~womask;
97 }
98
99 /* "Internal" get/set operations */
100 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
101 {
102 return ldq_le_p(&s->csr[addr]);
103 }
104
105 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
106 {
107 return ldl_le_p(&s->csr[addr]);
108 }
109
110 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
111 {
112 stq_le_p(&s->csr[addr], val);
113 }
114
115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116 uint32_t clear, uint32_t mask)
117 {
118 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119 stl_le_p(&s->csr[addr], new_val);
120 return new_val;
121 }
122
123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124 uint64_t clear, uint64_t mask)
125 {
126 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127 stq_le_p(&s->csr[addr], new_val);
128 return new_val;
129 }
130
131 static inline void vtd_iommu_lock(IntelIOMMUState *s)
132 {
133 qemu_mutex_lock(&s->iommu_lock);
134 }
135
136 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
137 {
138 qemu_mutex_unlock(&s->iommu_lock);
139 }
140
141 /* Whether the address space needs to notify new mappings */
142 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
143 {
144 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
145 }
146
147 /* GHashTable functions */
148 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
149 {
150 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
151 }
152
153 static guint vtd_uint64_hash(gconstpointer v)
154 {
155 return (guint)*(const uint64_t *)v;
156 }
157
158 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
159 gpointer user_data)
160 {
161 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
162 uint16_t domain_id = *(uint16_t *)user_data;
163 return entry->domain_id == domain_id;
164 }
165
166 /* The shift of an addr for a certain level of paging structure */
167 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
168 {
169 assert(level != 0);
170 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
171 }
172
173 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
174 {
175 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
176 }
177
178 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
179 gpointer user_data)
180 {
181 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
182 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
183 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
184 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
185 return (entry->domain_id == info->domain_id) &&
186 (((entry->gfn & info->mask) == gfn) ||
187 (entry->gfn == gfn_tlb));
188 }
189
190 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
191 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
192 */
193 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
194 {
195 VTDAddressSpace *vtd_as;
196 VTDBus *vtd_bus;
197 GHashTableIter bus_it;
198 uint32_t devfn_it;
199
200 trace_vtd_context_cache_reset();
201
202 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
203
204 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
205 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
206 vtd_as = vtd_bus->dev_as[devfn_it];
207 if (!vtd_as) {
208 continue;
209 }
210 vtd_as->context_cache_entry.context_cache_gen = 0;
211 }
212 }
213 s->context_cache_gen = 1;
214 }
215
216 /* Must be called with IOMMU lock held. */
217 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
218 {
219 assert(s->iotlb);
220 g_hash_table_remove_all(s->iotlb);
221 }
222
223 static void vtd_reset_iotlb(IntelIOMMUState *s)
224 {
225 vtd_iommu_lock(s);
226 vtd_reset_iotlb_locked(s);
227 vtd_iommu_unlock(s);
228 }
229
230 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
231 uint32_t level)
232 {
233 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
234 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
235 }
236
237 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
238 {
239 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
240 }
241
242 /* Must be called with IOMMU lock held */
243 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
244 hwaddr addr)
245 {
246 VTDIOTLBEntry *entry;
247 uint64_t key;
248 int level;
249
250 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
251 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
252 source_id, level);
253 entry = g_hash_table_lookup(s->iotlb, &key);
254 if (entry) {
255 goto out;
256 }
257 }
258
259 out:
260 return entry;
261 }
262
263 /* Must be with IOMMU lock held */
264 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
265 uint16_t domain_id, hwaddr addr, uint64_t slpte,
266 uint8_t access_flags, uint32_t level)
267 {
268 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
269 uint64_t *key = g_malloc(sizeof(*key));
270 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
271
272 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
273 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
274 trace_vtd_iotlb_reset("iotlb exceeds size limit");
275 vtd_reset_iotlb_locked(s);
276 }
277
278 entry->gfn = gfn;
279 entry->domain_id = domain_id;
280 entry->slpte = slpte;
281 entry->access_flags = access_flags;
282 entry->mask = vtd_slpt_level_page_mask(level);
283 *key = vtd_get_iotlb_key(gfn, source_id, level);
284 g_hash_table_replace(s->iotlb, key, entry);
285 }
286
287 /* Given the reg addr of both the message data and address, generate an
288 * interrupt via MSI.
289 */
290 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
291 hwaddr mesg_data_reg)
292 {
293 MSIMessage msi;
294
295 assert(mesg_data_reg < DMAR_REG_SIZE);
296 assert(mesg_addr_reg < DMAR_REG_SIZE);
297
298 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
299 msi.data = vtd_get_long_raw(s, mesg_data_reg);
300
301 trace_vtd_irq_generate(msi.address, msi.data);
302
303 apic_get_class()->send_msi(&msi);
304 }
305
306 /* Generate a fault event to software via MSI if conditions are met.
307 * Notice that the value of FSTS_REG being passed to it should be the one
308 * before any update.
309 */
310 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
311 {
312 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
313 pre_fsts & VTD_FSTS_IQE) {
314 error_report_once("There are previous interrupt conditions "
315 "to be serviced by software, fault event "
316 "is not generated");
317 return;
318 }
319 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
320 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
321 error_report_once("Interrupt Mask set, irq is not generated");
322 } else {
323 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
324 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
325 }
326 }
327
328 /* Check if the Fault (F) field of the Fault Recording Register referenced by
329 * @index is Set.
330 */
331 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
332 {
333 /* Each reg is 128-bit */
334 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
335 addr += 8; /* Access the high 64-bit half */
336
337 assert(index < DMAR_FRCD_REG_NR);
338
339 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
340 }
341
342 /* Update the PPF field of Fault Status Register.
343 * Should be called whenever change the F field of any fault recording
344 * registers.
345 */
346 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
347 {
348 uint32_t i;
349 uint32_t ppf_mask = 0;
350
351 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
352 if (vtd_is_frcd_set(s, i)) {
353 ppf_mask = VTD_FSTS_PPF;
354 break;
355 }
356 }
357 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
358 trace_vtd_fsts_ppf(!!ppf_mask);
359 }
360
361 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
362 {
363 /* Each reg is 128-bit */
364 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
365 addr += 8; /* Access the high 64-bit half */
366
367 assert(index < DMAR_FRCD_REG_NR);
368
369 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
370 vtd_update_fsts_ppf(s);
371 }
372
373 /* Must not update F field now, should be done later */
374 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
375 uint16_t source_id, hwaddr addr,
376 VTDFaultReason fault, bool is_write)
377 {
378 uint64_t hi = 0, lo;
379 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
380
381 assert(index < DMAR_FRCD_REG_NR);
382
383 lo = VTD_FRCD_FI(addr);
384 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
385 if (!is_write) {
386 hi |= VTD_FRCD_T;
387 }
388 vtd_set_quad_raw(s, frcd_reg_addr, lo);
389 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
390
391 trace_vtd_frr_new(index, hi, lo);
392 }
393
394 /* Try to collapse multiple pending faults from the same requester */
395 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
396 {
397 uint32_t i;
398 uint64_t frcd_reg;
399 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
400
401 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
402 frcd_reg = vtd_get_quad_raw(s, addr);
403 if ((frcd_reg & VTD_FRCD_F) &&
404 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
405 return true;
406 }
407 addr += 16; /* 128-bit for each */
408 }
409 return false;
410 }
411
412 /* Log and report an DMAR (address translation) fault to software */
413 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
414 hwaddr addr, VTDFaultReason fault,
415 bool is_write)
416 {
417 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
418
419 assert(fault < VTD_FR_MAX);
420
421 if (fault == VTD_FR_RESERVED_ERR) {
422 /* This is not a normal fault reason case. Drop it. */
423 return;
424 }
425
426 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
427
428 if (fsts_reg & VTD_FSTS_PFO) {
429 error_report_once("New fault is not recorded due to "
430 "Primary Fault Overflow");
431 return;
432 }
433
434 if (vtd_try_collapse_fault(s, source_id)) {
435 error_report_once("New fault is not recorded due to "
436 "compression of faults");
437 return;
438 }
439
440 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
441 error_report_once("Next Fault Recording Reg is used, "
442 "new fault is not recorded, set PFO field");
443 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
444 return;
445 }
446
447 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
448
449 if (fsts_reg & VTD_FSTS_PPF) {
450 error_report_once("There are pending faults already, "
451 "fault event is not generated");
452 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
453 s->next_frcd_reg++;
454 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
455 s->next_frcd_reg = 0;
456 }
457 } else {
458 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
459 VTD_FSTS_FRI(s->next_frcd_reg));
460 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
461 s->next_frcd_reg++;
462 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
463 s->next_frcd_reg = 0;
464 }
465 /* This case actually cause the PPF to be Set.
466 * So generate fault event (interrupt).
467 */
468 vtd_generate_fault_event(s, fsts_reg);
469 }
470 }
471
472 /* Handle Invalidation Queue Errors of queued invalidation interface error
473 * conditions.
474 */
475 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
476 {
477 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
478
479 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
480 vtd_generate_fault_event(s, fsts_reg);
481 }
482
483 /* Set the IWC field and try to generate an invalidation completion interrupt */
484 static void vtd_generate_completion_event(IntelIOMMUState *s)
485 {
486 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
487 trace_vtd_inv_desc_wait_irq("One pending, skip current");
488 return;
489 }
490 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
491 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
492 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
493 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
494 "new event not generated");
495 return;
496 } else {
497 /* Generate the interrupt event */
498 trace_vtd_inv_desc_wait_irq("Generating complete event");
499 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
500 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
501 }
502 }
503
504 static inline bool vtd_root_entry_present(VTDRootEntry *root)
505 {
506 return root->val & VTD_ROOT_ENTRY_P;
507 }
508
509 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
510 VTDRootEntry *re)
511 {
512 dma_addr_t addr;
513
514 addr = s->root + index * sizeof(*re);
515 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
516 trace_vtd_re_invalid(re->rsvd, re->val);
517 re->val = 0;
518 return -VTD_FR_ROOT_TABLE_INV;
519 }
520 re->val = le64_to_cpu(re->val);
521 return 0;
522 }
523
524 static inline bool vtd_ce_present(VTDContextEntry *context)
525 {
526 return context->lo & VTD_CONTEXT_ENTRY_P;
527 }
528
529 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
530 VTDContextEntry *ce)
531 {
532 dma_addr_t addr;
533
534 /* we have checked that root entry is present */
535 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
536 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
537 trace_vtd_re_invalid(root->rsvd, root->val);
538 return -VTD_FR_CONTEXT_TABLE_INV;
539 }
540 ce->lo = le64_to_cpu(ce->lo);
541 ce->hi = le64_to_cpu(ce->hi);
542 return 0;
543 }
544
545 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
546 {
547 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
548 }
549
550 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
551 {
552 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
553 }
554
555 /* Whether the pte indicates the address of the page frame */
556 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
557 {
558 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
559 }
560
561 /* Get the content of a spte located in @base_addr[@index] */
562 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
563 {
564 uint64_t slpte;
565
566 assert(index < VTD_SL_PT_ENTRY_NR);
567
568 if (dma_memory_read(&address_space_memory,
569 base_addr + index * sizeof(slpte), &slpte,
570 sizeof(slpte))) {
571 slpte = (uint64_t)-1;
572 return slpte;
573 }
574 slpte = le64_to_cpu(slpte);
575 return slpte;
576 }
577
578 /* Given an iova and the level of paging structure, return the offset
579 * of current level.
580 */
581 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
582 {
583 return (iova >> vtd_slpt_level_shift(level)) &
584 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
585 }
586
587 /* Check Capability Register to see if the @level of page-table is supported */
588 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
589 {
590 return VTD_CAP_SAGAW_MASK & s->cap &
591 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
592 }
593
594 /* Get the page-table level that hardware should use for the second-level
595 * page-table walk from the Address Width field of context-entry.
596 */
597 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
598 {
599 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
600 }
601
602 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
603 {
604 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
605 }
606
607 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
608 {
609 return ce->lo & VTD_CONTEXT_ENTRY_TT;
610 }
611
612 /* Return true if check passed, otherwise false */
613 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
614 VTDContextEntry *ce)
615 {
616 switch (vtd_ce_get_type(ce)) {
617 case VTD_CONTEXT_TT_MULTI_LEVEL:
618 /* Always supported */
619 break;
620 case VTD_CONTEXT_TT_DEV_IOTLB:
621 if (!x86_iommu->dt_supported) {
622 return false;
623 }
624 break;
625 case VTD_CONTEXT_TT_PASS_THROUGH:
626 if (!x86_iommu->pt_supported) {
627 return false;
628 }
629 break;
630 default:
631 /* Unknwon type */
632 return false;
633 }
634 return true;
635 }
636
637 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
638 {
639 uint32_t ce_agaw = vtd_ce_get_agaw(ce);
640 return 1ULL << MIN(ce_agaw, aw);
641 }
642
643 /* Return true if IOVA passes range check, otherwise false. */
644 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
645 uint8_t aw)
646 {
647 /*
648 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
649 * in CAP_REG and AW in context-entry.
650 */
651 return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
652 }
653
654 /*
655 * Rsvd field masks for spte:
656 * Index [1] to [4] 4k pages
657 * Index [5] to [8] large pages
658 */
659 static uint64_t vtd_paging_entry_rsvd_field[9];
660
661 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
662 {
663 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
664 /* Maybe large page */
665 return slpte & vtd_paging_entry_rsvd_field[level + 4];
666 } else {
667 return slpte & vtd_paging_entry_rsvd_field[level];
668 }
669 }
670
671 /* Find the VTD address space associated with a given bus number */
672 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
673 {
674 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
675 if (!vtd_bus) {
676 /*
677 * Iterate over the registered buses to find the one which
678 * currently hold this bus number, and update the bus_num
679 * lookup table:
680 */
681 GHashTableIter iter;
682
683 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
684 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
685 if (pci_bus_num(vtd_bus->bus) == bus_num) {
686 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
687 return vtd_bus;
688 }
689 }
690 }
691 return vtd_bus;
692 }
693
694 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
695 * of the translation, can be used for deciding the size of large page.
696 */
697 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
698 uint64_t *slptep, uint32_t *slpte_level,
699 bool *reads, bool *writes, uint8_t aw_bits)
700 {
701 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
702 uint32_t level = vtd_ce_get_level(ce);
703 uint32_t offset;
704 uint64_t slpte;
705 uint64_t access_right_check;
706
707 if (!vtd_iova_range_check(iova, ce, aw_bits)) {
708 trace_vtd_err_dmar_iova_overflow(iova);
709 return -VTD_FR_ADDR_BEYOND_MGAW;
710 }
711
712 /* FIXME: what is the Atomics request here? */
713 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
714
715 while (true) {
716 offset = vtd_iova_level_offset(iova, level);
717 slpte = vtd_get_slpte(addr, offset);
718
719 if (slpte == (uint64_t)-1) {
720 trace_vtd_err_dmar_slpte_read_error(iova, level);
721 if (level == vtd_ce_get_level(ce)) {
722 /* Invalid programming of context-entry */
723 return -VTD_FR_CONTEXT_ENTRY_INV;
724 } else {
725 return -VTD_FR_PAGING_ENTRY_INV;
726 }
727 }
728 *reads = (*reads) && (slpte & VTD_SL_R);
729 *writes = (*writes) && (slpte & VTD_SL_W);
730 if (!(slpte & access_right_check)) {
731 trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
732 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
733 }
734 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
735 trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
736 return -VTD_FR_PAGING_ENTRY_RSVD;
737 }
738
739 if (vtd_is_last_slpte(slpte, level)) {
740 *slptep = slpte;
741 *slpte_level = level;
742 return 0;
743 }
744 addr = vtd_get_slpte_addr(slpte, aw_bits);
745 level--;
746 }
747 }
748
749 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
750
751 /**
752 * Constant information used during page walking
753 *
754 * @hook_fn: hook func to be called when detected page
755 * @private: private data to be passed into hook func
756 * @notify_unmap: whether we should notify invalid entries
757 * @as: VT-d address space of the device
758 * @aw: maximum address width
759 * @domain: domain ID of the page walk
760 */
761 typedef struct {
762 VTDAddressSpace *as;
763 vtd_page_walk_hook hook_fn;
764 void *private;
765 bool notify_unmap;
766 uint8_t aw;
767 uint16_t domain_id;
768 } vtd_page_walk_info;
769
770 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
771 {
772 VTDAddressSpace *as = info->as;
773 vtd_page_walk_hook hook_fn = info->hook_fn;
774 void *private = info->private;
775 DMAMap target = {
776 .iova = entry->iova,
777 .size = entry->addr_mask,
778 .translated_addr = entry->translated_addr,
779 .perm = entry->perm,
780 };
781 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
782
783 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
784 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
785 return 0;
786 }
787
788 assert(hook_fn);
789
790 /* Update local IOVA mapped ranges */
791 if (entry->perm) {
792 if (mapped) {
793 /* If it's exactly the same translation, skip */
794 if (!memcmp(mapped, &target, sizeof(target))) {
795 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
796 entry->translated_addr);
797 return 0;
798 } else {
799 /*
800 * Translation changed. Normally this should not
801 * happen, but it can happen when with buggy guest
802 * OSes. Note that there will be a small window that
803 * we don't have map at all. But that's the best
804 * effort we can do. The ideal way to emulate this is
805 * atomically modify the PTE to follow what has
806 * changed, but we can't. One example is that vfio
807 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
808 * interface to modify a mapping (meanwhile it seems
809 * meaningless to even provide one). Anyway, let's
810 * mark this as a TODO in case one day we'll have
811 * a better solution.
812 */
813 IOMMUAccessFlags cache_perm = entry->perm;
814 int ret;
815
816 /* Emulate an UNMAP */
817 entry->perm = IOMMU_NONE;
818 trace_vtd_page_walk_one(info->domain_id,
819 entry->iova,
820 entry->translated_addr,
821 entry->addr_mask,
822 entry->perm);
823 ret = hook_fn(entry, private);
824 if (ret) {
825 return ret;
826 }
827 /* Drop any existing mapping */
828 iova_tree_remove(as->iova_tree, &target);
829 /* Recover the correct permission */
830 entry->perm = cache_perm;
831 }
832 }
833 iova_tree_insert(as->iova_tree, &target);
834 } else {
835 if (!mapped) {
836 /* Skip since we didn't map this range at all */
837 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
838 return 0;
839 }
840 iova_tree_remove(as->iova_tree, &target);
841 }
842
843 trace_vtd_page_walk_one(info->domain_id, entry->iova,
844 entry->translated_addr, entry->addr_mask,
845 entry->perm);
846 return hook_fn(entry, private);
847 }
848
849 /**
850 * vtd_page_walk_level - walk over specific level for IOVA range
851 *
852 * @addr: base GPA addr to start the walk
853 * @start: IOVA range start address
854 * @end: IOVA range end address (start <= addr < end)
855 * @read: whether parent level has read permission
856 * @write: whether parent level has write permission
857 * @info: constant information for the page walk
858 */
859 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
860 uint64_t end, uint32_t level, bool read,
861 bool write, vtd_page_walk_info *info)
862 {
863 bool read_cur, write_cur, entry_valid;
864 uint32_t offset;
865 uint64_t slpte;
866 uint64_t subpage_size, subpage_mask;
867 IOMMUTLBEntry entry;
868 uint64_t iova = start;
869 uint64_t iova_next;
870 int ret = 0;
871
872 trace_vtd_page_walk_level(addr, level, start, end);
873
874 subpage_size = 1ULL << vtd_slpt_level_shift(level);
875 subpage_mask = vtd_slpt_level_page_mask(level);
876
877 while (iova < end) {
878 iova_next = (iova & subpage_mask) + subpage_size;
879
880 offset = vtd_iova_level_offset(iova, level);
881 slpte = vtd_get_slpte(addr, offset);
882
883 if (slpte == (uint64_t)-1) {
884 trace_vtd_page_walk_skip_read(iova, iova_next);
885 goto next;
886 }
887
888 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
889 trace_vtd_page_walk_skip_reserve(iova, iova_next);
890 goto next;
891 }
892
893 /* Permissions are stacked with parents' */
894 read_cur = read && (slpte & VTD_SL_R);
895 write_cur = write && (slpte & VTD_SL_W);
896
897 /*
898 * As long as we have either read/write permission, this is a
899 * valid entry. The rule works for both page entries and page
900 * table entries.
901 */
902 entry_valid = read_cur | write_cur;
903
904 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
905 /*
906 * This is a valid PDE (or even bigger than PDE). We need
907 * to walk one further level.
908 */
909 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
910 iova, MIN(iova_next, end), level - 1,
911 read_cur, write_cur, info);
912 } else {
913 /*
914 * This means we are either:
915 *
916 * (1) the real page entry (either 4K page, or huge page)
917 * (2) the whole range is invalid
918 *
919 * In either case, we send an IOTLB notification down.
920 */
921 entry.target_as = &address_space_memory;
922 entry.iova = iova & subpage_mask;
923 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
924 entry.addr_mask = ~subpage_mask;
925 /* NOTE: this is only meaningful if entry_valid == true */
926 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
927 ret = vtd_page_walk_one(&entry, info);
928 }
929
930 if (ret < 0) {
931 return ret;
932 }
933
934 next:
935 iova = iova_next;
936 }
937
938 return 0;
939 }
940
941 /**
942 * vtd_page_walk - walk specific IOVA range, and call the hook
943 *
944 * @ce: context entry to walk upon
945 * @start: IOVA address to start the walk
946 * @end: IOVA range end address (start <= addr < end)
947 * @info: page walking information struct
948 */
949 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
950 vtd_page_walk_info *info)
951 {
952 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
953 uint32_t level = vtd_ce_get_level(ce);
954
955 if (!vtd_iova_range_check(start, ce, info->aw)) {
956 return -VTD_FR_ADDR_BEYOND_MGAW;
957 }
958
959 if (!vtd_iova_range_check(end, ce, info->aw)) {
960 /* Fix end so that it reaches the maximum */
961 end = vtd_iova_limit(ce, info->aw);
962 }
963
964 return vtd_page_walk_level(addr, start, end, level, true, true, info);
965 }
966
967 /* Map a device to its corresponding domain (context-entry) */
968 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
969 uint8_t devfn, VTDContextEntry *ce)
970 {
971 VTDRootEntry re;
972 int ret_fr;
973 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
974
975 ret_fr = vtd_get_root_entry(s, bus_num, &re);
976 if (ret_fr) {
977 return ret_fr;
978 }
979
980 if (!vtd_root_entry_present(&re)) {
981 /* Not error - it's okay we don't have root entry. */
982 trace_vtd_re_not_present(bus_num);
983 return -VTD_FR_ROOT_ENTRY_P;
984 }
985
986 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
987 trace_vtd_re_invalid(re.rsvd, re.val);
988 return -VTD_FR_ROOT_ENTRY_RSVD;
989 }
990
991 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
992 if (ret_fr) {
993 return ret_fr;
994 }
995
996 if (!vtd_ce_present(ce)) {
997 /* Not error - it's okay we don't have context entry. */
998 trace_vtd_ce_not_present(bus_num, devfn);
999 return -VTD_FR_CONTEXT_ENTRY_P;
1000 }
1001
1002 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
1003 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1004 trace_vtd_ce_invalid(ce->hi, ce->lo);
1005 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1006 }
1007
1008 /* Check if the programming of context-entry is valid */
1009 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1010 trace_vtd_ce_invalid(ce->hi, ce->lo);
1011 return -VTD_FR_CONTEXT_ENTRY_INV;
1012 }
1013
1014 /* Do translation type check */
1015 if (!vtd_ce_type_check(x86_iommu, ce)) {
1016 trace_vtd_ce_invalid(ce->hi, ce->lo);
1017 return -VTD_FR_CONTEXT_ENTRY_INV;
1018 }
1019
1020 return 0;
1021 }
1022
1023 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1024 void *private)
1025 {
1026 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1027 return 0;
1028 }
1029
1030 /* If context entry is NULL, we'll try to fetch it on our own. */
1031 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1032 VTDContextEntry *ce,
1033 hwaddr addr, hwaddr size)
1034 {
1035 IntelIOMMUState *s = vtd_as->iommu_state;
1036 vtd_page_walk_info info = {
1037 .hook_fn = vtd_sync_shadow_page_hook,
1038 .private = (void *)&vtd_as->iommu,
1039 .notify_unmap = true,
1040 .aw = s->aw_bits,
1041 .as = vtd_as,
1042 };
1043 VTDContextEntry ce_cache;
1044 int ret;
1045
1046 if (ce) {
1047 /* If the caller provided context entry, use it */
1048 ce_cache = *ce;
1049 } else {
1050 /* If the caller didn't provide ce, try to fetch */
1051 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1052 vtd_as->devfn, &ce_cache);
1053 if (ret) {
1054 /*
1055 * This should not really happen, but in case it happens,
1056 * we just skip the sync for this time. After all we even
1057 * don't have the root table pointer!
1058 */
1059 error_report_once("%s: invalid context entry for bus 0x%x"
1060 " devfn 0x%x",
1061 __func__, pci_bus_num(vtd_as->bus),
1062 vtd_as->devfn);
1063 return 0;
1064 }
1065 }
1066
1067 info.domain_id = VTD_CONTEXT_ENTRY_DID(ce_cache.hi);
1068
1069 return vtd_page_walk(&ce_cache, addr, addr + size, &info);
1070 }
1071
1072 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1073 {
1074 return vtd_sync_shadow_page_table_range(vtd_as, NULL, 0, UINT64_MAX);
1075 }
1076
1077 /*
1078 * Fetch translation type for specific device. Returns <0 if error
1079 * happens, otherwise return the shifted type to check against
1080 * VTD_CONTEXT_TT_*.
1081 */
1082 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
1083 {
1084 IntelIOMMUState *s;
1085 VTDContextEntry ce;
1086 int ret;
1087
1088 s = as->iommu_state;
1089
1090 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1091 as->devfn, &ce);
1092 if (ret) {
1093 return ret;
1094 }
1095
1096 return vtd_ce_get_type(&ce);
1097 }
1098
1099 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1100 {
1101 int ret;
1102
1103 assert(as);
1104
1105 ret = vtd_dev_get_trans_type(as);
1106 if (ret < 0) {
1107 /*
1108 * Possibly failed to parse the context entry for some reason
1109 * (e.g., during init, or any guest configuration errors on
1110 * context entries). We should assume PT not enabled for
1111 * safety.
1112 */
1113 return false;
1114 }
1115
1116 return ret == VTD_CONTEXT_TT_PASS_THROUGH;
1117 }
1118
1119 /* Return whether the device is using IOMMU translation. */
1120 static bool vtd_switch_address_space(VTDAddressSpace *as)
1121 {
1122 bool use_iommu;
1123 /* Whether we need to take the BQL on our own */
1124 bool take_bql = !qemu_mutex_iothread_locked();
1125
1126 assert(as);
1127
1128 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
1129
1130 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1131 VTD_PCI_SLOT(as->devfn),
1132 VTD_PCI_FUNC(as->devfn),
1133 use_iommu);
1134
1135 /*
1136 * It's possible that we reach here without BQL, e.g., when called
1137 * from vtd_pt_enable_fast_path(). However the memory APIs need
1138 * it. We'd better make sure we have had it already, or, take it.
1139 */
1140 if (take_bql) {
1141 qemu_mutex_lock_iothread();
1142 }
1143
1144 /* Turn off first then on the other */
1145 if (use_iommu) {
1146 memory_region_set_enabled(&as->sys_alias, false);
1147 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1148 } else {
1149 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1150 memory_region_set_enabled(&as->sys_alias, true);
1151 }
1152
1153 if (take_bql) {
1154 qemu_mutex_unlock_iothread();
1155 }
1156
1157 return use_iommu;
1158 }
1159
1160 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1161 {
1162 GHashTableIter iter;
1163 VTDBus *vtd_bus;
1164 int i;
1165
1166 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1167 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1168 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1169 if (!vtd_bus->dev_as[i]) {
1170 continue;
1171 }
1172 vtd_switch_address_space(vtd_bus->dev_as[i]);
1173 }
1174 }
1175 }
1176
1177 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1178 {
1179 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1180 }
1181
1182 static const bool vtd_qualified_faults[] = {
1183 [VTD_FR_RESERVED] = false,
1184 [VTD_FR_ROOT_ENTRY_P] = false,
1185 [VTD_FR_CONTEXT_ENTRY_P] = true,
1186 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1187 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1188 [VTD_FR_WRITE] = true,
1189 [VTD_FR_READ] = true,
1190 [VTD_FR_PAGING_ENTRY_INV] = true,
1191 [VTD_FR_ROOT_TABLE_INV] = false,
1192 [VTD_FR_CONTEXT_TABLE_INV] = false,
1193 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1194 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1195 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1196 [VTD_FR_RESERVED_ERR] = false,
1197 [VTD_FR_MAX] = false,
1198 };
1199
1200 /* To see if a fault condition is "qualified", which is reported to software
1201 * only if the FPD field in the context-entry used to process the faulting
1202 * request is 0.
1203 */
1204 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1205 {
1206 return vtd_qualified_faults[fault];
1207 }
1208
1209 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1210 {
1211 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1212 }
1213
1214 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1215 {
1216 VTDBus *vtd_bus;
1217 VTDAddressSpace *vtd_as;
1218 bool success = false;
1219
1220 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1221 if (!vtd_bus) {
1222 goto out;
1223 }
1224
1225 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1226 if (!vtd_as) {
1227 goto out;
1228 }
1229
1230 if (vtd_switch_address_space(vtd_as) == false) {
1231 /* We switched off IOMMU region successfully. */
1232 success = true;
1233 }
1234
1235 out:
1236 trace_vtd_pt_enable_fast_path(source_id, success);
1237 }
1238
1239 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1240 * translation.
1241 *
1242 * Called from RCU critical section.
1243 *
1244 * @bus_num: The bus number
1245 * @devfn: The devfn, which is the combined of device and function number
1246 * @is_write: The access is a write operation
1247 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1248 *
1249 * Returns true if translation is successful, otherwise false.
1250 */
1251 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1252 uint8_t devfn, hwaddr addr, bool is_write,
1253 IOMMUTLBEntry *entry)
1254 {
1255 IntelIOMMUState *s = vtd_as->iommu_state;
1256 VTDContextEntry ce;
1257 uint8_t bus_num = pci_bus_num(bus);
1258 VTDContextCacheEntry *cc_entry;
1259 uint64_t slpte, page_mask;
1260 uint32_t level;
1261 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1262 int ret_fr;
1263 bool is_fpd_set = false;
1264 bool reads = true;
1265 bool writes = true;
1266 uint8_t access_flags;
1267 VTDIOTLBEntry *iotlb_entry;
1268
1269 /*
1270 * We have standalone memory region for interrupt addresses, we
1271 * should never receive translation requests in this region.
1272 */
1273 assert(!vtd_is_interrupt_addr(addr));
1274
1275 vtd_iommu_lock(s);
1276
1277 cc_entry = &vtd_as->context_cache_entry;
1278
1279 /* Try to fetch slpte form IOTLB */
1280 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1281 if (iotlb_entry) {
1282 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1283 iotlb_entry->domain_id);
1284 slpte = iotlb_entry->slpte;
1285 access_flags = iotlb_entry->access_flags;
1286 page_mask = iotlb_entry->mask;
1287 goto out;
1288 }
1289
1290 /* Try to fetch context-entry from cache first */
1291 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1292 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1293 cc_entry->context_entry.lo,
1294 cc_entry->context_cache_gen);
1295 ce = cc_entry->context_entry;
1296 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1297 } else {
1298 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1299 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1300 if (ret_fr) {
1301 ret_fr = -ret_fr;
1302 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1303 trace_vtd_fault_disabled();
1304 } else {
1305 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1306 }
1307 goto error;
1308 }
1309 /* Update context-cache */
1310 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1311 cc_entry->context_cache_gen,
1312 s->context_cache_gen);
1313 cc_entry->context_entry = ce;
1314 cc_entry->context_cache_gen = s->context_cache_gen;
1315 }
1316
1317 /*
1318 * We don't need to translate for pass-through context entries.
1319 * Also, let's ignore IOTLB caching as well for PT devices.
1320 */
1321 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1322 entry->iova = addr & VTD_PAGE_MASK_4K;
1323 entry->translated_addr = entry->iova;
1324 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1325 entry->perm = IOMMU_RW;
1326 trace_vtd_translate_pt(source_id, entry->iova);
1327
1328 /*
1329 * When this happens, it means firstly caching-mode is not
1330 * enabled, and this is the first passthrough translation for
1331 * the device. Let's enable the fast path for passthrough.
1332 *
1333 * When passthrough is disabled again for the device, we can
1334 * capture it via the context entry invalidation, then the
1335 * IOMMU region can be swapped back.
1336 */
1337 vtd_pt_enable_fast_path(s, source_id);
1338 vtd_iommu_unlock(s);
1339 return true;
1340 }
1341
1342 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1343 &reads, &writes, s->aw_bits);
1344 if (ret_fr) {
1345 ret_fr = -ret_fr;
1346 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1347 trace_vtd_fault_disabled();
1348 } else {
1349 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1350 }
1351 goto error;
1352 }
1353
1354 page_mask = vtd_slpt_level_page_mask(level);
1355 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1356 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1357 access_flags, level);
1358 out:
1359 vtd_iommu_unlock(s);
1360 entry->iova = addr & page_mask;
1361 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1362 entry->addr_mask = ~page_mask;
1363 entry->perm = access_flags;
1364 return true;
1365
1366 error:
1367 vtd_iommu_unlock(s);
1368 entry->iova = 0;
1369 entry->translated_addr = 0;
1370 entry->addr_mask = 0;
1371 entry->perm = IOMMU_NONE;
1372 return false;
1373 }
1374
1375 static void vtd_root_table_setup(IntelIOMMUState *s)
1376 {
1377 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1378 s->root_extended = s->root & VTD_RTADDR_RTT;
1379 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1380
1381 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1382 }
1383
1384 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1385 uint32_t index, uint32_t mask)
1386 {
1387 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1388 }
1389
1390 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1391 {
1392 uint64_t value = 0;
1393 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1394 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1395 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1396 s->intr_eime = value & VTD_IRTA_EIME;
1397
1398 /* Notify global invalidation */
1399 vtd_iec_notify_all(s, true, 0, 0);
1400
1401 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1402 }
1403
1404 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1405 {
1406 VTDAddressSpace *vtd_as;
1407
1408 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1409 vtd_sync_shadow_page_table(vtd_as);
1410 }
1411 }
1412
1413 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1414 {
1415 trace_vtd_inv_desc_cc_global();
1416 /* Protects context cache */
1417 vtd_iommu_lock(s);
1418 s->context_cache_gen++;
1419 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1420 vtd_reset_context_cache_locked(s);
1421 }
1422 vtd_iommu_unlock(s);
1423 vtd_switch_address_space_all(s);
1424 /*
1425 * From VT-d spec 6.5.2.1, a global context entry invalidation
1426 * should be followed by a IOTLB global invalidation, so we should
1427 * be safe even without this. Hoewever, let's replay the region as
1428 * well to be safer, and go back here when we need finer tunes for
1429 * VT-d emulation codes.
1430 */
1431 vtd_iommu_replay_all(s);
1432 }
1433
1434 /* Do a context-cache device-selective invalidation.
1435 * @func_mask: FM field after shifting
1436 */
1437 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1438 uint16_t source_id,
1439 uint16_t func_mask)
1440 {
1441 uint16_t mask;
1442 VTDBus *vtd_bus;
1443 VTDAddressSpace *vtd_as;
1444 uint8_t bus_n, devfn;
1445 uint16_t devfn_it;
1446
1447 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1448
1449 switch (func_mask & 3) {
1450 case 0:
1451 mask = 0; /* No bits in the SID field masked */
1452 break;
1453 case 1:
1454 mask = 4; /* Mask bit 2 in the SID field */
1455 break;
1456 case 2:
1457 mask = 6; /* Mask bit 2:1 in the SID field */
1458 break;
1459 case 3:
1460 mask = 7; /* Mask bit 2:0 in the SID field */
1461 break;
1462 }
1463 mask = ~mask;
1464
1465 bus_n = VTD_SID_TO_BUS(source_id);
1466 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1467 if (vtd_bus) {
1468 devfn = VTD_SID_TO_DEVFN(source_id);
1469 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1470 vtd_as = vtd_bus->dev_as[devfn_it];
1471 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1472 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1473 VTD_PCI_FUNC(devfn_it));
1474 vtd_iommu_lock(s);
1475 vtd_as->context_cache_entry.context_cache_gen = 0;
1476 vtd_iommu_unlock(s);
1477 /*
1478 * Do switch address space when needed, in case if the
1479 * device passthrough bit is switched.
1480 */
1481 vtd_switch_address_space(vtd_as);
1482 /*
1483 * So a device is moving out of (or moving into) a
1484 * domain, resync the shadow page table.
1485 * This won't bring bad even if we have no such
1486 * notifier registered - the IOMMU notification
1487 * framework will skip MAP notifications if that
1488 * happened.
1489 */
1490 vtd_sync_shadow_page_table(vtd_as);
1491 }
1492 }
1493 }
1494 }
1495
1496 /* Context-cache invalidation
1497 * Returns the Context Actual Invalidation Granularity.
1498 * @val: the content of the CCMD_REG
1499 */
1500 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1501 {
1502 uint64_t caig;
1503 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1504
1505 switch (type) {
1506 case VTD_CCMD_DOMAIN_INVL:
1507 /* Fall through */
1508 case VTD_CCMD_GLOBAL_INVL:
1509 caig = VTD_CCMD_GLOBAL_INVL_A;
1510 vtd_context_global_invalidate(s);
1511 break;
1512
1513 case VTD_CCMD_DEVICE_INVL:
1514 caig = VTD_CCMD_DEVICE_INVL_A;
1515 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1516 break;
1517
1518 default:
1519 error_report_once("%s: invalid context: 0x%" PRIx64,
1520 __func__, val);
1521 caig = 0;
1522 }
1523 return caig;
1524 }
1525
1526 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1527 {
1528 trace_vtd_inv_desc_iotlb_global();
1529 vtd_reset_iotlb(s);
1530 vtd_iommu_replay_all(s);
1531 }
1532
1533 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1534 {
1535 VTDContextEntry ce;
1536 VTDAddressSpace *vtd_as;
1537
1538 trace_vtd_inv_desc_iotlb_domain(domain_id);
1539
1540 vtd_iommu_lock(s);
1541 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1542 &domain_id);
1543 vtd_iommu_unlock(s);
1544
1545 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1546 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1547 vtd_as->devfn, &ce) &&
1548 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1549 vtd_sync_shadow_page_table(vtd_as);
1550 }
1551 }
1552 }
1553
1554 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1555 uint16_t domain_id, hwaddr addr,
1556 uint8_t am)
1557 {
1558 VTDAddressSpace *vtd_as;
1559 VTDContextEntry ce;
1560 int ret;
1561 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1562
1563 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1564 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1565 vtd_as->devfn, &ce);
1566 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1567 if (vtd_as_has_map_notifier(vtd_as)) {
1568 /*
1569 * As long as we have MAP notifications registered in
1570 * any of our IOMMU notifiers, we need to sync the
1571 * shadow page table.
1572 */
1573 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1574 } else {
1575 /*
1576 * For UNMAP-only notifiers, we don't need to walk the
1577 * page tables. We just deliver the PSI down to
1578 * invalidate caches.
1579 */
1580 IOMMUTLBEntry entry = {
1581 .target_as = &address_space_memory,
1582 .iova = addr,
1583 .translated_addr = 0,
1584 .addr_mask = size - 1,
1585 .perm = IOMMU_NONE,
1586 };
1587 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1588 }
1589 }
1590 }
1591 }
1592
1593 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1594 hwaddr addr, uint8_t am)
1595 {
1596 VTDIOTLBPageInvInfo info;
1597
1598 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1599
1600 assert(am <= VTD_MAMV);
1601 info.domain_id = domain_id;
1602 info.addr = addr;
1603 info.mask = ~((1 << am) - 1);
1604 vtd_iommu_lock(s);
1605 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1606 vtd_iommu_unlock(s);
1607 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1608 }
1609
1610 /* Flush IOTLB
1611 * Returns the IOTLB Actual Invalidation Granularity.
1612 * @val: the content of the IOTLB_REG
1613 */
1614 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1615 {
1616 uint64_t iaig;
1617 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1618 uint16_t domain_id;
1619 hwaddr addr;
1620 uint8_t am;
1621
1622 switch (type) {
1623 case VTD_TLB_GLOBAL_FLUSH:
1624 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1625 vtd_iotlb_global_invalidate(s);
1626 break;
1627
1628 case VTD_TLB_DSI_FLUSH:
1629 domain_id = VTD_TLB_DID(val);
1630 iaig = VTD_TLB_DSI_FLUSH_A;
1631 vtd_iotlb_domain_invalidate(s, domain_id);
1632 break;
1633
1634 case VTD_TLB_PSI_FLUSH:
1635 domain_id = VTD_TLB_DID(val);
1636 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1637 am = VTD_IVA_AM(addr);
1638 addr = VTD_IVA_ADDR(addr);
1639 if (am > VTD_MAMV) {
1640 error_report_once("%s: address mask overflow: 0x%" PRIx64,
1641 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1642 iaig = 0;
1643 break;
1644 }
1645 iaig = VTD_TLB_PSI_FLUSH_A;
1646 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1647 break;
1648
1649 default:
1650 error_report_once("%s: invalid granularity: 0x%" PRIx64,
1651 __func__, val);
1652 iaig = 0;
1653 }
1654 return iaig;
1655 }
1656
1657 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1658
1659 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1660 {
1661 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1662 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1663 }
1664
1665 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1666 {
1667 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1668
1669 trace_vtd_inv_qi_enable(en);
1670
1671 if (en) {
1672 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1673 /* 2^(x+8) entries */
1674 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1675 s->qi_enabled = true;
1676 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1677 /* Ok - report back to driver */
1678 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1679
1680 if (s->iq_tail != 0) {
1681 /*
1682 * This is a spec violation but Windows guests are known to set up
1683 * Queued Invalidation this way so we allow the write and process
1684 * Invalidation Descriptors right away.
1685 */
1686 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1687 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1688 vtd_fetch_inv_desc(s);
1689 }
1690 }
1691 } else {
1692 if (vtd_queued_inv_disable_check(s)) {
1693 /* disable Queued Invalidation */
1694 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1695 s->iq_head = 0;
1696 s->qi_enabled = false;
1697 /* Ok - report back to driver */
1698 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1699 } else {
1700 trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
1701 }
1702 }
1703 }
1704
1705 /* Set Root Table Pointer */
1706 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1707 {
1708 vtd_root_table_setup(s);
1709 /* Ok - report back to driver */
1710 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1711 }
1712
1713 /* Set Interrupt Remap Table Pointer */
1714 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1715 {
1716 vtd_interrupt_remap_table_setup(s);
1717 /* Ok - report back to driver */
1718 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1719 }
1720
1721 /* Handle Translation Enable/Disable */
1722 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1723 {
1724 if (s->dmar_enabled == en) {
1725 return;
1726 }
1727
1728 trace_vtd_dmar_enable(en);
1729
1730 if (en) {
1731 s->dmar_enabled = true;
1732 /* Ok - report back to driver */
1733 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1734 } else {
1735 s->dmar_enabled = false;
1736
1737 /* Clear the index of Fault Recording Register */
1738 s->next_frcd_reg = 0;
1739 /* Ok - report back to driver */
1740 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1741 }
1742
1743 vtd_switch_address_space_all(s);
1744 }
1745
1746 /* Handle Interrupt Remap Enable/Disable */
1747 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1748 {
1749 trace_vtd_ir_enable(en);
1750
1751 if (en) {
1752 s->intr_enabled = true;
1753 /* Ok - report back to driver */
1754 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1755 } else {
1756 s->intr_enabled = false;
1757 /* Ok - report back to driver */
1758 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1759 }
1760 }
1761
1762 /* Handle write to Global Command Register */
1763 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1764 {
1765 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1766 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1767 uint32_t changed = status ^ val;
1768
1769 trace_vtd_reg_write_gcmd(status, val);
1770 if (changed & VTD_GCMD_TE) {
1771 /* Translation enable/disable */
1772 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1773 }
1774 if (val & VTD_GCMD_SRTP) {
1775 /* Set/update the root-table pointer */
1776 vtd_handle_gcmd_srtp(s);
1777 }
1778 if (changed & VTD_GCMD_QIE) {
1779 /* Queued Invalidation Enable */
1780 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1781 }
1782 if (val & VTD_GCMD_SIRTP) {
1783 /* Set/update the interrupt remapping root-table pointer */
1784 vtd_handle_gcmd_sirtp(s);
1785 }
1786 if (changed & VTD_GCMD_IRE) {
1787 /* Interrupt remap enable/disable */
1788 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1789 }
1790 }
1791
1792 /* Handle write to Context Command Register */
1793 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1794 {
1795 uint64_t ret;
1796 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1797
1798 /* Context-cache invalidation request */
1799 if (val & VTD_CCMD_ICC) {
1800 if (s->qi_enabled) {
1801 error_report_once("Queued Invalidation enabled, "
1802 "should not use register-based invalidation");
1803 return;
1804 }
1805 ret = vtd_context_cache_invalidate(s, val);
1806 /* Invalidation completed. Change something to show */
1807 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1808 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1809 ret);
1810 }
1811 }
1812
1813 /* Handle write to IOTLB Invalidation Register */
1814 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1815 {
1816 uint64_t ret;
1817 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1818
1819 /* IOTLB invalidation request */
1820 if (val & VTD_TLB_IVT) {
1821 if (s->qi_enabled) {
1822 error_report_once("Queued Invalidation enabled, "
1823 "should not use register-based invalidation");
1824 return;
1825 }
1826 ret = vtd_iotlb_flush(s, val);
1827 /* Invalidation completed. Change something to show */
1828 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1829 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1830 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1831 }
1832 }
1833
1834 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1835 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1836 VTDInvDesc *inv_desc)
1837 {
1838 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1839 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1840 sizeof(*inv_desc))) {
1841 error_report_once("Read INV DESC failed");
1842 inv_desc->lo = 0;
1843 inv_desc->hi = 0;
1844 return false;
1845 }
1846 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1847 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1848 return true;
1849 }
1850
1851 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1852 {
1853 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1854 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1855 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1856 return false;
1857 }
1858 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1859 /* Status Write */
1860 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1861 VTD_INV_DESC_WAIT_DATA_SHIFT);
1862
1863 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1864
1865 /* FIXME: need to be masked with HAW? */
1866 dma_addr_t status_addr = inv_desc->hi;
1867 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1868 status_data = cpu_to_le32(status_data);
1869 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1870 sizeof(status_data))) {
1871 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1872 return false;
1873 }
1874 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1875 /* Interrupt flag */
1876 vtd_generate_completion_event(s);
1877 } else {
1878 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1879 return false;
1880 }
1881 return true;
1882 }
1883
1884 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1885 VTDInvDesc *inv_desc)
1886 {
1887 uint16_t sid, fmask;
1888
1889 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1890 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1891 return false;
1892 }
1893 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1894 case VTD_INV_DESC_CC_DOMAIN:
1895 trace_vtd_inv_desc_cc_domain(
1896 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1897 /* Fall through */
1898 case VTD_INV_DESC_CC_GLOBAL:
1899 vtd_context_global_invalidate(s);
1900 break;
1901
1902 case VTD_INV_DESC_CC_DEVICE:
1903 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1904 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1905 vtd_context_device_invalidate(s, sid, fmask);
1906 break;
1907
1908 default:
1909 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1910 return false;
1911 }
1912 return true;
1913 }
1914
1915 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1916 {
1917 uint16_t domain_id;
1918 uint8_t am;
1919 hwaddr addr;
1920
1921 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1922 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1923 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1924 return false;
1925 }
1926
1927 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1928 case VTD_INV_DESC_IOTLB_GLOBAL:
1929 vtd_iotlb_global_invalidate(s);
1930 break;
1931
1932 case VTD_INV_DESC_IOTLB_DOMAIN:
1933 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1934 vtd_iotlb_domain_invalidate(s, domain_id);
1935 break;
1936
1937 case VTD_INV_DESC_IOTLB_PAGE:
1938 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1939 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1940 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1941 if (am > VTD_MAMV) {
1942 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1943 return false;
1944 }
1945 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1946 break;
1947
1948 default:
1949 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1950 return false;
1951 }
1952 return true;
1953 }
1954
1955 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1956 VTDInvDesc *inv_desc)
1957 {
1958 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1959 inv_desc->iec.index,
1960 inv_desc->iec.index_mask);
1961
1962 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1963 inv_desc->iec.index,
1964 inv_desc->iec.index_mask);
1965 return true;
1966 }
1967
1968 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1969 VTDInvDesc *inv_desc)
1970 {
1971 VTDAddressSpace *vtd_dev_as;
1972 IOMMUTLBEntry entry;
1973 struct VTDBus *vtd_bus;
1974 hwaddr addr;
1975 uint64_t sz;
1976 uint16_t sid;
1977 uint8_t devfn;
1978 bool size;
1979 uint8_t bus_num;
1980
1981 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1982 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1983 devfn = sid & 0xff;
1984 bus_num = sid >> 8;
1985 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1986
1987 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1988 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1989 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1990 return false;
1991 }
1992
1993 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1994 if (!vtd_bus) {
1995 goto done;
1996 }
1997
1998 vtd_dev_as = vtd_bus->dev_as[devfn];
1999 if (!vtd_dev_as) {
2000 goto done;
2001 }
2002
2003 /* According to ATS spec table 2.4:
2004 * S = 0, bits 15:12 = xxxx range size: 4K
2005 * S = 1, bits 15:12 = xxx0 range size: 8K
2006 * S = 1, bits 15:12 = xx01 range size: 16K
2007 * S = 1, bits 15:12 = x011 range size: 32K
2008 * S = 1, bits 15:12 = 0111 range size: 64K
2009 * ...
2010 */
2011 if (size) {
2012 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2013 addr &= ~(sz - 1);
2014 } else {
2015 sz = VTD_PAGE_SIZE;
2016 }
2017
2018 entry.target_as = &vtd_dev_as->as;
2019 entry.addr_mask = sz - 1;
2020 entry.iova = addr;
2021 entry.perm = IOMMU_NONE;
2022 entry.translated_addr = 0;
2023 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2024
2025 done:
2026 return true;
2027 }
2028
2029 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2030 {
2031 VTDInvDesc inv_desc;
2032 uint8_t desc_type;
2033
2034 trace_vtd_inv_qi_head(s->iq_head);
2035 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
2036 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2037 return false;
2038 }
2039 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2040 /* FIXME: should update at first or at last? */
2041 s->iq_last_desc_type = desc_type;
2042
2043 switch (desc_type) {
2044 case VTD_INV_DESC_CC:
2045 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2046 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2047 return false;
2048 }
2049 break;
2050
2051 case VTD_INV_DESC_IOTLB:
2052 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2053 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2054 return false;
2055 }
2056 break;
2057
2058 case VTD_INV_DESC_WAIT:
2059 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2060 if (!vtd_process_wait_desc(s, &inv_desc)) {
2061 return false;
2062 }
2063 break;
2064
2065 case VTD_INV_DESC_IEC:
2066 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2067 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2068 return false;
2069 }
2070 break;
2071
2072 case VTD_INV_DESC_DEVICE:
2073 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2074 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2075 return false;
2076 }
2077 break;
2078
2079 default:
2080 trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
2081 return false;
2082 }
2083 s->iq_head++;
2084 if (s->iq_head == s->iq_size) {
2085 s->iq_head = 0;
2086 }
2087 return true;
2088 }
2089
2090 /* Try to fetch and process more Invalidation Descriptors */
2091 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2092 {
2093 trace_vtd_inv_qi_fetch();
2094
2095 if (s->iq_tail >= s->iq_size) {
2096 /* Detects an invalid Tail pointer */
2097 trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
2098 vtd_handle_inv_queue_error(s);
2099 return;
2100 }
2101 while (s->iq_head != s->iq_tail) {
2102 if (!vtd_process_inv_desc(s)) {
2103 /* Invalidation Queue Errors */
2104 vtd_handle_inv_queue_error(s);
2105 break;
2106 }
2107 /* Must update the IQH_REG in time */
2108 vtd_set_quad_raw(s, DMAR_IQH_REG,
2109 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2110 VTD_IQH_QH_MASK);
2111 }
2112 }
2113
2114 /* Handle write to Invalidation Queue Tail Register */
2115 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2116 {
2117 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2118
2119 s->iq_tail = VTD_IQT_QT(val);
2120 trace_vtd_inv_qi_tail(s->iq_tail);
2121
2122 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2123 /* Process Invalidation Queue here */
2124 vtd_fetch_inv_desc(s);
2125 }
2126 }
2127
2128 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2129 {
2130 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2131 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2132 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2133
2134 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2135 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2136 trace_vtd_fsts_clear_ip();
2137 }
2138 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2139 * Descriptors if there are any when Queued Invalidation is enabled?
2140 */
2141 }
2142
2143 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2144 {
2145 uint32_t fectl_reg;
2146 /* FIXME: when software clears the IM field, check the IP field. But do we
2147 * need to compare the old value and the new value to conclude that
2148 * software clears the IM field? Or just check if the IM field is zero?
2149 */
2150 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2151
2152 trace_vtd_reg_write_fectl(fectl_reg);
2153
2154 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2155 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2156 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2157 }
2158 }
2159
2160 static void vtd_handle_ics_write(IntelIOMMUState *s)
2161 {
2162 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2163 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2164
2165 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2166 trace_vtd_reg_ics_clear_ip();
2167 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2168 }
2169 }
2170
2171 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2172 {
2173 uint32_t iectl_reg;
2174 /* FIXME: when software clears the IM field, check the IP field. But do we
2175 * need to compare the old value and the new value to conclude that
2176 * software clears the IM field? Or just check if the IM field is zero?
2177 */
2178 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2179
2180 trace_vtd_reg_write_iectl(iectl_reg);
2181
2182 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2183 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2184 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2185 }
2186 }
2187
2188 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2189 {
2190 IntelIOMMUState *s = opaque;
2191 uint64_t val;
2192
2193 trace_vtd_reg_read(addr, size);
2194
2195 if (addr + size > DMAR_REG_SIZE) {
2196 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2197 " size=0x%u", __func__, addr, size);
2198 return (uint64_t)-1;
2199 }
2200
2201 switch (addr) {
2202 /* Root Table Address Register, 64-bit */
2203 case DMAR_RTADDR_REG:
2204 if (size == 4) {
2205 val = s->root & ((1ULL << 32) - 1);
2206 } else {
2207 val = s->root;
2208 }
2209 break;
2210
2211 case DMAR_RTADDR_REG_HI:
2212 assert(size == 4);
2213 val = s->root >> 32;
2214 break;
2215
2216 /* Invalidation Queue Address Register, 64-bit */
2217 case DMAR_IQA_REG:
2218 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2219 if (size == 4) {
2220 val = val & ((1ULL << 32) - 1);
2221 }
2222 break;
2223
2224 case DMAR_IQA_REG_HI:
2225 assert(size == 4);
2226 val = s->iq >> 32;
2227 break;
2228
2229 default:
2230 if (size == 4) {
2231 val = vtd_get_long(s, addr);
2232 } else {
2233 val = vtd_get_quad(s, addr);
2234 }
2235 }
2236
2237 return val;
2238 }
2239
2240 static void vtd_mem_write(void *opaque, hwaddr addr,
2241 uint64_t val, unsigned size)
2242 {
2243 IntelIOMMUState *s = opaque;
2244
2245 trace_vtd_reg_write(addr, size, val);
2246
2247 if (addr + size > DMAR_REG_SIZE) {
2248 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2249 " size=0x%u", __func__, addr, size);
2250 return;
2251 }
2252
2253 switch (addr) {
2254 /* Global Command Register, 32-bit */
2255 case DMAR_GCMD_REG:
2256 vtd_set_long(s, addr, val);
2257 vtd_handle_gcmd_write(s);
2258 break;
2259
2260 /* Context Command Register, 64-bit */
2261 case DMAR_CCMD_REG:
2262 if (size == 4) {
2263 vtd_set_long(s, addr, val);
2264 } else {
2265 vtd_set_quad(s, addr, val);
2266 vtd_handle_ccmd_write(s);
2267 }
2268 break;
2269
2270 case DMAR_CCMD_REG_HI:
2271 assert(size == 4);
2272 vtd_set_long(s, addr, val);
2273 vtd_handle_ccmd_write(s);
2274 break;
2275
2276 /* IOTLB Invalidation Register, 64-bit */
2277 case DMAR_IOTLB_REG:
2278 if (size == 4) {
2279 vtd_set_long(s, addr, val);
2280 } else {
2281 vtd_set_quad(s, addr, val);
2282 vtd_handle_iotlb_write(s);
2283 }
2284 break;
2285
2286 case DMAR_IOTLB_REG_HI:
2287 assert(size == 4);
2288 vtd_set_long(s, addr, val);
2289 vtd_handle_iotlb_write(s);
2290 break;
2291
2292 /* Invalidate Address Register, 64-bit */
2293 case DMAR_IVA_REG:
2294 if (size == 4) {
2295 vtd_set_long(s, addr, val);
2296 } else {
2297 vtd_set_quad(s, addr, val);
2298 }
2299 break;
2300
2301 case DMAR_IVA_REG_HI:
2302 assert(size == 4);
2303 vtd_set_long(s, addr, val);
2304 break;
2305
2306 /* Fault Status Register, 32-bit */
2307 case DMAR_FSTS_REG:
2308 assert(size == 4);
2309 vtd_set_long(s, addr, val);
2310 vtd_handle_fsts_write(s);
2311 break;
2312
2313 /* Fault Event Control Register, 32-bit */
2314 case DMAR_FECTL_REG:
2315 assert(size == 4);
2316 vtd_set_long(s, addr, val);
2317 vtd_handle_fectl_write(s);
2318 break;
2319
2320 /* Fault Event Data Register, 32-bit */
2321 case DMAR_FEDATA_REG:
2322 assert(size == 4);
2323 vtd_set_long(s, addr, val);
2324 break;
2325
2326 /* Fault Event Address Register, 32-bit */
2327 case DMAR_FEADDR_REG:
2328 if (size == 4) {
2329 vtd_set_long(s, addr, val);
2330 } else {
2331 /*
2332 * While the register is 32-bit only, some guests (Xen...) write to
2333 * it with 64-bit.
2334 */
2335 vtd_set_quad(s, addr, val);
2336 }
2337 break;
2338
2339 /* Fault Event Upper Address Register, 32-bit */
2340 case DMAR_FEUADDR_REG:
2341 assert(size == 4);
2342 vtd_set_long(s, addr, val);
2343 break;
2344
2345 /* Protected Memory Enable Register, 32-bit */
2346 case DMAR_PMEN_REG:
2347 assert(size == 4);
2348 vtd_set_long(s, addr, val);
2349 break;
2350
2351 /* Root Table Address Register, 64-bit */
2352 case DMAR_RTADDR_REG:
2353 if (size == 4) {
2354 vtd_set_long(s, addr, val);
2355 } else {
2356 vtd_set_quad(s, addr, val);
2357 }
2358 break;
2359
2360 case DMAR_RTADDR_REG_HI:
2361 assert(size == 4);
2362 vtd_set_long(s, addr, val);
2363 break;
2364
2365 /* Invalidation Queue Tail Register, 64-bit */
2366 case DMAR_IQT_REG:
2367 if (size == 4) {
2368 vtd_set_long(s, addr, val);
2369 } else {
2370 vtd_set_quad(s, addr, val);
2371 }
2372 vtd_handle_iqt_write(s);
2373 break;
2374
2375 case DMAR_IQT_REG_HI:
2376 assert(size == 4);
2377 vtd_set_long(s, addr, val);
2378 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2379 break;
2380
2381 /* Invalidation Queue Address Register, 64-bit */
2382 case DMAR_IQA_REG:
2383 if (size == 4) {
2384 vtd_set_long(s, addr, val);
2385 } else {
2386 vtd_set_quad(s, addr, val);
2387 }
2388 break;
2389
2390 case DMAR_IQA_REG_HI:
2391 assert(size == 4);
2392 vtd_set_long(s, addr, val);
2393 break;
2394
2395 /* Invalidation Completion Status Register, 32-bit */
2396 case DMAR_ICS_REG:
2397 assert(size == 4);
2398 vtd_set_long(s, addr, val);
2399 vtd_handle_ics_write(s);
2400 break;
2401
2402 /* Invalidation Event Control Register, 32-bit */
2403 case DMAR_IECTL_REG:
2404 assert(size == 4);
2405 vtd_set_long(s, addr, val);
2406 vtd_handle_iectl_write(s);
2407 break;
2408
2409 /* Invalidation Event Data Register, 32-bit */
2410 case DMAR_IEDATA_REG:
2411 assert(size == 4);
2412 vtd_set_long(s, addr, val);
2413 break;
2414
2415 /* Invalidation Event Address Register, 32-bit */
2416 case DMAR_IEADDR_REG:
2417 assert(size == 4);
2418 vtd_set_long(s, addr, val);
2419 break;
2420
2421 /* Invalidation Event Upper Address Register, 32-bit */
2422 case DMAR_IEUADDR_REG:
2423 assert(size == 4);
2424 vtd_set_long(s, addr, val);
2425 break;
2426
2427 /* Fault Recording Registers, 128-bit */
2428 case DMAR_FRCD_REG_0_0:
2429 if (size == 4) {
2430 vtd_set_long(s, addr, val);
2431 } else {
2432 vtd_set_quad(s, addr, val);
2433 }
2434 break;
2435
2436 case DMAR_FRCD_REG_0_1:
2437 assert(size == 4);
2438 vtd_set_long(s, addr, val);
2439 break;
2440
2441 case DMAR_FRCD_REG_0_2:
2442 if (size == 4) {
2443 vtd_set_long(s, addr, val);
2444 } else {
2445 vtd_set_quad(s, addr, val);
2446 /* May clear bit 127 (Fault), update PPF */
2447 vtd_update_fsts_ppf(s);
2448 }
2449 break;
2450
2451 case DMAR_FRCD_REG_0_3:
2452 assert(size == 4);
2453 vtd_set_long(s, addr, val);
2454 /* May clear bit 127 (Fault), update PPF */
2455 vtd_update_fsts_ppf(s);
2456 break;
2457
2458 case DMAR_IRTA_REG:
2459 if (size == 4) {
2460 vtd_set_long(s, addr, val);
2461 } else {
2462 vtd_set_quad(s, addr, val);
2463 }
2464 break;
2465
2466 case DMAR_IRTA_REG_HI:
2467 assert(size == 4);
2468 vtd_set_long(s, addr, val);
2469 break;
2470
2471 default:
2472 if (size == 4) {
2473 vtd_set_long(s, addr, val);
2474 } else {
2475 vtd_set_quad(s, addr, val);
2476 }
2477 }
2478 }
2479
2480 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2481 IOMMUAccessFlags flag, int iommu_idx)
2482 {
2483 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2484 IntelIOMMUState *s = vtd_as->iommu_state;
2485 IOMMUTLBEntry iotlb = {
2486 /* We'll fill in the rest later. */
2487 .target_as = &address_space_memory,
2488 };
2489 bool success;
2490
2491 if (likely(s->dmar_enabled)) {
2492 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2493 addr, flag & IOMMU_WO, &iotlb);
2494 } else {
2495 /* DMAR disabled, passthrough, use 4k-page*/
2496 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2497 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2498 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2499 iotlb.perm = IOMMU_RW;
2500 success = true;
2501 }
2502
2503 if (likely(success)) {
2504 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2505 VTD_PCI_SLOT(vtd_as->devfn),
2506 VTD_PCI_FUNC(vtd_as->devfn),
2507 iotlb.iova, iotlb.translated_addr,
2508 iotlb.addr_mask);
2509 } else {
2510 trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2511 VTD_PCI_SLOT(vtd_as->devfn),
2512 VTD_PCI_FUNC(vtd_as->devfn),
2513 iotlb.iova);
2514 }
2515
2516 return iotlb;
2517 }
2518
2519 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2520 IOMMUNotifierFlag old,
2521 IOMMUNotifierFlag new)
2522 {
2523 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2524 IntelIOMMUState *s = vtd_as->iommu_state;
2525
2526 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2527 error_report("We need to set caching-mode=1 for intel-iommu to enable "
2528 "device assignment with IOMMU protection.");
2529 exit(1);
2530 }
2531
2532 /* Update per-address-space notifier flags */
2533 vtd_as->notifier_flags = new;
2534
2535 if (old == IOMMU_NOTIFIER_NONE) {
2536 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2537 } else if (new == IOMMU_NOTIFIER_NONE) {
2538 QLIST_REMOVE(vtd_as, next);
2539 }
2540 }
2541
2542 static int vtd_post_load(void *opaque, int version_id)
2543 {
2544 IntelIOMMUState *iommu = opaque;
2545
2546 /*
2547 * Memory regions are dynamically turned on/off depending on
2548 * context entry configurations from the guest. After migration,
2549 * we need to make sure the memory regions are still correct.
2550 */
2551 vtd_switch_address_space_all(iommu);
2552
2553 return 0;
2554 }
2555
2556 static const VMStateDescription vtd_vmstate = {
2557 .name = "iommu-intel",
2558 .version_id = 1,
2559 .minimum_version_id = 1,
2560 .priority = MIG_PRI_IOMMU,
2561 .post_load = vtd_post_load,
2562 .fields = (VMStateField[]) {
2563 VMSTATE_UINT64(root, IntelIOMMUState),
2564 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2565 VMSTATE_UINT64(iq, IntelIOMMUState),
2566 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2567 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2568 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2569 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2570 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2571 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2572 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2573 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2574 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2575 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2576 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2577 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2578 VMSTATE_END_OF_LIST()
2579 }
2580 };
2581
2582 static const MemoryRegionOps vtd_mem_ops = {
2583 .read = vtd_mem_read,
2584 .write = vtd_mem_write,
2585 .endianness = DEVICE_LITTLE_ENDIAN,
2586 .impl = {
2587 .min_access_size = 4,
2588 .max_access_size = 8,
2589 },
2590 .valid = {
2591 .min_access_size = 4,
2592 .max_access_size = 8,
2593 },
2594 };
2595
2596 static Property vtd_properties[] = {
2597 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2598 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2599 ON_OFF_AUTO_AUTO),
2600 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2601 DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2602 VTD_HOST_ADDRESS_WIDTH),
2603 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2604 DEFINE_PROP_END_OF_LIST(),
2605 };
2606
2607 /* Read IRTE entry with specific index */
2608 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2609 VTD_IR_TableEntry *entry, uint16_t sid)
2610 {
2611 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2612 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2613 dma_addr_t addr = 0x00;
2614 uint16_t mask, source_id;
2615 uint8_t bus, bus_max, bus_min;
2616
2617 addr = iommu->intr_root + index * sizeof(*entry);
2618 if (dma_memory_read(&address_space_memory, addr, entry,
2619 sizeof(*entry))) {
2620 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
2621 __func__, index, addr);
2622 return -VTD_FR_IR_ROOT_INVAL;
2623 }
2624
2625 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2626 le64_to_cpu(entry->data[0]));
2627
2628 if (!entry->irte.present) {
2629 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2630 le64_to_cpu(entry->data[0]));
2631 return -VTD_FR_IR_ENTRY_P;
2632 }
2633
2634 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2635 entry->irte.__reserved_2) {
2636 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2637 le64_to_cpu(entry->data[0]));
2638 return -VTD_FR_IR_IRTE_RSVD;
2639 }
2640
2641 if (sid != X86_IOMMU_SID_INVALID) {
2642 /* Validate IRTE SID */
2643 source_id = le32_to_cpu(entry->irte.source_id);
2644 switch (entry->irte.sid_vtype) {
2645 case VTD_SVT_NONE:
2646 break;
2647
2648 case VTD_SVT_ALL:
2649 mask = vtd_svt_mask[entry->irte.sid_q];
2650 if ((source_id & mask) != (sid & mask)) {
2651 trace_vtd_err_irte_sid(index, sid, source_id);
2652 return -VTD_FR_IR_SID_ERR;
2653 }
2654 break;
2655
2656 case VTD_SVT_BUS:
2657 bus_max = source_id >> 8;
2658 bus_min = source_id & 0xff;
2659 bus = sid >> 8;
2660 if (bus > bus_max || bus < bus_min) {
2661 trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
2662 return -VTD_FR_IR_SID_ERR;
2663 }
2664 break;
2665
2666 default:
2667 trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
2668 /* Take this as verification failure. */
2669 return -VTD_FR_IR_SID_ERR;
2670 break;
2671 }
2672 }
2673
2674 return 0;
2675 }
2676
2677 /* Fetch IRQ information of specific IR index */
2678 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2679 VTDIrq *irq, uint16_t sid)
2680 {
2681 VTD_IR_TableEntry irte = {};
2682 int ret = 0;
2683
2684 ret = vtd_irte_get(iommu, index, &irte, sid);
2685 if (ret) {
2686 return ret;
2687 }
2688
2689 irq->trigger_mode = irte.irte.trigger_mode;
2690 irq->vector = irte.irte.vector;
2691 irq->delivery_mode = irte.irte.delivery_mode;
2692 irq->dest = le32_to_cpu(irte.irte.dest_id);
2693 if (!iommu->intr_eime) {
2694 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2695 #define VTD_IR_APIC_DEST_SHIFT (8)
2696 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2697 VTD_IR_APIC_DEST_SHIFT;
2698 }
2699 irq->dest_mode = irte.irte.dest_mode;
2700 irq->redir_hint = irte.irte.redir_hint;
2701
2702 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2703 irq->delivery_mode, irq->dest, irq->dest_mode);
2704
2705 return 0;
2706 }
2707
2708 /* Generate one MSI message from VTDIrq info */
2709 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2710 {
2711 VTD_MSIMessage msg = {};
2712
2713 /* Generate address bits */
2714 msg.dest_mode = irq->dest_mode;
2715 msg.redir_hint = irq->redir_hint;
2716 msg.dest = irq->dest;
2717 msg.__addr_hi = irq->dest & 0xffffff00;
2718 msg.__addr_head = cpu_to_le32(0xfee);
2719 /* Keep this from original MSI address bits */
2720 msg.__not_used = irq->msi_addr_last_bits;
2721
2722 /* Generate data bits */
2723 msg.vector = irq->vector;
2724 msg.delivery_mode = irq->delivery_mode;
2725 msg.level = 1;
2726 msg.trigger_mode = irq->trigger_mode;
2727
2728 msg_out->address = msg.msi_addr;
2729 msg_out->data = msg.msi_data;
2730 }
2731
2732 /* Interrupt remapping for MSI/MSI-X entry */
2733 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2734 MSIMessage *origin,
2735 MSIMessage *translated,
2736 uint16_t sid)
2737 {
2738 int ret = 0;
2739 VTD_IR_MSIAddress addr;
2740 uint16_t index;
2741 VTDIrq irq = {};
2742
2743 assert(origin && translated);
2744
2745 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2746
2747 if (!iommu || !iommu->intr_enabled) {
2748 memcpy(translated, origin, sizeof(*origin));
2749 goto out;
2750 }
2751
2752 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2753 error_report_once("%s: MSI address high 32 bits non-zero detected: "
2754 "address=0x%" PRIx64, __func__, origin->address);
2755 return -VTD_FR_IR_REQ_RSVD;
2756 }
2757
2758 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2759 if (addr.addr.__head != 0xfee) {
2760 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
2761 __func__, addr.data);
2762 return -VTD_FR_IR_REQ_RSVD;
2763 }
2764
2765 /* This is compatible mode. */
2766 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2767 memcpy(translated, origin, sizeof(*origin));
2768 goto out;
2769 }
2770
2771 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2772
2773 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2774 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2775
2776 if (addr.addr.sub_valid) {
2777 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2778 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2779 }
2780
2781 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2782 if (ret) {
2783 return ret;
2784 }
2785
2786 if (addr.addr.sub_valid) {
2787 trace_vtd_ir_remap_type("MSI");
2788 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2789 trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
2790 return -VTD_FR_IR_REQ_RSVD;
2791 }
2792 } else {
2793 uint8_t vector = origin->data & 0xff;
2794 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2795
2796 trace_vtd_ir_remap_type("IOAPIC");
2797 /* IOAPIC entry vector should be aligned with IRTE vector
2798 * (see vt-d spec 5.1.5.1). */
2799 if (vector != irq.vector) {
2800 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2801 }
2802
2803 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2804 * (see vt-d spec 5.1.5.1). */
2805 if (trigger_mode != irq.trigger_mode) {
2806 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2807 irq.trigger_mode);
2808 }
2809 }
2810
2811 /*
2812 * We'd better keep the last two bits, assuming that guest OS
2813 * might modify it. Keep it does not hurt after all.
2814 */
2815 irq.msi_addr_last_bits = addr.addr.__not_care;
2816
2817 /* Translate VTDIrq to MSI message */
2818 vtd_generate_msi_message(&irq, translated);
2819
2820 out:
2821 trace_vtd_ir_remap_msi(origin->address, origin->data,
2822 translated->address, translated->data);
2823 return 0;
2824 }
2825
2826 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2827 MSIMessage *dst, uint16_t sid)
2828 {
2829 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2830 src, dst, sid);
2831 }
2832
2833 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2834 uint64_t *data, unsigned size,
2835 MemTxAttrs attrs)
2836 {
2837 return MEMTX_OK;
2838 }
2839
2840 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2841 uint64_t value, unsigned size,
2842 MemTxAttrs attrs)
2843 {
2844 int ret = 0;
2845 MSIMessage from = {}, to = {};
2846 uint16_t sid = X86_IOMMU_SID_INVALID;
2847
2848 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2849 from.data = (uint32_t) value;
2850
2851 if (!attrs.unspecified) {
2852 /* We have explicit Source ID */
2853 sid = attrs.requester_id;
2854 }
2855
2856 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2857 if (ret) {
2858 /* TODO: report error */
2859 /* Drop this interrupt */
2860 return MEMTX_ERROR;
2861 }
2862
2863 apic_get_class()->send_msi(&to);
2864
2865 return MEMTX_OK;
2866 }
2867
2868 static const MemoryRegionOps vtd_mem_ir_ops = {
2869 .read_with_attrs = vtd_mem_ir_read,
2870 .write_with_attrs = vtd_mem_ir_write,
2871 .endianness = DEVICE_LITTLE_ENDIAN,
2872 .impl = {
2873 .min_access_size = 4,
2874 .max_access_size = 4,
2875 },
2876 .valid = {
2877 .min_access_size = 4,
2878 .max_access_size = 4,
2879 },
2880 };
2881
2882 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2883 {
2884 uintptr_t key = (uintptr_t)bus;
2885 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2886 VTDAddressSpace *vtd_dev_as;
2887 char name[128];
2888
2889 if (!vtd_bus) {
2890 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2891 *new_key = (uintptr_t)bus;
2892 /* No corresponding free() */
2893 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2894 PCI_DEVFN_MAX);
2895 vtd_bus->bus = bus;
2896 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2897 }
2898
2899 vtd_dev_as = vtd_bus->dev_as[devfn];
2900
2901 if (!vtd_dev_as) {
2902 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2903 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2904
2905 vtd_dev_as->bus = bus;
2906 vtd_dev_as->devfn = (uint8_t)devfn;
2907 vtd_dev_as->iommu_state = s;
2908 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2909 vtd_dev_as->iova_tree = iova_tree_new();
2910
2911 /*
2912 * Memory region relationships looks like (Address range shows
2913 * only lower 32 bits to make it short in length...):
2914 *
2915 * |-----------------+-------------------+----------|
2916 * | Name | Address range | Priority |
2917 * |-----------------+-------------------+----------+
2918 * | vtd_root | 00000000-ffffffff | 0 |
2919 * | intel_iommu | 00000000-ffffffff | 1 |
2920 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2921 * | intel_iommu_ir | fee00000-feefffff | 64 |
2922 * |-----------------+-------------------+----------|
2923 *
2924 * We enable/disable DMAR by switching enablement for
2925 * vtd_sys_alias and intel_iommu regions. IR region is always
2926 * enabled.
2927 */
2928 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2929 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2930 "intel_iommu_dmar",
2931 UINT64_MAX);
2932 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2933 "vtd_sys_alias", get_system_memory(),
2934 0, memory_region_size(get_system_memory()));
2935 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2936 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2937 VTD_INTERRUPT_ADDR_SIZE);
2938 memory_region_init(&vtd_dev_as->root, OBJECT(s),
2939 "vtd_root", UINT64_MAX);
2940 memory_region_add_subregion_overlap(&vtd_dev_as->root,
2941 VTD_INTERRUPT_ADDR_FIRST,
2942 &vtd_dev_as->iommu_ir, 64);
2943 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2944 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2945 &vtd_dev_as->sys_alias, 1);
2946 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2947 MEMORY_REGION(&vtd_dev_as->iommu),
2948 1);
2949 vtd_switch_address_space(vtd_dev_as);
2950 }
2951 return vtd_dev_as;
2952 }
2953
2954 /* Unmap the whole range in the notifier's scope. */
2955 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2956 {
2957 IOMMUTLBEntry entry;
2958 hwaddr size;
2959 hwaddr start = n->start;
2960 hwaddr end = n->end;
2961 IntelIOMMUState *s = as->iommu_state;
2962 DMAMap map;
2963
2964 /*
2965 * Note: all the codes in this function has a assumption that IOVA
2966 * bits are no more than VTD_MGAW bits (which is restricted by
2967 * VT-d spec), otherwise we need to consider overflow of 64 bits.
2968 */
2969
2970 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
2971 /*
2972 * Don't need to unmap regions that is bigger than the whole
2973 * VT-d supported address space size
2974 */
2975 end = VTD_ADDRESS_SIZE(s->aw_bits);
2976 }
2977
2978 assert(start <= end);
2979 size = end - start;
2980
2981 if (ctpop64(size) != 1) {
2982 /*
2983 * This size cannot format a correct mask. Let's enlarge it to
2984 * suite the minimum available mask.
2985 */
2986 int n = 64 - clz64(size);
2987 if (n > s->aw_bits) {
2988 /* should not happen, but in case it happens, limit it */
2989 n = s->aw_bits;
2990 }
2991 size = 1ULL << n;
2992 }
2993
2994 entry.target_as = &address_space_memory;
2995 /* Adjust iova for the size */
2996 entry.iova = n->start & ~(size - 1);
2997 /* This field is meaningless for unmap */
2998 entry.translated_addr = 0;
2999 entry.perm = IOMMU_NONE;
3000 entry.addr_mask = size - 1;
3001
3002 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3003 VTD_PCI_SLOT(as->devfn),
3004 VTD_PCI_FUNC(as->devfn),
3005 entry.iova, size);
3006
3007 map.iova = entry.iova;
3008 map.size = entry.addr_mask;
3009 iova_tree_remove(as->iova_tree, &map);
3010
3011 memory_region_notify_one(n, &entry);
3012 }
3013
3014 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3015 {
3016 VTDAddressSpace *vtd_as;
3017 IOMMUNotifier *n;
3018
3019 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3020 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3021 vtd_address_space_unmap(vtd_as, n);
3022 }
3023 }
3024 }
3025
3026 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3027 {
3028 memory_region_notify_one((IOMMUNotifier *)private, entry);
3029 return 0;
3030 }
3031
3032 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3033 {
3034 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3035 IntelIOMMUState *s = vtd_as->iommu_state;
3036 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3037 VTDContextEntry ce;
3038
3039 /*
3040 * The replay can be triggered by either a invalidation or a newly
3041 * created entry. No matter what, we release existing mappings
3042 * (it means flushing caches for UNMAP-only registers).
3043 */
3044 vtd_address_space_unmap(vtd_as, n);
3045
3046 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3047 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
3048 PCI_FUNC(vtd_as->devfn),
3049 VTD_CONTEXT_ENTRY_DID(ce.hi),
3050 ce.hi, ce.lo);
3051 if (vtd_as_has_map_notifier(vtd_as)) {
3052 /* This is required only for MAP typed notifiers */
3053 vtd_page_walk_info info = {
3054 .hook_fn = vtd_replay_hook,
3055 .private = (void *)n,
3056 .notify_unmap = false,
3057 .aw = s->aw_bits,
3058 .as = vtd_as,
3059 .domain_id = VTD_CONTEXT_ENTRY_DID(ce.hi),
3060 };
3061
3062 vtd_page_walk(&ce, 0, ~0ULL, &info);
3063 }
3064 } else {
3065 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3066 PCI_FUNC(vtd_as->devfn));
3067 }
3068
3069 return;
3070 }
3071
3072 /* Do the initialization. It will also be called when reset, so pay
3073 * attention when adding new initialization stuff.
3074 */
3075 static void vtd_init(IntelIOMMUState *s)
3076 {
3077 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3078
3079 memset(s->csr, 0, DMAR_REG_SIZE);
3080 memset(s->wmask, 0, DMAR_REG_SIZE);
3081 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3082 memset(s->womask, 0, DMAR_REG_SIZE);
3083
3084 s->root = 0;
3085 s->root_extended = false;
3086 s->dmar_enabled = false;
3087 s->iq_head = 0;
3088 s->iq_tail = 0;
3089 s->iq = 0;
3090 s->iq_size = 0;
3091 s->qi_enabled = false;
3092 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3093 s->next_frcd_reg = 0;
3094 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3095 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3096 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3097 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3098 s->cap |= VTD_CAP_SAGAW_48bit;
3099 }
3100 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3101
3102 /*
3103 * Rsvd field masks for spte
3104 */
3105 vtd_paging_entry_rsvd_field[0] = ~0ULL;
3106 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3107 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3108 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3109 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3110 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3111 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3112 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3113 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3114
3115 if (x86_iommu->intr_supported) {
3116 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3117 if (s->intr_eim == ON_OFF_AUTO_ON) {
3118 s->ecap |= VTD_ECAP_EIM;
3119 }
3120 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3121 }
3122
3123 if (x86_iommu->dt_supported) {
3124 s->ecap |= VTD_ECAP_DT;
3125 }
3126
3127 if (x86_iommu->pt_supported) {
3128 s->ecap |= VTD_ECAP_PT;
3129 }
3130
3131 if (s->caching_mode) {
3132 s->cap |= VTD_CAP_CM;
3133 }
3134
3135 vtd_iommu_lock(s);
3136 vtd_reset_context_cache_locked(s);
3137 vtd_reset_iotlb_locked(s);
3138 vtd_iommu_unlock(s);
3139
3140 /* Define registers with default values and bit semantics */
3141 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3142 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3143 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3144 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3145 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3146 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3147 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
3148 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3149 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3150
3151 /* Advanced Fault Logging not supported */
3152 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3153 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3154 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3155 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3156
3157 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3158 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3159 */
3160 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3161
3162 /* Treated as RO for implementations that PLMR and PHMR fields reported
3163 * as Clear in the CAP_REG.
3164 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3165 */
3166 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3167
3168 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3169 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3170 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
3171 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3172 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3173 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3174 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3175 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3176 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3177
3178 /* IOTLB registers */
3179 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3180 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3181 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3182
3183 /* Fault Recording Registers, 128-bit */
3184 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3185 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3186
3187 /*
3188 * Interrupt remapping registers.
3189 */
3190 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3191 }
3192
3193 /* Should not reset address_spaces when reset because devices will still use
3194 * the address space they got at first (won't ask the bus again).
3195 */
3196 static void vtd_reset(DeviceState *dev)
3197 {
3198 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3199
3200 vtd_init(s);
3201
3202 /*
3203 * When device reset, throw away all mappings and external caches
3204 */
3205 vtd_address_space_unmap_all(s);
3206 }
3207
3208 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3209 {
3210 IntelIOMMUState *s = opaque;
3211 VTDAddressSpace *vtd_as;
3212
3213 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3214
3215 vtd_as = vtd_find_add_as(s, bus, devfn);
3216 return &vtd_as->as;
3217 }
3218
3219 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3220 {
3221 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3222
3223 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3224 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
3225 !kvm_irqchip_is_split()) {
3226 error_setg(errp, "Intel Interrupt Remapping cannot work with "
3227 "kernel-irqchip=on, please use 'split|off'.");
3228 return false;
3229 }
3230 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3231 error_setg(errp, "eim=on cannot be selected without intremap=on");
3232 return false;
3233 }
3234
3235 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3236 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3237 && x86_iommu->intr_supported ?
3238 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3239 }
3240 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3241 if (!kvm_irqchip_in_kernel()) {
3242 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3243 return false;
3244 }
3245 if (!kvm_enable_x2apic()) {
3246 error_setg(errp, "eim=on requires support on the KVM side"
3247 "(X2APIC_API, first shipped in v4.7)");
3248 return false;
3249 }
3250 }
3251
3252 /* Currently only address widths supported are 39 and 48 bits */
3253 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3254 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3255 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3256 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3257 return false;
3258 }
3259
3260 return true;
3261 }
3262
3263 static void vtd_realize(DeviceState *dev, Error **errp)
3264 {
3265 MachineState *ms = MACHINE(qdev_get_machine());
3266 PCMachineState *pcms = PC_MACHINE(ms);
3267 PCIBus *bus = pcms->bus;
3268 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3269 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3270
3271 x86_iommu->type = TYPE_INTEL;
3272
3273 if (!vtd_decide_config(s, errp)) {
3274 return;
3275 }
3276
3277 QLIST_INIT(&s->vtd_as_with_notifiers);
3278 qemu_mutex_init(&s->iommu_lock);
3279 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3280 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3281 "intel_iommu", DMAR_REG_SIZE);
3282 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3283 /* No corresponding destroy */
3284 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3285 g_free, g_free);
3286 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3287 g_free, g_free);
3288 vtd_init(s);
3289 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3290 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3291 /* Pseudo address space under root PCI bus. */
3292 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3293 }
3294
3295 static void vtd_class_init(ObjectClass *klass, void *data)
3296 {
3297 DeviceClass *dc = DEVICE_CLASS(klass);
3298 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3299
3300 dc->reset = vtd_reset;
3301 dc->vmsd = &vtd_vmstate;
3302 dc->props = vtd_properties;
3303 dc->hotpluggable = false;
3304 x86_class->realize = vtd_realize;
3305 x86_class->int_remap = vtd_int_remap;
3306 /* Supported by the pc-q35-* machine types */
3307 dc->user_creatable = true;
3308 }
3309
3310 static const TypeInfo vtd_info = {
3311 .name = TYPE_INTEL_IOMMU_DEVICE,
3312 .parent = TYPE_X86_IOMMU_DEVICE,
3313 .instance_size = sizeof(IntelIOMMUState),
3314 .class_init = vtd_class_init,
3315 };
3316
3317 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3318 void *data)
3319 {
3320 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3321
3322 imrc->translate = vtd_iommu_translate;
3323 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3324 imrc->replay = vtd_iommu_replay;
3325 }
3326
3327 static const TypeInfo vtd_iommu_memory_region_info = {
3328 .parent = TYPE_IOMMU_MEMORY_REGION,
3329 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3330 .class_init = vtd_iommu_memory_region_class_init,
3331 };
3332
3333 static void vtd_register_types(void)
3334 {
3335 type_register_static(&vtd_info);
3336 type_register_static(&vtd_iommu_memory_region_info);
3337 }
3338
3339 type_init(vtd_register_types)