]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
qom: Swap 'name' next to visitor in ObjectPropertyAccessor
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70
71 /* debug PC/ISA interrupts */
72 //#define DEBUG_IRQ
73
74 #ifdef DEBUG_IRQ
75 #define DPRINTF(fmt, ...) \
76 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...)
79 #endif
80
81 #define BIOS_CFG_IOPORT 0x510
82 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
83 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
84 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
85 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
86 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
87
88 #define E820_NR_ENTRIES 16
89
90 struct e820_entry {
91 uint64_t address;
92 uint64_t length;
93 uint32_t type;
94 } QEMU_PACKED __attribute((__aligned__(4)));
95
96 struct e820_table {
97 uint32_t count;
98 struct e820_entry entry[E820_NR_ENTRIES];
99 } QEMU_PACKED __attribute((__aligned__(4)));
100
101 static struct e820_table e820_reserve;
102 static struct e820_entry *e820_table;
103 static unsigned e820_entries;
104 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
105
106 void gsi_handler(void *opaque, int n, int level)
107 {
108 GSIState *s = opaque;
109
110 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
111 if (n < ISA_NUM_IRQS) {
112 qemu_set_irq(s->i8259_irq[n], level);
113 }
114 qemu_set_irq(s->ioapic_irq[n], level);
115 }
116
117 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
118 unsigned size)
119 {
120 }
121
122 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
123 {
124 return 0xffffffffffffffffULL;
125 }
126
127 /* MSDOS compatibility mode FPU exception support */
128 static qemu_irq ferr_irq;
129
130 void pc_register_ferr_irq(qemu_irq irq)
131 {
132 ferr_irq = irq;
133 }
134
135 /* XXX: add IGNNE support */
136 void cpu_set_ferr(CPUX86State *s)
137 {
138 qemu_irq_raise(ferr_irq);
139 }
140
141 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
142 unsigned size)
143 {
144 qemu_irq_lower(ferr_irq);
145 }
146
147 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
148 {
149 return 0xffffffffffffffffULL;
150 }
151
152 /* TSC handling */
153 uint64_t cpu_get_tsc(CPUX86State *env)
154 {
155 return cpu_get_ticks();
156 }
157
158 /* IRQ handling */
159 int cpu_get_pic_interrupt(CPUX86State *env)
160 {
161 X86CPU *cpu = x86_env_get_cpu(env);
162 int intno;
163
164 intno = apic_get_interrupt(cpu->apic_state);
165 if (intno >= 0) {
166 return intno;
167 }
168 /* read the irq from the PIC */
169 if (!apic_accept_pic_intr(cpu->apic_state)) {
170 return -1;
171 }
172
173 intno = pic_read_irq(isa_pic);
174 return intno;
175 }
176
177 static void pic_irq_request(void *opaque, int irq, int level)
178 {
179 CPUState *cs = first_cpu;
180 X86CPU *cpu = X86_CPU(cs);
181
182 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
183 if (cpu->apic_state) {
184 CPU_FOREACH(cs) {
185 cpu = X86_CPU(cs);
186 if (apic_accept_pic_intr(cpu->apic_state)) {
187 apic_deliver_pic_intr(cpu->apic_state, level);
188 }
189 }
190 } else {
191 if (level) {
192 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
193 } else {
194 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
195 }
196 }
197 }
198
199 /* PC cmos mappings */
200
201 #define REG_EQUIPMENT_BYTE 0x14
202
203 static int cmos_get_fd_drive_type(FloppyDriveType fd0)
204 {
205 int val;
206
207 switch (fd0) {
208 case FLOPPY_DRIVE_TYPE_144:
209 /* 1.44 Mb 3"5 drive */
210 val = 4;
211 break;
212 case FLOPPY_DRIVE_TYPE_288:
213 /* 2.88 Mb 3"5 drive */
214 val = 5;
215 break;
216 case FLOPPY_DRIVE_TYPE_120:
217 /* 1.2 Mb 5"5 drive */
218 val = 2;
219 break;
220 case FLOPPY_DRIVE_TYPE_NONE:
221 default:
222 val = 0;
223 break;
224 }
225 return val;
226 }
227
228 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
229 int16_t cylinders, int8_t heads, int8_t sectors)
230 {
231 rtc_set_memory(s, type_ofs, 47);
232 rtc_set_memory(s, info_ofs, cylinders);
233 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
234 rtc_set_memory(s, info_ofs + 2, heads);
235 rtc_set_memory(s, info_ofs + 3, 0xff);
236 rtc_set_memory(s, info_ofs + 4, 0xff);
237 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
238 rtc_set_memory(s, info_ofs + 6, cylinders);
239 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
240 rtc_set_memory(s, info_ofs + 8, sectors);
241 }
242
243 /* convert boot_device letter to something recognizable by the bios */
244 static int boot_device2nibble(char boot_device)
245 {
246 switch(boot_device) {
247 case 'a':
248 case 'b':
249 return 0x01; /* floppy boot */
250 case 'c':
251 return 0x02; /* hard drive boot */
252 case 'd':
253 return 0x03; /* CD-ROM boot */
254 case 'n':
255 return 0x04; /* Network boot */
256 }
257 return 0;
258 }
259
260 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
261 {
262 #define PC_MAX_BOOT_DEVICES 3
263 int nbds, bds[3] = { 0, };
264 int i;
265
266 nbds = strlen(boot_device);
267 if (nbds > PC_MAX_BOOT_DEVICES) {
268 error_setg(errp, "Too many boot devices for PC");
269 return;
270 }
271 for (i = 0; i < nbds; i++) {
272 bds[i] = boot_device2nibble(boot_device[i]);
273 if (bds[i] == 0) {
274 error_setg(errp, "Invalid boot device for PC: '%c'",
275 boot_device[i]);
276 return;
277 }
278 }
279 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
280 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
281 }
282
283 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
284 {
285 set_boot_dev(opaque, boot_device, errp);
286 }
287
288 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
289 {
290 int val, nb, i;
291 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
292 FLOPPY_DRIVE_TYPE_NONE };
293
294 /* floppy type */
295 if (floppy) {
296 for (i = 0; i < 2; i++) {
297 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
298 }
299 }
300 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
301 cmos_get_fd_drive_type(fd_type[1]);
302 rtc_set_memory(rtc_state, 0x10, val);
303
304 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
305 nb = 0;
306 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
307 nb++;
308 }
309 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
310 nb++;
311 }
312 switch (nb) {
313 case 0:
314 break;
315 case 1:
316 val |= 0x01; /* 1 drive, ready for boot */
317 break;
318 case 2:
319 val |= 0x41; /* 2 drives, ready for boot */
320 break;
321 }
322 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
323 }
324
325 typedef struct pc_cmos_init_late_arg {
326 ISADevice *rtc_state;
327 BusState *idebus[2];
328 } pc_cmos_init_late_arg;
329
330 typedef struct check_fdc_state {
331 ISADevice *floppy;
332 bool multiple;
333 } CheckFdcState;
334
335 static int check_fdc(Object *obj, void *opaque)
336 {
337 CheckFdcState *state = opaque;
338 Object *fdc;
339 uint32_t iobase;
340 Error *local_err = NULL;
341
342 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
343 if (!fdc) {
344 return 0;
345 }
346
347 iobase = object_property_get_int(obj, "iobase", &local_err);
348 if (local_err || iobase != 0x3f0) {
349 error_free(local_err);
350 return 0;
351 }
352
353 if (state->floppy) {
354 state->multiple = true;
355 } else {
356 state->floppy = ISA_DEVICE(obj);
357 }
358 return 0;
359 }
360
361 static const char * const fdc_container_path[] = {
362 "/unattached", "/peripheral", "/peripheral-anon"
363 };
364
365 /*
366 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
367 * and ACPI objects.
368 */
369 ISADevice *pc_find_fdc0(void)
370 {
371 int i;
372 Object *container;
373 CheckFdcState state = { 0 };
374
375 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
376 container = container_get(qdev_get_machine(), fdc_container_path[i]);
377 object_child_foreach(container, check_fdc, &state);
378 }
379
380 if (state.multiple) {
381 error_report("warning: multiple floppy disk controllers with "
382 "iobase=0x3f0 have been found");
383 error_printf("the one being picked for CMOS setup might not reflect "
384 "your intent");
385 }
386
387 return state.floppy;
388 }
389
390 static void pc_cmos_init_late(void *opaque)
391 {
392 pc_cmos_init_late_arg *arg = opaque;
393 ISADevice *s = arg->rtc_state;
394 int16_t cylinders;
395 int8_t heads, sectors;
396 int val;
397 int i, trans;
398
399 val = 0;
400 if (ide_get_geometry(arg->idebus[0], 0,
401 &cylinders, &heads, &sectors) >= 0) {
402 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
403 val |= 0xf0;
404 }
405 if (ide_get_geometry(arg->idebus[0], 1,
406 &cylinders, &heads, &sectors) >= 0) {
407 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
408 val |= 0x0f;
409 }
410 rtc_set_memory(s, 0x12, val);
411
412 val = 0;
413 for (i = 0; i < 4; i++) {
414 /* NOTE: ide_get_geometry() returns the physical
415 geometry. It is always such that: 1 <= sects <= 63, 1
416 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
417 geometry can be different if a translation is done. */
418 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
419 &cylinders, &heads, &sectors) >= 0) {
420 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
421 assert((trans & ~3) == 0);
422 val |= trans << (i * 2);
423 }
424 }
425 rtc_set_memory(s, 0x39, val);
426
427 pc_cmos_init_floppy(s, pc_find_fdc0());
428
429 qemu_unregister_reset(pc_cmos_init_late, opaque);
430 }
431
432 void pc_cmos_init(PCMachineState *pcms,
433 BusState *idebus0, BusState *idebus1,
434 ISADevice *s)
435 {
436 int val;
437 static pc_cmos_init_late_arg arg;
438
439 /* various important CMOS locations needed by PC/Bochs bios */
440
441 /* memory size */
442 /* base memory (first MiB) */
443 val = MIN(pcms->below_4g_mem_size / 1024, 640);
444 rtc_set_memory(s, 0x15, val);
445 rtc_set_memory(s, 0x16, val >> 8);
446 /* extended memory (next 64MiB) */
447 if (pcms->below_4g_mem_size > 1024 * 1024) {
448 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
449 } else {
450 val = 0;
451 }
452 if (val > 65535)
453 val = 65535;
454 rtc_set_memory(s, 0x17, val);
455 rtc_set_memory(s, 0x18, val >> 8);
456 rtc_set_memory(s, 0x30, val);
457 rtc_set_memory(s, 0x31, val >> 8);
458 /* memory between 16MiB and 4GiB */
459 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
460 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
461 } else {
462 val = 0;
463 }
464 if (val > 65535)
465 val = 65535;
466 rtc_set_memory(s, 0x34, val);
467 rtc_set_memory(s, 0x35, val >> 8);
468 /* memory above 4GiB */
469 val = pcms->above_4g_mem_size / 65536;
470 rtc_set_memory(s, 0x5b, val);
471 rtc_set_memory(s, 0x5c, val >> 8);
472 rtc_set_memory(s, 0x5d, val >> 16);
473
474 /* set the number of CPU */
475 rtc_set_memory(s, 0x5f, smp_cpus - 1);
476
477 object_property_add_link(OBJECT(pcms), "rtc_state",
478 TYPE_ISA_DEVICE,
479 (Object **)&pcms->rtc,
480 object_property_allow_set_link,
481 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
482 object_property_set_link(OBJECT(pcms), OBJECT(s),
483 "rtc_state", &error_abort);
484
485 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
486
487 val = 0;
488 val |= 0x02; /* FPU is there */
489 val |= 0x04; /* PS/2 mouse installed */
490 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
491
492 /* hard drives and FDC */
493 arg.rtc_state = s;
494 arg.idebus[0] = idebus0;
495 arg.idebus[1] = idebus1;
496 qemu_register_reset(pc_cmos_init_late, &arg);
497 }
498
499 #define TYPE_PORT92 "port92"
500 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
501
502 /* port 92 stuff: could be split off */
503 typedef struct Port92State {
504 ISADevice parent_obj;
505
506 MemoryRegion io;
507 uint8_t outport;
508 qemu_irq *a20_out;
509 } Port92State;
510
511 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
512 unsigned size)
513 {
514 Port92State *s = opaque;
515 int oldval = s->outport;
516
517 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
518 s->outport = val;
519 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
520 if ((val & 1) && !(oldval & 1)) {
521 qemu_system_reset_request();
522 }
523 }
524
525 static uint64_t port92_read(void *opaque, hwaddr addr,
526 unsigned size)
527 {
528 Port92State *s = opaque;
529 uint32_t ret;
530
531 ret = s->outport;
532 DPRINTF("port92: read 0x%02x\n", ret);
533 return ret;
534 }
535
536 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
537 {
538 Port92State *s = PORT92(dev);
539
540 s->a20_out = a20_out;
541 }
542
543 static const VMStateDescription vmstate_port92_isa = {
544 .name = "port92",
545 .version_id = 1,
546 .minimum_version_id = 1,
547 .fields = (VMStateField[]) {
548 VMSTATE_UINT8(outport, Port92State),
549 VMSTATE_END_OF_LIST()
550 }
551 };
552
553 static void port92_reset(DeviceState *d)
554 {
555 Port92State *s = PORT92(d);
556
557 s->outport &= ~1;
558 }
559
560 static const MemoryRegionOps port92_ops = {
561 .read = port92_read,
562 .write = port92_write,
563 .impl = {
564 .min_access_size = 1,
565 .max_access_size = 1,
566 },
567 .endianness = DEVICE_LITTLE_ENDIAN,
568 };
569
570 static void port92_initfn(Object *obj)
571 {
572 Port92State *s = PORT92(obj);
573
574 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
575
576 s->outport = 0;
577 }
578
579 static void port92_realizefn(DeviceState *dev, Error **errp)
580 {
581 ISADevice *isadev = ISA_DEVICE(dev);
582 Port92State *s = PORT92(dev);
583
584 isa_register_ioport(isadev, &s->io, 0x92);
585 }
586
587 static void port92_class_initfn(ObjectClass *klass, void *data)
588 {
589 DeviceClass *dc = DEVICE_CLASS(klass);
590
591 dc->realize = port92_realizefn;
592 dc->reset = port92_reset;
593 dc->vmsd = &vmstate_port92_isa;
594 /*
595 * Reason: unlike ordinary ISA devices, this one needs additional
596 * wiring: its A20 output line needs to be wired up by
597 * port92_init().
598 */
599 dc->cannot_instantiate_with_device_add_yet = true;
600 }
601
602 static const TypeInfo port92_info = {
603 .name = TYPE_PORT92,
604 .parent = TYPE_ISA_DEVICE,
605 .instance_size = sizeof(Port92State),
606 .instance_init = port92_initfn,
607 .class_init = port92_class_initfn,
608 };
609
610 static void port92_register_types(void)
611 {
612 type_register_static(&port92_info);
613 }
614
615 type_init(port92_register_types)
616
617 static void handle_a20_line_change(void *opaque, int irq, int level)
618 {
619 X86CPU *cpu = opaque;
620
621 /* XXX: send to all CPUs ? */
622 /* XXX: add logic to handle multiple A20 line sources */
623 x86_cpu_set_a20(cpu, level);
624 }
625
626 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
627 {
628 int index = le32_to_cpu(e820_reserve.count);
629 struct e820_entry *entry;
630
631 if (type != E820_RAM) {
632 /* old FW_CFG_E820_TABLE entry -- reservations only */
633 if (index >= E820_NR_ENTRIES) {
634 return -EBUSY;
635 }
636 entry = &e820_reserve.entry[index++];
637
638 entry->address = cpu_to_le64(address);
639 entry->length = cpu_to_le64(length);
640 entry->type = cpu_to_le32(type);
641
642 e820_reserve.count = cpu_to_le32(index);
643 }
644
645 /* new "etc/e820" file -- include ram too */
646 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
647 e820_table[e820_entries].address = cpu_to_le64(address);
648 e820_table[e820_entries].length = cpu_to_le64(length);
649 e820_table[e820_entries].type = cpu_to_le32(type);
650 e820_entries++;
651
652 return e820_entries;
653 }
654
655 int e820_get_num_entries(void)
656 {
657 return e820_entries;
658 }
659
660 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
661 {
662 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
663 *address = le64_to_cpu(e820_table[idx].address);
664 *length = le64_to_cpu(e820_table[idx].length);
665 return true;
666 }
667 return false;
668 }
669
670 /* Enables contiguous-apic-ID mode, for compatibility */
671 static bool compat_apic_id_mode;
672
673 void enable_compat_apic_id_mode(void)
674 {
675 compat_apic_id_mode = true;
676 }
677
678 /* Calculates initial APIC ID for a specific CPU index
679 *
680 * Currently we need to be able to calculate the APIC ID from the CPU index
681 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
682 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
683 * all CPUs up to max_cpus.
684 */
685 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
686 {
687 uint32_t correct_id;
688 static bool warned;
689
690 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
691 if (compat_apic_id_mode) {
692 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
693 error_report("APIC IDs set in compatibility mode, "
694 "CPU topology won't match the configuration");
695 warned = true;
696 }
697 return cpu_index;
698 } else {
699 return correct_id;
700 }
701 }
702
703 /* Calculates the limit to CPU APIC ID values
704 *
705 * This function returns the limit for the APIC ID value, so that all
706 * CPU APIC IDs are < pc_apic_id_limit().
707 *
708 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
709 */
710 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
711 {
712 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
713 }
714
715 static void pc_build_smbios(FWCfgState *fw_cfg)
716 {
717 uint8_t *smbios_tables, *smbios_anchor;
718 size_t smbios_tables_len, smbios_anchor_len;
719 struct smbios_phys_mem_area *mem_array;
720 unsigned i, array_count;
721
722 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
723 if (smbios_tables) {
724 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
725 smbios_tables, smbios_tables_len);
726 }
727
728 /* build the array of physical mem area from e820 table */
729 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
730 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
731 uint64_t addr, len;
732
733 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
734 mem_array[array_count].address = addr;
735 mem_array[array_count].length = len;
736 array_count++;
737 }
738 }
739 smbios_get_tables(mem_array, array_count,
740 &smbios_tables, &smbios_tables_len,
741 &smbios_anchor, &smbios_anchor_len);
742 g_free(mem_array);
743
744 if (smbios_anchor) {
745 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
746 smbios_tables, smbios_tables_len);
747 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
748 smbios_anchor, smbios_anchor_len);
749 }
750 }
751
752 static FWCfgState *bochs_bios_init(AddressSpace *as)
753 {
754 FWCfgState *fw_cfg;
755 uint64_t *numa_fw_cfg;
756 int i, j;
757 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
758
759 fw_cfg = fw_cfg_init_io_dma(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 4, as);
760
761 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
762 *
763 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
764 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
765 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
766 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
767 * may see".
768 *
769 * So, this means we must not use max_cpus, here, but the maximum possible
770 * APIC ID value, plus one.
771 *
772 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
773 * the APIC ID, not the "CPU index"
774 */
775 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
776 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
777 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
778 acpi_tables, acpi_tables_len);
779 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
780
781 pc_build_smbios(fw_cfg);
782
783 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
784 &e820_reserve, sizeof(e820_reserve));
785 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
786 sizeof(struct e820_entry) * e820_entries);
787
788 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
789 /* allocate memory for the NUMA channel: one (64bit) word for the number
790 * of nodes, one word for each VCPU->node and one word for each node to
791 * hold the amount of memory.
792 */
793 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
794 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
795 for (i = 0; i < max_cpus; i++) {
796 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
797 assert(apic_id < apic_id_limit);
798 for (j = 0; j < nb_numa_nodes; j++) {
799 if (test_bit(i, numa_info[j].node_cpu)) {
800 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
801 break;
802 }
803 }
804 }
805 for (i = 0; i < nb_numa_nodes; i++) {
806 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
807 }
808 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
809 (1 + apic_id_limit + nb_numa_nodes) *
810 sizeof(*numa_fw_cfg));
811
812 return fw_cfg;
813 }
814
815 static long get_file_size(FILE *f)
816 {
817 long where, size;
818
819 /* XXX: on Unix systems, using fstat() probably makes more sense */
820
821 where = ftell(f);
822 fseek(f, 0, SEEK_END);
823 size = ftell(f);
824 fseek(f, where, SEEK_SET);
825
826 return size;
827 }
828
829 static void load_linux(PCMachineState *pcms,
830 FWCfgState *fw_cfg)
831 {
832 uint16_t protocol;
833 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
834 uint32_t initrd_max;
835 uint8_t header[8192], *setup, *kernel, *initrd_data;
836 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
837 FILE *f;
838 char *vmode;
839 MachineState *machine = MACHINE(pcms);
840 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
841 const char *kernel_filename = machine->kernel_filename;
842 const char *initrd_filename = machine->initrd_filename;
843 const char *kernel_cmdline = machine->kernel_cmdline;
844
845 /* Align to 16 bytes as a paranoia measure */
846 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
847
848 /* load the kernel header */
849 f = fopen(kernel_filename, "rb");
850 if (!f || !(kernel_size = get_file_size(f)) ||
851 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
852 MIN(ARRAY_SIZE(header), kernel_size)) {
853 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
854 kernel_filename, strerror(errno));
855 exit(1);
856 }
857
858 /* kernel protocol version */
859 #if 0
860 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
861 #endif
862 if (ldl_p(header+0x202) == 0x53726448) {
863 protocol = lduw_p(header+0x206);
864 } else {
865 /* This looks like a multiboot kernel. If it is, let's stop
866 treating it like a Linux kernel. */
867 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
868 kernel_cmdline, kernel_size, header)) {
869 return;
870 }
871 protocol = 0;
872 }
873
874 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
875 /* Low kernel */
876 real_addr = 0x90000;
877 cmdline_addr = 0x9a000 - cmdline_size;
878 prot_addr = 0x10000;
879 } else if (protocol < 0x202) {
880 /* High but ancient kernel */
881 real_addr = 0x90000;
882 cmdline_addr = 0x9a000 - cmdline_size;
883 prot_addr = 0x100000;
884 } else {
885 /* High and recent kernel */
886 real_addr = 0x10000;
887 cmdline_addr = 0x20000;
888 prot_addr = 0x100000;
889 }
890
891 #if 0
892 fprintf(stderr,
893 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
894 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
895 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
896 real_addr,
897 cmdline_addr,
898 prot_addr);
899 #endif
900
901 /* highest address for loading the initrd */
902 if (protocol >= 0x203) {
903 initrd_max = ldl_p(header+0x22c);
904 } else {
905 initrd_max = 0x37ffffff;
906 }
907
908 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
909 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
910 }
911
912 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
913 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
914 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
915
916 if (protocol >= 0x202) {
917 stl_p(header+0x228, cmdline_addr);
918 } else {
919 stw_p(header+0x20, 0xA33F);
920 stw_p(header+0x22, cmdline_addr-real_addr);
921 }
922
923 /* handle vga= parameter */
924 vmode = strstr(kernel_cmdline, "vga=");
925 if (vmode) {
926 unsigned int video_mode;
927 /* skip "vga=" */
928 vmode += 4;
929 if (!strncmp(vmode, "normal", 6)) {
930 video_mode = 0xffff;
931 } else if (!strncmp(vmode, "ext", 3)) {
932 video_mode = 0xfffe;
933 } else if (!strncmp(vmode, "ask", 3)) {
934 video_mode = 0xfffd;
935 } else {
936 video_mode = strtol(vmode, NULL, 0);
937 }
938 stw_p(header+0x1fa, video_mode);
939 }
940
941 /* loader type */
942 /* High nybble = B reserved for QEMU; low nybble is revision number.
943 If this code is substantially changed, you may want to consider
944 incrementing the revision. */
945 if (protocol >= 0x200) {
946 header[0x210] = 0xB0;
947 }
948 /* heap */
949 if (protocol >= 0x201) {
950 header[0x211] |= 0x80; /* CAN_USE_HEAP */
951 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
952 }
953
954 /* load initrd */
955 if (initrd_filename) {
956 if (protocol < 0x200) {
957 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
958 exit(1);
959 }
960
961 initrd_size = get_image_size(initrd_filename);
962 if (initrd_size < 0) {
963 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
964 initrd_filename, strerror(errno));
965 exit(1);
966 }
967
968 initrd_addr = (initrd_max-initrd_size) & ~4095;
969
970 initrd_data = g_malloc(initrd_size);
971 load_image(initrd_filename, initrd_data);
972
973 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
974 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
975 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
976
977 stl_p(header+0x218, initrd_addr);
978 stl_p(header+0x21c, initrd_size);
979 }
980
981 /* load kernel and setup */
982 setup_size = header[0x1f1];
983 if (setup_size == 0) {
984 setup_size = 4;
985 }
986 setup_size = (setup_size+1)*512;
987 if (setup_size > kernel_size) {
988 fprintf(stderr, "qemu: invalid kernel header\n");
989 exit(1);
990 }
991 kernel_size -= setup_size;
992
993 setup = g_malloc(setup_size);
994 kernel = g_malloc(kernel_size);
995 fseek(f, 0, SEEK_SET);
996 if (fread(setup, 1, setup_size, f) != setup_size) {
997 fprintf(stderr, "fread() failed\n");
998 exit(1);
999 }
1000 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1001 fprintf(stderr, "fread() failed\n");
1002 exit(1);
1003 }
1004 fclose(f);
1005 memcpy(setup, header, MIN(sizeof(header), setup_size));
1006
1007 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1008 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1009 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1010
1011 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1012 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1013 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1014
1015 option_rom[nb_option_roms].name = "linuxboot.bin";
1016 option_rom[nb_option_roms].bootindex = 0;
1017 nb_option_roms++;
1018 }
1019
1020 #define NE2000_NB_MAX 6
1021
1022 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1023 0x280, 0x380 };
1024 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1025
1026 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1027 {
1028 static int nb_ne2k = 0;
1029
1030 if (nb_ne2k == NE2000_NB_MAX)
1031 return;
1032 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1033 ne2000_irq[nb_ne2k], nd);
1034 nb_ne2k++;
1035 }
1036
1037 DeviceState *cpu_get_current_apic(void)
1038 {
1039 if (current_cpu) {
1040 X86CPU *cpu = X86_CPU(current_cpu);
1041 return cpu->apic_state;
1042 } else {
1043 return NULL;
1044 }
1045 }
1046
1047 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1048 {
1049 X86CPU *cpu = opaque;
1050
1051 if (level) {
1052 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1053 }
1054 }
1055
1056 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1057 Error **errp)
1058 {
1059 X86CPU *cpu = NULL;
1060 Error *local_err = NULL;
1061
1062 cpu = cpu_x86_create(cpu_model, &local_err);
1063 if (local_err != NULL) {
1064 goto out;
1065 }
1066
1067 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1068 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1069
1070 out:
1071 if (local_err) {
1072 error_propagate(errp, local_err);
1073 object_unref(OBJECT(cpu));
1074 cpu = NULL;
1075 }
1076 return cpu;
1077 }
1078
1079 void pc_hot_add_cpu(const int64_t id, Error **errp)
1080 {
1081 X86CPU *cpu;
1082 MachineState *machine = MACHINE(qdev_get_machine());
1083 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1084 Error *local_err = NULL;
1085
1086 if (id < 0) {
1087 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1088 return;
1089 }
1090
1091 if (cpu_exists(apic_id)) {
1092 error_setg(errp, "Unable to add CPU: %" PRIi64
1093 ", it already exists", id);
1094 return;
1095 }
1096
1097 if (id >= max_cpus) {
1098 error_setg(errp, "Unable to add CPU: %" PRIi64
1099 ", max allowed: %d", id, max_cpus - 1);
1100 return;
1101 }
1102
1103 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1104 error_setg(errp, "Unable to add CPU: %" PRIi64
1105 ", resulting APIC ID (%" PRIi64 ") is too large",
1106 id, apic_id);
1107 return;
1108 }
1109
1110 cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1111 if (local_err) {
1112 error_propagate(errp, local_err);
1113 return;
1114 }
1115 object_unref(OBJECT(cpu));
1116 }
1117
1118 void pc_cpus_init(PCMachineState *pcms)
1119 {
1120 int i;
1121 X86CPU *cpu = NULL;
1122 MachineState *machine = MACHINE(pcms);
1123 unsigned long apic_id_limit;
1124
1125 /* init CPUs */
1126 if (machine->cpu_model == NULL) {
1127 #ifdef TARGET_X86_64
1128 machine->cpu_model = "qemu64";
1129 #else
1130 machine->cpu_model = "qemu32";
1131 #endif
1132 }
1133
1134 apic_id_limit = pc_apic_id_limit(max_cpus);
1135 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1136 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1137 apic_id_limit - 1);
1138 exit(1);
1139 }
1140
1141 for (i = 0; i < smp_cpus; i++) {
1142 cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1143 &error_fatal);
1144 object_unref(OBJECT(cpu));
1145 }
1146
1147 /* tell smbios about cpuid version and features */
1148 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1149 }
1150
1151 /* pci-info ROM file. Little endian format */
1152 typedef struct PcRomPciInfo {
1153 uint64_t w32_min;
1154 uint64_t w32_max;
1155 uint64_t w64_min;
1156 uint64_t w64_max;
1157 } PcRomPciInfo;
1158
1159 static
1160 void pc_machine_done(Notifier *notifier, void *data)
1161 {
1162 PCMachineState *pcms = container_of(notifier,
1163 PCMachineState, machine_done);
1164 PCIBus *bus = pcms->bus;
1165
1166 if (bus) {
1167 int extra_hosts = 0;
1168
1169 QLIST_FOREACH(bus, &bus->child, sibling) {
1170 /* look for expander root buses */
1171 if (pci_bus_is_root(bus)) {
1172 extra_hosts++;
1173 }
1174 }
1175 if (extra_hosts && pcms->fw_cfg) {
1176 uint64_t *val = g_malloc(sizeof(*val));
1177 *val = cpu_to_le64(extra_hosts);
1178 fw_cfg_add_file(pcms->fw_cfg,
1179 "etc/extra-pci-roots", val, sizeof(*val));
1180 }
1181 }
1182
1183 acpi_setup();
1184 }
1185
1186 void pc_guest_info_init(PCMachineState *pcms)
1187 {
1188 int i, j;
1189
1190 pcms->apic_id_limit = pc_apic_id_limit(max_cpus);
1191 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1192 pcms->numa_nodes = nb_numa_nodes;
1193 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1194 sizeof *pcms->node_mem);
1195 for (i = 0; i < nb_numa_nodes; i++) {
1196 pcms->node_mem[i] = numa_info[i].node_mem;
1197 }
1198
1199 pcms->node_cpu = g_malloc0(pcms->apic_id_limit *
1200 sizeof *pcms->node_cpu);
1201
1202 for (i = 0; i < max_cpus; i++) {
1203 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1204 assert(apic_id < pcms->apic_id_limit);
1205 for (j = 0; j < nb_numa_nodes; j++) {
1206 if (test_bit(i, numa_info[j].node_cpu)) {
1207 pcms->node_cpu[apic_id] = j;
1208 break;
1209 }
1210 }
1211 }
1212
1213 pcms->machine_done.notify = pc_machine_done;
1214 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1215 }
1216
1217 /* setup pci memory address space mapping into system address space */
1218 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1219 MemoryRegion *pci_address_space)
1220 {
1221 /* Set to lower priority than RAM */
1222 memory_region_add_subregion_overlap(system_memory, 0x0,
1223 pci_address_space, -1);
1224 }
1225
1226 void pc_acpi_init(const char *default_dsdt)
1227 {
1228 char *filename;
1229
1230 if (acpi_tables != NULL) {
1231 /* manually set via -acpitable, leave it alone */
1232 return;
1233 }
1234
1235 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1236 if (filename == NULL) {
1237 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1238 } else {
1239 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1240 &error_abort);
1241 Error *err = NULL;
1242
1243 qemu_opt_set(opts, "file", filename, &error_abort);
1244
1245 acpi_table_add_builtin(opts, &err);
1246 if (err) {
1247 error_reportf_err(err, "WARNING: failed to load %s: ",
1248 filename);
1249 }
1250 g_free(filename);
1251 }
1252 }
1253
1254 void xen_load_linux(PCMachineState *pcms)
1255 {
1256 int i;
1257 FWCfgState *fw_cfg;
1258
1259 assert(MACHINE(pcms)->kernel_filename != NULL);
1260
1261 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1262 rom_set_fw(fw_cfg);
1263
1264 load_linux(pcms, fw_cfg);
1265 for (i = 0; i < nb_option_roms; i++) {
1266 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1267 !strcmp(option_rom[i].name, "multiboot.bin"));
1268 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1269 }
1270 pcms->fw_cfg = fw_cfg;
1271 }
1272
1273 void pc_memory_init(PCMachineState *pcms,
1274 MemoryRegion *system_memory,
1275 MemoryRegion *rom_memory,
1276 MemoryRegion **ram_memory)
1277 {
1278 int linux_boot, i;
1279 MemoryRegion *ram, *option_rom_mr;
1280 MemoryRegion *ram_below_4g, *ram_above_4g;
1281 FWCfgState *fw_cfg;
1282 MachineState *machine = MACHINE(pcms);
1283 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1284
1285 assert(machine->ram_size == pcms->below_4g_mem_size +
1286 pcms->above_4g_mem_size);
1287
1288 linux_boot = (machine->kernel_filename != NULL);
1289
1290 /* Allocate RAM. We allocate it as a single memory region and use
1291 * aliases to address portions of it, mostly for backwards compatibility
1292 * with older qemus that used qemu_ram_alloc().
1293 */
1294 ram = g_malloc(sizeof(*ram));
1295 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1296 machine->ram_size);
1297 *ram_memory = ram;
1298 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1299 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1300 0, pcms->below_4g_mem_size);
1301 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1302 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1303 if (pcms->above_4g_mem_size > 0) {
1304 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1305 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1306 pcms->below_4g_mem_size,
1307 pcms->above_4g_mem_size);
1308 memory_region_add_subregion(system_memory, 0x100000000ULL,
1309 ram_above_4g);
1310 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1311 }
1312
1313 if (!pcmc->has_reserved_memory &&
1314 (machine->ram_slots ||
1315 (machine->maxram_size > machine->ram_size))) {
1316 MachineClass *mc = MACHINE_GET_CLASS(machine);
1317
1318 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1319 mc->name);
1320 exit(EXIT_FAILURE);
1321 }
1322
1323 /* initialize hotplug memory address space */
1324 if (pcmc->has_reserved_memory &&
1325 (machine->ram_size < machine->maxram_size)) {
1326 ram_addr_t hotplug_mem_size =
1327 machine->maxram_size - machine->ram_size;
1328
1329 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1330 error_report("unsupported amount of memory slots: %"PRIu64,
1331 machine->ram_slots);
1332 exit(EXIT_FAILURE);
1333 }
1334
1335 if (QEMU_ALIGN_UP(machine->maxram_size,
1336 TARGET_PAGE_SIZE) != machine->maxram_size) {
1337 error_report("maximum memory size must by aligned to multiple of "
1338 "%d bytes", TARGET_PAGE_SIZE);
1339 exit(EXIT_FAILURE);
1340 }
1341
1342 pcms->hotplug_memory.base =
1343 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1344
1345 if (pcmc->enforce_aligned_dimm) {
1346 /* size hotplug region assuming 1G page max alignment per slot */
1347 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1348 }
1349
1350 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1351 hotplug_mem_size) {
1352 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1353 machine->maxram_size);
1354 exit(EXIT_FAILURE);
1355 }
1356
1357 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1358 "hotplug-memory", hotplug_mem_size);
1359 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1360 &pcms->hotplug_memory.mr);
1361 }
1362
1363 /* Initialize PC system firmware */
1364 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1365
1366 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1367 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1368 &error_fatal);
1369 vmstate_register_ram_global(option_rom_mr);
1370 memory_region_add_subregion_overlap(rom_memory,
1371 PC_ROM_MIN_VGA,
1372 option_rom_mr,
1373 1);
1374
1375 fw_cfg = bochs_bios_init(&address_space_memory);
1376
1377 rom_set_fw(fw_cfg);
1378
1379 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1380 uint64_t *val = g_malloc(sizeof(*val));
1381 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1382 uint64_t res_mem_end = pcms->hotplug_memory.base;
1383
1384 if (!pcmc->broken_reserved_end) {
1385 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1386 }
1387 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1388 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1389 }
1390
1391 if (linux_boot) {
1392 load_linux(pcms, fw_cfg);
1393 }
1394
1395 for (i = 0; i < nb_option_roms; i++) {
1396 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1397 }
1398 pcms->fw_cfg = fw_cfg;
1399 }
1400
1401 qemu_irq pc_allocate_cpu_irq(void)
1402 {
1403 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1404 }
1405
1406 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1407 {
1408 DeviceState *dev = NULL;
1409
1410 if (pci_bus) {
1411 PCIDevice *pcidev = pci_vga_init(pci_bus);
1412 dev = pcidev ? &pcidev->qdev : NULL;
1413 } else if (isa_bus) {
1414 ISADevice *isadev = isa_vga_init(isa_bus);
1415 dev = isadev ? DEVICE(isadev) : NULL;
1416 }
1417 return dev;
1418 }
1419
1420 static const MemoryRegionOps ioport80_io_ops = {
1421 .write = ioport80_write,
1422 .read = ioport80_read,
1423 .endianness = DEVICE_NATIVE_ENDIAN,
1424 .impl = {
1425 .min_access_size = 1,
1426 .max_access_size = 1,
1427 },
1428 };
1429
1430 static const MemoryRegionOps ioportF0_io_ops = {
1431 .write = ioportF0_write,
1432 .read = ioportF0_read,
1433 .endianness = DEVICE_NATIVE_ENDIAN,
1434 .impl = {
1435 .min_access_size = 1,
1436 .max_access_size = 1,
1437 },
1438 };
1439
1440 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1441 ISADevice **rtc_state,
1442 bool create_fdctrl,
1443 bool no_vmport,
1444 uint32_t hpet_irqs)
1445 {
1446 int i;
1447 DriveInfo *fd[MAX_FD];
1448 DeviceState *hpet = NULL;
1449 int pit_isa_irq = 0;
1450 qemu_irq pit_alt_irq = NULL;
1451 qemu_irq rtc_irq = NULL;
1452 qemu_irq *a20_line;
1453 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1454 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1455 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1456
1457 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1458 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1459
1460 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1461 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1462
1463 /*
1464 * Check if an HPET shall be created.
1465 *
1466 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1467 * when the HPET wants to take over. Thus we have to disable the latter.
1468 */
1469 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1470 /* In order to set property, here not using sysbus_try_create_simple */
1471 hpet = qdev_try_create(NULL, TYPE_HPET);
1472 if (hpet) {
1473 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1474 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1475 * IRQ8 and IRQ2.
1476 */
1477 uint8_t compat = object_property_get_int(OBJECT(hpet),
1478 HPET_INTCAP, NULL);
1479 if (!compat) {
1480 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1481 }
1482 qdev_init_nofail(hpet);
1483 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1484
1485 for (i = 0; i < GSI_NUM_PINS; i++) {
1486 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1487 }
1488 pit_isa_irq = -1;
1489 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1490 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1491 }
1492 }
1493 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1494
1495 qemu_register_boot_set(pc_boot_set, *rtc_state);
1496
1497 if (!xen_enabled()) {
1498 if (kvm_pit_in_kernel()) {
1499 pit = kvm_pit_init(isa_bus, 0x40);
1500 } else {
1501 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1502 }
1503 if (hpet) {
1504 /* connect PIT to output control line of the HPET */
1505 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1506 }
1507 pcspk_init(isa_bus, pit);
1508 }
1509
1510 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1511 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1512
1513 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1514 i8042 = isa_create_simple(isa_bus, "i8042");
1515 i8042_setup_a20_line(i8042, &a20_line[0]);
1516 if (!no_vmport) {
1517 vmport_init(isa_bus);
1518 vmmouse = isa_try_create(isa_bus, "vmmouse");
1519 } else {
1520 vmmouse = NULL;
1521 }
1522 if (vmmouse) {
1523 DeviceState *dev = DEVICE(vmmouse);
1524 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1525 qdev_init_nofail(dev);
1526 }
1527 port92 = isa_create_simple(isa_bus, "port92");
1528 port92_init(port92, &a20_line[1]);
1529
1530 DMA_init(isa_bus, 0);
1531
1532 for(i = 0; i < MAX_FD; i++) {
1533 fd[i] = drive_get(IF_FLOPPY, 0, i);
1534 create_fdctrl |= !!fd[i];
1535 }
1536 if (create_fdctrl) {
1537 fdctrl_init_isa(isa_bus, fd);
1538 }
1539 }
1540
1541 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1542 {
1543 int i;
1544
1545 for (i = 0; i < nb_nics; i++) {
1546 NICInfo *nd = &nd_table[i];
1547
1548 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1549 pc_init_ne2k_isa(isa_bus, nd);
1550 } else {
1551 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1552 }
1553 }
1554 }
1555
1556 void pc_pci_device_init(PCIBus *pci_bus)
1557 {
1558 int max_bus;
1559 int bus;
1560
1561 max_bus = drive_get_max_bus(IF_SCSI);
1562 for (bus = 0; bus <= max_bus; bus++) {
1563 pci_create_simple(pci_bus, -1, "lsi53c895a");
1564 }
1565 }
1566
1567 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1568 {
1569 DeviceState *dev;
1570 SysBusDevice *d;
1571 unsigned int i;
1572
1573 if (kvm_ioapic_in_kernel()) {
1574 dev = qdev_create(NULL, "kvm-ioapic");
1575 } else {
1576 dev = qdev_create(NULL, "ioapic");
1577 }
1578 if (parent_name) {
1579 object_property_add_child(object_resolve_path(parent_name, NULL),
1580 "ioapic", OBJECT(dev), NULL);
1581 }
1582 qdev_init_nofail(dev);
1583 d = SYS_BUS_DEVICE(dev);
1584 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1585
1586 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1587 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1588 }
1589 }
1590
1591 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1592 DeviceState *dev, Error **errp)
1593 {
1594 HotplugHandlerClass *hhc;
1595 Error *local_err = NULL;
1596 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1597 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1598 PCDIMMDevice *dimm = PC_DIMM(dev);
1599 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1600 MemoryRegion *mr = ddc->get_memory_region(dimm);
1601 uint64_t align = TARGET_PAGE_SIZE;
1602
1603 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1604 align = memory_region_get_alignment(mr);
1605 }
1606
1607 if (!pcms->acpi_dev) {
1608 error_setg(&local_err,
1609 "memory hotplug is not enabled: missing acpi device");
1610 goto out;
1611 }
1612
1613 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1614 if (local_err) {
1615 goto out;
1616 }
1617
1618 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1619 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1620 out:
1621 error_propagate(errp, local_err);
1622 }
1623
1624 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1625 DeviceState *dev, Error **errp)
1626 {
1627 HotplugHandlerClass *hhc;
1628 Error *local_err = NULL;
1629 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1630
1631 if (!pcms->acpi_dev) {
1632 error_setg(&local_err,
1633 "memory hotplug is not enabled: missing acpi device");
1634 goto out;
1635 }
1636
1637 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1638 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1639
1640 out:
1641 error_propagate(errp, local_err);
1642 }
1643
1644 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1645 DeviceState *dev, Error **errp)
1646 {
1647 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1648 PCDIMMDevice *dimm = PC_DIMM(dev);
1649 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1650 MemoryRegion *mr = ddc->get_memory_region(dimm);
1651 HotplugHandlerClass *hhc;
1652 Error *local_err = NULL;
1653
1654 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1655 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1656
1657 if (local_err) {
1658 goto out;
1659 }
1660
1661 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1662 object_unparent(OBJECT(dev));
1663
1664 out:
1665 error_propagate(errp, local_err);
1666 }
1667
1668 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1669 DeviceState *dev, Error **errp)
1670 {
1671 HotplugHandlerClass *hhc;
1672 Error *local_err = NULL;
1673 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1674
1675 if (!dev->hotplugged) {
1676 goto out;
1677 }
1678
1679 if (!pcms->acpi_dev) {
1680 error_setg(&local_err,
1681 "cpu hotplug is not enabled: missing acpi device");
1682 goto out;
1683 }
1684
1685 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1686 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1687 if (local_err) {
1688 goto out;
1689 }
1690
1691 /* increment the number of CPUs */
1692 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1693 out:
1694 error_propagate(errp, local_err);
1695 }
1696
1697 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1698 DeviceState *dev, Error **errp)
1699 {
1700 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1701 pc_dimm_plug(hotplug_dev, dev, errp);
1702 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1703 pc_cpu_plug(hotplug_dev, dev, errp);
1704 }
1705 }
1706
1707 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1708 DeviceState *dev, Error **errp)
1709 {
1710 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1711 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1712 } else {
1713 error_setg(errp, "acpi: device unplug request for not supported device"
1714 " type: %s", object_get_typename(OBJECT(dev)));
1715 }
1716 }
1717
1718 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1719 DeviceState *dev, Error **errp)
1720 {
1721 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1722 pc_dimm_unplug(hotplug_dev, dev, errp);
1723 } else {
1724 error_setg(errp, "acpi: device unplug for not supported device"
1725 " type: %s", object_get_typename(OBJECT(dev)));
1726 }
1727 }
1728
1729 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1730 DeviceState *dev)
1731 {
1732 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1733
1734 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1735 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1736 return HOTPLUG_HANDLER(machine);
1737 }
1738
1739 return pcmc->get_hotplug_handler ?
1740 pcmc->get_hotplug_handler(machine, dev) : NULL;
1741 }
1742
1743 static void
1744 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
1745 const char *name, void *opaque,
1746 Error **errp)
1747 {
1748 PCMachineState *pcms = PC_MACHINE(obj);
1749 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1750
1751 visit_type_int(v, name, &value, errp);
1752 }
1753
1754 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1755 const char *name, void *opaque,
1756 Error **errp)
1757 {
1758 PCMachineState *pcms = PC_MACHINE(obj);
1759 uint64_t value = pcms->max_ram_below_4g;
1760
1761 visit_type_size(v, name, &value, errp);
1762 }
1763
1764 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1765 const char *name, void *opaque,
1766 Error **errp)
1767 {
1768 PCMachineState *pcms = PC_MACHINE(obj);
1769 Error *error = NULL;
1770 uint64_t value;
1771
1772 visit_type_size(v, name, &value, &error);
1773 if (error) {
1774 error_propagate(errp, error);
1775 return;
1776 }
1777 if (value > (1ULL << 32)) {
1778 error_setg(&error,
1779 "Machine option 'max-ram-below-4g=%"PRIu64
1780 "' expects size less than or equal to 4G", value);
1781 error_propagate(errp, error);
1782 return;
1783 }
1784
1785 if (value < (1ULL << 20)) {
1786 error_report("Warning: small max_ram_below_4g(%"PRIu64
1787 ") less than 1M. BIOS may not work..",
1788 value);
1789 }
1790
1791 pcms->max_ram_below_4g = value;
1792 }
1793
1794 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
1795 void *opaque, Error **errp)
1796 {
1797 PCMachineState *pcms = PC_MACHINE(obj);
1798 OnOffAuto vmport = pcms->vmport;
1799
1800 visit_type_OnOffAuto(v, name, &vmport, errp);
1801 }
1802
1803 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
1804 void *opaque, Error **errp)
1805 {
1806 PCMachineState *pcms = PC_MACHINE(obj);
1807
1808 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
1809 }
1810
1811 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1812 {
1813 bool smm_available = false;
1814
1815 if (pcms->smm == ON_OFF_AUTO_OFF) {
1816 return false;
1817 }
1818
1819 if (tcg_enabled() || qtest_enabled()) {
1820 smm_available = true;
1821 } else if (kvm_enabled()) {
1822 smm_available = kvm_has_smm();
1823 }
1824
1825 if (smm_available) {
1826 return true;
1827 }
1828
1829 if (pcms->smm == ON_OFF_AUTO_ON) {
1830 error_report("System Management Mode not supported by this hypervisor.");
1831 exit(1);
1832 }
1833 return false;
1834 }
1835
1836 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
1837 void *opaque, Error **errp)
1838 {
1839 PCMachineState *pcms = PC_MACHINE(obj);
1840 OnOffAuto smm = pcms->smm;
1841
1842 visit_type_OnOffAuto(v, name, &smm, errp);
1843 }
1844
1845 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
1846 void *opaque, Error **errp)
1847 {
1848 PCMachineState *pcms = PC_MACHINE(obj);
1849
1850 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
1851 }
1852
1853 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
1854 {
1855 PCMachineState *pcms = PC_MACHINE(obj);
1856
1857 return pcms->nvdimm;
1858 }
1859
1860 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
1861 {
1862 PCMachineState *pcms = PC_MACHINE(obj);
1863
1864 pcms->nvdimm = value;
1865 }
1866
1867 static void pc_machine_initfn(Object *obj)
1868 {
1869 PCMachineState *pcms = PC_MACHINE(obj);
1870
1871 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1872 pc_machine_get_hotplug_memory_region_size,
1873 NULL, NULL, NULL, &error_abort);
1874
1875 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1876 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1877 pc_machine_get_max_ram_below_4g,
1878 pc_machine_set_max_ram_below_4g,
1879 NULL, NULL, &error_abort);
1880 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1881 "Maximum ram below the 4G boundary (32bit boundary)",
1882 &error_abort);
1883
1884 pcms->smm = ON_OFF_AUTO_AUTO;
1885 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1886 pc_machine_get_smm,
1887 pc_machine_set_smm,
1888 NULL, NULL, &error_abort);
1889 object_property_set_description(obj, PC_MACHINE_SMM,
1890 "Enable SMM (pc & q35)",
1891 &error_abort);
1892
1893 pcms->vmport = ON_OFF_AUTO_AUTO;
1894 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1895 pc_machine_get_vmport,
1896 pc_machine_set_vmport,
1897 NULL, NULL, &error_abort);
1898 object_property_set_description(obj, PC_MACHINE_VMPORT,
1899 "Enable vmport (pc & q35)",
1900 &error_abort);
1901
1902 /* nvdimm is disabled on default. */
1903 pcms->nvdimm = false;
1904 object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
1905 pc_machine_set_nvdimm, &error_abort);
1906 }
1907
1908 static void pc_machine_reset(void)
1909 {
1910 CPUState *cs;
1911 X86CPU *cpu;
1912
1913 qemu_devices_reset();
1914
1915 /* Reset APIC after devices have been reset to cancel
1916 * any changes that qemu_devices_reset() might have done.
1917 */
1918 CPU_FOREACH(cs) {
1919 cpu = X86_CPU(cs);
1920
1921 if (cpu->apic_state) {
1922 device_reset(cpu->apic_state);
1923 }
1924 }
1925 }
1926
1927 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1928 {
1929 X86CPUTopoInfo topo;
1930 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1931 &topo);
1932 return topo.pkg_id;
1933 }
1934
1935 static void pc_machine_class_init(ObjectClass *oc, void *data)
1936 {
1937 MachineClass *mc = MACHINE_CLASS(oc);
1938 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1939 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1940
1941 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1942 pcmc->pci_enabled = true;
1943 pcmc->has_acpi_build = true;
1944 pcmc->rsdp_in_ram = true;
1945 pcmc->smbios_defaults = true;
1946 pcmc->smbios_uuid_encoded = true;
1947 pcmc->gigabyte_align = true;
1948 pcmc->has_reserved_memory = true;
1949 pcmc->kvmclock_enabled = true;
1950 pcmc->enforce_aligned_dimm = true;
1951 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
1952 * to be used at the moment, 32K should be enough for a while. */
1953 pcmc->acpi_data_size = 0x20000 + 0x8000;
1954 pcmc->save_tsc_khz = true;
1955 mc->get_hotplug_handler = pc_get_hotpug_handler;
1956 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1957 mc->default_boot_order = "cad";
1958 mc->hot_add_cpu = pc_hot_add_cpu;
1959 mc->max_cpus = 255;
1960 mc->reset = pc_machine_reset;
1961 hc->plug = pc_machine_device_plug_cb;
1962 hc->unplug_request = pc_machine_device_unplug_request_cb;
1963 hc->unplug = pc_machine_device_unplug_cb;
1964 }
1965
1966 static const TypeInfo pc_machine_info = {
1967 .name = TYPE_PC_MACHINE,
1968 .parent = TYPE_MACHINE,
1969 .abstract = true,
1970 .instance_size = sizeof(PCMachineState),
1971 .instance_init = pc_machine_initfn,
1972 .class_size = sizeof(PCMachineClass),
1973 .class_init = pc_machine_class_init,
1974 .interfaces = (InterfaceInfo[]) {
1975 { TYPE_HOTPLUG_HANDLER },
1976 { }
1977 },
1978 };
1979
1980 static void pc_machine_register_types(void)
1981 {
1982 type_register_static(&pc_machine_info);
1983 }
1984
1985 type_init(pc_machine_register_types)