]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
Merge remote-tracking branch 'remotes/mdroth/tags/qga-pull-2015-02-16-v2-tag' into...
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "hw/sysbus.h"
23 #include "exec/address-spaces.h"
24 #include "intel_iommu_internal.h"
25
26 /*#define DEBUG_INTEL_IOMMU*/
27 #ifdef DEBUG_INTEL_IOMMU
28 enum {
29 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
30 DEBUG_CACHE,
31 };
32 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
33 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
34
35 #define VTD_DPRINTF(what, fmt, ...) do { \
36 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
37 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
38 ## __VA_ARGS__); } \
39 } while (0)
40 #else
41 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
42 #endif
43
44 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
45 uint64_t wmask, uint64_t w1cmask)
46 {
47 stq_le_p(&s->csr[addr], val);
48 stq_le_p(&s->wmask[addr], wmask);
49 stq_le_p(&s->w1cmask[addr], w1cmask);
50 }
51
52 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
53 {
54 stq_le_p(&s->womask[addr], mask);
55 }
56
57 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
58 uint32_t wmask, uint32_t w1cmask)
59 {
60 stl_le_p(&s->csr[addr], val);
61 stl_le_p(&s->wmask[addr], wmask);
62 stl_le_p(&s->w1cmask[addr], w1cmask);
63 }
64
65 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
66 {
67 stl_le_p(&s->womask[addr], mask);
68 }
69
70 /* "External" get/set operations */
71 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
72 {
73 uint64_t oldval = ldq_le_p(&s->csr[addr]);
74 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
75 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
76 stq_le_p(&s->csr[addr],
77 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
78 }
79
80 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
81 {
82 uint32_t oldval = ldl_le_p(&s->csr[addr]);
83 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
84 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
85 stl_le_p(&s->csr[addr],
86 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
87 }
88
89 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
90 {
91 uint64_t val = ldq_le_p(&s->csr[addr]);
92 uint64_t womask = ldq_le_p(&s->womask[addr]);
93 return val & ~womask;
94 }
95
96 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
97 {
98 uint32_t val = ldl_le_p(&s->csr[addr]);
99 uint32_t womask = ldl_le_p(&s->womask[addr]);
100 return val & ~womask;
101 }
102
103 /* "Internal" get/set operations */
104 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
105 {
106 return ldq_le_p(&s->csr[addr]);
107 }
108
109 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
110 {
111 return ldl_le_p(&s->csr[addr]);
112 }
113
114 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
115 {
116 stq_le_p(&s->csr[addr], val);
117 }
118
119 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
120 uint32_t clear, uint32_t mask)
121 {
122 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
123 stl_le_p(&s->csr[addr], new_val);
124 return new_val;
125 }
126
127 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
128 uint64_t clear, uint64_t mask)
129 {
130 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
131 stq_le_p(&s->csr[addr], new_val);
132 return new_val;
133 }
134
135 /* GHashTable functions */
136 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
137 {
138 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
139 }
140
141 static guint vtd_uint64_hash(gconstpointer v)
142 {
143 return (guint)*(const uint64_t *)v;
144 }
145
146 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
147 gpointer user_data)
148 {
149 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
150 uint16_t domain_id = *(uint16_t *)user_data;
151 return entry->domain_id == domain_id;
152 }
153
154 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
155 gpointer user_data)
156 {
157 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
158 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
159 uint64_t gfn = info->gfn & info->mask;
160 return (entry->domain_id == info->domain_id) &&
161 ((entry->gfn & info->mask) == gfn);
162 }
163
164 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
165 * IntelIOMMUState to 1.
166 */
167 static void vtd_reset_context_cache(IntelIOMMUState *s)
168 {
169 VTDAddressSpace **pvtd_as;
170 VTDAddressSpace *vtd_as;
171 uint32_t bus_it;
172 uint32_t devfn_it;
173
174 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
175 for (bus_it = 0; bus_it < VTD_PCI_BUS_MAX; ++bus_it) {
176 pvtd_as = s->address_spaces[bus_it];
177 if (!pvtd_as) {
178 continue;
179 }
180 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
181 vtd_as = pvtd_as[devfn_it];
182 if (!vtd_as) {
183 continue;
184 }
185 vtd_as->context_cache_entry.context_cache_gen = 0;
186 }
187 }
188 s->context_cache_gen = 1;
189 }
190
191 static void vtd_reset_iotlb(IntelIOMMUState *s)
192 {
193 assert(s->iotlb);
194 g_hash_table_remove_all(s->iotlb);
195 }
196
197 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
198 hwaddr addr)
199 {
200 uint64_t key;
201
202 key = (addr >> VTD_PAGE_SHIFT_4K) |
203 ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
204 return g_hash_table_lookup(s->iotlb, &key);
205
206 }
207
208 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
209 uint16_t domain_id, hwaddr addr, uint64_t slpte,
210 bool read_flags, bool write_flags)
211 {
212 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
213 uint64_t *key = g_malloc(sizeof(*key));
214 uint64_t gfn = addr >> VTD_PAGE_SHIFT_4K;
215
216 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
217 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
218 domain_id);
219 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
220 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
221 vtd_reset_iotlb(s);
222 }
223
224 entry->gfn = gfn;
225 entry->domain_id = domain_id;
226 entry->slpte = slpte;
227 entry->read_flags = read_flags;
228 entry->write_flags = write_flags;
229 *key = gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT);
230 g_hash_table_replace(s->iotlb, key, entry);
231 }
232
233 /* Given the reg addr of both the message data and address, generate an
234 * interrupt via MSI.
235 */
236 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
237 hwaddr mesg_data_reg)
238 {
239 hwaddr addr;
240 uint32_t data;
241
242 assert(mesg_data_reg < DMAR_REG_SIZE);
243 assert(mesg_addr_reg < DMAR_REG_SIZE);
244
245 addr = vtd_get_long_raw(s, mesg_addr_reg);
246 data = vtd_get_long_raw(s, mesg_data_reg);
247
248 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
249 stl_le_phys(&address_space_memory, addr, data);
250 }
251
252 /* Generate a fault event to software via MSI if conditions are met.
253 * Notice that the value of FSTS_REG being passed to it should be the one
254 * before any update.
255 */
256 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
257 {
258 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
259 pre_fsts & VTD_FSTS_IQE) {
260 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
261 "to be serviced by software, fault event is not generated "
262 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
263 return;
264 }
265 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
266 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
267 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
268 } else {
269 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
270 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
271 }
272 }
273
274 /* Check if the Fault (F) field of the Fault Recording Register referenced by
275 * @index is Set.
276 */
277 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
278 {
279 /* Each reg is 128-bit */
280 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
281 addr += 8; /* Access the high 64-bit half */
282
283 assert(index < DMAR_FRCD_REG_NR);
284
285 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
286 }
287
288 /* Update the PPF field of Fault Status Register.
289 * Should be called whenever change the F field of any fault recording
290 * registers.
291 */
292 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
293 {
294 uint32_t i;
295 uint32_t ppf_mask = 0;
296
297 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
298 if (vtd_is_frcd_set(s, i)) {
299 ppf_mask = VTD_FSTS_PPF;
300 break;
301 }
302 }
303 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
304 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
305 }
306
307 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
308 {
309 /* Each reg is 128-bit */
310 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
311 addr += 8; /* Access the high 64-bit half */
312
313 assert(index < DMAR_FRCD_REG_NR);
314
315 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
316 vtd_update_fsts_ppf(s);
317 }
318
319 /* Must not update F field now, should be done later */
320 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
321 uint16_t source_id, hwaddr addr,
322 VTDFaultReason fault, bool is_write)
323 {
324 uint64_t hi = 0, lo;
325 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
326
327 assert(index < DMAR_FRCD_REG_NR);
328
329 lo = VTD_FRCD_FI(addr);
330 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
331 if (!is_write) {
332 hi |= VTD_FRCD_T;
333 }
334 vtd_set_quad_raw(s, frcd_reg_addr, lo);
335 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
336 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
337 ", lo 0x%"PRIx64, index, hi, lo);
338 }
339
340 /* Try to collapse multiple pending faults from the same requester */
341 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
342 {
343 uint32_t i;
344 uint64_t frcd_reg;
345 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
346
347 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
348 frcd_reg = vtd_get_quad_raw(s, addr);
349 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
350 if ((frcd_reg & VTD_FRCD_F) &&
351 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
352 return true;
353 }
354 addr += 16; /* 128-bit for each */
355 }
356 return false;
357 }
358
359 /* Log and report an DMAR (address translation) fault to software */
360 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
361 hwaddr addr, VTDFaultReason fault,
362 bool is_write)
363 {
364 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
365
366 assert(fault < VTD_FR_MAX);
367
368 if (fault == VTD_FR_RESERVED_ERR) {
369 /* This is not a normal fault reason case. Drop it. */
370 return;
371 }
372 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
373 ", is_write %d", source_id, fault, addr, is_write);
374 if (fsts_reg & VTD_FSTS_PFO) {
375 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
376 "Primary Fault Overflow");
377 return;
378 }
379 if (vtd_try_collapse_fault(s, source_id)) {
380 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
381 "compression of faults");
382 return;
383 }
384 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
385 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
386 "new fault is not recorded, set PFO field");
387 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
388 return;
389 }
390
391 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
392
393 if (fsts_reg & VTD_FSTS_PPF) {
394 VTD_DPRINTF(FLOG, "there are pending faults already, "
395 "fault event is not generated");
396 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
397 s->next_frcd_reg++;
398 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
399 s->next_frcd_reg = 0;
400 }
401 } else {
402 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
403 VTD_FSTS_FRI(s->next_frcd_reg));
404 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
405 s->next_frcd_reg++;
406 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
407 s->next_frcd_reg = 0;
408 }
409 /* This case actually cause the PPF to be Set.
410 * So generate fault event (interrupt).
411 */
412 vtd_generate_fault_event(s, fsts_reg);
413 }
414 }
415
416 /* Handle Invalidation Queue Errors of queued invalidation interface error
417 * conditions.
418 */
419 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
420 {
421 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
422
423 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
424 vtd_generate_fault_event(s, fsts_reg);
425 }
426
427 /* Set the IWC field and try to generate an invalidation completion interrupt */
428 static void vtd_generate_completion_event(IntelIOMMUState *s)
429 {
430 VTD_DPRINTF(INV, "completes an invalidation wait command with "
431 "Interrupt Flag");
432 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
433 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
434 "serviced by software, "
435 "new invalidation event is not generated");
436 return;
437 }
438 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
439 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
440 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
441 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
442 "event is not generated");
443 return;
444 } else {
445 /* Generate the interrupt event */
446 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
447 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
448 }
449 }
450
451 static inline bool vtd_root_entry_present(VTDRootEntry *root)
452 {
453 return root->val & VTD_ROOT_ENTRY_P;
454 }
455
456 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
457 VTDRootEntry *re)
458 {
459 dma_addr_t addr;
460
461 addr = s->root + index * sizeof(*re);
462 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
463 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
464 " + %"PRIu8, s->root, index);
465 re->val = 0;
466 return -VTD_FR_ROOT_TABLE_INV;
467 }
468 re->val = le64_to_cpu(re->val);
469 return 0;
470 }
471
472 static inline bool vtd_context_entry_present(VTDContextEntry *context)
473 {
474 return context->lo & VTD_CONTEXT_ENTRY_P;
475 }
476
477 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
478 VTDContextEntry *ce)
479 {
480 dma_addr_t addr;
481
482 if (!vtd_root_entry_present(root)) {
483 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
484 return -VTD_FR_ROOT_ENTRY_P;
485 }
486 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
487 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
488 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
489 " + %"PRIu8,
490 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
491 return -VTD_FR_CONTEXT_TABLE_INV;
492 }
493 ce->lo = le64_to_cpu(ce->lo);
494 ce->hi = le64_to_cpu(ce->hi);
495 return 0;
496 }
497
498 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
499 {
500 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
501 }
502
503 /* The shift of an addr for a certain level of paging structure */
504 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
505 {
506 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
507 }
508
509 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
510 {
511 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
512 }
513
514 /* Whether the pte indicates the address of the page frame */
515 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
516 {
517 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
518 }
519
520 /* Get the content of a spte located in @base_addr[@index] */
521 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
522 {
523 uint64_t slpte;
524
525 assert(index < VTD_SL_PT_ENTRY_NR);
526
527 if (dma_memory_read(&address_space_memory,
528 base_addr + index * sizeof(slpte), &slpte,
529 sizeof(slpte))) {
530 slpte = (uint64_t)-1;
531 return slpte;
532 }
533 slpte = le64_to_cpu(slpte);
534 return slpte;
535 }
536
537 /* Given a gpa and the level of paging structure, return the offset of current
538 * level.
539 */
540 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
541 {
542 return (gpa >> vtd_slpt_level_shift(level)) &
543 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
544 }
545
546 /* Check Capability Register to see if the @level of page-table is supported */
547 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
548 {
549 return VTD_CAP_SAGAW_MASK & s->cap &
550 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
551 }
552
553 /* Get the page-table level that hardware should use for the second-level
554 * page-table walk from the Address Width field of context-entry.
555 */
556 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
557 {
558 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
559 }
560
561 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
562 {
563 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
564 }
565
566 static const uint64_t vtd_paging_entry_rsvd_field[] = {
567 [0] = ~0ULL,
568 /* For not large page */
569 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
570 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
571 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
572 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
573 /* For large page */
574 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
575 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
576 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
577 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
578 };
579
580 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
581 {
582 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
583 /* Maybe large page */
584 return slpte & vtd_paging_entry_rsvd_field[level + 4];
585 } else {
586 return slpte & vtd_paging_entry_rsvd_field[level];
587 }
588 }
589
590 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
591 * of the translation, can be used for deciding the size of large page.
592 */
593 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
594 uint64_t *slptep, uint32_t *slpte_level,
595 bool *reads, bool *writes)
596 {
597 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
598 uint32_t level = vtd_get_level_from_context_entry(ce);
599 uint32_t offset;
600 uint64_t slpte;
601 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
602 uint64_t access_right_check;
603
604 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
605 * and AW in context-entry.
606 */
607 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
608 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
609 return -VTD_FR_ADDR_BEYOND_MGAW;
610 }
611
612 /* FIXME: what is the Atomics request here? */
613 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
614
615 while (true) {
616 offset = vtd_gpa_level_offset(gpa, level);
617 slpte = vtd_get_slpte(addr, offset);
618
619 if (slpte == (uint64_t)-1) {
620 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
621 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
622 level, gpa);
623 if (level == vtd_get_level_from_context_entry(ce)) {
624 /* Invalid programming of context-entry */
625 return -VTD_FR_CONTEXT_ENTRY_INV;
626 } else {
627 return -VTD_FR_PAGING_ENTRY_INV;
628 }
629 }
630 *reads = (*reads) && (slpte & VTD_SL_R);
631 *writes = (*writes) && (slpte & VTD_SL_W);
632 if (!(slpte & access_right_check)) {
633 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
634 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
635 (is_write ? "write" : "read"), gpa, slpte);
636 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
637 }
638 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
639 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
640 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
641 level, slpte);
642 return -VTD_FR_PAGING_ENTRY_RSVD;
643 }
644
645 if (vtd_is_last_slpte(slpte, level)) {
646 *slptep = slpte;
647 *slpte_level = level;
648 return 0;
649 }
650 addr = vtd_get_slpte_addr(slpte);
651 level--;
652 }
653 }
654
655 /* Map a device to its corresponding domain (context-entry) */
656 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
657 uint8_t devfn, VTDContextEntry *ce)
658 {
659 VTDRootEntry re;
660 int ret_fr;
661
662 ret_fr = vtd_get_root_entry(s, bus_num, &re);
663 if (ret_fr) {
664 return ret_fr;
665 }
666
667 if (!vtd_root_entry_present(&re)) {
668 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
669 bus_num);
670 return -VTD_FR_ROOT_ENTRY_P;
671 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
672 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
673 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
674 return -VTD_FR_ROOT_ENTRY_RSVD;
675 }
676
677 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
678 if (ret_fr) {
679 return ret_fr;
680 }
681
682 if (!vtd_context_entry_present(ce)) {
683 VTD_DPRINTF(GENERAL,
684 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
685 "is not present", devfn, bus_num);
686 return -VTD_FR_CONTEXT_ENTRY_P;
687 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
688 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
689 VTD_DPRINTF(GENERAL,
690 "error: non-zero reserved field in context-entry "
691 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
692 return -VTD_FR_CONTEXT_ENTRY_RSVD;
693 }
694 /* Check if the programming of context-entry is valid */
695 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
696 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
697 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
698 ce->hi, ce->lo);
699 return -VTD_FR_CONTEXT_ENTRY_INV;
700 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
701 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
702 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
703 ce->hi, ce->lo);
704 return -VTD_FR_CONTEXT_ENTRY_INV;
705 }
706 return 0;
707 }
708
709 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
710 {
711 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
712 }
713
714 static const bool vtd_qualified_faults[] = {
715 [VTD_FR_RESERVED] = false,
716 [VTD_FR_ROOT_ENTRY_P] = false,
717 [VTD_FR_CONTEXT_ENTRY_P] = true,
718 [VTD_FR_CONTEXT_ENTRY_INV] = true,
719 [VTD_FR_ADDR_BEYOND_MGAW] = true,
720 [VTD_FR_WRITE] = true,
721 [VTD_FR_READ] = true,
722 [VTD_FR_PAGING_ENTRY_INV] = true,
723 [VTD_FR_ROOT_TABLE_INV] = false,
724 [VTD_FR_CONTEXT_TABLE_INV] = false,
725 [VTD_FR_ROOT_ENTRY_RSVD] = false,
726 [VTD_FR_PAGING_ENTRY_RSVD] = true,
727 [VTD_FR_CONTEXT_ENTRY_TT] = true,
728 [VTD_FR_RESERVED_ERR] = false,
729 [VTD_FR_MAX] = false,
730 };
731
732 /* To see if a fault condition is "qualified", which is reported to software
733 * only if the FPD field in the context-entry used to process the faulting
734 * request is 0.
735 */
736 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
737 {
738 return vtd_qualified_faults[fault];
739 }
740
741 static inline bool vtd_is_interrupt_addr(hwaddr addr)
742 {
743 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
744 }
745
746 /* Map dev to context-entry then do a paging-structures walk to do a iommu
747 * translation.
748 *
749 * Called from RCU critical section.
750 *
751 * @bus_num: The bus number
752 * @devfn: The devfn, which is the combined of device and function number
753 * @is_write: The access is a write operation
754 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
755 */
756 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, uint8_t bus_num,
757 uint8_t devfn, hwaddr addr, bool is_write,
758 IOMMUTLBEntry *entry)
759 {
760 IntelIOMMUState *s = vtd_as->iommu_state;
761 VTDContextEntry ce;
762 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
763 uint64_t slpte;
764 uint32_t level;
765 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
766 int ret_fr;
767 bool is_fpd_set = false;
768 bool reads = true;
769 bool writes = true;
770 VTDIOTLBEntry *iotlb_entry;
771
772 /* Check if the request is in interrupt address range */
773 if (vtd_is_interrupt_addr(addr)) {
774 if (is_write) {
775 /* FIXME: since we don't know the length of the access here, we
776 * treat Non-DWORD length write requests without PASID as
777 * interrupt requests, too. Withoud interrupt remapping support,
778 * we just use 1:1 mapping.
779 */
780 VTD_DPRINTF(MMU, "write request to interrupt address "
781 "gpa 0x%"PRIx64, addr);
782 entry->iova = addr & VTD_PAGE_MASK_4K;
783 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
784 entry->addr_mask = ~VTD_PAGE_MASK_4K;
785 entry->perm = IOMMU_WO;
786 return;
787 } else {
788 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
789 "gpa 0x%"PRIx64, addr);
790 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
791 return;
792 }
793 }
794 /* Try to fetch slpte form IOTLB */
795 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
796 if (iotlb_entry) {
797 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
798 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
799 iotlb_entry->slpte, iotlb_entry->domain_id);
800 slpte = iotlb_entry->slpte;
801 reads = iotlb_entry->read_flags;
802 writes = iotlb_entry->write_flags;
803 goto out;
804 }
805 /* Try to fetch context-entry from cache first */
806 if (cc_entry->context_cache_gen == s->context_cache_gen) {
807 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
808 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
809 bus_num, devfn, cc_entry->context_entry.hi,
810 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
811 ce = cc_entry->context_entry;
812 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
813 } else {
814 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
815 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
816 if (ret_fr) {
817 ret_fr = -ret_fr;
818 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
819 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
820 "requests through this context-entry "
821 "(with FPD Set)");
822 } else {
823 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
824 }
825 return;
826 }
827 /* Update context-cache */
828 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
829 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
830 bus_num, devfn, ce.hi, ce.lo,
831 cc_entry->context_cache_gen, s->context_cache_gen);
832 cc_entry->context_entry = ce;
833 cc_entry->context_cache_gen = s->context_cache_gen;
834 }
835
836 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
837 &reads, &writes);
838 if (ret_fr) {
839 ret_fr = -ret_fr;
840 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
841 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
842 "through this context-entry (with FPD Set)");
843 } else {
844 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
845 }
846 return;
847 }
848
849 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
850 reads, writes);
851 out:
852 entry->iova = addr & VTD_PAGE_MASK_4K;
853 entry->translated_addr = vtd_get_slpte_addr(slpte) & VTD_PAGE_MASK_4K;
854 entry->addr_mask = ~VTD_PAGE_MASK_4K;
855 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
856 }
857
858 static void vtd_root_table_setup(IntelIOMMUState *s)
859 {
860 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
861 s->root_extended = s->root & VTD_RTADDR_RTT;
862 s->root &= VTD_RTADDR_ADDR_MASK;
863
864 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
865 (s->root_extended ? "(extended)" : ""));
866 }
867
868 static void vtd_context_global_invalidate(IntelIOMMUState *s)
869 {
870 s->context_cache_gen++;
871 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
872 vtd_reset_context_cache(s);
873 }
874 }
875
876 /* Do a context-cache device-selective invalidation.
877 * @func_mask: FM field after shifting
878 */
879 static void vtd_context_device_invalidate(IntelIOMMUState *s,
880 uint16_t source_id,
881 uint16_t func_mask)
882 {
883 uint16_t mask;
884 VTDAddressSpace **pvtd_as;
885 VTDAddressSpace *vtd_as;
886 uint16_t devfn;
887 uint16_t devfn_it;
888
889 switch (func_mask & 3) {
890 case 0:
891 mask = 0; /* No bits in the SID field masked */
892 break;
893 case 1:
894 mask = 4; /* Mask bit 2 in the SID field */
895 break;
896 case 2:
897 mask = 6; /* Mask bit 2:1 in the SID field */
898 break;
899 case 3:
900 mask = 7; /* Mask bit 2:0 in the SID field */
901 break;
902 }
903 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
904 " mask %"PRIu16, source_id, mask);
905 pvtd_as = s->address_spaces[VTD_SID_TO_BUS(source_id)];
906 if (pvtd_as) {
907 devfn = VTD_SID_TO_DEVFN(source_id);
908 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
909 vtd_as = pvtd_as[devfn_it];
910 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
911 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
912 devfn_it);
913 vtd_as->context_cache_entry.context_cache_gen = 0;
914 }
915 }
916 }
917 }
918
919 /* Context-cache invalidation
920 * Returns the Context Actual Invalidation Granularity.
921 * @val: the content of the CCMD_REG
922 */
923 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
924 {
925 uint64_t caig;
926 uint64_t type = val & VTD_CCMD_CIRG_MASK;
927
928 switch (type) {
929 case VTD_CCMD_DOMAIN_INVL:
930 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
931 (uint16_t)VTD_CCMD_DID(val));
932 /* Fall through */
933 case VTD_CCMD_GLOBAL_INVL:
934 VTD_DPRINTF(INV, "global invalidation");
935 caig = VTD_CCMD_GLOBAL_INVL_A;
936 vtd_context_global_invalidate(s);
937 break;
938
939 case VTD_CCMD_DEVICE_INVL:
940 caig = VTD_CCMD_DEVICE_INVL_A;
941 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
942 break;
943
944 default:
945 VTD_DPRINTF(GENERAL, "error: invalid granularity");
946 caig = 0;
947 }
948 return caig;
949 }
950
951 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
952 {
953 vtd_reset_iotlb(s);
954 }
955
956 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
957 {
958 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
959 &domain_id);
960 }
961
962 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
963 hwaddr addr, uint8_t am)
964 {
965 VTDIOTLBPageInvInfo info;
966
967 assert(am <= VTD_MAMV);
968 info.domain_id = domain_id;
969 info.gfn = addr >> VTD_PAGE_SHIFT_4K;
970 info.mask = ~((1 << am) - 1);
971 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
972 }
973
974 /* Flush IOTLB
975 * Returns the IOTLB Actual Invalidation Granularity.
976 * @val: the content of the IOTLB_REG
977 */
978 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
979 {
980 uint64_t iaig;
981 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
982 uint16_t domain_id;
983 hwaddr addr;
984 uint8_t am;
985
986 switch (type) {
987 case VTD_TLB_GLOBAL_FLUSH:
988 VTD_DPRINTF(INV, "global invalidation");
989 iaig = VTD_TLB_GLOBAL_FLUSH_A;
990 vtd_iotlb_global_invalidate(s);
991 break;
992
993 case VTD_TLB_DSI_FLUSH:
994 domain_id = VTD_TLB_DID(val);
995 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
996 domain_id);
997 iaig = VTD_TLB_DSI_FLUSH_A;
998 vtd_iotlb_domain_invalidate(s, domain_id);
999 break;
1000
1001 case VTD_TLB_PSI_FLUSH:
1002 domain_id = VTD_TLB_DID(val);
1003 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1004 am = VTD_IVA_AM(addr);
1005 addr = VTD_IVA_ADDR(addr);
1006 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1007 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1008 if (am > VTD_MAMV) {
1009 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1010 "%"PRIu8, (uint8_t)VTD_MAMV);
1011 iaig = 0;
1012 break;
1013 }
1014 iaig = VTD_TLB_PSI_FLUSH_A;
1015 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1016 break;
1017
1018 default:
1019 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1020 iaig = 0;
1021 }
1022 return iaig;
1023 }
1024
1025 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1026 {
1027 return s->iq_tail == 0;
1028 }
1029
1030 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1031 {
1032 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1033 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1034 }
1035
1036 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1037 {
1038 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1039
1040 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1041 if (en) {
1042 if (vtd_queued_inv_enable_check(s)) {
1043 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1044 /* 2^(x+8) entries */
1045 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1046 s->qi_enabled = true;
1047 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1048 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1049 s->iq, s->iq_size);
1050 /* Ok - report back to driver */
1051 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1052 } else {
1053 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1054 "tail %"PRIu16, s->iq_tail);
1055 }
1056 } else {
1057 if (vtd_queued_inv_disable_check(s)) {
1058 /* disable Queued Invalidation */
1059 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1060 s->iq_head = 0;
1061 s->qi_enabled = false;
1062 /* Ok - report back to driver */
1063 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1064 } else {
1065 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1066 "head %"PRIu16 ", tail %"PRIu16
1067 ", last_descriptor %"PRIu8,
1068 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1069 }
1070 }
1071 }
1072
1073 /* Set Root Table Pointer */
1074 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1075 {
1076 VTD_DPRINTF(CSR, "set Root Table Pointer");
1077
1078 vtd_root_table_setup(s);
1079 /* Ok - report back to driver */
1080 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1081 }
1082
1083 /* Handle Translation Enable/Disable */
1084 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1085 {
1086 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1087
1088 if (en) {
1089 s->dmar_enabled = true;
1090 /* Ok - report back to driver */
1091 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1092 } else {
1093 s->dmar_enabled = false;
1094
1095 /* Clear the index of Fault Recording Register */
1096 s->next_frcd_reg = 0;
1097 /* Ok - report back to driver */
1098 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1099 }
1100 }
1101
1102 /* Handle write to Global Command Register */
1103 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1104 {
1105 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1106 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1107 uint32_t changed = status ^ val;
1108
1109 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1110 if (changed & VTD_GCMD_TE) {
1111 /* Translation enable/disable */
1112 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1113 }
1114 if (val & VTD_GCMD_SRTP) {
1115 /* Set/update the root-table pointer */
1116 vtd_handle_gcmd_srtp(s);
1117 }
1118 if (changed & VTD_GCMD_QIE) {
1119 /* Queued Invalidation Enable */
1120 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1121 }
1122 }
1123
1124 /* Handle write to Context Command Register */
1125 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1126 {
1127 uint64_t ret;
1128 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1129
1130 /* Context-cache invalidation request */
1131 if (val & VTD_CCMD_ICC) {
1132 if (s->qi_enabled) {
1133 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1134 "should not use register-based invalidation");
1135 return;
1136 }
1137 ret = vtd_context_cache_invalidate(s, val);
1138 /* Invalidation completed. Change something to show */
1139 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1140 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1141 ret);
1142 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1143 }
1144 }
1145
1146 /* Handle write to IOTLB Invalidation Register */
1147 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1148 {
1149 uint64_t ret;
1150 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1151
1152 /* IOTLB invalidation request */
1153 if (val & VTD_TLB_IVT) {
1154 if (s->qi_enabled) {
1155 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1156 "should not use register-based invalidation");
1157 return;
1158 }
1159 ret = vtd_iotlb_flush(s, val);
1160 /* Invalidation completed. Change something to show */
1161 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1162 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1163 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1164 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1165 }
1166 }
1167
1168 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1169 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1170 VTDInvDesc *inv_desc)
1171 {
1172 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1173 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1174 sizeof(*inv_desc))) {
1175 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1176 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1177 inv_desc->lo = 0;
1178 inv_desc->hi = 0;
1179
1180 return false;
1181 }
1182 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1183 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1184 return true;
1185 }
1186
1187 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1188 {
1189 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1190 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1191 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1192 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1193 inv_desc->hi, inv_desc->lo);
1194 return false;
1195 }
1196 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1197 /* Status Write */
1198 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1199 VTD_INV_DESC_WAIT_DATA_SHIFT);
1200
1201 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1202
1203 /* FIXME: need to be masked with HAW? */
1204 dma_addr_t status_addr = inv_desc->hi;
1205 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1206 status_data, status_addr);
1207 status_data = cpu_to_le32(status_data);
1208 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1209 sizeof(status_data))) {
1210 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1211 return false;
1212 }
1213 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1214 /* Interrupt flag */
1215 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1216 vtd_generate_completion_event(s);
1217 } else {
1218 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1219 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1220 return false;
1221 }
1222 return true;
1223 }
1224
1225 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1226 VTDInvDesc *inv_desc)
1227 {
1228 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1229 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1230 "Invalidate Descriptor");
1231 return false;
1232 }
1233 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1234 case VTD_INV_DESC_CC_DOMAIN:
1235 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1236 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1237 /* Fall through */
1238 case VTD_INV_DESC_CC_GLOBAL:
1239 VTD_DPRINTF(INV, "global invalidation");
1240 vtd_context_global_invalidate(s);
1241 break;
1242
1243 case VTD_INV_DESC_CC_DEVICE:
1244 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1245 VTD_INV_DESC_CC_FM(inv_desc->lo));
1246 break;
1247
1248 default:
1249 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1250 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1251 inv_desc->hi, inv_desc->lo);
1252 return false;
1253 }
1254 return true;
1255 }
1256
1257 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1258 {
1259 uint16_t domain_id;
1260 uint8_t am;
1261 hwaddr addr;
1262
1263 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1264 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1265 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1266 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1267 inv_desc->hi, inv_desc->lo);
1268 return false;
1269 }
1270
1271 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1272 case VTD_INV_DESC_IOTLB_GLOBAL:
1273 VTD_DPRINTF(INV, "global invalidation");
1274 vtd_iotlb_global_invalidate(s);
1275 break;
1276
1277 case VTD_INV_DESC_IOTLB_DOMAIN:
1278 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1279 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1280 domain_id);
1281 vtd_iotlb_domain_invalidate(s, domain_id);
1282 break;
1283
1284 case VTD_INV_DESC_IOTLB_PAGE:
1285 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1286 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1287 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1288 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1289 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1290 if (am > VTD_MAMV) {
1291 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1292 "%"PRIu8, (uint8_t)VTD_MAMV);
1293 return false;
1294 }
1295 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1296 break;
1297
1298 default:
1299 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1300 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1301 inv_desc->hi, inv_desc->lo);
1302 return false;
1303 }
1304 return true;
1305 }
1306
1307 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1308 {
1309 VTDInvDesc inv_desc;
1310 uint8_t desc_type;
1311
1312 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1313 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1314 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1315 return false;
1316 }
1317 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1318 /* FIXME: should update at first or at last? */
1319 s->iq_last_desc_type = desc_type;
1320
1321 switch (desc_type) {
1322 case VTD_INV_DESC_CC:
1323 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1324 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1325 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1326 return false;
1327 }
1328 break;
1329
1330 case VTD_INV_DESC_IOTLB:
1331 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1332 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1333 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1334 return false;
1335 }
1336 break;
1337
1338 case VTD_INV_DESC_WAIT:
1339 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1340 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1341 if (!vtd_process_wait_desc(s, &inv_desc)) {
1342 return false;
1343 }
1344 break;
1345
1346 default:
1347 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1348 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1349 inv_desc.hi, inv_desc.lo, desc_type);
1350 return false;
1351 }
1352 s->iq_head++;
1353 if (s->iq_head == s->iq_size) {
1354 s->iq_head = 0;
1355 }
1356 return true;
1357 }
1358
1359 /* Try to fetch and process more Invalidation Descriptors */
1360 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1361 {
1362 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1363 if (s->iq_tail >= s->iq_size) {
1364 /* Detects an invalid Tail pointer */
1365 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1366 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1367 vtd_handle_inv_queue_error(s);
1368 return;
1369 }
1370 while (s->iq_head != s->iq_tail) {
1371 if (!vtd_process_inv_desc(s)) {
1372 /* Invalidation Queue Errors */
1373 vtd_handle_inv_queue_error(s);
1374 break;
1375 }
1376 /* Must update the IQH_REG in time */
1377 vtd_set_quad_raw(s, DMAR_IQH_REG,
1378 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1379 VTD_IQH_QH_MASK);
1380 }
1381 }
1382
1383 /* Handle write to Invalidation Queue Tail Register */
1384 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1385 {
1386 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1387
1388 s->iq_tail = VTD_IQT_QT(val);
1389 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1390 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1391 /* Process Invalidation Queue here */
1392 vtd_fetch_inv_desc(s);
1393 }
1394 }
1395
1396 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1397 {
1398 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1399 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1400 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1401
1402 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1403 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1404 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1405 "IP field of FECTL_REG");
1406 }
1407 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1408 * Descriptors if there are any when Queued Invalidation is enabled?
1409 */
1410 }
1411
1412 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1413 {
1414 uint32_t fectl_reg;
1415 /* FIXME: when software clears the IM field, check the IP field. But do we
1416 * need to compare the old value and the new value to conclude that
1417 * software clears the IM field? Or just check if the IM field is zero?
1418 */
1419 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1420 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1421 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1422 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1423 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1424 "fault event interrupt");
1425 }
1426 }
1427
1428 static void vtd_handle_ics_write(IntelIOMMUState *s)
1429 {
1430 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1431 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1432
1433 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1434 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1435 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1436 "clear IP field of IECTL_REG");
1437 }
1438 }
1439
1440 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1441 {
1442 uint32_t iectl_reg;
1443 /* FIXME: when software clears the IM field, check the IP field. But do we
1444 * need to compare the old value and the new value to conclude that
1445 * software clears the IM field? Or just check if the IM field is zero?
1446 */
1447 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1448 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1449 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1450 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1451 VTD_DPRINTF(INV, "IM field is cleared, generate "
1452 "invalidation event interrupt");
1453 }
1454 }
1455
1456 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1457 {
1458 IntelIOMMUState *s = opaque;
1459 uint64_t val;
1460
1461 if (addr + size > DMAR_REG_SIZE) {
1462 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1463 ", got 0x%"PRIx64 " %d",
1464 (uint64_t)DMAR_REG_SIZE, addr, size);
1465 return (uint64_t)-1;
1466 }
1467
1468 switch (addr) {
1469 /* Root Table Address Register, 64-bit */
1470 case DMAR_RTADDR_REG:
1471 if (size == 4) {
1472 val = s->root & ((1ULL << 32) - 1);
1473 } else {
1474 val = s->root;
1475 }
1476 break;
1477
1478 case DMAR_RTADDR_REG_HI:
1479 assert(size == 4);
1480 val = s->root >> 32;
1481 break;
1482
1483 /* Invalidation Queue Address Register, 64-bit */
1484 case DMAR_IQA_REG:
1485 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1486 if (size == 4) {
1487 val = val & ((1ULL << 32) - 1);
1488 }
1489 break;
1490
1491 case DMAR_IQA_REG_HI:
1492 assert(size == 4);
1493 val = s->iq >> 32;
1494 break;
1495
1496 default:
1497 if (size == 4) {
1498 val = vtd_get_long(s, addr);
1499 } else {
1500 val = vtd_get_quad(s, addr);
1501 }
1502 }
1503 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1504 addr, size, val);
1505 return val;
1506 }
1507
1508 static void vtd_mem_write(void *opaque, hwaddr addr,
1509 uint64_t val, unsigned size)
1510 {
1511 IntelIOMMUState *s = opaque;
1512
1513 if (addr + size > DMAR_REG_SIZE) {
1514 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1515 ", got 0x%"PRIx64 " %d",
1516 (uint64_t)DMAR_REG_SIZE, addr, size);
1517 return;
1518 }
1519
1520 switch (addr) {
1521 /* Global Command Register, 32-bit */
1522 case DMAR_GCMD_REG:
1523 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1524 ", size %d, val 0x%"PRIx64, addr, size, val);
1525 vtd_set_long(s, addr, val);
1526 vtd_handle_gcmd_write(s);
1527 break;
1528
1529 /* Context Command Register, 64-bit */
1530 case DMAR_CCMD_REG:
1531 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1532 ", size %d, val 0x%"PRIx64, addr, size, val);
1533 if (size == 4) {
1534 vtd_set_long(s, addr, val);
1535 } else {
1536 vtd_set_quad(s, addr, val);
1537 vtd_handle_ccmd_write(s);
1538 }
1539 break;
1540
1541 case DMAR_CCMD_REG_HI:
1542 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1543 ", size %d, val 0x%"PRIx64, addr, size, val);
1544 assert(size == 4);
1545 vtd_set_long(s, addr, val);
1546 vtd_handle_ccmd_write(s);
1547 break;
1548
1549 /* IOTLB Invalidation Register, 64-bit */
1550 case DMAR_IOTLB_REG:
1551 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1552 ", size %d, val 0x%"PRIx64, addr, size, val);
1553 if (size == 4) {
1554 vtd_set_long(s, addr, val);
1555 } else {
1556 vtd_set_quad(s, addr, val);
1557 vtd_handle_iotlb_write(s);
1558 }
1559 break;
1560
1561 case DMAR_IOTLB_REG_HI:
1562 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1563 ", size %d, val 0x%"PRIx64, addr, size, val);
1564 assert(size == 4);
1565 vtd_set_long(s, addr, val);
1566 vtd_handle_iotlb_write(s);
1567 break;
1568
1569 /* Invalidate Address Register, 64-bit */
1570 case DMAR_IVA_REG:
1571 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1572 ", size %d, val 0x%"PRIx64, addr, size, val);
1573 if (size == 4) {
1574 vtd_set_long(s, addr, val);
1575 } else {
1576 vtd_set_quad(s, addr, val);
1577 }
1578 break;
1579
1580 case DMAR_IVA_REG_HI:
1581 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1582 ", size %d, val 0x%"PRIx64, addr, size, val);
1583 assert(size == 4);
1584 vtd_set_long(s, addr, val);
1585 break;
1586
1587 /* Fault Status Register, 32-bit */
1588 case DMAR_FSTS_REG:
1589 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1590 ", size %d, val 0x%"PRIx64, addr, size, val);
1591 assert(size == 4);
1592 vtd_set_long(s, addr, val);
1593 vtd_handle_fsts_write(s);
1594 break;
1595
1596 /* Fault Event Control Register, 32-bit */
1597 case DMAR_FECTL_REG:
1598 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1599 ", size %d, val 0x%"PRIx64, addr, size, val);
1600 assert(size == 4);
1601 vtd_set_long(s, addr, val);
1602 vtd_handle_fectl_write(s);
1603 break;
1604
1605 /* Fault Event Data Register, 32-bit */
1606 case DMAR_FEDATA_REG:
1607 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1608 ", size %d, val 0x%"PRIx64, addr, size, val);
1609 assert(size == 4);
1610 vtd_set_long(s, addr, val);
1611 break;
1612
1613 /* Fault Event Address Register, 32-bit */
1614 case DMAR_FEADDR_REG:
1615 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1616 ", size %d, val 0x%"PRIx64, addr, size, val);
1617 assert(size == 4);
1618 vtd_set_long(s, addr, val);
1619 break;
1620
1621 /* Fault Event Upper Address Register, 32-bit */
1622 case DMAR_FEUADDR_REG:
1623 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1624 ", size %d, val 0x%"PRIx64, addr, size, val);
1625 assert(size == 4);
1626 vtd_set_long(s, addr, val);
1627 break;
1628
1629 /* Protected Memory Enable Register, 32-bit */
1630 case DMAR_PMEN_REG:
1631 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1632 ", size %d, val 0x%"PRIx64, addr, size, val);
1633 assert(size == 4);
1634 vtd_set_long(s, addr, val);
1635 break;
1636
1637 /* Root Table Address Register, 64-bit */
1638 case DMAR_RTADDR_REG:
1639 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1640 ", size %d, val 0x%"PRIx64, addr, size, val);
1641 if (size == 4) {
1642 vtd_set_long(s, addr, val);
1643 } else {
1644 vtd_set_quad(s, addr, val);
1645 }
1646 break;
1647
1648 case DMAR_RTADDR_REG_HI:
1649 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1650 ", size %d, val 0x%"PRIx64, addr, size, val);
1651 assert(size == 4);
1652 vtd_set_long(s, addr, val);
1653 break;
1654
1655 /* Invalidation Queue Tail Register, 64-bit */
1656 case DMAR_IQT_REG:
1657 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1658 ", size %d, val 0x%"PRIx64, addr, size, val);
1659 if (size == 4) {
1660 vtd_set_long(s, addr, val);
1661 } else {
1662 vtd_set_quad(s, addr, val);
1663 }
1664 vtd_handle_iqt_write(s);
1665 break;
1666
1667 case DMAR_IQT_REG_HI:
1668 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1669 ", size %d, val 0x%"PRIx64, addr, size, val);
1670 assert(size == 4);
1671 vtd_set_long(s, addr, val);
1672 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1673 break;
1674
1675 /* Invalidation Queue Address Register, 64-bit */
1676 case DMAR_IQA_REG:
1677 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1678 ", size %d, val 0x%"PRIx64, addr, size, val);
1679 if (size == 4) {
1680 vtd_set_long(s, addr, val);
1681 } else {
1682 vtd_set_quad(s, addr, val);
1683 }
1684 break;
1685
1686 case DMAR_IQA_REG_HI:
1687 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1688 ", size %d, val 0x%"PRIx64, addr, size, val);
1689 assert(size == 4);
1690 vtd_set_long(s, addr, val);
1691 break;
1692
1693 /* Invalidation Completion Status Register, 32-bit */
1694 case DMAR_ICS_REG:
1695 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1696 ", size %d, val 0x%"PRIx64, addr, size, val);
1697 assert(size == 4);
1698 vtd_set_long(s, addr, val);
1699 vtd_handle_ics_write(s);
1700 break;
1701
1702 /* Invalidation Event Control Register, 32-bit */
1703 case DMAR_IECTL_REG:
1704 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1705 ", size %d, val 0x%"PRIx64, addr, size, val);
1706 assert(size == 4);
1707 vtd_set_long(s, addr, val);
1708 vtd_handle_iectl_write(s);
1709 break;
1710
1711 /* Invalidation Event Data Register, 32-bit */
1712 case DMAR_IEDATA_REG:
1713 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1714 ", size %d, val 0x%"PRIx64, addr, size, val);
1715 assert(size == 4);
1716 vtd_set_long(s, addr, val);
1717 break;
1718
1719 /* Invalidation Event Address Register, 32-bit */
1720 case DMAR_IEADDR_REG:
1721 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1722 ", size %d, val 0x%"PRIx64, addr, size, val);
1723 assert(size == 4);
1724 vtd_set_long(s, addr, val);
1725 break;
1726
1727 /* Invalidation Event Upper Address Register, 32-bit */
1728 case DMAR_IEUADDR_REG:
1729 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1730 ", size %d, val 0x%"PRIx64, addr, size, val);
1731 assert(size == 4);
1732 vtd_set_long(s, addr, val);
1733 break;
1734
1735 /* Fault Recording Registers, 128-bit */
1736 case DMAR_FRCD_REG_0_0:
1737 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1738 ", size %d, val 0x%"PRIx64, addr, size, val);
1739 if (size == 4) {
1740 vtd_set_long(s, addr, val);
1741 } else {
1742 vtd_set_quad(s, addr, val);
1743 }
1744 break;
1745
1746 case DMAR_FRCD_REG_0_1:
1747 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1748 ", size %d, val 0x%"PRIx64, addr, size, val);
1749 assert(size == 4);
1750 vtd_set_long(s, addr, val);
1751 break;
1752
1753 case DMAR_FRCD_REG_0_2:
1754 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1755 ", size %d, val 0x%"PRIx64, addr, size, val);
1756 if (size == 4) {
1757 vtd_set_long(s, addr, val);
1758 } else {
1759 vtd_set_quad(s, addr, val);
1760 /* May clear bit 127 (Fault), update PPF */
1761 vtd_update_fsts_ppf(s);
1762 }
1763 break;
1764
1765 case DMAR_FRCD_REG_0_3:
1766 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1767 ", size %d, val 0x%"PRIx64, addr, size, val);
1768 assert(size == 4);
1769 vtd_set_long(s, addr, val);
1770 /* May clear bit 127 (Fault), update PPF */
1771 vtd_update_fsts_ppf(s);
1772 break;
1773
1774 default:
1775 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1776 ", size %d, val 0x%"PRIx64, addr, size, val);
1777 if (size == 4) {
1778 vtd_set_long(s, addr, val);
1779 } else {
1780 vtd_set_quad(s, addr, val);
1781 }
1782 }
1783 }
1784
1785 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1786 bool is_write)
1787 {
1788 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1789 IntelIOMMUState *s = vtd_as->iommu_state;
1790 IOMMUTLBEntry ret = {
1791 .target_as = &address_space_memory,
1792 .iova = addr,
1793 .translated_addr = 0,
1794 .addr_mask = ~(hwaddr)0,
1795 .perm = IOMMU_NONE,
1796 };
1797
1798 if (!s->dmar_enabled) {
1799 /* DMAR disabled, passthrough, use 4k-page*/
1800 ret.iova = addr & VTD_PAGE_MASK_4K;
1801 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1802 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1803 ret.perm = IOMMU_RW;
1804 return ret;
1805 }
1806
1807 vtd_do_iommu_translate(vtd_as, vtd_as->bus_num, vtd_as->devfn, addr,
1808 is_write, &ret);
1809 VTD_DPRINTF(MMU,
1810 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1811 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, vtd_as->bus_num,
1812 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1813 vtd_as->devfn, addr, ret.translated_addr);
1814 return ret;
1815 }
1816
1817 static const VMStateDescription vtd_vmstate = {
1818 .name = "iommu-intel",
1819 .unmigratable = 1,
1820 };
1821
1822 static const MemoryRegionOps vtd_mem_ops = {
1823 .read = vtd_mem_read,
1824 .write = vtd_mem_write,
1825 .endianness = DEVICE_LITTLE_ENDIAN,
1826 .impl = {
1827 .min_access_size = 4,
1828 .max_access_size = 8,
1829 },
1830 .valid = {
1831 .min_access_size = 4,
1832 .max_access_size = 8,
1833 },
1834 };
1835
1836 static Property vtd_properties[] = {
1837 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1838 DEFINE_PROP_END_OF_LIST(),
1839 };
1840
1841 /* Do the initialization. It will also be called when reset, so pay
1842 * attention when adding new initialization stuff.
1843 */
1844 static void vtd_init(IntelIOMMUState *s)
1845 {
1846 memset(s->csr, 0, DMAR_REG_SIZE);
1847 memset(s->wmask, 0, DMAR_REG_SIZE);
1848 memset(s->w1cmask, 0, DMAR_REG_SIZE);
1849 memset(s->womask, 0, DMAR_REG_SIZE);
1850
1851 s->iommu_ops.translate = vtd_iommu_translate;
1852 s->root = 0;
1853 s->root_extended = false;
1854 s->dmar_enabled = false;
1855 s->iq_head = 0;
1856 s->iq_tail = 0;
1857 s->iq = 0;
1858 s->iq_size = 0;
1859 s->qi_enabled = false;
1860 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1861 s->next_frcd_reg = 0;
1862 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
1863 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI;
1864 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1865
1866 vtd_reset_context_cache(s);
1867 vtd_reset_iotlb(s);
1868
1869 /* Define registers with default values and bit semantics */
1870 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
1871 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
1872 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
1873 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
1874 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
1875 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
1876 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
1877 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
1878 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
1879
1880 /* Advanced Fault Logging not supported */
1881 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
1882 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1883 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
1884 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
1885
1886 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
1887 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
1888 */
1889 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
1890
1891 /* Treated as RO for implementations that PLMR and PHMR fields reported
1892 * as Clear in the CAP_REG.
1893 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
1894 */
1895 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
1896
1897 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
1898 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
1899 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
1900 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
1901 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1902 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
1903 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
1904 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
1905 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
1906
1907 /* IOTLB registers */
1908 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
1909 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
1910 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
1911
1912 /* Fault Recording Registers, 128-bit */
1913 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
1914 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
1915 }
1916
1917 /* Should not reset address_spaces when reset because devices will still use
1918 * the address space they got at first (won't ask the bus again).
1919 */
1920 static void vtd_reset(DeviceState *dev)
1921 {
1922 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1923
1924 VTD_DPRINTF(GENERAL, "");
1925 vtd_init(s);
1926 }
1927
1928 static void vtd_realize(DeviceState *dev, Error **errp)
1929 {
1930 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
1931
1932 VTD_DPRINTF(GENERAL, "");
1933 memset(s->address_spaces, 0, sizeof(s->address_spaces));
1934 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
1935 "intel_iommu", DMAR_REG_SIZE);
1936 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
1937 /* No corresponding destroy */
1938 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
1939 g_free, g_free);
1940 vtd_init(s);
1941 }
1942
1943 static void vtd_class_init(ObjectClass *klass, void *data)
1944 {
1945 DeviceClass *dc = DEVICE_CLASS(klass);
1946
1947 dc->reset = vtd_reset;
1948 dc->realize = vtd_realize;
1949 dc->vmsd = &vtd_vmstate;
1950 dc->props = vtd_properties;
1951 }
1952
1953 static const TypeInfo vtd_info = {
1954 .name = TYPE_INTEL_IOMMU_DEVICE,
1955 .parent = TYPE_SYS_BUS_DEVICE,
1956 .instance_size = sizeof(IntelIOMMUState),
1957 .class_init = vtd_class_init,
1958 };
1959
1960 static void vtd_register_types(void)
1961 {
1962 VTD_DPRINTF(GENERAL, "");
1963 type_register_static(&vtd_info);
1964 }
1965
1966 type_init(vtd_register_types)