]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/kvmvapic.c
2f767b620e282fbab9bfaf354f8b360cab3ea25a
[mirror_qemu.git] / hw / i386 / kvmvapic.c
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
3 *
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
6 *
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
10 */
11 #include "qemu/osdep.h"
12 #include "qemu-common.h"
13 #include "cpu.h"
14 #include "exec/exec-all.h"
15 #include "sysemu/sysemu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/hw_accel.h"
18 #include "sysemu/kvm.h"
19 #include "hw/i386/apic_internal.h"
20 #include "hw/sysbus.h"
21 #include "tcg/tcg.h"
22
23 #define VAPIC_IO_PORT 0x7e
24
25 #define VAPIC_CPU_SHIFT 7
26
27 #define ROM_BLOCK_SIZE 512
28 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
29
30 typedef enum VAPICMode {
31 VAPIC_INACTIVE = 0,
32 VAPIC_ACTIVE = 1,
33 VAPIC_STANDBY = 2,
34 } VAPICMode;
35
36 typedef struct VAPICHandlers {
37 uint32_t set_tpr;
38 uint32_t set_tpr_eax;
39 uint32_t get_tpr[8];
40 uint32_t get_tpr_stack;
41 } QEMU_PACKED VAPICHandlers;
42
43 typedef struct GuestROMState {
44 char signature[8];
45 uint32_t vaddr;
46 uint32_t fixup_start;
47 uint32_t fixup_end;
48 uint32_t vapic_vaddr;
49 uint32_t vapic_size;
50 uint32_t vcpu_shift;
51 uint32_t real_tpr_addr;
52 VAPICHandlers up;
53 VAPICHandlers mp;
54 } QEMU_PACKED GuestROMState;
55
56 typedef struct VAPICROMState {
57 SysBusDevice busdev;
58 MemoryRegion io;
59 MemoryRegion rom;
60 uint32_t state;
61 uint32_t rom_state_paddr;
62 uint32_t rom_state_vaddr;
63 uint32_t vapic_paddr;
64 uint32_t real_tpr_addr;
65 GuestROMState rom_state;
66 size_t rom_size;
67 bool rom_mapped_writable;
68 VMChangeStateEntry *vmsentry;
69 } VAPICROMState;
70
71 #define TYPE_VAPIC "kvmvapic"
72 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
73
74 #define TPR_INSTR_ABS_MODRM 0x1
75 #define TPR_INSTR_MATCH_MODRM_REG 0x2
76
77 typedef struct TPRInstruction {
78 uint8_t opcode;
79 uint8_t modrm_reg;
80 unsigned int flags;
81 TPRAccess access;
82 size_t length;
83 off_t addr_offset;
84 } TPRInstruction;
85
86 /* must be sorted by length, shortest first */
87 static const TPRInstruction tpr_instr[] = {
88 { /* mov abs to eax */
89 .opcode = 0xa1,
90 .access = TPR_ACCESS_READ,
91 .length = 5,
92 .addr_offset = 1,
93 },
94 { /* mov eax to abs */
95 .opcode = 0xa3,
96 .access = TPR_ACCESS_WRITE,
97 .length = 5,
98 .addr_offset = 1,
99 },
100 { /* mov r32 to r/m32 */
101 .opcode = 0x89,
102 .flags = TPR_INSTR_ABS_MODRM,
103 .access = TPR_ACCESS_WRITE,
104 .length = 6,
105 .addr_offset = 2,
106 },
107 { /* mov r/m32 to r32 */
108 .opcode = 0x8b,
109 .flags = TPR_INSTR_ABS_MODRM,
110 .access = TPR_ACCESS_READ,
111 .length = 6,
112 .addr_offset = 2,
113 },
114 { /* push r/m32 */
115 .opcode = 0xff,
116 .modrm_reg = 6,
117 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
118 .access = TPR_ACCESS_READ,
119 .length = 6,
120 .addr_offset = 2,
121 },
122 { /* mov imm32, r/m32 (c7/0) */
123 .opcode = 0xc7,
124 .modrm_reg = 0,
125 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
126 .access = TPR_ACCESS_WRITE,
127 .length = 10,
128 .addr_offset = 2,
129 },
130 };
131
132 static void read_guest_rom_state(VAPICROMState *s)
133 {
134 cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
135 sizeof(GuestROMState));
136 }
137
138 static void write_guest_rom_state(VAPICROMState *s)
139 {
140 cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
141 sizeof(GuestROMState));
142 }
143
144 static void update_guest_rom_state(VAPICROMState *s)
145 {
146 read_guest_rom_state(s);
147
148 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
149 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
150
151 write_guest_rom_state(s);
152 }
153
154 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
155 {
156 CPUState *cs = CPU(x86_env_get_cpu(env));
157 hwaddr paddr;
158 target_ulong addr;
159
160 if (s->state == VAPIC_ACTIVE) {
161 return 0;
162 }
163 /*
164 * If there is no prior TPR access instruction we could analyze (which is
165 * the case after resume from hibernation), we need to scan the possible
166 * virtual address space for the APIC mapping.
167 */
168 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
169 paddr = cpu_get_phys_page_debug(cs, addr);
170 if (paddr != APIC_DEFAULT_ADDRESS) {
171 continue;
172 }
173 s->real_tpr_addr = addr + 0x80;
174 update_guest_rom_state(s);
175 return 0;
176 }
177 return -1;
178 }
179
180 static uint8_t modrm_reg(uint8_t modrm)
181 {
182 return (modrm >> 3) & 7;
183 }
184
185 static bool is_abs_modrm(uint8_t modrm)
186 {
187 return (modrm & 0xc7) == 0x05;
188 }
189
190 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
191 {
192 return opcode[0] == instr->opcode &&
193 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
194 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
195 modrm_reg(opcode[1]) == instr->modrm_reg);
196 }
197
198 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
199 target_ulong *pip, TPRAccess access)
200 {
201 CPUState *cs = CPU(cpu);
202 const TPRInstruction *instr;
203 target_ulong ip = *pip;
204 uint8_t opcode[2];
205 uint32_t real_tpr_addr;
206 int i;
207
208 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
209 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
210 return -1;
211 }
212
213 /*
214 * Early Windows 2003 SMP initialization contains a
215 *
216 * mov imm32, r/m32
217 *
218 * instruction that is patched by TPR optimization. The problem is that
219 * RSP, used by the patched instruction, is zero, so the guest gets a
220 * double fault and dies.
221 */
222 if (cpu->env.regs[R_ESP] == 0) {
223 return -1;
224 }
225
226 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
227 /*
228 * KVM without kernel-based TPR access reporting will pass an IP that
229 * points after the accessing instruction. So we need to look backward
230 * to find the reason.
231 */
232 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
233 instr = &tpr_instr[i];
234 if (instr->access != access) {
235 continue;
236 }
237 if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
238 sizeof(opcode), 0) < 0) {
239 return -1;
240 }
241 if (opcode_matches(opcode, instr)) {
242 ip -= instr->length;
243 goto instruction_ok;
244 }
245 }
246 return -1;
247 } else {
248 if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
249 return -1;
250 }
251 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
252 instr = &tpr_instr[i];
253 if (opcode_matches(opcode, instr)) {
254 goto instruction_ok;
255 }
256 }
257 return -1;
258 }
259
260 instruction_ok:
261 /*
262 * Grab the virtual TPR address from the instruction
263 * and update the cached values.
264 */
265 if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
266 (void *)&real_tpr_addr,
267 sizeof(real_tpr_addr), 0) < 0) {
268 return -1;
269 }
270 real_tpr_addr = le32_to_cpu(real_tpr_addr);
271 if ((real_tpr_addr & 0xfff) != 0x80) {
272 return -1;
273 }
274 s->real_tpr_addr = real_tpr_addr;
275 update_guest_rom_state(s);
276
277 *pip = ip;
278 return 0;
279 }
280
281 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
282 {
283 CPUState *cs = CPU(x86_env_get_cpu(env));
284 hwaddr paddr;
285 uint32_t rom_state_vaddr;
286 uint32_t pos, patch, offset;
287
288 /* nothing to do if already activated */
289 if (s->state == VAPIC_ACTIVE) {
290 return 0;
291 }
292
293 /* bail out if ROM init code was not executed (missing ROM?) */
294 if (s->state == VAPIC_INACTIVE) {
295 return -1;
296 }
297
298 /* find out virtual address of the ROM */
299 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
300 paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
301 if (paddr == -1) {
302 return -1;
303 }
304 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
305 if (paddr != s->rom_state_paddr) {
306 return -1;
307 }
308 read_guest_rom_state(s);
309 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
310 return -1;
311 }
312 s->rom_state_vaddr = rom_state_vaddr;
313
314 /* fixup addresses in ROM if needed */
315 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
316 return 0;
317 }
318 for (pos = le32_to_cpu(s->rom_state.fixup_start);
319 pos < le32_to_cpu(s->rom_state.fixup_end);
320 pos += 4) {
321 cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
322 &offset, sizeof(offset));
323 offset = le32_to_cpu(offset);
324 cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
325 patch = le32_to_cpu(patch);
326 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
327 patch = cpu_to_le32(patch);
328 cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
329 }
330 read_guest_rom_state(s);
331 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
332 le32_to_cpu(s->rom_state.vaddr);
333
334 return 0;
335 }
336
337 /*
338 * Tries to read the unique processor number from the Kernel Processor Control
339 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
340 * cannot be accessed or is considered invalid. This also ensures that we are
341 * not patching the wrong guest.
342 */
343 static int get_kpcr_number(X86CPU *cpu)
344 {
345 CPUX86State *env = &cpu->env;
346 struct kpcr {
347 uint8_t fill1[0x1c];
348 uint32_t self;
349 uint8_t fill2[0x31];
350 uint8_t number;
351 } QEMU_PACKED kpcr;
352
353 if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
354 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
355 kpcr.self != env->segs[R_FS].base) {
356 return -1;
357 }
358 return kpcr.number;
359 }
360
361 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
362 {
363 int cpu_number = get_kpcr_number(cpu);
364 hwaddr vapic_paddr;
365 static const uint8_t enabled = 1;
366
367 if (cpu_number < 0) {
368 return -1;
369 }
370 vapic_paddr = s->vapic_paddr +
371 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
372 cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
373 &enabled, sizeof(enabled));
374 apic_enable_vapic(cpu->apic_state, vapic_paddr);
375
376 s->state = VAPIC_ACTIVE;
377
378 return 0;
379 }
380
381 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
382 {
383 cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
384 }
385
386 static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
387 uint32_t target)
388 {
389 uint32_t offset;
390
391 offset = cpu_to_le32(target - ip - 5);
392 patch_byte(cpu, ip, 0xe8); /* call near */
393 cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
394 }
395
396 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
397 {
398 CPUState *cs = CPU(cpu);
399 CPUX86State *env = &cpu->env;
400 VAPICHandlers *handlers;
401 uint8_t opcode[2];
402 uint32_t imm32 = 0;
403 target_ulong current_pc = 0;
404 target_ulong current_cs_base = 0;
405 uint32_t current_flags = 0;
406
407 if (smp_cpus == 1) {
408 handlers = &s->rom_state.up;
409 } else {
410 handlers = &s->rom_state.mp;
411 }
412
413 if (!kvm_enabled()) {
414 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
415 &current_flags);
416 }
417
418 pause_all_vcpus();
419
420 cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
421
422 switch (opcode[0]) {
423 case 0x89: /* mov r32 to r/m32 */
424 patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
425 patch_call(s, cpu, ip + 1, handlers->set_tpr);
426 break;
427 case 0x8b: /* mov r/m32 to r32 */
428 patch_byte(cpu, ip, 0x90);
429 patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
430 break;
431 case 0xa1: /* mov abs to eax */
432 patch_call(s, cpu, ip, handlers->get_tpr[0]);
433 break;
434 case 0xa3: /* mov eax to abs */
435 patch_call(s, cpu, ip, handlers->set_tpr_eax);
436 break;
437 case 0xc7: /* mov imm32, r/m32 (c7/0) */
438 patch_byte(cpu, ip, 0x68); /* push imm32 */
439 cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
440 cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
441 patch_call(s, cpu, ip + 5, handlers->set_tpr);
442 break;
443 case 0xff: /* push r/m32 */
444 patch_byte(cpu, ip, 0x50); /* push eax */
445 patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
446 break;
447 default:
448 abort();
449 }
450
451 resume_all_vcpus();
452
453 if (!kvm_enabled()) {
454 /* tb_lock will be reset when cpu_loop_exit_noexc longjmps
455 * back into the cpu_exec loop. */
456 tb_lock();
457 tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
458 cpu_loop_exit_noexc(cs);
459 }
460 }
461
462 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
463 TPRAccess access)
464 {
465 VAPICROMState *s = VAPIC(dev);
466 X86CPU *cpu = X86_CPU(cs);
467 CPUX86State *env = &cpu->env;
468
469 cpu_synchronize_state(cs);
470
471 if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
472 if (s->state == VAPIC_ACTIVE) {
473 vapic_enable(s, cpu);
474 }
475 return;
476 }
477 if (update_rom_mapping(s, env, ip) < 0) {
478 return;
479 }
480 if (vapic_enable(s, cpu) < 0) {
481 return;
482 }
483 patch_instruction(s, cpu, ip);
484 }
485
486 typedef struct VAPICEnableTPRReporting {
487 DeviceState *apic;
488 bool enable;
489 } VAPICEnableTPRReporting;
490
491 static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
492 {
493 VAPICEnableTPRReporting *info = data.host_ptr;
494 apic_enable_tpr_access_reporting(info->apic, info->enable);
495 }
496
497 static void vapic_enable_tpr_reporting(bool enable)
498 {
499 VAPICEnableTPRReporting info = {
500 .enable = enable,
501 };
502 CPUState *cs;
503 X86CPU *cpu;
504
505 CPU_FOREACH(cs) {
506 cpu = X86_CPU(cs);
507 info.apic = cpu->apic_state;
508 run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
509 }
510 }
511
512 static void vapic_reset(DeviceState *dev)
513 {
514 VAPICROMState *s = VAPIC(dev);
515
516 s->state = VAPIC_INACTIVE;
517 s->rom_state_paddr = 0;
518 vapic_enable_tpr_reporting(false);
519 }
520
521 /*
522 * Set the IRQ polling hypercalls to the supported variant:
523 * - vmcall if using KVM in-kernel irqchip
524 * - 32-bit VAPIC port write otherwise
525 */
526 static int patch_hypercalls(VAPICROMState *s)
527 {
528 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
529 static const uint8_t vmcall_pattern[] = { /* vmcall */
530 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
531 };
532 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
533 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
534 };
535 uint8_t alternates[2];
536 const uint8_t *pattern;
537 const uint8_t *patch;
538 int patches = 0;
539 off_t pos;
540 uint8_t *rom;
541
542 rom = g_malloc(s->rom_size);
543 cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
544
545 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
546 if (kvm_irqchip_in_kernel()) {
547 pattern = outl_pattern;
548 alternates[0] = outl_pattern[7];
549 alternates[1] = outl_pattern[7];
550 patch = &vmcall_pattern[5];
551 } else {
552 pattern = vmcall_pattern;
553 alternates[0] = vmcall_pattern[7];
554 alternates[1] = 0xd9; /* AMD's VMMCALL */
555 patch = &outl_pattern[5];
556 }
557 if (memcmp(rom + pos, pattern, 7) == 0 &&
558 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
559 cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
560 /*
561 * Don't flush the tb here. Under ordinary conditions, the patched
562 * calls are miles away from the current IP. Under malicious
563 * conditions, the guest could trick us to crash.
564 */
565 }
566 }
567
568 g_free(rom);
569
570 if (patches != 0 && patches != 2) {
571 return -1;
572 }
573
574 return 0;
575 }
576
577 /*
578 * For TCG mode or the time KVM honors read-only memory regions, we need to
579 * enable write access to the option ROM so that variables can be updated by
580 * the guest.
581 */
582 static int vapic_map_rom_writable(VAPICROMState *s)
583 {
584 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
585 MemoryRegionSection section;
586 MemoryRegion *as;
587 size_t rom_size;
588 uint8_t *ram;
589
590 as = sysbus_address_space(&s->busdev);
591
592 if (s->rom_mapped_writable) {
593 memory_region_del_subregion(as, &s->rom);
594 object_unparent(OBJECT(&s->rom));
595 }
596
597 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
598 section = memory_region_find(as, 0, 1);
599
600 /* read ROM size from RAM region */
601 if (rom_paddr + 2 >= memory_region_size(section.mr)) {
602 return -1;
603 }
604 ram = memory_region_get_ram_ptr(section.mr);
605 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
606 if (rom_size == 0) {
607 return -1;
608 }
609 s->rom_size = rom_size;
610
611 /* We need to round to avoid creating subpages
612 * from which we cannot run code. */
613 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
614 rom_paddr &= TARGET_PAGE_MASK;
615 rom_size = TARGET_PAGE_ALIGN(rom_size);
616
617 memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
618 rom_paddr, rom_size);
619 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
620 s->rom_mapped_writable = true;
621 memory_region_unref(section.mr);
622
623 return 0;
624 }
625
626 static int vapic_prepare(VAPICROMState *s)
627 {
628 if (vapic_map_rom_writable(s) < 0) {
629 return -1;
630 }
631
632 if (patch_hypercalls(s) < 0) {
633 return -1;
634 }
635
636 vapic_enable_tpr_reporting(true);
637
638 return 0;
639 }
640
641 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
642 unsigned int size)
643 {
644 VAPICROMState *s = opaque;
645 X86CPU *cpu;
646 CPUX86State *env;
647 hwaddr rom_paddr;
648
649 if (!current_cpu) {
650 return;
651 }
652
653 cpu_synchronize_state(current_cpu);
654 cpu = X86_CPU(current_cpu);
655 env = &cpu->env;
656
657 /*
658 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
659 * o 16-bit write access:
660 * Reports the option ROM initialization to the hypervisor. Written
661 * value is the offset of the state structure in the ROM.
662 * o 8-bit write access:
663 * Reactivates the VAPIC after a guest hibernation, i.e. after the
664 * option ROM content has been re-initialized by a guest power cycle.
665 * o 32-bit write access:
666 * Poll for pending IRQs, considering the current VAPIC state.
667 */
668 switch (size) {
669 case 2:
670 if (s->state == VAPIC_INACTIVE) {
671 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
672 s->rom_state_paddr = rom_paddr + data;
673
674 s->state = VAPIC_STANDBY;
675 }
676 if (vapic_prepare(s) < 0) {
677 s->state = VAPIC_INACTIVE;
678 s->rom_state_paddr = 0;
679 break;
680 }
681 break;
682 case 1:
683 if (kvm_enabled()) {
684 /*
685 * Disable triggering instruction in ROM by writing a NOP.
686 *
687 * We cannot do this in TCG mode as the reported IP is not
688 * accurate.
689 */
690 pause_all_vcpus();
691 patch_byte(cpu, env->eip - 2, 0x66);
692 patch_byte(cpu, env->eip - 1, 0x90);
693 resume_all_vcpus();
694 }
695
696 if (s->state == VAPIC_ACTIVE) {
697 break;
698 }
699 if (update_rom_mapping(s, env, env->eip) < 0) {
700 break;
701 }
702 if (find_real_tpr_addr(s, env) < 0) {
703 break;
704 }
705 vapic_enable(s, cpu);
706 break;
707 default:
708 case 4:
709 if (!kvm_irqchip_in_kernel()) {
710 apic_poll_irq(cpu->apic_state);
711 }
712 break;
713 }
714 }
715
716 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
717 {
718 return 0xffffffff;
719 }
720
721 static const MemoryRegionOps vapic_ops = {
722 .write = vapic_write,
723 .read = vapic_read,
724 .endianness = DEVICE_NATIVE_ENDIAN,
725 };
726
727 static void vapic_realize(DeviceState *dev, Error **errp)
728 {
729 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
730 VAPICROMState *s = VAPIC(dev);
731
732 memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
733 sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
734 sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
735
736 option_rom[nb_option_roms].name = "kvmvapic.bin";
737 option_rom[nb_option_roms].bootindex = -1;
738 nb_option_roms++;
739 }
740
741 static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
742 {
743 VAPICROMState *s = data.host_ptr;
744 X86CPU *cpu = X86_CPU(cs);
745
746 static const uint8_t enabled = 1;
747 cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
748 &enabled, sizeof(enabled));
749 apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
750 s->state = VAPIC_ACTIVE;
751 }
752
753 static void kvmvapic_vm_state_change(void *opaque, int running,
754 RunState state)
755 {
756 VAPICROMState *s = opaque;
757 uint8_t *zero;
758
759 if (!running) {
760 return;
761 }
762
763 if (s->state == VAPIC_ACTIVE) {
764 if (smp_cpus == 1) {
765 run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
766 } else {
767 zero = g_malloc0(s->rom_state.vapic_size);
768 cpu_physical_memory_write(s->vapic_paddr, zero,
769 s->rom_state.vapic_size);
770 g_free(zero);
771 }
772 }
773
774 qemu_del_vm_change_state_handler(s->vmsentry);
775 s->vmsentry = NULL;
776 }
777
778 static int vapic_post_load(void *opaque, int version_id)
779 {
780 VAPICROMState *s = opaque;
781
782 /*
783 * The old implementation of qemu-kvm did not provide the state
784 * VAPIC_STANDBY. Reconstruct it.
785 */
786 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
787 s->state = VAPIC_STANDBY;
788 }
789
790 if (s->state != VAPIC_INACTIVE) {
791 if (vapic_prepare(s) < 0) {
792 return -1;
793 }
794 }
795
796 if (!s->vmsentry) {
797 s->vmsentry =
798 qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
799 }
800 return 0;
801 }
802
803 static const VMStateDescription vmstate_handlers = {
804 .name = "kvmvapic-handlers",
805 .version_id = 1,
806 .minimum_version_id = 1,
807 .fields = (VMStateField[]) {
808 VMSTATE_UINT32(set_tpr, VAPICHandlers),
809 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
810 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
811 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
812 VMSTATE_END_OF_LIST()
813 }
814 };
815
816 static const VMStateDescription vmstate_guest_rom = {
817 .name = "kvmvapic-guest-rom",
818 .version_id = 1,
819 .minimum_version_id = 1,
820 .fields = (VMStateField[]) {
821 VMSTATE_UNUSED(8), /* signature */
822 VMSTATE_UINT32(vaddr, GuestROMState),
823 VMSTATE_UINT32(fixup_start, GuestROMState),
824 VMSTATE_UINT32(fixup_end, GuestROMState),
825 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
826 VMSTATE_UINT32(vapic_size, GuestROMState),
827 VMSTATE_UINT32(vcpu_shift, GuestROMState),
828 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
829 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
830 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
831 VMSTATE_END_OF_LIST()
832 }
833 };
834
835 static const VMStateDescription vmstate_vapic = {
836 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
837 .version_id = 1,
838 .minimum_version_id = 1,
839 .post_load = vapic_post_load,
840 .fields = (VMStateField[]) {
841 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
842 GuestROMState),
843 VMSTATE_UINT32(state, VAPICROMState),
844 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
845 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
846 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
847 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
848 VMSTATE_END_OF_LIST()
849 }
850 };
851
852 static void vapic_class_init(ObjectClass *klass, void *data)
853 {
854 DeviceClass *dc = DEVICE_CLASS(klass);
855
856 dc->reset = vapic_reset;
857 dc->vmsd = &vmstate_vapic;
858 dc->realize = vapic_realize;
859 }
860
861 static const TypeInfo vapic_type = {
862 .name = TYPE_VAPIC,
863 .parent = TYPE_SYS_BUS_DEVICE,
864 .instance_size = sizeof(VAPICROMState),
865 .class_init = vapic_class_init,
866 };
867
868 static void vapic_register(void)
869 {
870 type_register_static(&vapic_type);
871 }
872
873 type_init(vapic_register);