]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
cpu: Replace cpu_single_env with CPUState current_cpu
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/cpu/icc_bus.h"
57 #include "hw/boards.h"
58
59 /* debug PC/ISA interrupts */
60 //#define DEBUG_IRQ
61
62 #ifdef DEBUG_IRQ
63 #define DPRINTF(fmt, ...) \
64 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define DPRINTF(fmt, ...)
67 #endif
68
69 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
70 #define ACPI_DATA_SIZE 0x10000
71 #define BIOS_CFG_IOPORT 0x510
72 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
73 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
74 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
75 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
76 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
77
78 #define IO_APIC_DEFAULT_ADDRESS 0xfec00000
79
80 #define E820_NR_ENTRIES 16
81
82 struct e820_entry {
83 uint64_t address;
84 uint64_t length;
85 uint32_t type;
86 } QEMU_PACKED __attribute((__aligned__(4)));
87
88 struct e820_table {
89 uint32_t count;
90 struct e820_entry entry[E820_NR_ENTRIES];
91 } QEMU_PACKED __attribute((__aligned__(4)));
92
93 static struct e820_table e820_table;
94 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
95
96 void gsi_handler(void *opaque, int n, int level)
97 {
98 GSIState *s = opaque;
99
100 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
101 if (n < ISA_NUM_IRQS) {
102 qemu_set_irq(s->i8259_irq[n], level);
103 }
104 qemu_set_irq(s->ioapic_irq[n], level);
105 }
106
107 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
108 unsigned size)
109 {
110 }
111
112 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
113 {
114 return 0xffffffffffffffffULL;
115 }
116
117 /* MSDOS compatibility mode FPU exception support */
118 static qemu_irq ferr_irq;
119
120 void pc_register_ferr_irq(qemu_irq irq)
121 {
122 ferr_irq = irq;
123 }
124
125 /* XXX: add IGNNE support */
126 void cpu_set_ferr(CPUX86State *s)
127 {
128 qemu_irq_raise(ferr_irq);
129 }
130
131 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
132 unsigned size)
133 {
134 qemu_irq_lower(ferr_irq);
135 }
136
137 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
138 {
139 return 0xffffffffffffffffULL;
140 }
141
142 /* TSC handling */
143 uint64_t cpu_get_tsc(CPUX86State *env)
144 {
145 return cpu_get_ticks();
146 }
147
148 /* SMM support */
149
150 static cpu_set_smm_t smm_set;
151 static void *smm_arg;
152
153 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
154 {
155 assert(smm_set == NULL);
156 assert(smm_arg == NULL);
157 smm_set = callback;
158 smm_arg = arg;
159 }
160
161 void cpu_smm_update(CPUX86State *env)
162 {
163 if (smm_set && smm_arg && env == first_cpu)
164 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
165 }
166
167
168 /* IRQ handling */
169 int cpu_get_pic_interrupt(CPUX86State *env)
170 {
171 int intno;
172
173 intno = apic_get_interrupt(env->apic_state);
174 if (intno >= 0) {
175 return intno;
176 }
177 /* read the irq from the PIC */
178 if (!apic_accept_pic_intr(env->apic_state)) {
179 return -1;
180 }
181
182 intno = pic_read_irq(isa_pic);
183 return intno;
184 }
185
186 static void pic_irq_request(void *opaque, int irq, int level)
187 {
188 CPUX86State *env = first_cpu;
189
190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191 if (env->apic_state) {
192 while (env) {
193 if (apic_accept_pic_intr(env->apic_state)) {
194 apic_deliver_pic_intr(env->apic_state, level);
195 }
196 env = env->next_cpu;
197 }
198 } else {
199 CPUState *cs = CPU(x86_env_get_cpu(env));
200 if (level) {
201 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
202 } else {
203 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
204 }
205 }
206 }
207
208 /* PC cmos mappings */
209
210 #define REG_EQUIPMENT_BYTE 0x14
211
212 static int cmos_get_fd_drive_type(FDriveType fd0)
213 {
214 int val;
215
216 switch (fd0) {
217 case FDRIVE_DRV_144:
218 /* 1.44 Mb 3"5 drive */
219 val = 4;
220 break;
221 case FDRIVE_DRV_288:
222 /* 2.88 Mb 3"5 drive */
223 val = 5;
224 break;
225 case FDRIVE_DRV_120:
226 /* 1.2 Mb 5"5 drive */
227 val = 2;
228 break;
229 case FDRIVE_DRV_NONE:
230 default:
231 val = 0;
232 break;
233 }
234 return val;
235 }
236
237 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
238 int16_t cylinders, int8_t heads, int8_t sectors)
239 {
240 rtc_set_memory(s, type_ofs, 47);
241 rtc_set_memory(s, info_ofs, cylinders);
242 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
243 rtc_set_memory(s, info_ofs + 2, heads);
244 rtc_set_memory(s, info_ofs + 3, 0xff);
245 rtc_set_memory(s, info_ofs + 4, 0xff);
246 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
247 rtc_set_memory(s, info_ofs + 6, cylinders);
248 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
249 rtc_set_memory(s, info_ofs + 8, sectors);
250 }
251
252 /* convert boot_device letter to something recognizable by the bios */
253 static int boot_device2nibble(char boot_device)
254 {
255 switch(boot_device) {
256 case 'a':
257 case 'b':
258 return 0x01; /* floppy boot */
259 case 'c':
260 return 0x02; /* hard drive boot */
261 case 'd':
262 return 0x03; /* CD-ROM boot */
263 case 'n':
264 return 0x04; /* Network boot */
265 }
266 return 0;
267 }
268
269 static int set_boot_dev(ISADevice *s, const char *boot_device)
270 {
271 #define PC_MAX_BOOT_DEVICES 3
272 int nbds, bds[3] = { 0, };
273 int i;
274
275 nbds = strlen(boot_device);
276 if (nbds > PC_MAX_BOOT_DEVICES) {
277 error_report("Too many boot devices for PC");
278 return(1);
279 }
280 for (i = 0; i < nbds; i++) {
281 bds[i] = boot_device2nibble(boot_device[i]);
282 if (bds[i] == 0) {
283 error_report("Invalid boot device for PC: '%c'",
284 boot_device[i]);
285 return(1);
286 }
287 }
288 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
289 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
290 return(0);
291 }
292
293 static int pc_boot_set(void *opaque, const char *boot_device)
294 {
295 return set_boot_dev(opaque, boot_device);
296 }
297
298 typedef struct pc_cmos_init_late_arg {
299 ISADevice *rtc_state;
300 BusState *idebus[2];
301 } pc_cmos_init_late_arg;
302
303 static void pc_cmos_init_late(void *opaque)
304 {
305 pc_cmos_init_late_arg *arg = opaque;
306 ISADevice *s = arg->rtc_state;
307 int16_t cylinders;
308 int8_t heads, sectors;
309 int val;
310 int i, trans;
311
312 val = 0;
313 if (ide_get_geometry(arg->idebus[0], 0,
314 &cylinders, &heads, &sectors) >= 0) {
315 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
316 val |= 0xf0;
317 }
318 if (ide_get_geometry(arg->idebus[0], 1,
319 &cylinders, &heads, &sectors) >= 0) {
320 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
321 val |= 0x0f;
322 }
323 rtc_set_memory(s, 0x12, val);
324
325 val = 0;
326 for (i = 0; i < 4; i++) {
327 /* NOTE: ide_get_geometry() returns the physical
328 geometry. It is always such that: 1 <= sects <= 63, 1
329 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
330 geometry can be different if a translation is done. */
331 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
332 &cylinders, &heads, &sectors) >= 0) {
333 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
334 assert((trans & ~3) == 0);
335 val |= trans << (i * 2);
336 }
337 }
338 rtc_set_memory(s, 0x39, val);
339
340 qemu_unregister_reset(pc_cmos_init_late, opaque);
341 }
342
343 typedef struct RTCCPUHotplugArg {
344 Notifier cpu_added_notifier;
345 ISADevice *rtc_state;
346 } RTCCPUHotplugArg;
347
348 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
349 {
350 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
351 cpu_added_notifier);
352 ISADevice *s = arg->rtc_state;
353
354 /* increment the number of CPUs */
355 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
356 }
357
358 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
359 const char *boot_device,
360 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
361 ISADevice *s)
362 {
363 int val, nb, i;
364 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
365 static pc_cmos_init_late_arg arg;
366 static RTCCPUHotplugArg cpu_hotplug_cb;
367
368 /* various important CMOS locations needed by PC/Bochs bios */
369
370 /* memory size */
371 /* base memory (first MiB) */
372 val = MIN(ram_size / 1024, 640);
373 rtc_set_memory(s, 0x15, val);
374 rtc_set_memory(s, 0x16, val >> 8);
375 /* extended memory (next 64MiB) */
376 if (ram_size > 1024 * 1024) {
377 val = (ram_size - 1024 * 1024) / 1024;
378 } else {
379 val = 0;
380 }
381 if (val > 65535)
382 val = 65535;
383 rtc_set_memory(s, 0x17, val);
384 rtc_set_memory(s, 0x18, val >> 8);
385 rtc_set_memory(s, 0x30, val);
386 rtc_set_memory(s, 0x31, val >> 8);
387 /* memory between 16MiB and 4GiB */
388 if (ram_size > 16 * 1024 * 1024) {
389 val = (ram_size - 16 * 1024 * 1024) / 65536;
390 } else {
391 val = 0;
392 }
393 if (val > 65535)
394 val = 65535;
395 rtc_set_memory(s, 0x34, val);
396 rtc_set_memory(s, 0x35, val >> 8);
397 /* memory above 4GiB */
398 val = above_4g_mem_size / 65536;
399 rtc_set_memory(s, 0x5b, val);
400 rtc_set_memory(s, 0x5c, val >> 8);
401 rtc_set_memory(s, 0x5d, val >> 16);
402
403 /* set the number of CPU */
404 rtc_set_memory(s, 0x5f, smp_cpus - 1);
405 /* init CPU hotplug notifier */
406 cpu_hotplug_cb.rtc_state = s;
407 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
408 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
409
410 if (set_boot_dev(s, boot_device)) {
411 exit(1);
412 }
413
414 /* floppy type */
415 if (floppy) {
416 for (i = 0; i < 2; i++) {
417 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
418 }
419 }
420 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
421 cmos_get_fd_drive_type(fd_type[1]);
422 rtc_set_memory(s, 0x10, val);
423
424 val = 0;
425 nb = 0;
426 if (fd_type[0] < FDRIVE_DRV_NONE) {
427 nb++;
428 }
429 if (fd_type[1] < FDRIVE_DRV_NONE) {
430 nb++;
431 }
432 switch (nb) {
433 case 0:
434 break;
435 case 1:
436 val |= 0x01; /* 1 drive, ready for boot */
437 break;
438 case 2:
439 val |= 0x41; /* 2 drives, ready for boot */
440 break;
441 }
442 val |= 0x02; /* FPU is there */
443 val |= 0x04; /* PS/2 mouse installed */
444 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
445
446 /* hard drives */
447 arg.rtc_state = s;
448 arg.idebus[0] = idebus0;
449 arg.idebus[1] = idebus1;
450 qemu_register_reset(pc_cmos_init_late, &arg);
451 }
452
453 #define TYPE_PORT92 "port92"
454 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
455
456 /* port 92 stuff: could be split off */
457 typedef struct Port92State {
458 ISADevice parent_obj;
459
460 MemoryRegion io;
461 uint8_t outport;
462 qemu_irq *a20_out;
463 } Port92State;
464
465 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
466 unsigned size)
467 {
468 Port92State *s = opaque;
469
470 DPRINTF("port92: write 0x%02x\n", val);
471 s->outport = val;
472 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
473 if (val & 1) {
474 qemu_system_reset_request();
475 }
476 }
477
478 static uint64_t port92_read(void *opaque, hwaddr addr,
479 unsigned size)
480 {
481 Port92State *s = opaque;
482 uint32_t ret;
483
484 ret = s->outport;
485 DPRINTF("port92: read 0x%02x\n", ret);
486 return ret;
487 }
488
489 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
490 {
491 Port92State *s = PORT92(dev);
492
493 s->a20_out = a20_out;
494 }
495
496 static const VMStateDescription vmstate_port92_isa = {
497 .name = "port92",
498 .version_id = 1,
499 .minimum_version_id = 1,
500 .minimum_version_id_old = 1,
501 .fields = (VMStateField []) {
502 VMSTATE_UINT8(outport, Port92State),
503 VMSTATE_END_OF_LIST()
504 }
505 };
506
507 static void port92_reset(DeviceState *d)
508 {
509 Port92State *s = PORT92(d);
510
511 s->outport &= ~1;
512 }
513
514 static const MemoryRegionOps port92_ops = {
515 .read = port92_read,
516 .write = port92_write,
517 .impl = {
518 .min_access_size = 1,
519 .max_access_size = 1,
520 },
521 .endianness = DEVICE_LITTLE_ENDIAN,
522 };
523
524 static void port92_initfn(Object *obj)
525 {
526 Port92State *s = PORT92(obj);
527
528 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
529
530 s->outport = 0;
531 }
532
533 static void port92_realizefn(DeviceState *dev, Error **errp)
534 {
535 ISADevice *isadev = ISA_DEVICE(dev);
536 Port92State *s = PORT92(dev);
537
538 isa_register_ioport(isadev, &s->io, 0x92);
539 }
540
541 static void port92_class_initfn(ObjectClass *klass, void *data)
542 {
543 DeviceClass *dc = DEVICE_CLASS(klass);
544
545 dc->no_user = 1;
546 dc->realize = port92_realizefn;
547 dc->reset = port92_reset;
548 dc->vmsd = &vmstate_port92_isa;
549 }
550
551 static const TypeInfo port92_info = {
552 .name = TYPE_PORT92,
553 .parent = TYPE_ISA_DEVICE,
554 .instance_size = sizeof(Port92State),
555 .instance_init = port92_initfn,
556 .class_init = port92_class_initfn,
557 };
558
559 static void port92_register_types(void)
560 {
561 type_register_static(&port92_info);
562 }
563
564 type_init(port92_register_types)
565
566 static void handle_a20_line_change(void *opaque, int irq, int level)
567 {
568 X86CPU *cpu = opaque;
569
570 /* XXX: send to all CPUs ? */
571 /* XXX: add logic to handle multiple A20 line sources */
572 x86_cpu_set_a20(cpu, level);
573 }
574
575 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
576 {
577 int index = le32_to_cpu(e820_table.count);
578 struct e820_entry *entry;
579
580 if (index >= E820_NR_ENTRIES)
581 return -EBUSY;
582 entry = &e820_table.entry[index++];
583
584 entry->address = cpu_to_le64(address);
585 entry->length = cpu_to_le64(length);
586 entry->type = cpu_to_le32(type);
587
588 e820_table.count = cpu_to_le32(index);
589 return index;
590 }
591
592 /* Calculates the limit to CPU APIC ID values
593 *
594 * This function returns the limit for the APIC ID value, so that all
595 * CPU APIC IDs are < pc_apic_id_limit().
596 *
597 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
598 */
599 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
600 {
601 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
602 }
603
604 static FWCfgState *bochs_bios_init(void)
605 {
606 FWCfgState *fw_cfg;
607 uint8_t *smbios_table;
608 size_t smbios_len;
609 uint64_t *numa_fw_cfg;
610 int i, j;
611 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
612
613 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
614 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
615 *
616 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
617 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
618 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
619 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
620 * may see".
621 *
622 * So, this means we must not use max_cpus, here, but the maximum possible
623 * APIC ID value, plus one.
624 *
625 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
626 * the APIC ID, not the "CPU index"
627 */
628 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
629 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
630 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
631 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
632 acpi_tables, acpi_tables_len);
633 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
634
635 smbios_table = smbios_get_table(&smbios_len);
636 if (smbios_table)
637 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
638 smbios_table, smbios_len);
639 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
640 &e820_table, sizeof(e820_table));
641
642 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
643 /* allocate memory for the NUMA channel: one (64bit) word for the number
644 * of nodes, one word for each VCPU->node and one word for each node to
645 * hold the amount of memory.
646 */
647 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
648 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
649 for (i = 0; i < max_cpus; i++) {
650 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
651 assert(apic_id < apic_id_limit);
652 for (j = 0; j < nb_numa_nodes; j++) {
653 if (test_bit(i, node_cpumask[j])) {
654 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
655 break;
656 }
657 }
658 }
659 for (i = 0; i < nb_numa_nodes; i++) {
660 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
661 }
662 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
663 (1 + apic_id_limit + nb_numa_nodes) *
664 sizeof(*numa_fw_cfg));
665
666 return fw_cfg;
667 }
668
669 static long get_file_size(FILE *f)
670 {
671 long where, size;
672
673 /* XXX: on Unix systems, using fstat() probably makes more sense */
674
675 where = ftell(f);
676 fseek(f, 0, SEEK_END);
677 size = ftell(f);
678 fseek(f, where, SEEK_SET);
679
680 return size;
681 }
682
683 static void load_linux(FWCfgState *fw_cfg,
684 const char *kernel_filename,
685 const char *initrd_filename,
686 const char *kernel_cmdline,
687 hwaddr max_ram_size)
688 {
689 uint16_t protocol;
690 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
691 uint32_t initrd_max;
692 uint8_t header[8192], *setup, *kernel, *initrd_data;
693 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
694 FILE *f;
695 char *vmode;
696
697 /* Align to 16 bytes as a paranoia measure */
698 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
699
700 /* load the kernel header */
701 f = fopen(kernel_filename, "rb");
702 if (!f || !(kernel_size = get_file_size(f)) ||
703 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
704 MIN(ARRAY_SIZE(header), kernel_size)) {
705 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
706 kernel_filename, strerror(errno));
707 exit(1);
708 }
709
710 /* kernel protocol version */
711 #if 0
712 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
713 #endif
714 if (ldl_p(header+0x202) == 0x53726448) {
715 protocol = lduw_p(header+0x206);
716 } else {
717 /* This looks like a multiboot kernel. If it is, let's stop
718 treating it like a Linux kernel. */
719 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
720 kernel_cmdline, kernel_size, header)) {
721 return;
722 }
723 protocol = 0;
724 }
725
726 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
727 /* Low kernel */
728 real_addr = 0x90000;
729 cmdline_addr = 0x9a000 - cmdline_size;
730 prot_addr = 0x10000;
731 } else if (protocol < 0x202) {
732 /* High but ancient kernel */
733 real_addr = 0x90000;
734 cmdline_addr = 0x9a000 - cmdline_size;
735 prot_addr = 0x100000;
736 } else {
737 /* High and recent kernel */
738 real_addr = 0x10000;
739 cmdline_addr = 0x20000;
740 prot_addr = 0x100000;
741 }
742
743 #if 0
744 fprintf(stderr,
745 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
746 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
747 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
748 real_addr,
749 cmdline_addr,
750 prot_addr);
751 #endif
752
753 /* highest address for loading the initrd */
754 if (protocol >= 0x203) {
755 initrd_max = ldl_p(header+0x22c);
756 } else {
757 initrd_max = 0x37ffffff;
758 }
759
760 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
761 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
762
763 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
764 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
765 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
766
767 if (protocol >= 0x202) {
768 stl_p(header+0x228, cmdline_addr);
769 } else {
770 stw_p(header+0x20, 0xA33F);
771 stw_p(header+0x22, cmdline_addr-real_addr);
772 }
773
774 /* handle vga= parameter */
775 vmode = strstr(kernel_cmdline, "vga=");
776 if (vmode) {
777 unsigned int video_mode;
778 /* skip "vga=" */
779 vmode += 4;
780 if (!strncmp(vmode, "normal", 6)) {
781 video_mode = 0xffff;
782 } else if (!strncmp(vmode, "ext", 3)) {
783 video_mode = 0xfffe;
784 } else if (!strncmp(vmode, "ask", 3)) {
785 video_mode = 0xfffd;
786 } else {
787 video_mode = strtol(vmode, NULL, 0);
788 }
789 stw_p(header+0x1fa, video_mode);
790 }
791
792 /* loader type */
793 /* High nybble = B reserved for QEMU; low nybble is revision number.
794 If this code is substantially changed, you may want to consider
795 incrementing the revision. */
796 if (protocol >= 0x200) {
797 header[0x210] = 0xB0;
798 }
799 /* heap */
800 if (protocol >= 0x201) {
801 header[0x211] |= 0x80; /* CAN_USE_HEAP */
802 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
803 }
804
805 /* load initrd */
806 if (initrd_filename) {
807 if (protocol < 0x200) {
808 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
809 exit(1);
810 }
811
812 initrd_size = get_image_size(initrd_filename);
813 if (initrd_size < 0) {
814 fprintf(stderr, "qemu: error reading initrd %s\n",
815 initrd_filename);
816 exit(1);
817 }
818
819 initrd_addr = (initrd_max-initrd_size) & ~4095;
820
821 initrd_data = g_malloc(initrd_size);
822 load_image(initrd_filename, initrd_data);
823
824 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
825 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
826 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
827
828 stl_p(header+0x218, initrd_addr);
829 stl_p(header+0x21c, initrd_size);
830 }
831
832 /* load kernel and setup */
833 setup_size = header[0x1f1];
834 if (setup_size == 0) {
835 setup_size = 4;
836 }
837 setup_size = (setup_size+1)*512;
838 kernel_size -= setup_size;
839
840 setup = g_malloc(setup_size);
841 kernel = g_malloc(kernel_size);
842 fseek(f, 0, SEEK_SET);
843 if (fread(setup, 1, setup_size, f) != setup_size) {
844 fprintf(stderr, "fread() failed\n");
845 exit(1);
846 }
847 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
848 fprintf(stderr, "fread() failed\n");
849 exit(1);
850 }
851 fclose(f);
852 memcpy(setup, header, MIN(sizeof(header), setup_size));
853
854 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
855 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
856 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
857
858 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
859 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
860 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
861
862 option_rom[nb_option_roms].name = "linuxboot.bin";
863 option_rom[nb_option_roms].bootindex = 0;
864 nb_option_roms++;
865 }
866
867 #define NE2000_NB_MAX 6
868
869 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
870 0x280, 0x380 };
871 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
872
873 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
874 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
875
876 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
877 {
878 static int nb_ne2k = 0;
879
880 if (nb_ne2k == NE2000_NB_MAX)
881 return;
882 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
883 ne2000_irq[nb_ne2k], nd);
884 nb_ne2k++;
885 }
886
887 DeviceState *cpu_get_current_apic(void)
888 {
889 if (current_cpu) {
890 X86CPU *cpu = X86_CPU(current_cpu);
891 return cpu->env.apic_state;
892 } else {
893 return NULL;
894 }
895 }
896
897 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
898 {
899 X86CPU *cpu = opaque;
900
901 if (level) {
902 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
903 }
904 }
905
906 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
907 DeviceState *icc_bridge, Error **errp)
908 {
909 X86CPU *cpu;
910 Error *local_err = NULL;
911
912 cpu = cpu_x86_create(cpu_model, icc_bridge, errp);
913 if (!cpu) {
914 return cpu;
915 }
916
917 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
918 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
919
920 if (local_err) {
921 if (cpu != NULL) {
922 object_unref(OBJECT(cpu));
923 cpu = NULL;
924 }
925 error_propagate(errp, local_err);
926 }
927 return cpu;
928 }
929
930 static const char *current_cpu_model;
931
932 void pc_hot_add_cpu(const int64_t id, Error **errp)
933 {
934 DeviceState *icc_bridge;
935 int64_t apic_id = x86_cpu_apic_id_from_index(id);
936
937 if (id < 0) {
938 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
939 return;
940 }
941
942 if (cpu_exists(apic_id)) {
943 error_setg(errp, "Unable to add CPU: %" PRIi64
944 ", it already exists", id);
945 return;
946 }
947
948 if (id >= max_cpus) {
949 error_setg(errp, "Unable to add CPU: %" PRIi64
950 ", max allowed: %d", id, max_cpus - 1);
951 return;
952 }
953
954 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
955 TYPE_ICC_BRIDGE, NULL));
956 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
957 }
958
959 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
960 {
961 int i;
962 X86CPU *cpu = NULL;
963 Error *error = NULL;
964
965 /* init CPUs */
966 if (cpu_model == NULL) {
967 #ifdef TARGET_X86_64
968 cpu_model = "qemu64";
969 #else
970 cpu_model = "qemu32";
971 #endif
972 }
973 current_cpu_model = cpu_model;
974
975 for (i = 0; i < smp_cpus; i++) {
976 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
977 icc_bridge, &error);
978 if (error) {
979 fprintf(stderr, "%s\n", error_get_pretty(error));
980 error_free(error);
981 exit(1);
982 }
983 }
984
985 /* map APIC MMIO area if CPU has APIC */
986 if (cpu && cpu->env.apic_state) {
987 /* XXX: what if the base changes? */
988 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
989 APIC_DEFAULT_ADDRESS, 0x1000);
990 }
991 }
992
993 /* pci-info ROM file. Little endian format */
994 typedef struct PcRomPciInfo {
995 uint64_t w32_min;
996 uint64_t w32_max;
997 uint64_t w64_min;
998 uint64_t w64_max;
999 } PcRomPciInfo;
1000
1001 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1002 {
1003 PcRomPciInfo *info;
1004 if (!guest_info->has_pci_info) {
1005 return;
1006 }
1007
1008 info = g_malloc(sizeof *info);
1009 info->w32_min = cpu_to_le64(guest_info->pci_info.w32.begin);
1010 info->w32_max = cpu_to_le64(guest_info->pci_info.w32.end);
1011 info->w64_min = cpu_to_le64(guest_info->pci_info.w64.begin);
1012 info->w64_max = cpu_to_le64(guest_info->pci_info.w64.end);
1013 /* Pass PCI hole info to guest via a side channel.
1014 * Required so guest PCI enumeration does the right thing. */
1015 fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1016 }
1017
1018 typedef struct PcGuestInfoState {
1019 PcGuestInfo info;
1020 Notifier machine_done;
1021 } PcGuestInfoState;
1022
1023 static
1024 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1025 {
1026 PcGuestInfoState *guest_info_state = container_of(notifier,
1027 PcGuestInfoState,
1028 machine_done);
1029 pc_fw_cfg_guest_info(&guest_info_state->info);
1030 }
1031
1032 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1033 ram_addr_t above_4g_mem_size)
1034 {
1035 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1036 PcGuestInfo *guest_info = &guest_info_state->info;
1037
1038 guest_info->pci_info.w32.end = IO_APIC_DEFAULT_ADDRESS;
1039 if (sizeof(hwaddr) == 4) {
1040 guest_info->pci_info.w64.begin = 0;
1041 guest_info->pci_info.w64.end = 0;
1042 } else {
1043 /*
1044 * BIOS does not set MTRR entries for the 64 bit window, so no need to
1045 * align address to power of two. Align address at 1G, this makes sure
1046 * it can be exactly covered with a PAT entry even when using huge
1047 * pages.
1048 */
1049 guest_info->pci_info.w64.begin =
1050 ROUND_UP((0x1ULL << 32) + above_4g_mem_size, 0x1ULL << 30);
1051 guest_info->pci_info.w64.end = guest_info->pci_info.w64.begin +
1052 (0x1ULL << 62);
1053 assert(guest_info->pci_info.w64.begin <= guest_info->pci_info.w64.end);
1054 }
1055
1056 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1057 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1058 return guest_info;
1059 }
1060
1061 void pc_acpi_init(const char *default_dsdt)
1062 {
1063 char *filename;
1064
1065 if (acpi_tables != NULL) {
1066 /* manually set via -acpitable, leave it alone */
1067 return;
1068 }
1069
1070 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1071 if (filename == NULL) {
1072 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1073 } else {
1074 char *arg;
1075 QemuOpts *opts;
1076 Error *err = NULL;
1077
1078 arg = g_strdup_printf("file=%s", filename);
1079
1080 /* creates a deep copy of "arg" */
1081 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1082 g_assert(opts != NULL);
1083
1084 acpi_table_add(opts, &err);
1085 if (err) {
1086 fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
1087 error_get_pretty(err));
1088 error_free(err);
1089 }
1090 g_free(arg);
1091 g_free(filename);
1092 }
1093 }
1094
1095 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1096 const char *kernel_filename,
1097 const char *kernel_cmdline,
1098 const char *initrd_filename,
1099 ram_addr_t below_4g_mem_size,
1100 ram_addr_t above_4g_mem_size,
1101 MemoryRegion *rom_memory,
1102 MemoryRegion **ram_memory,
1103 PcGuestInfo *guest_info)
1104 {
1105 int linux_boot, i;
1106 MemoryRegion *ram, *option_rom_mr;
1107 MemoryRegion *ram_below_4g, *ram_above_4g;
1108 FWCfgState *fw_cfg;
1109
1110 linux_boot = (kernel_filename != NULL);
1111
1112 /* Allocate RAM. We allocate it as a single memory region and use
1113 * aliases to address portions of it, mostly for backwards compatibility
1114 * with older qemus that used qemu_ram_alloc().
1115 */
1116 ram = g_malloc(sizeof(*ram));
1117 memory_region_init_ram(ram, NULL, "pc.ram",
1118 below_4g_mem_size + above_4g_mem_size);
1119 vmstate_register_ram_global(ram);
1120 *ram_memory = ram;
1121 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1122 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1123 0, below_4g_mem_size);
1124 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1125 if (above_4g_mem_size > 0) {
1126 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1127 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1128 below_4g_mem_size, above_4g_mem_size);
1129 memory_region_add_subregion(system_memory, 0x100000000ULL,
1130 ram_above_4g);
1131 }
1132
1133
1134 /* Initialize PC system firmware */
1135 pc_system_firmware_init(rom_memory);
1136
1137 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1138 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1139 vmstate_register_ram_global(option_rom_mr);
1140 memory_region_add_subregion_overlap(rom_memory,
1141 PC_ROM_MIN_VGA,
1142 option_rom_mr,
1143 1);
1144
1145 fw_cfg = bochs_bios_init();
1146 rom_set_fw(fw_cfg);
1147
1148 if (linux_boot) {
1149 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1150 }
1151
1152 for (i = 0; i < nb_option_roms; i++) {
1153 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1154 }
1155 guest_info->fw_cfg = fw_cfg;
1156 return fw_cfg;
1157 }
1158
1159 qemu_irq *pc_allocate_cpu_irq(void)
1160 {
1161 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1162 }
1163
1164 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1165 {
1166 DeviceState *dev = NULL;
1167
1168 if (pci_bus) {
1169 PCIDevice *pcidev = pci_vga_init(pci_bus);
1170 dev = pcidev ? &pcidev->qdev : NULL;
1171 } else if (isa_bus) {
1172 ISADevice *isadev = isa_vga_init(isa_bus);
1173 dev = isadev ? DEVICE(isadev) : NULL;
1174 }
1175 return dev;
1176 }
1177
1178 static void cpu_request_exit(void *opaque, int irq, int level)
1179 {
1180 CPUState *cpu = current_cpu;
1181
1182 if (cpu && level) {
1183 cpu_exit(cpu);
1184 }
1185 }
1186
1187 static const MemoryRegionOps ioport80_io_ops = {
1188 .write = ioport80_write,
1189 .read = ioport80_read,
1190 .endianness = DEVICE_NATIVE_ENDIAN,
1191 .impl = {
1192 .min_access_size = 1,
1193 .max_access_size = 1,
1194 },
1195 };
1196
1197 static const MemoryRegionOps ioportF0_io_ops = {
1198 .write = ioportF0_write,
1199 .read = ioportF0_read,
1200 .endianness = DEVICE_NATIVE_ENDIAN,
1201 .impl = {
1202 .min_access_size = 1,
1203 .max_access_size = 1,
1204 },
1205 };
1206
1207 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1208 ISADevice **rtc_state,
1209 ISADevice **floppy,
1210 bool no_vmport)
1211 {
1212 int i;
1213 DriveInfo *fd[MAX_FD];
1214 DeviceState *hpet = NULL;
1215 int pit_isa_irq = 0;
1216 qemu_irq pit_alt_irq = NULL;
1217 qemu_irq rtc_irq = NULL;
1218 qemu_irq *a20_line;
1219 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1220 qemu_irq *cpu_exit_irq;
1221 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1222 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1223
1224 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1225 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1226
1227 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1228 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1229
1230 /*
1231 * Check if an HPET shall be created.
1232 *
1233 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1234 * when the HPET wants to take over. Thus we have to disable the latter.
1235 */
1236 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1237 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1238
1239 if (hpet) {
1240 for (i = 0; i < GSI_NUM_PINS; i++) {
1241 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1242 }
1243 pit_isa_irq = -1;
1244 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1245 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1246 }
1247 }
1248 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1249
1250 qemu_register_boot_set(pc_boot_set, *rtc_state);
1251
1252 if (!xen_enabled()) {
1253 if (kvm_irqchip_in_kernel()) {
1254 pit = kvm_pit_init(isa_bus, 0x40);
1255 } else {
1256 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1257 }
1258 if (hpet) {
1259 /* connect PIT to output control line of the HPET */
1260 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1261 }
1262 pcspk_init(isa_bus, pit);
1263 }
1264
1265 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1266 if (serial_hds[i]) {
1267 serial_isa_init(isa_bus, i, serial_hds[i]);
1268 }
1269 }
1270
1271 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1272 if (parallel_hds[i]) {
1273 parallel_init(isa_bus, i, parallel_hds[i]);
1274 }
1275 }
1276
1277 a20_line = qemu_allocate_irqs(handle_a20_line_change,
1278 x86_env_get_cpu(first_cpu), 2);
1279 i8042 = isa_create_simple(isa_bus, "i8042");
1280 i8042_setup_a20_line(i8042, &a20_line[0]);
1281 if (!no_vmport) {
1282 vmport_init(isa_bus);
1283 vmmouse = isa_try_create(isa_bus, "vmmouse");
1284 } else {
1285 vmmouse = NULL;
1286 }
1287 if (vmmouse) {
1288 DeviceState *dev = DEVICE(vmmouse);
1289 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1290 qdev_init_nofail(dev);
1291 }
1292 port92 = isa_create_simple(isa_bus, "port92");
1293 port92_init(port92, &a20_line[1]);
1294
1295 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1296 DMA_init(0, cpu_exit_irq);
1297
1298 for(i = 0; i < MAX_FD; i++) {
1299 fd[i] = drive_get(IF_FLOPPY, 0, i);
1300 }
1301 *floppy = fdctrl_init_isa(isa_bus, fd);
1302 }
1303
1304 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1305 {
1306 int i;
1307
1308 for (i = 0; i < nb_nics; i++) {
1309 NICInfo *nd = &nd_table[i];
1310
1311 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1312 pc_init_ne2k_isa(isa_bus, nd);
1313 } else {
1314 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1315 }
1316 }
1317 }
1318
1319 void pc_pci_device_init(PCIBus *pci_bus)
1320 {
1321 int max_bus;
1322 int bus;
1323
1324 max_bus = drive_get_max_bus(IF_SCSI);
1325 for (bus = 0; bus <= max_bus; bus++) {
1326 pci_create_simple(pci_bus, -1, "lsi53c895a");
1327 }
1328 }
1329
1330 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1331 {
1332 DeviceState *dev;
1333 SysBusDevice *d;
1334 unsigned int i;
1335
1336 if (kvm_irqchip_in_kernel()) {
1337 dev = qdev_create(NULL, "kvm-ioapic");
1338 } else {
1339 dev = qdev_create(NULL, "ioapic");
1340 }
1341 if (parent_name) {
1342 object_property_add_child(object_resolve_path(parent_name, NULL),
1343 "ioapic", OBJECT(dev), NULL);
1344 }
1345 qdev_init_nofail(dev);
1346 d = SYS_BUS_DEVICE(dev);
1347 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1348
1349 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1350 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1351 }
1352 }