]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
hw: Convert from BlockDriverState to BlockBackend, mostly
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/block-backend.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/acpi/cpu_hotplug.h"
57 #include "hw/cpu/icc_bus.h"
58 #include "hw/boards.h"
59 #include "hw/pci/pci_host.h"
60 #include "acpi-build.h"
61 #include "hw/mem/pc-dimm.h"
62 #include "trace.h"
63 #include "qapi/visitor.h"
64
65 /* debug PC/ISA interrupts */
66 //#define DEBUG_IRQ
67
68 #ifdef DEBUG_IRQ
69 #define DPRINTF(fmt, ...) \
70 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
71 #else
72 #define DPRINTF(fmt, ...)
73 #endif
74
75 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
76 * (128K) and other BIOS datastructures (less than 4K reported to be used at
77 * the moment, 32K should be enough for a while). */
78 static unsigned acpi_data_size = 0x20000 + 0x8000;
79 void pc_set_legacy_acpi_data_size(void)
80 {
81 acpi_data_size = 0x10000;
82 }
83
84 #define BIOS_CFG_IOPORT 0x510
85 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
86 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
87 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
88 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
89 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
90
91 #define E820_NR_ENTRIES 16
92
93 struct e820_entry {
94 uint64_t address;
95 uint64_t length;
96 uint32_t type;
97 } QEMU_PACKED __attribute((__aligned__(4)));
98
99 struct e820_table {
100 uint32_t count;
101 struct e820_entry entry[E820_NR_ENTRIES];
102 } QEMU_PACKED __attribute((__aligned__(4)));
103
104 static struct e820_table e820_reserve;
105 static struct e820_entry *e820_table;
106 static unsigned e820_entries;
107 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
108
109 void gsi_handler(void *opaque, int n, int level)
110 {
111 GSIState *s = opaque;
112
113 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
114 if (n < ISA_NUM_IRQS) {
115 qemu_set_irq(s->i8259_irq[n], level);
116 }
117 qemu_set_irq(s->ioapic_irq[n], level);
118 }
119
120 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
121 unsigned size)
122 {
123 }
124
125 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
126 {
127 return 0xffffffffffffffffULL;
128 }
129
130 /* MSDOS compatibility mode FPU exception support */
131 static qemu_irq ferr_irq;
132
133 void pc_register_ferr_irq(qemu_irq irq)
134 {
135 ferr_irq = irq;
136 }
137
138 /* XXX: add IGNNE support */
139 void cpu_set_ferr(CPUX86State *s)
140 {
141 qemu_irq_raise(ferr_irq);
142 }
143
144 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
145 unsigned size)
146 {
147 qemu_irq_lower(ferr_irq);
148 }
149
150 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
151 {
152 return 0xffffffffffffffffULL;
153 }
154
155 /* TSC handling */
156 uint64_t cpu_get_tsc(CPUX86State *env)
157 {
158 return cpu_get_ticks();
159 }
160
161 /* SMM support */
162
163 static cpu_set_smm_t smm_set;
164 static void *smm_arg;
165
166 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
167 {
168 assert(smm_set == NULL);
169 assert(smm_arg == NULL);
170 smm_set = callback;
171 smm_arg = arg;
172 }
173
174 void cpu_smm_update(CPUX86State *env)
175 {
176 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
177 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
178 }
179 }
180
181
182 /* IRQ handling */
183 int cpu_get_pic_interrupt(CPUX86State *env)
184 {
185 X86CPU *cpu = x86_env_get_cpu(env);
186 int intno;
187
188 intno = apic_get_interrupt(cpu->apic_state);
189 if (intno >= 0) {
190 return intno;
191 }
192 /* read the irq from the PIC */
193 if (!apic_accept_pic_intr(cpu->apic_state)) {
194 return -1;
195 }
196
197 intno = pic_read_irq(isa_pic);
198 return intno;
199 }
200
201 static void pic_irq_request(void *opaque, int irq, int level)
202 {
203 CPUState *cs = first_cpu;
204 X86CPU *cpu = X86_CPU(cs);
205
206 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
207 if (cpu->apic_state) {
208 CPU_FOREACH(cs) {
209 cpu = X86_CPU(cs);
210 if (apic_accept_pic_intr(cpu->apic_state)) {
211 apic_deliver_pic_intr(cpu->apic_state, level);
212 }
213 }
214 } else {
215 if (level) {
216 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
217 } else {
218 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
219 }
220 }
221 }
222
223 /* PC cmos mappings */
224
225 #define REG_EQUIPMENT_BYTE 0x14
226
227 static int cmos_get_fd_drive_type(FDriveType fd0)
228 {
229 int val;
230
231 switch (fd0) {
232 case FDRIVE_DRV_144:
233 /* 1.44 Mb 3"5 drive */
234 val = 4;
235 break;
236 case FDRIVE_DRV_288:
237 /* 2.88 Mb 3"5 drive */
238 val = 5;
239 break;
240 case FDRIVE_DRV_120:
241 /* 1.2 Mb 5"5 drive */
242 val = 2;
243 break;
244 case FDRIVE_DRV_NONE:
245 default:
246 val = 0;
247 break;
248 }
249 return val;
250 }
251
252 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
253 int16_t cylinders, int8_t heads, int8_t sectors)
254 {
255 rtc_set_memory(s, type_ofs, 47);
256 rtc_set_memory(s, info_ofs, cylinders);
257 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
258 rtc_set_memory(s, info_ofs + 2, heads);
259 rtc_set_memory(s, info_ofs + 3, 0xff);
260 rtc_set_memory(s, info_ofs + 4, 0xff);
261 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
262 rtc_set_memory(s, info_ofs + 6, cylinders);
263 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
264 rtc_set_memory(s, info_ofs + 8, sectors);
265 }
266
267 /* convert boot_device letter to something recognizable by the bios */
268 static int boot_device2nibble(char boot_device)
269 {
270 switch(boot_device) {
271 case 'a':
272 case 'b':
273 return 0x01; /* floppy boot */
274 case 'c':
275 return 0x02; /* hard drive boot */
276 case 'd':
277 return 0x03; /* CD-ROM boot */
278 case 'n':
279 return 0x04; /* Network boot */
280 }
281 return 0;
282 }
283
284 static int set_boot_dev(ISADevice *s, const char *boot_device)
285 {
286 #define PC_MAX_BOOT_DEVICES 3
287 int nbds, bds[3] = { 0, };
288 int i;
289
290 nbds = strlen(boot_device);
291 if (nbds > PC_MAX_BOOT_DEVICES) {
292 error_report("Too many boot devices for PC");
293 return(1);
294 }
295 for (i = 0; i < nbds; i++) {
296 bds[i] = boot_device2nibble(boot_device[i]);
297 if (bds[i] == 0) {
298 error_report("Invalid boot device for PC: '%c'",
299 boot_device[i]);
300 return(1);
301 }
302 }
303 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
304 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
305 return(0);
306 }
307
308 static int pc_boot_set(void *opaque, const char *boot_device)
309 {
310 return set_boot_dev(opaque, boot_device);
311 }
312
313 typedef struct pc_cmos_init_late_arg {
314 ISADevice *rtc_state;
315 BusState *idebus[2];
316 } pc_cmos_init_late_arg;
317
318 static void pc_cmos_init_late(void *opaque)
319 {
320 pc_cmos_init_late_arg *arg = opaque;
321 ISADevice *s = arg->rtc_state;
322 int16_t cylinders;
323 int8_t heads, sectors;
324 int val;
325 int i, trans;
326
327 val = 0;
328 if (ide_get_geometry(arg->idebus[0], 0,
329 &cylinders, &heads, &sectors) >= 0) {
330 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
331 val |= 0xf0;
332 }
333 if (ide_get_geometry(arg->idebus[0], 1,
334 &cylinders, &heads, &sectors) >= 0) {
335 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
336 val |= 0x0f;
337 }
338 rtc_set_memory(s, 0x12, val);
339
340 val = 0;
341 for (i = 0; i < 4; i++) {
342 /* NOTE: ide_get_geometry() returns the physical
343 geometry. It is always such that: 1 <= sects <= 63, 1
344 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
345 geometry can be different if a translation is done. */
346 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
347 &cylinders, &heads, &sectors) >= 0) {
348 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
349 assert((trans & ~3) == 0);
350 val |= trans << (i * 2);
351 }
352 }
353 rtc_set_memory(s, 0x39, val);
354
355 qemu_unregister_reset(pc_cmos_init_late, opaque);
356 }
357
358 typedef struct RTCCPUHotplugArg {
359 Notifier cpu_added_notifier;
360 ISADevice *rtc_state;
361 } RTCCPUHotplugArg;
362
363 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
364 {
365 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
366 cpu_added_notifier);
367 ISADevice *s = arg->rtc_state;
368
369 /* increment the number of CPUs */
370 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
371 }
372
373 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
374 const char *boot_device,
375 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
376 ISADevice *s)
377 {
378 int val, nb, i;
379 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
380 static pc_cmos_init_late_arg arg;
381 static RTCCPUHotplugArg cpu_hotplug_cb;
382
383 /* various important CMOS locations needed by PC/Bochs bios */
384
385 /* memory size */
386 /* base memory (first MiB) */
387 val = MIN(ram_size / 1024, 640);
388 rtc_set_memory(s, 0x15, val);
389 rtc_set_memory(s, 0x16, val >> 8);
390 /* extended memory (next 64MiB) */
391 if (ram_size > 1024 * 1024) {
392 val = (ram_size - 1024 * 1024) / 1024;
393 } else {
394 val = 0;
395 }
396 if (val > 65535)
397 val = 65535;
398 rtc_set_memory(s, 0x17, val);
399 rtc_set_memory(s, 0x18, val >> 8);
400 rtc_set_memory(s, 0x30, val);
401 rtc_set_memory(s, 0x31, val >> 8);
402 /* memory between 16MiB and 4GiB */
403 if (ram_size > 16 * 1024 * 1024) {
404 val = (ram_size - 16 * 1024 * 1024) / 65536;
405 } else {
406 val = 0;
407 }
408 if (val > 65535)
409 val = 65535;
410 rtc_set_memory(s, 0x34, val);
411 rtc_set_memory(s, 0x35, val >> 8);
412 /* memory above 4GiB */
413 val = above_4g_mem_size / 65536;
414 rtc_set_memory(s, 0x5b, val);
415 rtc_set_memory(s, 0x5c, val >> 8);
416 rtc_set_memory(s, 0x5d, val >> 16);
417
418 /* set the number of CPU */
419 rtc_set_memory(s, 0x5f, smp_cpus - 1);
420 /* init CPU hotplug notifier */
421 cpu_hotplug_cb.rtc_state = s;
422 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
423 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
424
425 if (set_boot_dev(s, boot_device)) {
426 exit(1);
427 }
428
429 /* floppy type */
430 if (floppy) {
431 for (i = 0; i < 2; i++) {
432 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
433 }
434 }
435 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
436 cmos_get_fd_drive_type(fd_type[1]);
437 rtc_set_memory(s, 0x10, val);
438
439 val = 0;
440 nb = 0;
441 if (fd_type[0] < FDRIVE_DRV_NONE) {
442 nb++;
443 }
444 if (fd_type[1] < FDRIVE_DRV_NONE) {
445 nb++;
446 }
447 switch (nb) {
448 case 0:
449 break;
450 case 1:
451 val |= 0x01; /* 1 drive, ready for boot */
452 break;
453 case 2:
454 val |= 0x41; /* 2 drives, ready for boot */
455 break;
456 }
457 val |= 0x02; /* FPU is there */
458 val |= 0x04; /* PS/2 mouse installed */
459 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
460
461 /* hard drives */
462 arg.rtc_state = s;
463 arg.idebus[0] = idebus0;
464 arg.idebus[1] = idebus1;
465 qemu_register_reset(pc_cmos_init_late, &arg);
466 }
467
468 #define TYPE_PORT92 "port92"
469 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
470
471 /* port 92 stuff: could be split off */
472 typedef struct Port92State {
473 ISADevice parent_obj;
474
475 MemoryRegion io;
476 uint8_t outport;
477 qemu_irq *a20_out;
478 } Port92State;
479
480 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
481 unsigned size)
482 {
483 Port92State *s = opaque;
484 int oldval = s->outport;
485
486 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
487 s->outport = val;
488 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
489 if ((val & 1) && !(oldval & 1)) {
490 qemu_system_reset_request();
491 }
492 }
493
494 static uint64_t port92_read(void *opaque, hwaddr addr,
495 unsigned size)
496 {
497 Port92State *s = opaque;
498 uint32_t ret;
499
500 ret = s->outport;
501 DPRINTF("port92: read 0x%02x\n", ret);
502 return ret;
503 }
504
505 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
506 {
507 Port92State *s = PORT92(dev);
508
509 s->a20_out = a20_out;
510 }
511
512 static const VMStateDescription vmstate_port92_isa = {
513 .name = "port92",
514 .version_id = 1,
515 .minimum_version_id = 1,
516 .fields = (VMStateField[]) {
517 VMSTATE_UINT8(outport, Port92State),
518 VMSTATE_END_OF_LIST()
519 }
520 };
521
522 static void port92_reset(DeviceState *d)
523 {
524 Port92State *s = PORT92(d);
525
526 s->outport &= ~1;
527 }
528
529 static const MemoryRegionOps port92_ops = {
530 .read = port92_read,
531 .write = port92_write,
532 .impl = {
533 .min_access_size = 1,
534 .max_access_size = 1,
535 },
536 .endianness = DEVICE_LITTLE_ENDIAN,
537 };
538
539 static void port92_initfn(Object *obj)
540 {
541 Port92State *s = PORT92(obj);
542
543 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
544
545 s->outport = 0;
546 }
547
548 static void port92_realizefn(DeviceState *dev, Error **errp)
549 {
550 ISADevice *isadev = ISA_DEVICE(dev);
551 Port92State *s = PORT92(dev);
552
553 isa_register_ioport(isadev, &s->io, 0x92);
554 }
555
556 static void port92_class_initfn(ObjectClass *klass, void *data)
557 {
558 DeviceClass *dc = DEVICE_CLASS(klass);
559
560 dc->realize = port92_realizefn;
561 dc->reset = port92_reset;
562 dc->vmsd = &vmstate_port92_isa;
563 /*
564 * Reason: unlike ordinary ISA devices, this one needs additional
565 * wiring: its A20 output line needs to be wired up by
566 * port92_init().
567 */
568 dc->cannot_instantiate_with_device_add_yet = true;
569 }
570
571 static const TypeInfo port92_info = {
572 .name = TYPE_PORT92,
573 .parent = TYPE_ISA_DEVICE,
574 .instance_size = sizeof(Port92State),
575 .instance_init = port92_initfn,
576 .class_init = port92_class_initfn,
577 };
578
579 static void port92_register_types(void)
580 {
581 type_register_static(&port92_info);
582 }
583
584 type_init(port92_register_types)
585
586 static void handle_a20_line_change(void *opaque, int irq, int level)
587 {
588 X86CPU *cpu = opaque;
589
590 /* XXX: send to all CPUs ? */
591 /* XXX: add logic to handle multiple A20 line sources */
592 x86_cpu_set_a20(cpu, level);
593 }
594
595 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
596 {
597 int index = le32_to_cpu(e820_reserve.count);
598 struct e820_entry *entry;
599
600 if (type != E820_RAM) {
601 /* old FW_CFG_E820_TABLE entry -- reservations only */
602 if (index >= E820_NR_ENTRIES) {
603 return -EBUSY;
604 }
605 entry = &e820_reserve.entry[index++];
606
607 entry->address = cpu_to_le64(address);
608 entry->length = cpu_to_le64(length);
609 entry->type = cpu_to_le32(type);
610
611 e820_reserve.count = cpu_to_le32(index);
612 }
613
614 /* new "etc/e820" file -- include ram too */
615 e820_table = g_realloc(e820_table,
616 sizeof(struct e820_entry) * (e820_entries+1));
617 e820_table[e820_entries].address = cpu_to_le64(address);
618 e820_table[e820_entries].length = cpu_to_le64(length);
619 e820_table[e820_entries].type = cpu_to_le32(type);
620 e820_entries++;
621
622 return e820_entries;
623 }
624
625 int e820_get_num_entries(void)
626 {
627 return e820_entries;
628 }
629
630 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
631 {
632 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
633 *address = le64_to_cpu(e820_table[idx].address);
634 *length = le64_to_cpu(e820_table[idx].length);
635 return true;
636 }
637 return false;
638 }
639
640 /* Calculates the limit to CPU APIC ID values
641 *
642 * This function returns the limit for the APIC ID value, so that all
643 * CPU APIC IDs are < pc_apic_id_limit().
644 *
645 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
646 */
647 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
648 {
649 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
650 }
651
652 static FWCfgState *bochs_bios_init(void)
653 {
654 FWCfgState *fw_cfg;
655 uint8_t *smbios_tables, *smbios_anchor;
656 size_t smbios_tables_len, smbios_anchor_len;
657 uint64_t *numa_fw_cfg;
658 int i, j;
659 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
660
661 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
662 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
663 *
664 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
665 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
666 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
667 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
668 * may see".
669 *
670 * So, this means we must not use max_cpus, here, but the maximum possible
671 * APIC ID value, plus one.
672 *
673 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
674 * the APIC ID, not the "CPU index"
675 */
676 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
677 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
678 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
679 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
680 acpi_tables, acpi_tables_len);
681 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
682
683 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
684 if (smbios_tables) {
685 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
686 smbios_tables, smbios_tables_len);
687 }
688
689 smbios_get_tables(&smbios_tables, &smbios_tables_len,
690 &smbios_anchor, &smbios_anchor_len);
691 if (smbios_anchor) {
692 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
693 smbios_tables, smbios_tables_len);
694 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
695 smbios_anchor, smbios_anchor_len);
696 }
697
698 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
699 &e820_reserve, sizeof(e820_reserve));
700 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
701 sizeof(struct e820_entry) * e820_entries);
702
703 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
704 /* allocate memory for the NUMA channel: one (64bit) word for the number
705 * of nodes, one word for each VCPU->node and one word for each node to
706 * hold the amount of memory.
707 */
708 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
709 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
710 for (i = 0; i < max_cpus; i++) {
711 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
712 assert(apic_id < apic_id_limit);
713 for (j = 0; j < nb_numa_nodes; j++) {
714 if (test_bit(i, numa_info[j].node_cpu)) {
715 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
716 break;
717 }
718 }
719 }
720 for (i = 0; i < nb_numa_nodes; i++) {
721 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
722 }
723 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
724 (1 + apic_id_limit + nb_numa_nodes) *
725 sizeof(*numa_fw_cfg));
726
727 return fw_cfg;
728 }
729
730 static long get_file_size(FILE *f)
731 {
732 long where, size;
733
734 /* XXX: on Unix systems, using fstat() probably makes more sense */
735
736 where = ftell(f);
737 fseek(f, 0, SEEK_END);
738 size = ftell(f);
739 fseek(f, where, SEEK_SET);
740
741 return size;
742 }
743
744 static void load_linux(FWCfgState *fw_cfg,
745 const char *kernel_filename,
746 const char *initrd_filename,
747 const char *kernel_cmdline,
748 hwaddr max_ram_size)
749 {
750 uint16_t protocol;
751 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
752 uint32_t initrd_max;
753 uint8_t header[8192], *setup, *kernel, *initrd_data;
754 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
755 FILE *f;
756 char *vmode;
757
758 /* Align to 16 bytes as a paranoia measure */
759 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
760
761 /* load the kernel header */
762 f = fopen(kernel_filename, "rb");
763 if (!f || !(kernel_size = get_file_size(f)) ||
764 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
765 MIN(ARRAY_SIZE(header), kernel_size)) {
766 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
767 kernel_filename, strerror(errno));
768 exit(1);
769 }
770
771 /* kernel protocol version */
772 #if 0
773 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
774 #endif
775 if (ldl_p(header+0x202) == 0x53726448) {
776 protocol = lduw_p(header+0x206);
777 } else {
778 /* This looks like a multiboot kernel. If it is, let's stop
779 treating it like a Linux kernel. */
780 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
781 kernel_cmdline, kernel_size, header)) {
782 return;
783 }
784 protocol = 0;
785 }
786
787 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
788 /* Low kernel */
789 real_addr = 0x90000;
790 cmdline_addr = 0x9a000 - cmdline_size;
791 prot_addr = 0x10000;
792 } else if (protocol < 0x202) {
793 /* High but ancient kernel */
794 real_addr = 0x90000;
795 cmdline_addr = 0x9a000 - cmdline_size;
796 prot_addr = 0x100000;
797 } else {
798 /* High and recent kernel */
799 real_addr = 0x10000;
800 cmdline_addr = 0x20000;
801 prot_addr = 0x100000;
802 }
803
804 #if 0
805 fprintf(stderr,
806 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
807 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
808 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
809 real_addr,
810 cmdline_addr,
811 prot_addr);
812 #endif
813
814 /* highest address for loading the initrd */
815 if (protocol >= 0x203) {
816 initrd_max = ldl_p(header+0x22c);
817 } else {
818 initrd_max = 0x37ffffff;
819 }
820
821 if (initrd_max >= max_ram_size - acpi_data_size) {
822 initrd_max = max_ram_size - acpi_data_size - 1;
823 }
824
825 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
826 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
827 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
828
829 if (protocol >= 0x202) {
830 stl_p(header+0x228, cmdline_addr);
831 } else {
832 stw_p(header+0x20, 0xA33F);
833 stw_p(header+0x22, cmdline_addr-real_addr);
834 }
835
836 /* handle vga= parameter */
837 vmode = strstr(kernel_cmdline, "vga=");
838 if (vmode) {
839 unsigned int video_mode;
840 /* skip "vga=" */
841 vmode += 4;
842 if (!strncmp(vmode, "normal", 6)) {
843 video_mode = 0xffff;
844 } else if (!strncmp(vmode, "ext", 3)) {
845 video_mode = 0xfffe;
846 } else if (!strncmp(vmode, "ask", 3)) {
847 video_mode = 0xfffd;
848 } else {
849 video_mode = strtol(vmode, NULL, 0);
850 }
851 stw_p(header+0x1fa, video_mode);
852 }
853
854 /* loader type */
855 /* High nybble = B reserved for QEMU; low nybble is revision number.
856 If this code is substantially changed, you may want to consider
857 incrementing the revision. */
858 if (protocol >= 0x200) {
859 header[0x210] = 0xB0;
860 }
861 /* heap */
862 if (protocol >= 0x201) {
863 header[0x211] |= 0x80; /* CAN_USE_HEAP */
864 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
865 }
866
867 /* load initrd */
868 if (initrd_filename) {
869 if (protocol < 0x200) {
870 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
871 exit(1);
872 }
873
874 initrd_size = get_image_size(initrd_filename);
875 if (initrd_size < 0) {
876 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
877 initrd_filename, strerror(errno));
878 exit(1);
879 }
880
881 initrd_addr = (initrd_max-initrd_size) & ~4095;
882
883 initrd_data = g_malloc(initrd_size);
884 load_image(initrd_filename, initrd_data);
885
886 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
887 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
888 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
889
890 stl_p(header+0x218, initrd_addr);
891 stl_p(header+0x21c, initrd_size);
892 }
893
894 /* load kernel and setup */
895 setup_size = header[0x1f1];
896 if (setup_size == 0) {
897 setup_size = 4;
898 }
899 setup_size = (setup_size+1)*512;
900 kernel_size -= setup_size;
901
902 setup = g_malloc(setup_size);
903 kernel = g_malloc(kernel_size);
904 fseek(f, 0, SEEK_SET);
905 if (fread(setup, 1, setup_size, f) != setup_size) {
906 fprintf(stderr, "fread() failed\n");
907 exit(1);
908 }
909 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
910 fprintf(stderr, "fread() failed\n");
911 exit(1);
912 }
913 fclose(f);
914 memcpy(setup, header, MIN(sizeof(header), setup_size));
915
916 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
917 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
918 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
919
920 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
921 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
922 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
923
924 option_rom[nb_option_roms].name = "linuxboot.bin";
925 option_rom[nb_option_roms].bootindex = 0;
926 nb_option_roms++;
927 }
928
929 #define NE2000_NB_MAX 6
930
931 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
932 0x280, 0x380 };
933 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
934
935 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
936 {
937 static int nb_ne2k = 0;
938
939 if (nb_ne2k == NE2000_NB_MAX)
940 return;
941 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
942 ne2000_irq[nb_ne2k], nd);
943 nb_ne2k++;
944 }
945
946 DeviceState *cpu_get_current_apic(void)
947 {
948 if (current_cpu) {
949 X86CPU *cpu = X86_CPU(current_cpu);
950 return cpu->apic_state;
951 } else {
952 return NULL;
953 }
954 }
955
956 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
957 {
958 X86CPU *cpu = opaque;
959
960 if (level) {
961 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
962 }
963 }
964
965 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
966 DeviceState *icc_bridge, Error **errp)
967 {
968 X86CPU *cpu;
969 Error *local_err = NULL;
970
971 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
972 if (local_err != NULL) {
973 error_propagate(errp, local_err);
974 return NULL;
975 }
976
977 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
978 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
979
980 if (local_err) {
981 error_propagate(errp, local_err);
982 object_unref(OBJECT(cpu));
983 cpu = NULL;
984 }
985 return cpu;
986 }
987
988 static const char *current_cpu_model;
989
990 void pc_hot_add_cpu(const int64_t id, Error **errp)
991 {
992 DeviceState *icc_bridge;
993 int64_t apic_id = x86_cpu_apic_id_from_index(id);
994
995 if (id < 0) {
996 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
997 return;
998 }
999
1000 if (cpu_exists(apic_id)) {
1001 error_setg(errp, "Unable to add CPU: %" PRIi64
1002 ", it already exists", id);
1003 return;
1004 }
1005
1006 if (id >= max_cpus) {
1007 error_setg(errp, "Unable to add CPU: %" PRIi64
1008 ", max allowed: %d", id, max_cpus - 1);
1009 return;
1010 }
1011
1012 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1013 error_setg(errp, "Unable to add CPU: %" PRIi64
1014 ", resulting APIC ID (%" PRIi64 ") is too large",
1015 id, apic_id);
1016 return;
1017 }
1018
1019 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1020 TYPE_ICC_BRIDGE, NULL));
1021 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1022 }
1023
1024 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1025 {
1026 int i;
1027 X86CPU *cpu = NULL;
1028 Error *error = NULL;
1029 unsigned long apic_id_limit;
1030
1031 /* init CPUs */
1032 if (cpu_model == NULL) {
1033 #ifdef TARGET_X86_64
1034 cpu_model = "qemu64";
1035 #else
1036 cpu_model = "qemu32";
1037 #endif
1038 }
1039 current_cpu_model = cpu_model;
1040
1041 apic_id_limit = pc_apic_id_limit(max_cpus);
1042 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1043 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1044 apic_id_limit - 1);
1045 exit(1);
1046 }
1047
1048 for (i = 0; i < smp_cpus; i++) {
1049 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1050 icc_bridge, &error);
1051 if (error) {
1052 error_report("%s", error_get_pretty(error));
1053 error_free(error);
1054 exit(1);
1055 }
1056 }
1057
1058 /* map APIC MMIO area if CPU has APIC */
1059 if (cpu && cpu->apic_state) {
1060 /* XXX: what if the base changes? */
1061 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1062 APIC_DEFAULT_ADDRESS, 0x1000);
1063 }
1064
1065 /* tell smbios about cpuid version and features */
1066 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1067 }
1068
1069 /* pci-info ROM file. Little endian format */
1070 typedef struct PcRomPciInfo {
1071 uint64_t w32_min;
1072 uint64_t w32_max;
1073 uint64_t w64_min;
1074 uint64_t w64_max;
1075 } PcRomPciInfo;
1076
1077 typedef struct PcGuestInfoState {
1078 PcGuestInfo info;
1079 Notifier machine_done;
1080 } PcGuestInfoState;
1081
1082 static
1083 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1084 {
1085 PcGuestInfoState *guest_info_state = container_of(notifier,
1086 PcGuestInfoState,
1087 machine_done);
1088 acpi_setup(&guest_info_state->info);
1089 }
1090
1091 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1092 ram_addr_t above_4g_mem_size)
1093 {
1094 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1095 PcGuestInfo *guest_info = &guest_info_state->info;
1096 int i, j;
1097
1098 guest_info->ram_size_below_4g = below_4g_mem_size;
1099 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1100 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1101 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1102 guest_info->numa_nodes = nb_numa_nodes;
1103 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1104 sizeof *guest_info->node_mem);
1105 for (i = 0; i < nb_numa_nodes; i++) {
1106 guest_info->node_mem[i] = numa_info[i].node_mem;
1107 }
1108
1109 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1110 sizeof *guest_info->node_cpu);
1111
1112 for (i = 0; i < max_cpus; i++) {
1113 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1114 assert(apic_id < guest_info->apic_id_limit);
1115 for (j = 0; j < nb_numa_nodes; j++) {
1116 if (test_bit(i, numa_info[j].node_cpu)) {
1117 guest_info->node_cpu[apic_id] = j;
1118 break;
1119 }
1120 }
1121 }
1122
1123 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1124 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1125 return guest_info;
1126 }
1127
1128 /* setup pci memory address space mapping into system address space */
1129 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1130 MemoryRegion *pci_address_space)
1131 {
1132 /* Set to lower priority than RAM */
1133 memory_region_add_subregion_overlap(system_memory, 0x0,
1134 pci_address_space, -1);
1135 }
1136
1137 void pc_acpi_init(const char *default_dsdt)
1138 {
1139 char *filename;
1140
1141 if (acpi_tables != NULL) {
1142 /* manually set via -acpitable, leave it alone */
1143 return;
1144 }
1145
1146 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1147 if (filename == NULL) {
1148 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1149 } else {
1150 char *arg;
1151 QemuOpts *opts;
1152 Error *err = NULL;
1153
1154 arg = g_strdup_printf("file=%s", filename);
1155
1156 /* creates a deep copy of "arg" */
1157 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1158 g_assert(opts != NULL);
1159
1160 acpi_table_add_builtin(opts, &err);
1161 if (err) {
1162 error_report("WARNING: failed to load %s: %s", filename,
1163 error_get_pretty(err));
1164 error_free(err);
1165 }
1166 g_free(arg);
1167 g_free(filename);
1168 }
1169 }
1170
1171 FWCfgState *xen_load_linux(const char *kernel_filename,
1172 const char *kernel_cmdline,
1173 const char *initrd_filename,
1174 ram_addr_t below_4g_mem_size,
1175 PcGuestInfo *guest_info)
1176 {
1177 int i;
1178 FWCfgState *fw_cfg;
1179
1180 assert(kernel_filename != NULL);
1181
1182 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
1183 rom_set_fw(fw_cfg);
1184
1185 load_linux(fw_cfg, kernel_filename, initrd_filename,
1186 kernel_cmdline, below_4g_mem_size);
1187 for (i = 0; i < nb_option_roms; i++) {
1188 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1189 !strcmp(option_rom[i].name, "multiboot.bin"));
1190 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1191 }
1192 guest_info->fw_cfg = fw_cfg;
1193 return fw_cfg;
1194 }
1195
1196 FWCfgState *pc_memory_init(MachineState *machine,
1197 MemoryRegion *system_memory,
1198 ram_addr_t below_4g_mem_size,
1199 ram_addr_t above_4g_mem_size,
1200 MemoryRegion *rom_memory,
1201 MemoryRegion **ram_memory,
1202 PcGuestInfo *guest_info)
1203 {
1204 int linux_boot, i;
1205 MemoryRegion *ram, *option_rom_mr;
1206 MemoryRegion *ram_below_4g, *ram_above_4g;
1207 FWCfgState *fw_cfg;
1208 PCMachineState *pcms = PC_MACHINE(machine);
1209
1210 assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1211
1212 linux_boot = (machine->kernel_filename != NULL);
1213
1214 /* Allocate RAM. We allocate it as a single memory region and use
1215 * aliases to address portions of it, mostly for backwards compatibility
1216 * with older qemus that used qemu_ram_alloc().
1217 */
1218 ram = g_malloc(sizeof(*ram));
1219 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1220 machine->ram_size);
1221 *ram_memory = ram;
1222 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1223 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1224 0, below_4g_mem_size);
1225 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1226 e820_add_entry(0, below_4g_mem_size, E820_RAM);
1227 if (above_4g_mem_size > 0) {
1228 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1229 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1230 below_4g_mem_size, above_4g_mem_size);
1231 memory_region_add_subregion(system_memory, 0x100000000ULL,
1232 ram_above_4g);
1233 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1234 }
1235
1236 if (!guest_info->has_reserved_memory &&
1237 (machine->ram_slots ||
1238 (machine->maxram_size > machine->ram_size))) {
1239 MachineClass *mc = MACHINE_GET_CLASS(machine);
1240
1241 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1242 mc->name);
1243 exit(EXIT_FAILURE);
1244 }
1245
1246 /* initialize hotplug memory address space */
1247 if (guest_info->has_reserved_memory &&
1248 (machine->ram_size < machine->maxram_size)) {
1249 ram_addr_t hotplug_mem_size =
1250 machine->maxram_size - machine->ram_size;
1251
1252 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1253 error_report("unsupported amount of memory slots: %"PRIu64,
1254 machine->ram_slots);
1255 exit(EXIT_FAILURE);
1256 }
1257
1258 pcms->hotplug_memory_base =
1259 ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1260
1261 if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1262 hotplug_mem_size) {
1263 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1264 machine->maxram_size);
1265 exit(EXIT_FAILURE);
1266 }
1267
1268 memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1269 "hotplug-memory", hotplug_mem_size);
1270 memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1271 &pcms->hotplug_memory);
1272 }
1273
1274 /* Initialize PC system firmware */
1275 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1276
1277 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1278 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1279 &error_abort);
1280 vmstate_register_ram_global(option_rom_mr);
1281 memory_region_add_subregion_overlap(rom_memory,
1282 PC_ROM_MIN_VGA,
1283 option_rom_mr,
1284 1);
1285
1286 fw_cfg = bochs_bios_init();
1287 rom_set_fw(fw_cfg);
1288
1289 if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1290 uint64_t *val = g_malloc(sizeof(*val));
1291 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1292 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1293 }
1294
1295 if (linux_boot) {
1296 load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1297 machine->kernel_cmdline, below_4g_mem_size);
1298 }
1299
1300 for (i = 0; i < nb_option_roms; i++) {
1301 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1302 }
1303 guest_info->fw_cfg = fw_cfg;
1304 return fw_cfg;
1305 }
1306
1307 qemu_irq *pc_allocate_cpu_irq(void)
1308 {
1309 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1310 }
1311
1312 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1313 {
1314 DeviceState *dev = NULL;
1315
1316 if (pci_bus) {
1317 PCIDevice *pcidev = pci_vga_init(pci_bus);
1318 dev = pcidev ? &pcidev->qdev : NULL;
1319 } else if (isa_bus) {
1320 ISADevice *isadev = isa_vga_init(isa_bus);
1321 dev = isadev ? DEVICE(isadev) : NULL;
1322 }
1323 return dev;
1324 }
1325
1326 static void cpu_request_exit(void *opaque, int irq, int level)
1327 {
1328 CPUState *cpu = current_cpu;
1329
1330 if (cpu && level) {
1331 cpu_exit(cpu);
1332 }
1333 }
1334
1335 static const MemoryRegionOps ioport80_io_ops = {
1336 .write = ioport80_write,
1337 .read = ioport80_read,
1338 .endianness = DEVICE_NATIVE_ENDIAN,
1339 .impl = {
1340 .min_access_size = 1,
1341 .max_access_size = 1,
1342 },
1343 };
1344
1345 static const MemoryRegionOps ioportF0_io_ops = {
1346 .write = ioportF0_write,
1347 .read = ioportF0_read,
1348 .endianness = DEVICE_NATIVE_ENDIAN,
1349 .impl = {
1350 .min_access_size = 1,
1351 .max_access_size = 1,
1352 },
1353 };
1354
1355 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1356 ISADevice **rtc_state,
1357 ISADevice **floppy,
1358 bool no_vmport,
1359 uint32 hpet_irqs)
1360 {
1361 int i;
1362 DriveInfo *fd[MAX_FD];
1363 DeviceState *hpet = NULL;
1364 int pit_isa_irq = 0;
1365 qemu_irq pit_alt_irq = NULL;
1366 qemu_irq rtc_irq = NULL;
1367 qemu_irq *a20_line;
1368 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1369 qemu_irq *cpu_exit_irq;
1370 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1371 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1372
1373 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1374 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1375
1376 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1377 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1378
1379 /*
1380 * Check if an HPET shall be created.
1381 *
1382 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1383 * when the HPET wants to take over. Thus we have to disable the latter.
1384 */
1385 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1386 /* In order to set property, here not using sysbus_try_create_simple */
1387 hpet = qdev_try_create(NULL, TYPE_HPET);
1388 if (hpet) {
1389 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1390 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1391 * IRQ8 and IRQ2.
1392 */
1393 uint8_t compat = object_property_get_int(OBJECT(hpet),
1394 HPET_INTCAP, NULL);
1395 if (!compat) {
1396 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1397 }
1398 qdev_init_nofail(hpet);
1399 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1400
1401 for (i = 0; i < GSI_NUM_PINS; i++) {
1402 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1403 }
1404 pit_isa_irq = -1;
1405 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1406 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1407 }
1408 }
1409 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1410
1411 qemu_register_boot_set(pc_boot_set, *rtc_state);
1412
1413 if (!xen_enabled()) {
1414 if (kvm_irqchip_in_kernel()) {
1415 pit = kvm_pit_init(isa_bus, 0x40);
1416 } else {
1417 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1418 }
1419 if (hpet) {
1420 /* connect PIT to output control line of the HPET */
1421 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1422 }
1423 pcspk_init(isa_bus, pit);
1424 }
1425
1426 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1427 if (serial_hds[i]) {
1428 serial_isa_init(isa_bus, i, serial_hds[i]);
1429 }
1430 }
1431
1432 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1433 if (parallel_hds[i]) {
1434 parallel_init(isa_bus, i, parallel_hds[i]);
1435 }
1436 }
1437
1438 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1439 i8042 = isa_create_simple(isa_bus, "i8042");
1440 i8042_setup_a20_line(i8042, &a20_line[0]);
1441 if (!no_vmport) {
1442 vmport_init(isa_bus);
1443 vmmouse = isa_try_create(isa_bus, "vmmouse");
1444 } else {
1445 vmmouse = NULL;
1446 }
1447 if (vmmouse) {
1448 DeviceState *dev = DEVICE(vmmouse);
1449 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1450 qdev_init_nofail(dev);
1451 }
1452 port92 = isa_create_simple(isa_bus, "port92");
1453 port92_init(port92, &a20_line[1]);
1454
1455 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1456 DMA_init(0, cpu_exit_irq);
1457
1458 for(i = 0; i < MAX_FD; i++) {
1459 fd[i] = drive_get(IF_FLOPPY, 0, i);
1460 }
1461 *floppy = fdctrl_init_isa(isa_bus, fd);
1462 }
1463
1464 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1465 {
1466 int i;
1467
1468 for (i = 0; i < nb_nics; i++) {
1469 NICInfo *nd = &nd_table[i];
1470
1471 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1472 pc_init_ne2k_isa(isa_bus, nd);
1473 } else {
1474 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1475 }
1476 }
1477 }
1478
1479 void pc_pci_device_init(PCIBus *pci_bus)
1480 {
1481 int max_bus;
1482 int bus;
1483
1484 max_bus = drive_get_max_bus(IF_SCSI);
1485 for (bus = 0; bus <= max_bus; bus++) {
1486 pci_create_simple(pci_bus, -1, "lsi53c895a");
1487 }
1488 }
1489
1490 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1491 {
1492 DeviceState *dev;
1493 SysBusDevice *d;
1494 unsigned int i;
1495
1496 if (kvm_irqchip_in_kernel()) {
1497 dev = qdev_create(NULL, "kvm-ioapic");
1498 } else {
1499 dev = qdev_create(NULL, "ioapic");
1500 }
1501 if (parent_name) {
1502 object_property_add_child(object_resolve_path(parent_name, NULL),
1503 "ioapic", OBJECT(dev), NULL);
1504 }
1505 qdev_init_nofail(dev);
1506 d = SYS_BUS_DEVICE(dev);
1507 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1508
1509 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1510 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1511 }
1512 }
1513
1514 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1515 {
1516 MachineClass *mc = MACHINE_CLASS(oc);
1517 QEMUMachine *qm = data;
1518
1519 mc->name = qm->name;
1520 mc->alias = qm->alias;
1521 mc->desc = qm->desc;
1522 mc->init = qm->init;
1523 mc->reset = qm->reset;
1524 mc->hot_add_cpu = qm->hot_add_cpu;
1525 mc->kvm_type = qm->kvm_type;
1526 mc->block_default_type = qm->block_default_type;
1527 mc->units_per_default_bus = qm->units_per_default_bus;
1528 mc->max_cpus = qm->max_cpus;
1529 mc->no_serial = qm->no_serial;
1530 mc->no_parallel = qm->no_parallel;
1531 mc->use_virtcon = qm->use_virtcon;
1532 mc->use_sclp = qm->use_sclp;
1533 mc->no_floppy = qm->no_floppy;
1534 mc->no_cdrom = qm->no_cdrom;
1535 mc->no_sdcard = qm->no_sdcard;
1536 mc->is_default = qm->is_default;
1537 mc->default_machine_opts = qm->default_machine_opts;
1538 mc->default_boot_order = qm->default_boot_order;
1539 mc->compat_props = qm->compat_props;
1540 mc->hw_version = qm->hw_version;
1541 }
1542
1543 void qemu_register_pc_machine(QEMUMachine *m)
1544 {
1545 char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1546 TypeInfo ti = {
1547 .name = name,
1548 .parent = TYPE_PC_MACHINE,
1549 .class_init = pc_generic_machine_class_init,
1550 .class_data = (void *)m,
1551 };
1552
1553 type_register(&ti);
1554 g_free(name);
1555 }
1556
1557 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1558 DeviceState *dev, Error **errp)
1559 {
1560 int slot;
1561 HotplugHandlerClass *hhc;
1562 Error *local_err = NULL;
1563 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1564 MachineState *machine = MACHINE(hotplug_dev);
1565 PCDIMMDevice *dimm = PC_DIMM(dev);
1566 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1567 MemoryRegion *mr = ddc->get_memory_region(dimm);
1568 uint64_t addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
1569 &local_err);
1570 if (local_err) {
1571 goto out;
1572 }
1573
1574 addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1575 memory_region_size(&pcms->hotplug_memory),
1576 !addr ? NULL : &addr,
1577 memory_region_size(mr), &local_err);
1578 if (local_err) {
1579 goto out;
1580 }
1581
1582 object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1583 if (local_err) {
1584 goto out;
1585 }
1586 trace_mhp_pc_dimm_assigned_address(addr);
1587
1588 slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1589 if (local_err) {
1590 goto out;
1591 }
1592
1593 slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1594 machine->ram_slots, &local_err);
1595 if (local_err) {
1596 goto out;
1597 }
1598 object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1599 if (local_err) {
1600 goto out;
1601 }
1602 trace_mhp_pc_dimm_assigned_slot(slot);
1603
1604 if (!pcms->acpi_dev) {
1605 error_setg(&local_err,
1606 "memory hotplug is not enabled: missing acpi device");
1607 goto out;
1608 }
1609
1610 memory_region_add_subregion(&pcms->hotplug_memory,
1611 addr - pcms->hotplug_memory_base, mr);
1612 vmstate_register_ram(mr, dev);
1613
1614 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1615 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1616 out:
1617 error_propagate(errp, local_err);
1618 }
1619
1620 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1621 DeviceState *dev, Error **errp)
1622 {
1623 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1624 pc_dimm_plug(hotplug_dev, dev, errp);
1625 }
1626 }
1627
1628 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1629 DeviceState *dev)
1630 {
1631 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1632
1633 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1634 return HOTPLUG_HANDLER(machine);
1635 }
1636
1637 return pcmc->get_hotplug_handler ?
1638 pcmc->get_hotplug_handler(machine, dev) : NULL;
1639 }
1640
1641 static void
1642 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1643 const char *name, Error **errp)
1644 {
1645 PCMachineState *pcms = PC_MACHINE(obj);
1646 int64_t value = memory_region_size(&pcms->hotplug_memory);
1647
1648 visit_type_int(v, &value, name, errp);
1649 }
1650
1651 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1652 void *opaque, const char *name,
1653 Error **errp)
1654 {
1655 PCMachineState *pcms = PC_MACHINE(obj);
1656 uint64_t value = pcms->max_ram_below_4g;
1657
1658 visit_type_size(v, &value, name, errp);
1659 }
1660
1661 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1662 void *opaque, const char *name,
1663 Error **errp)
1664 {
1665 PCMachineState *pcms = PC_MACHINE(obj);
1666 Error *error = NULL;
1667 uint64_t value;
1668
1669 visit_type_size(v, &value, name, &error);
1670 if (error) {
1671 error_propagate(errp, error);
1672 return;
1673 }
1674 if (value > (1ULL << 32)) {
1675 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1676 "Machine option 'max-ram-below-4g=%"PRIu64
1677 "' expects size less than or equal to 4G", value);
1678 error_propagate(errp, error);
1679 return;
1680 }
1681
1682 if (value < (1ULL << 20)) {
1683 error_report("Warning: small max_ram_below_4g(%"PRIu64
1684 ") less than 1M. BIOS may not work..",
1685 value);
1686 }
1687
1688 pcms->max_ram_below_4g = value;
1689 }
1690
1691 static void pc_machine_initfn(Object *obj)
1692 {
1693 PCMachineState *pcms = PC_MACHINE(obj);
1694
1695 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1696 pc_machine_get_hotplug_memory_region_size,
1697 NULL, NULL, NULL, NULL);
1698 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1699 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1700 pc_machine_get_max_ram_below_4g,
1701 pc_machine_set_max_ram_below_4g,
1702 NULL, NULL, NULL);
1703 }
1704
1705 static void pc_machine_class_init(ObjectClass *oc, void *data)
1706 {
1707 MachineClass *mc = MACHINE_CLASS(oc);
1708 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1709 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1710
1711 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1712 mc->get_hotplug_handler = pc_get_hotpug_handler;
1713 hc->plug = pc_machine_device_plug_cb;
1714 }
1715
1716 static const TypeInfo pc_machine_info = {
1717 .name = TYPE_PC_MACHINE,
1718 .parent = TYPE_MACHINE,
1719 .abstract = true,
1720 .instance_size = sizeof(PCMachineState),
1721 .instance_init = pc_machine_initfn,
1722 .class_size = sizeof(PCMachineClass),
1723 .class_init = pc_machine_class_init,
1724 .interfaces = (InterfaceInfo[]) {
1725 { TYPE_HOTPLUG_HANDLER },
1726 { }
1727 },
1728 };
1729
1730 static void pc_machine_register_types(void)
1731 {
1732 type_register_static(&pc_machine_info);
1733 }
1734
1735 type_init(pc_machine_register_types)