]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
hw/i386/pc: factor out pc_cmos_init_floppy()
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/pci_bus.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/i386/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "hw/acpi/acpi.h"
61 #include "hw/acpi/cpu_hotplug.h"
62 #include "hw/cpu/icc_bus.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69
70 /* debug PC/ISA interrupts */
71 //#define DEBUG_IRQ
72
73 #ifdef DEBUG_IRQ
74 #define DPRINTF(fmt, ...) \
75 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76 #else
77 #define DPRINTF(fmt, ...)
78 #endif
79
80 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
81 * (128K) and other BIOS datastructures (less than 4K reported to be used at
82 * the moment, 32K should be enough for a while). */
83 static unsigned acpi_data_size = 0x20000 + 0x8000;
84 void pc_set_legacy_acpi_data_size(void)
85 {
86 acpi_data_size = 0x10000;
87 }
88
89 #define BIOS_CFG_IOPORT 0x510
90 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
91 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
92 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
93 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
94 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
95
96 #define E820_NR_ENTRIES 16
97
98 struct e820_entry {
99 uint64_t address;
100 uint64_t length;
101 uint32_t type;
102 } QEMU_PACKED __attribute((__aligned__(4)));
103
104 struct e820_table {
105 uint32_t count;
106 struct e820_entry entry[E820_NR_ENTRIES];
107 } QEMU_PACKED __attribute((__aligned__(4)));
108
109 static struct e820_table e820_reserve;
110 static struct e820_entry *e820_table;
111 static unsigned e820_entries;
112 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
113
114 void gsi_handler(void *opaque, int n, int level)
115 {
116 GSIState *s = opaque;
117
118 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
119 if (n < ISA_NUM_IRQS) {
120 qemu_set_irq(s->i8259_irq[n], level);
121 }
122 qemu_set_irq(s->ioapic_irq[n], level);
123 }
124
125 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
126 unsigned size)
127 {
128 }
129
130 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
131 {
132 return 0xffffffffffffffffULL;
133 }
134
135 /* MSDOS compatibility mode FPU exception support */
136 static qemu_irq ferr_irq;
137
138 void pc_register_ferr_irq(qemu_irq irq)
139 {
140 ferr_irq = irq;
141 }
142
143 /* XXX: add IGNNE support */
144 void cpu_set_ferr(CPUX86State *s)
145 {
146 qemu_irq_raise(ferr_irq);
147 }
148
149 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
150 unsigned size)
151 {
152 qemu_irq_lower(ferr_irq);
153 }
154
155 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
156 {
157 return 0xffffffffffffffffULL;
158 }
159
160 /* TSC handling */
161 uint64_t cpu_get_tsc(CPUX86State *env)
162 {
163 return cpu_get_ticks();
164 }
165
166 /* IRQ handling */
167 int cpu_get_pic_interrupt(CPUX86State *env)
168 {
169 X86CPU *cpu = x86_env_get_cpu(env);
170 int intno;
171
172 intno = apic_get_interrupt(cpu->apic_state);
173 if (intno >= 0) {
174 return intno;
175 }
176 /* read the irq from the PIC */
177 if (!apic_accept_pic_intr(cpu->apic_state)) {
178 return -1;
179 }
180
181 intno = pic_read_irq(isa_pic);
182 return intno;
183 }
184
185 static void pic_irq_request(void *opaque, int irq, int level)
186 {
187 CPUState *cs = first_cpu;
188 X86CPU *cpu = X86_CPU(cs);
189
190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191 if (cpu->apic_state) {
192 CPU_FOREACH(cs) {
193 cpu = X86_CPU(cs);
194 if (apic_accept_pic_intr(cpu->apic_state)) {
195 apic_deliver_pic_intr(cpu->apic_state, level);
196 }
197 }
198 } else {
199 if (level) {
200 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
201 } else {
202 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
203 }
204 }
205 }
206
207 /* PC cmos mappings */
208
209 #define REG_EQUIPMENT_BYTE 0x14
210
211 static int cmos_get_fd_drive_type(FDriveType fd0)
212 {
213 int val;
214
215 switch (fd0) {
216 case FDRIVE_DRV_144:
217 /* 1.44 Mb 3"5 drive */
218 val = 4;
219 break;
220 case FDRIVE_DRV_288:
221 /* 2.88 Mb 3"5 drive */
222 val = 5;
223 break;
224 case FDRIVE_DRV_120:
225 /* 1.2 Mb 5"5 drive */
226 val = 2;
227 break;
228 case FDRIVE_DRV_NONE:
229 default:
230 val = 0;
231 break;
232 }
233 return val;
234 }
235
236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
237 int16_t cylinders, int8_t heads, int8_t sectors)
238 {
239 rtc_set_memory(s, type_ofs, 47);
240 rtc_set_memory(s, info_ofs, cylinders);
241 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
242 rtc_set_memory(s, info_ofs + 2, heads);
243 rtc_set_memory(s, info_ofs + 3, 0xff);
244 rtc_set_memory(s, info_ofs + 4, 0xff);
245 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
246 rtc_set_memory(s, info_ofs + 6, cylinders);
247 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
248 rtc_set_memory(s, info_ofs + 8, sectors);
249 }
250
251 /* convert boot_device letter to something recognizable by the bios */
252 static int boot_device2nibble(char boot_device)
253 {
254 switch(boot_device) {
255 case 'a':
256 case 'b':
257 return 0x01; /* floppy boot */
258 case 'c':
259 return 0x02; /* hard drive boot */
260 case 'd':
261 return 0x03; /* CD-ROM boot */
262 case 'n':
263 return 0x04; /* Network boot */
264 }
265 return 0;
266 }
267
268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
269 {
270 #define PC_MAX_BOOT_DEVICES 3
271 int nbds, bds[3] = { 0, };
272 int i;
273
274 nbds = strlen(boot_device);
275 if (nbds > PC_MAX_BOOT_DEVICES) {
276 error_setg(errp, "Too many boot devices for PC");
277 return;
278 }
279 for (i = 0; i < nbds; i++) {
280 bds[i] = boot_device2nibble(boot_device[i]);
281 if (bds[i] == 0) {
282 error_setg(errp, "Invalid boot device for PC: '%c'",
283 boot_device[i]);
284 return;
285 }
286 }
287 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
288 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
289 }
290
291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
292 {
293 set_boot_dev(opaque, boot_device, errp);
294 }
295
296 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
297 {
298 int val, nb, i;
299 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
300
301 /* floppy type */
302 if (floppy) {
303 for (i = 0; i < 2; i++) {
304 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
305 }
306 }
307 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
308 cmos_get_fd_drive_type(fd_type[1]);
309 rtc_set_memory(rtc_state, 0x10, val);
310
311 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
312 nb = 0;
313 if (fd_type[0] < FDRIVE_DRV_NONE) {
314 nb++;
315 }
316 if (fd_type[1] < FDRIVE_DRV_NONE) {
317 nb++;
318 }
319 switch (nb) {
320 case 0:
321 break;
322 case 1:
323 val |= 0x01; /* 1 drive, ready for boot */
324 break;
325 case 2:
326 val |= 0x41; /* 2 drives, ready for boot */
327 break;
328 }
329 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
330 }
331
332 typedef struct pc_cmos_init_late_arg {
333 ISADevice *rtc_state;
334 BusState *idebus[2];
335 } pc_cmos_init_late_arg;
336
337 static void pc_cmos_init_late(void *opaque)
338 {
339 pc_cmos_init_late_arg *arg = opaque;
340 ISADevice *s = arg->rtc_state;
341 int16_t cylinders;
342 int8_t heads, sectors;
343 int val;
344 int i, trans;
345
346 val = 0;
347 if (ide_get_geometry(arg->idebus[0], 0,
348 &cylinders, &heads, &sectors) >= 0) {
349 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
350 val |= 0xf0;
351 }
352 if (ide_get_geometry(arg->idebus[0], 1,
353 &cylinders, &heads, &sectors) >= 0) {
354 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
355 val |= 0x0f;
356 }
357 rtc_set_memory(s, 0x12, val);
358
359 val = 0;
360 for (i = 0; i < 4; i++) {
361 /* NOTE: ide_get_geometry() returns the physical
362 geometry. It is always such that: 1 <= sects <= 63, 1
363 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
364 geometry can be different if a translation is done. */
365 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
366 &cylinders, &heads, &sectors) >= 0) {
367 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
368 assert((trans & ~3) == 0);
369 val |= trans << (i * 2);
370 }
371 }
372 rtc_set_memory(s, 0x39, val);
373
374 qemu_unregister_reset(pc_cmos_init_late, opaque);
375 }
376
377 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
378 const char *boot_device, MachineState *machine,
379 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
380 ISADevice *s)
381 {
382 int val;
383 static pc_cmos_init_late_arg arg;
384 PCMachineState *pc_machine = PC_MACHINE(machine);
385 Error *local_err = NULL;
386
387 /* various important CMOS locations needed by PC/Bochs bios */
388
389 /* memory size */
390 /* base memory (first MiB) */
391 val = MIN(ram_size / 1024, 640);
392 rtc_set_memory(s, 0x15, val);
393 rtc_set_memory(s, 0x16, val >> 8);
394 /* extended memory (next 64MiB) */
395 if (ram_size > 1024 * 1024) {
396 val = (ram_size - 1024 * 1024) / 1024;
397 } else {
398 val = 0;
399 }
400 if (val > 65535)
401 val = 65535;
402 rtc_set_memory(s, 0x17, val);
403 rtc_set_memory(s, 0x18, val >> 8);
404 rtc_set_memory(s, 0x30, val);
405 rtc_set_memory(s, 0x31, val >> 8);
406 /* memory between 16MiB and 4GiB */
407 if (ram_size > 16 * 1024 * 1024) {
408 val = (ram_size - 16 * 1024 * 1024) / 65536;
409 } else {
410 val = 0;
411 }
412 if (val > 65535)
413 val = 65535;
414 rtc_set_memory(s, 0x34, val);
415 rtc_set_memory(s, 0x35, val >> 8);
416 /* memory above 4GiB */
417 val = above_4g_mem_size / 65536;
418 rtc_set_memory(s, 0x5b, val);
419 rtc_set_memory(s, 0x5c, val >> 8);
420 rtc_set_memory(s, 0x5d, val >> 16);
421
422 /* set the number of CPU */
423 rtc_set_memory(s, 0x5f, smp_cpus - 1);
424
425 object_property_add_link(OBJECT(machine), "rtc_state",
426 TYPE_ISA_DEVICE,
427 (Object **)&pc_machine->rtc,
428 object_property_allow_set_link,
429 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
430 object_property_set_link(OBJECT(machine), OBJECT(s),
431 "rtc_state", &error_abort);
432
433 set_boot_dev(s, boot_device, &local_err);
434 if (local_err) {
435 error_report_err(local_err);
436 exit(1);
437 }
438
439 val = 0;
440 val |= 0x02; /* FPU is there */
441 val |= 0x04; /* PS/2 mouse installed */
442 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
443 pc_cmos_init_floppy(s, floppy);
444
445 /* hard drives */
446 arg.rtc_state = s;
447 arg.idebus[0] = idebus0;
448 arg.idebus[1] = idebus1;
449 qemu_register_reset(pc_cmos_init_late, &arg);
450 }
451
452 #define TYPE_PORT92 "port92"
453 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
454
455 /* port 92 stuff: could be split off */
456 typedef struct Port92State {
457 ISADevice parent_obj;
458
459 MemoryRegion io;
460 uint8_t outport;
461 qemu_irq *a20_out;
462 } Port92State;
463
464 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
465 unsigned size)
466 {
467 Port92State *s = opaque;
468 int oldval = s->outport;
469
470 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
471 s->outport = val;
472 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
473 if ((val & 1) && !(oldval & 1)) {
474 qemu_system_reset_request();
475 }
476 }
477
478 static uint64_t port92_read(void *opaque, hwaddr addr,
479 unsigned size)
480 {
481 Port92State *s = opaque;
482 uint32_t ret;
483
484 ret = s->outport;
485 DPRINTF("port92: read 0x%02x\n", ret);
486 return ret;
487 }
488
489 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
490 {
491 Port92State *s = PORT92(dev);
492
493 s->a20_out = a20_out;
494 }
495
496 static const VMStateDescription vmstate_port92_isa = {
497 .name = "port92",
498 .version_id = 1,
499 .minimum_version_id = 1,
500 .fields = (VMStateField[]) {
501 VMSTATE_UINT8(outport, Port92State),
502 VMSTATE_END_OF_LIST()
503 }
504 };
505
506 static void port92_reset(DeviceState *d)
507 {
508 Port92State *s = PORT92(d);
509
510 s->outport &= ~1;
511 }
512
513 static const MemoryRegionOps port92_ops = {
514 .read = port92_read,
515 .write = port92_write,
516 .impl = {
517 .min_access_size = 1,
518 .max_access_size = 1,
519 },
520 .endianness = DEVICE_LITTLE_ENDIAN,
521 };
522
523 static void port92_initfn(Object *obj)
524 {
525 Port92State *s = PORT92(obj);
526
527 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
528
529 s->outport = 0;
530 }
531
532 static void port92_realizefn(DeviceState *dev, Error **errp)
533 {
534 ISADevice *isadev = ISA_DEVICE(dev);
535 Port92State *s = PORT92(dev);
536
537 isa_register_ioport(isadev, &s->io, 0x92);
538 }
539
540 static void port92_class_initfn(ObjectClass *klass, void *data)
541 {
542 DeviceClass *dc = DEVICE_CLASS(klass);
543
544 dc->realize = port92_realizefn;
545 dc->reset = port92_reset;
546 dc->vmsd = &vmstate_port92_isa;
547 /*
548 * Reason: unlike ordinary ISA devices, this one needs additional
549 * wiring: its A20 output line needs to be wired up by
550 * port92_init().
551 */
552 dc->cannot_instantiate_with_device_add_yet = true;
553 }
554
555 static const TypeInfo port92_info = {
556 .name = TYPE_PORT92,
557 .parent = TYPE_ISA_DEVICE,
558 .instance_size = sizeof(Port92State),
559 .instance_init = port92_initfn,
560 .class_init = port92_class_initfn,
561 };
562
563 static void port92_register_types(void)
564 {
565 type_register_static(&port92_info);
566 }
567
568 type_init(port92_register_types)
569
570 static void handle_a20_line_change(void *opaque, int irq, int level)
571 {
572 X86CPU *cpu = opaque;
573
574 /* XXX: send to all CPUs ? */
575 /* XXX: add logic to handle multiple A20 line sources */
576 x86_cpu_set_a20(cpu, level);
577 }
578
579 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
580 {
581 int index = le32_to_cpu(e820_reserve.count);
582 struct e820_entry *entry;
583
584 if (type != E820_RAM) {
585 /* old FW_CFG_E820_TABLE entry -- reservations only */
586 if (index >= E820_NR_ENTRIES) {
587 return -EBUSY;
588 }
589 entry = &e820_reserve.entry[index++];
590
591 entry->address = cpu_to_le64(address);
592 entry->length = cpu_to_le64(length);
593 entry->type = cpu_to_le32(type);
594
595 e820_reserve.count = cpu_to_le32(index);
596 }
597
598 /* new "etc/e820" file -- include ram too */
599 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
600 e820_table[e820_entries].address = cpu_to_le64(address);
601 e820_table[e820_entries].length = cpu_to_le64(length);
602 e820_table[e820_entries].type = cpu_to_le32(type);
603 e820_entries++;
604
605 return e820_entries;
606 }
607
608 int e820_get_num_entries(void)
609 {
610 return e820_entries;
611 }
612
613 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
614 {
615 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
616 *address = le64_to_cpu(e820_table[idx].address);
617 *length = le64_to_cpu(e820_table[idx].length);
618 return true;
619 }
620 return false;
621 }
622
623 /* Enables contiguous-apic-ID mode, for compatibility */
624 static bool compat_apic_id_mode;
625
626 void enable_compat_apic_id_mode(void)
627 {
628 compat_apic_id_mode = true;
629 }
630
631 /* Calculates initial APIC ID for a specific CPU index
632 *
633 * Currently we need to be able to calculate the APIC ID from the CPU index
634 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
635 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
636 * all CPUs up to max_cpus.
637 */
638 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
639 {
640 uint32_t correct_id;
641 static bool warned;
642
643 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
644 if (compat_apic_id_mode) {
645 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
646 error_report("APIC IDs set in compatibility mode, "
647 "CPU topology won't match the configuration");
648 warned = true;
649 }
650 return cpu_index;
651 } else {
652 return correct_id;
653 }
654 }
655
656 /* Calculates the limit to CPU APIC ID values
657 *
658 * This function returns the limit for the APIC ID value, so that all
659 * CPU APIC IDs are < pc_apic_id_limit().
660 *
661 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
662 */
663 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
664 {
665 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
666 }
667
668 static FWCfgState *bochs_bios_init(void)
669 {
670 FWCfgState *fw_cfg;
671 uint8_t *smbios_tables, *smbios_anchor;
672 size_t smbios_tables_len, smbios_anchor_len;
673 uint64_t *numa_fw_cfg;
674 int i, j;
675 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
676
677 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
678 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
679 *
680 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
681 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
682 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
683 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
684 * may see".
685 *
686 * So, this means we must not use max_cpus, here, but the maximum possible
687 * APIC ID value, plus one.
688 *
689 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
690 * the APIC ID, not the "CPU index"
691 */
692 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
693 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
694 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
695 acpi_tables, acpi_tables_len);
696 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
697
698 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
699 if (smbios_tables) {
700 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
701 smbios_tables, smbios_tables_len);
702 }
703
704 smbios_get_tables(&smbios_tables, &smbios_tables_len,
705 &smbios_anchor, &smbios_anchor_len);
706 if (smbios_anchor) {
707 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
708 smbios_tables, smbios_tables_len);
709 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
710 smbios_anchor, smbios_anchor_len);
711 }
712
713 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
714 &e820_reserve, sizeof(e820_reserve));
715 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
716 sizeof(struct e820_entry) * e820_entries);
717
718 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
719 /* allocate memory for the NUMA channel: one (64bit) word for the number
720 * of nodes, one word for each VCPU->node and one word for each node to
721 * hold the amount of memory.
722 */
723 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
724 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
725 for (i = 0; i < max_cpus; i++) {
726 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
727 assert(apic_id < apic_id_limit);
728 for (j = 0; j < nb_numa_nodes; j++) {
729 if (test_bit(i, numa_info[j].node_cpu)) {
730 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
731 break;
732 }
733 }
734 }
735 for (i = 0; i < nb_numa_nodes; i++) {
736 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
737 }
738 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
739 (1 + apic_id_limit + nb_numa_nodes) *
740 sizeof(*numa_fw_cfg));
741
742 return fw_cfg;
743 }
744
745 static long get_file_size(FILE *f)
746 {
747 long where, size;
748
749 /* XXX: on Unix systems, using fstat() probably makes more sense */
750
751 where = ftell(f);
752 fseek(f, 0, SEEK_END);
753 size = ftell(f);
754 fseek(f, where, SEEK_SET);
755
756 return size;
757 }
758
759 static void load_linux(FWCfgState *fw_cfg,
760 const char *kernel_filename,
761 const char *initrd_filename,
762 const char *kernel_cmdline,
763 hwaddr max_ram_size)
764 {
765 uint16_t protocol;
766 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
767 uint32_t initrd_max;
768 uint8_t header[8192], *setup, *kernel, *initrd_data;
769 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
770 FILE *f;
771 char *vmode;
772
773 /* Align to 16 bytes as a paranoia measure */
774 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
775
776 /* load the kernel header */
777 f = fopen(kernel_filename, "rb");
778 if (!f || !(kernel_size = get_file_size(f)) ||
779 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
780 MIN(ARRAY_SIZE(header), kernel_size)) {
781 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
782 kernel_filename, strerror(errno));
783 exit(1);
784 }
785
786 /* kernel protocol version */
787 #if 0
788 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
789 #endif
790 if (ldl_p(header+0x202) == 0x53726448) {
791 protocol = lduw_p(header+0x206);
792 } else {
793 /* This looks like a multiboot kernel. If it is, let's stop
794 treating it like a Linux kernel. */
795 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
796 kernel_cmdline, kernel_size, header)) {
797 return;
798 }
799 protocol = 0;
800 }
801
802 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
803 /* Low kernel */
804 real_addr = 0x90000;
805 cmdline_addr = 0x9a000 - cmdline_size;
806 prot_addr = 0x10000;
807 } else if (protocol < 0x202) {
808 /* High but ancient kernel */
809 real_addr = 0x90000;
810 cmdline_addr = 0x9a000 - cmdline_size;
811 prot_addr = 0x100000;
812 } else {
813 /* High and recent kernel */
814 real_addr = 0x10000;
815 cmdline_addr = 0x20000;
816 prot_addr = 0x100000;
817 }
818
819 #if 0
820 fprintf(stderr,
821 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
822 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
823 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
824 real_addr,
825 cmdline_addr,
826 prot_addr);
827 #endif
828
829 /* highest address for loading the initrd */
830 if (protocol >= 0x203) {
831 initrd_max = ldl_p(header+0x22c);
832 } else {
833 initrd_max = 0x37ffffff;
834 }
835
836 if (initrd_max >= max_ram_size - acpi_data_size) {
837 initrd_max = max_ram_size - acpi_data_size - 1;
838 }
839
840 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
841 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
842 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
843
844 if (protocol >= 0x202) {
845 stl_p(header+0x228, cmdline_addr);
846 } else {
847 stw_p(header+0x20, 0xA33F);
848 stw_p(header+0x22, cmdline_addr-real_addr);
849 }
850
851 /* handle vga= parameter */
852 vmode = strstr(kernel_cmdline, "vga=");
853 if (vmode) {
854 unsigned int video_mode;
855 /* skip "vga=" */
856 vmode += 4;
857 if (!strncmp(vmode, "normal", 6)) {
858 video_mode = 0xffff;
859 } else if (!strncmp(vmode, "ext", 3)) {
860 video_mode = 0xfffe;
861 } else if (!strncmp(vmode, "ask", 3)) {
862 video_mode = 0xfffd;
863 } else {
864 video_mode = strtol(vmode, NULL, 0);
865 }
866 stw_p(header+0x1fa, video_mode);
867 }
868
869 /* loader type */
870 /* High nybble = B reserved for QEMU; low nybble is revision number.
871 If this code is substantially changed, you may want to consider
872 incrementing the revision. */
873 if (protocol >= 0x200) {
874 header[0x210] = 0xB0;
875 }
876 /* heap */
877 if (protocol >= 0x201) {
878 header[0x211] |= 0x80; /* CAN_USE_HEAP */
879 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
880 }
881
882 /* load initrd */
883 if (initrd_filename) {
884 if (protocol < 0x200) {
885 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
886 exit(1);
887 }
888
889 initrd_size = get_image_size(initrd_filename);
890 if (initrd_size < 0) {
891 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
892 initrd_filename, strerror(errno));
893 exit(1);
894 }
895
896 initrd_addr = (initrd_max-initrd_size) & ~4095;
897
898 initrd_data = g_malloc(initrd_size);
899 load_image(initrd_filename, initrd_data);
900
901 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
902 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
903 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
904
905 stl_p(header+0x218, initrd_addr);
906 stl_p(header+0x21c, initrd_size);
907 }
908
909 /* load kernel and setup */
910 setup_size = header[0x1f1];
911 if (setup_size == 0) {
912 setup_size = 4;
913 }
914 setup_size = (setup_size+1)*512;
915 kernel_size -= setup_size;
916
917 setup = g_malloc(setup_size);
918 kernel = g_malloc(kernel_size);
919 fseek(f, 0, SEEK_SET);
920 if (fread(setup, 1, setup_size, f) != setup_size) {
921 fprintf(stderr, "fread() failed\n");
922 exit(1);
923 }
924 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
925 fprintf(stderr, "fread() failed\n");
926 exit(1);
927 }
928 fclose(f);
929 memcpy(setup, header, MIN(sizeof(header), setup_size));
930
931 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
932 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
933 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
934
935 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
936 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
937 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
938
939 option_rom[nb_option_roms].name = "linuxboot.bin";
940 option_rom[nb_option_roms].bootindex = 0;
941 nb_option_roms++;
942 }
943
944 #define NE2000_NB_MAX 6
945
946 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
947 0x280, 0x380 };
948 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
949
950 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
951 {
952 static int nb_ne2k = 0;
953
954 if (nb_ne2k == NE2000_NB_MAX)
955 return;
956 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
957 ne2000_irq[nb_ne2k], nd);
958 nb_ne2k++;
959 }
960
961 DeviceState *cpu_get_current_apic(void)
962 {
963 if (current_cpu) {
964 X86CPU *cpu = X86_CPU(current_cpu);
965 return cpu->apic_state;
966 } else {
967 return NULL;
968 }
969 }
970
971 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
972 {
973 X86CPU *cpu = opaque;
974
975 if (level) {
976 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
977 }
978 }
979
980 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
981 DeviceState *icc_bridge, Error **errp)
982 {
983 X86CPU *cpu = NULL;
984 Error *local_err = NULL;
985
986 if (icc_bridge == NULL) {
987 error_setg(&local_err, "Invalid icc-bridge value");
988 goto out;
989 }
990
991 cpu = cpu_x86_create(cpu_model, &local_err);
992 if (local_err != NULL) {
993 goto out;
994 }
995
996 qdev_set_parent_bus(DEVICE(cpu), qdev_get_child_bus(icc_bridge, "icc"));
997
998 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
999 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1000
1001 out:
1002 if (local_err) {
1003 error_propagate(errp, local_err);
1004 object_unref(OBJECT(cpu));
1005 cpu = NULL;
1006 }
1007 return cpu;
1008 }
1009
1010 static const char *current_cpu_model;
1011
1012 void pc_hot_add_cpu(const int64_t id, Error **errp)
1013 {
1014 DeviceState *icc_bridge;
1015 X86CPU *cpu;
1016 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1017 Error *local_err = NULL;
1018
1019 if (id < 0) {
1020 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1021 return;
1022 }
1023
1024 if (cpu_exists(apic_id)) {
1025 error_setg(errp, "Unable to add CPU: %" PRIi64
1026 ", it already exists", id);
1027 return;
1028 }
1029
1030 if (id >= max_cpus) {
1031 error_setg(errp, "Unable to add CPU: %" PRIi64
1032 ", max allowed: %d", id, max_cpus - 1);
1033 return;
1034 }
1035
1036 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1037 error_setg(errp, "Unable to add CPU: %" PRIi64
1038 ", resulting APIC ID (%" PRIi64 ") is too large",
1039 id, apic_id);
1040 return;
1041 }
1042
1043 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1044 TYPE_ICC_BRIDGE, NULL));
1045 cpu = pc_new_cpu(current_cpu_model, apic_id, icc_bridge, &local_err);
1046 if (local_err) {
1047 error_propagate(errp, local_err);
1048 return;
1049 }
1050 object_unref(OBJECT(cpu));
1051 }
1052
1053 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1054 {
1055 int i;
1056 X86CPU *cpu = NULL;
1057 Error *error = NULL;
1058 unsigned long apic_id_limit;
1059
1060 /* init CPUs */
1061 if (cpu_model == NULL) {
1062 #ifdef TARGET_X86_64
1063 cpu_model = "qemu64";
1064 #else
1065 cpu_model = "qemu32";
1066 #endif
1067 }
1068 current_cpu_model = cpu_model;
1069
1070 apic_id_limit = pc_apic_id_limit(max_cpus);
1071 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1072 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1073 apic_id_limit - 1);
1074 exit(1);
1075 }
1076
1077 for (i = 0; i < smp_cpus; i++) {
1078 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1079 icc_bridge, &error);
1080 if (error) {
1081 error_report_err(error);
1082 exit(1);
1083 }
1084 object_unref(OBJECT(cpu));
1085 }
1086
1087 /* map APIC MMIO area if CPU has APIC */
1088 if (cpu && cpu->apic_state) {
1089 /* XXX: what if the base changes? */
1090 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1091 APIC_DEFAULT_ADDRESS, 0x1000);
1092 }
1093
1094 /* tell smbios about cpuid version and features */
1095 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1096 }
1097
1098 /* pci-info ROM file. Little endian format */
1099 typedef struct PcRomPciInfo {
1100 uint64_t w32_min;
1101 uint64_t w32_max;
1102 uint64_t w64_min;
1103 uint64_t w64_max;
1104 } PcRomPciInfo;
1105
1106 typedef struct PcGuestInfoState {
1107 PcGuestInfo info;
1108 Notifier machine_done;
1109 } PcGuestInfoState;
1110
1111 static
1112 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1113 {
1114 PcGuestInfoState *guest_info_state = container_of(notifier,
1115 PcGuestInfoState,
1116 machine_done);
1117 PCIBus *bus = find_i440fx();
1118
1119 if (bus) {
1120 int extra_hosts = 0;
1121
1122 QLIST_FOREACH(bus, &bus->child, sibling) {
1123 /* look for expander root buses */
1124 if (pci_bus_is_root(bus)) {
1125 extra_hosts++;
1126 }
1127 }
1128 if (extra_hosts && guest_info_state->info.fw_cfg) {
1129 uint64_t *val = g_malloc(sizeof(*val));
1130 *val = cpu_to_le64(extra_hosts);
1131 fw_cfg_add_file(guest_info_state->info.fw_cfg,
1132 "etc/extra-pci-roots", val, sizeof(*val));
1133 }
1134 }
1135
1136 acpi_setup(&guest_info_state->info);
1137 }
1138
1139 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1140 ram_addr_t above_4g_mem_size)
1141 {
1142 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1143 PcGuestInfo *guest_info = &guest_info_state->info;
1144 int i, j;
1145
1146 guest_info->ram_size_below_4g = below_4g_mem_size;
1147 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1148 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1149 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1150 guest_info->numa_nodes = nb_numa_nodes;
1151 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1152 sizeof *guest_info->node_mem);
1153 for (i = 0; i < nb_numa_nodes; i++) {
1154 guest_info->node_mem[i] = numa_info[i].node_mem;
1155 }
1156
1157 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1158 sizeof *guest_info->node_cpu);
1159
1160 for (i = 0; i < max_cpus; i++) {
1161 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1162 assert(apic_id < guest_info->apic_id_limit);
1163 for (j = 0; j < nb_numa_nodes; j++) {
1164 if (test_bit(i, numa_info[j].node_cpu)) {
1165 guest_info->node_cpu[apic_id] = j;
1166 break;
1167 }
1168 }
1169 }
1170
1171 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1172 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1173 return guest_info;
1174 }
1175
1176 /* setup pci memory address space mapping into system address space */
1177 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1178 MemoryRegion *pci_address_space)
1179 {
1180 /* Set to lower priority than RAM */
1181 memory_region_add_subregion_overlap(system_memory, 0x0,
1182 pci_address_space, -1);
1183 }
1184
1185 void pc_acpi_init(const char *default_dsdt)
1186 {
1187 char *filename;
1188
1189 if (acpi_tables != NULL) {
1190 /* manually set via -acpitable, leave it alone */
1191 return;
1192 }
1193
1194 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1195 if (filename == NULL) {
1196 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1197 } else {
1198 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1199 &error_abort);
1200 Error *err = NULL;
1201
1202 qemu_opt_set(opts, "file", filename, &error_abort);
1203
1204 acpi_table_add_builtin(opts, &err);
1205 if (err) {
1206 error_report("WARNING: failed to load %s: %s", filename,
1207 error_get_pretty(err));
1208 error_free(err);
1209 }
1210 g_free(filename);
1211 }
1212 }
1213
1214 FWCfgState *xen_load_linux(const char *kernel_filename,
1215 const char *kernel_cmdline,
1216 const char *initrd_filename,
1217 ram_addr_t below_4g_mem_size,
1218 PcGuestInfo *guest_info)
1219 {
1220 int i;
1221 FWCfgState *fw_cfg;
1222
1223 assert(kernel_filename != NULL);
1224
1225 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1226 rom_set_fw(fw_cfg);
1227
1228 load_linux(fw_cfg, kernel_filename, initrd_filename,
1229 kernel_cmdline, below_4g_mem_size);
1230 for (i = 0; i < nb_option_roms; i++) {
1231 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1232 !strcmp(option_rom[i].name, "multiboot.bin"));
1233 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1234 }
1235 guest_info->fw_cfg = fw_cfg;
1236 return fw_cfg;
1237 }
1238
1239 FWCfgState *pc_memory_init(MachineState *machine,
1240 MemoryRegion *system_memory,
1241 ram_addr_t below_4g_mem_size,
1242 ram_addr_t above_4g_mem_size,
1243 MemoryRegion *rom_memory,
1244 MemoryRegion **ram_memory,
1245 PcGuestInfo *guest_info)
1246 {
1247 int linux_boot, i;
1248 MemoryRegion *ram, *option_rom_mr;
1249 MemoryRegion *ram_below_4g, *ram_above_4g;
1250 FWCfgState *fw_cfg;
1251 PCMachineState *pcms = PC_MACHINE(machine);
1252
1253 assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1254
1255 linux_boot = (machine->kernel_filename != NULL);
1256
1257 /* Allocate RAM. We allocate it as a single memory region and use
1258 * aliases to address portions of it, mostly for backwards compatibility
1259 * with older qemus that used qemu_ram_alloc().
1260 */
1261 ram = g_malloc(sizeof(*ram));
1262 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1263 machine->ram_size);
1264 *ram_memory = ram;
1265 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1266 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1267 0, below_4g_mem_size);
1268 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1269 e820_add_entry(0, below_4g_mem_size, E820_RAM);
1270 if (above_4g_mem_size > 0) {
1271 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1272 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1273 below_4g_mem_size, above_4g_mem_size);
1274 memory_region_add_subregion(system_memory, 0x100000000ULL,
1275 ram_above_4g);
1276 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1277 }
1278
1279 if (!guest_info->has_reserved_memory &&
1280 (machine->ram_slots ||
1281 (machine->maxram_size > machine->ram_size))) {
1282 MachineClass *mc = MACHINE_GET_CLASS(machine);
1283
1284 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1285 mc->name);
1286 exit(EXIT_FAILURE);
1287 }
1288
1289 /* initialize hotplug memory address space */
1290 if (guest_info->has_reserved_memory &&
1291 (machine->ram_size < machine->maxram_size)) {
1292 ram_addr_t hotplug_mem_size =
1293 machine->maxram_size - machine->ram_size;
1294
1295 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1296 error_report("unsupported amount of memory slots: %"PRIu64,
1297 machine->ram_slots);
1298 exit(EXIT_FAILURE);
1299 }
1300
1301 if (QEMU_ALIGN_UP(machine->maxram_size,
1302 TARGET_PAGE_SIZE) != machine->maxram_size) {
1303 error_report("maximum memory size must by aligned to multiple of "
1304 "%d bytes", TARGET_PAGE_SIZE);
1305 exit(EXIT_FAILURE);
1306 }
1307
1308 pcms->hotplug_memory.base =
1309 ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1310
1311 if (pcms->enforce_aligned_dimm) {
1312 /* size hotplug region assuming 1G page max alignment per slot */
1313 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1314 }
1315
1316 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1317 hotplug_mem_size) {
1318 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1319 machine->maxram_size);
1320 exit(EXIT_FAILURE);
1321 }
1322
1323 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1324 "hotplug-memory", hotplug_mem_size);
1325 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1326 &pcms->hotplug_memory.mr);
1327 }
1328
1329 /* Initialize PC system firmware */
1330 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1331
1332 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1333 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1334 &error_abort);
1335 vmstate_register_ram_global(option_rom_mr);
1336 memory_region_add_subregion_overlap(rom_memory,
1337 PC_ROM_MIN_VGA,
1338 option_rom_mr,
1339 1);
1340
1341 fw_cfg = bochs_bios_init();
1342 rom_set_fw(fw_cfg);
1343
1344 if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1345 uint64_t *val = g_malloc(sizeof(*val));
1346 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory.base, 0x1ULL << 30));
1347 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1348 }
1349
1350 if (linux_boot) {
1351 load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1352 machine->kernel_cmdline, below_4g_mem_size);
1353 }
1354
1355 for (i = 0; i < nb_option_roms; i++) {
1356 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1357 }
1358 guest_info->fw_cfg = fw_cfg;
1359 return fw_cfg;
1360 }
1361
1362 qemu_irq pc_allocate_cpu_irq(void)
1363 {
1364 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1365 }
1366
1367 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1368 {
1369 DeviceState *dev = NULL;
1370
1371 if (pci_bus) {
1372 PCIDevice *pcidev = pci_vga_init(pci_bus);
1373 dev = pcidev ? &pcidev->qdev : NULL;
1374 } else if (isa_bus) {
1375 ISADevice *isadev = isa_vga_init(isa_bus);
1376 dev = isadev ? DEVICE(isadev) : NULL;
1377 }
1378 return dev;
1379 }
1380
1381 static void cpu_request_exit(void *opaque, int irq, int level)
1382 {
1383 CPUState *cpu = current_cpu;
1384
1385 if (cpu && level) {
1386 cpu_exit(cpu);
1387 }
1388 }
1389
1390 static const MemoryRegionOps ioport80_io_ops = {
1391 .write = ioport80_write,
1392 .read = ioport80_read,
1393 .endianness = DEVICE_NATIVE_ENDIAN,
1394 .impl = {
1395 .min_access_size = 1,
1396 .max_access_size = 1,
1397 },
1398 };
1399
1400 static const MemoryRegionOps ioportF0_io_ops = {
1401 .write = ioportF0_write,
1402 .read = ioportF0_read,
1403 .endianness = DEVICE_NATIVE_ENDIAN,
1404 .impl = {
1405 .min_access_size = 1,
1406 .max_access_size = 1,
1407 },
1408 };
1409
1410 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1411 ISADevice **rtc_state,
1412 bool create_fdctrl,
1413 ISADevice **floppy,
1414 bool no_vmport,
1415 uint32 hpet_irqs)
1416 {
1417 int i;
1418 DriveInfo *fd[MAX_FD];
1419 DeviceState *hpet = NULL;
1420 int pit_isa_irq = 0;
1421 qemu_irq pit_alt_irq = NULL;
1422 qemu_irq rtc_irq = NULL;
1423 qemu_irq *a20_line;
1424 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1425 qemu_irq *cpu_exit_irq;
1426 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1427 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1428
1429 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1430 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1431
1432 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1433 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1434
1435 /*
1436 * Check if an HPET shall be created.
1437 *
1438 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1439 * when the HPET wants to take over. Thus we have to disable the latter.
1440 */
1441 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1442 /* In order to set property, here not using sysbus_try_create_simple */
1443 hpet = qdev_try_create(NULL, TYPE_HPET);
1444 if (hpet) {
1445 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1446 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1447 * IRQ8 and IRQ2.
1448 */
1449 uint8_t compat = object_property_get_int(OBJECT(hpet),
1450 HPET_INTCAP, NULL);
1451 if (!compat) {
1452 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1453 }
1454 qdev_init_nofail(hpet);
1455 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1456
1457 for (i = 0; i < GSI_NUM_PINS; i++) {
1458 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1459 }
1460 pit_isa_irq = -1;
1461 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1462 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1463 }
1464 }
1465 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1466
1467 qemu_register_boot_set(pc_boot_set, *rtc_state);
1468
1469 if (!xen_enabled()) {
1470 if (kvm_irqchip_in_kernel()) {
1471 pit = kvm_pit_init(isa_bus, 0x40);
1472 } else {
1473 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1474 }
1475 if (hpet) {
1476 /* connect PIT to output control line of the HPET */
1477 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1478 }
1479 pcspk_init(isa_bus, pit);
1480 }
1481
1482 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1483 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1484
1485 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1486 i8042 = isa_create_simple(isa_bus, "i8042");
1487 i8042_setup_a20_line(i8042, &a20_line[0]);
1488 if (!no_vmport) {
1489 vmport_init(isa_bus);
1490 vmmouse = isa_try_create(isa_bus, "vmmouse");
1491 } else {
1492 vmmouse = NULL;
1493 }
1494 if (vmmouse) {
1495 DeviceState *dev = DEVICE(vmmouse);
1496 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1497 qdev_init_nofail(dev);
1498 }
1499 port92 = isa_create_simple(isa_bus, "port92");
1500 port92_init(port92, &a20_line[1]);
1501
1502 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1503 DMA_init(0, cpu_exit_irq);
1504
1505 for(i = 0; i < MAX_FD; i++) {
1506 fd[i] = drive_get(IF_FLOPPY, 0, i);
1507 create_fdctrl |= !!fd[i];
1508 }
1509 *floppy = create_fdctrl ? fdctrl_init_isa(isa_bus, fd) : NULL;
1510 }
1511
1512 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1513 {
1514 int i;
1515
1516 for (i = 0; i < nb_nics; i++) {
1517 NICInfo *nd = &nd_table[i];
1518
1519 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1520 pc_init_ne2k_isa(isa_bus, nd);
1521 } else {
1522 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1523 }
1524 }
1525 }
1526
1527 void pc_pci_device_init(PCIBus *pci_bus)
1528 {
1529 int max_bus;
1530 int bus;
1531
1532 max_bus = drive_get_max_bus(IF_SCSI);
1533 for (bus = 0; bus <= max_bus; bus++) {
1534 pci_create_simple(pci_bus, -1, "lsi53c895a");
1535 }
1536 }
1537
1538 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1539 {
1540 DeviceState *dev;
1541 SysBusDevice *d;
1542 unsigned int i;
1543
1544 if (kvm_irqchip_in_kernel()) {
1545 dev = qdev_create(NULL, "kvm-ioapic");
1546 } else {
1547 dev = qdev_create(NULL, "ioapic");
1548 }
1549 if (parent_name) {
1550 object_property_add_child(object_resolve_path(parent_name, NULL),
1551 "ioapic", OBJECT(dev), NULL);
1552 }
1553 qdev_init_nofail(dev);
1554 d = SYS_BUS_DEVICE(dev);
1555 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1556
1557 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1558 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1559 }
1560 }
1561
1562 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1563 DeviceState *dev, Error **errp)
1564 {
1565 HotplugHandlerClass *hhc;
1566 Error *local_err = NULL;
1567 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1568 PCDIMMDevice *dimm = PC_DIMM(dev);
1569 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1570 MemoryRegion *mr = ddc->get_memory_region(dimm);
1571 uint64_t align = TARGET_PAGE_SIZE;
1572
1573 if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1574 align = memory_region_get_alignment(mr);
1575 }
1576
1577 if (!pcms->acpi_dev) {
1578 error_setg(&local_err,
1579 "memory hotplug is not enabled: missing acpi device");
1580 goto out;
1581 }
1582
1583 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1584 if (local_err) {
1585 goto out;
1586 }
1587
1588 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1589 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1590 out:
1591 error_propagate(errp, local_err);
1592 }
1593
1594 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1595 DeviceState *dev, Error **errp)
1596 {
1597 HotplugHandlerClass *hhc;
1598 Error *local_err = NULL;
1599 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1600
1601 if (!pcms->acpi_dev) {
1602 error_setg(&local_err,
1603 "memory hotplug is not enabled: missing acpi device");
1604 goto out;
1605 }
1606
1607 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1608 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1609
1610 out:
1611 error_propagate(errp, local_err);
1612 }
1613
1614 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1615 DeviceState *dev, Error **errp)
1616 {
1617 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1618 PCDIMMDevice *dimm = PC_DIMM(dev);
1619 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1620 MemoryRegion *mr = ddc->get_memory_region(dimm);
1621 HotplugHandlerClass *hhc;
1622 Error *local_err = NULL;
1623
1624 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1625 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1626
1627 if (local_err) {
1628 goto out;
1629 }
1630
1631 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1632 object_unparent(OBJECT(dev));
1633
1634 out:
1635 error_propagate(errp, local_err);
1636 }
1637
1638 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1639 DeviceState *dev, Error **errp)
1640 {
1641 HotplugHandlerClass *hhc;
1642 Error *local_err = NULL;
1643 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1644
1645 if (!dev->hotplugged) {
1646 goto out;
1647 }
1648
1649 if (!pcms->acpi_dev) {
1650 error_setg(&local_err,
1651 "cpu hotplug is not enabled: missing acpi device");
1652 goto out;
1653 }
1654
1655 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1656 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1657 if (local_err) {
1658 goto out;
1659 }
1660
1661 /* increment the number of CPUs */
1662 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1663 out:
1664 error_propagate(errp, local_err);
1665 }
1666
1667 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1668 DeviceState *dev, Error **errp)
1669 {
1670 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1671 pc_dimm_plug(hotplug_dev, dev, errp);
1672 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1673 pc_cpu_plug(hotplug_dev, dev, errp);
1674 }
1675 }
1676
1677 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1678 DeviceState *dev, Error **errp)
1679 {
1680 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1681 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1682 } else {
1683 error_setg(errp, "acpi: device unplug request for not supported device"
1684 " type: %s", object_get_typename(OBJECT(dev)));
1685 }
1686 }
1687
1688 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1689 DeviceState *dev, Error **errp)
1690 {
1691 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1692 pc_dimm_unplug(hotplug_dev, dev, errp);
1693 } else {
1694 error_setg(errp, "acpi: device unplug for not supported device"
1695 " type: %s", object_get_typename(OBJECT(dev)));
1696 }
1697 }
1698
1699 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1700 DeviceState *dev)
1701 {
1702 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1703
1704 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1705 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1706 return HOTPLUG_HANDLER(machine);
1707 }
1708
1709 return pcmc->get_hotplug_handler ?
1710 pcmc->get_hotplug_handler(machine, dev) : NULL;
1711 }
1712
1713 static void
1714 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1715 const char *name, Error **errp)
1716 {
1717 PCMachineState *pcms = PC_MACHINE(obj);
1718 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1719
1720 visit_type_int(v, &value, name, errp);
1721 }
1722
1723 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1724 void *opaque, const char *name,
1725 Error **errp)
1726 {
1727 PCMachineState *pcms = PC_MACHINE(obj);
1728 uint64_t value = pcms->max_ram_below_4g;
1729
1730 visit_type_size(v, &value, name, errp);
1731 }
1732
1733 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1734 void *opaque, const char *name,
1735 Error **errp)
1736 {
1737 PCMachineState *pcms = PC_MACHINE(obj);
1738 Error *error = NULL;
1739 uint64_t value;
1740
1741 visit_type_size(v, &value, name, &error);
1742 if (error) {
1743 error_propagate(errp, error);
1744 return;
1745 }
1746 if (value > (1ULL << 32)) {
1747 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1748 "Machine option 'max-ram-below-4g=%"PRIu64
1749 "' expects size less than or equal to 4G", value);
1750 error_propagate(errp, error);
1751 return;
1752 }
1753
1754 if (value < (1ULL << 20)) {
1755 error_report("Warning: small max_ram_below_4g(%"PRIu64
1756 ") less than 1M. BIOS may not work..",
1757 value);
1758 }
1759
1760 pcms->max_ram_below_4g = value;
1761 }
1762
1763 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1764 const char *name, Error **errp)
1765 {
1766 PCMachineState *pcms = PC_MACHINE(obj);
1767 OnOffAuto vmport = pcms->vmport;
1768
1769 visit_type_OnOffAuto(v, &vmport, name, errp);
1770 }
1771
1772 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1773 const char *name, Error **errp)
1774 {
1775 PCMachineState *pcms = PC_MACHINE(obj);
1776
1777 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1778 }
1779
1780 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1781 {
1782 bool smm_available = false;
1783
1784 if (pcms->smm == ON_OFF_AUTO_OFF) {
1785 return false;
1786 }
1787
1788 if (tcg_enabled() || qtest_enabled()) {
1789 smm_available = true;
1790 } else if (kvm_enabled()) {
1791 smm_available = kvm_has_smm();
1792 }
1793
1794 if (smm_available) {
1795 return true;
1796 }
1797
1798 if (pcms->smm == ON_OFF_AUTO_ON) {
1799 error_report("System Management Mode not supported by this hypervisor.");
1800 exit(1);
1801 }
1802 return false;
1803 }
1804
1805 static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
1806 const char *name, Error **errp)
1807 {
1808 PCMachineState *pcms = PC_MACHINE(obj);
1809 OnOffAuto smm = pcms->smm;
1810
1811 visit_type_OnOffAuto(v, &smm, name, errp);
1812 }
1813
1814 static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
1815 const char *name, Error **errp)
1816 {
1817 PCMachineState *pcms = PC_MACHINE(obj);
1818
1819 visit_type_OnOffAuto(v, &pcms->smm, name, errp);
1820 }
1821
1822 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1823 {
1824 PCMachineState *pcms = PC_MACHINE(obj);
1825
1826 return pcms->enforce_aligned_dimm;
1827 }
1828
1829 static void pc_machine_initfn(Object *obj)
1830 {
1831 PCMachineState *pcms = PC_MACHINE(obj);
1832
1833 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1834 pc_machine_get_hotplug_memory_region_size,
1835 NULL, NULL, NULL, NULL);
1836
1837 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1838 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1839 pc_machine_get_max_ram_below_4g,
1840 pc_machine_set_max_ram_below_4g,
1841 NULL, NULL, NULL);
1842 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1843 "Maximum ram below the 4G boundary (32bit boundary)",
1844 NULL);
1845
1846 pcms->smm = ON_OFF_AUTO_AUTO;
1847 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1848 pc_machine_get_smm,
1849 pc_machine_set_smm,
1850 NULL, NULL, NULL);
1851 object_property_set_description(obj, PC_MACHINE_SMM,
1852 "Enable SMM (pc & q35)",
1853 NULL);
1854
1855 pcms->vmport = ON_OFF_AUTO_AUTO;
1856 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1857 pc_machine_get_vmport,
1858 pc_machine_set_vmport,
1859 NULL, NULL, NULL);
1860 object_property_set_description(obj, PC_MACHINE_VMPORT,
1861 "Enable vmport (pc & q35)",
1862 NULL);
1863
1864 pcms->enforce_aligned_dimm = true;
1865 object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1866 pc_machine_get_aligned_dimm,
1867 NULL, NULL);
1868 }
1869
1870 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1871 {
1872 unsigned pkg_id, core_id, smt_id;
1873 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1874 &pkg_id, &core_id, &smt_id);
1875 return pkg_id;
1876 }
1877
1878 static void pc_machine_class_init(ObjectClass *oc, void *data)
1879 {
1880 MachineClass *mc = MACHINE_CLASS(oc);
1881 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1882 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1883
1884 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1885 mc->get_hotplug_handler = pc_get_hotpug_handler;
1886 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1887 hc->plug = pc_machine_device_plug_cb;
1888 hc->unplug_request = pc_machine_device_unplug_request_cb;
1889 hc->unplug = pc_machine_device_unplug_cb;
1890 }
1891
1892 static const TypeInfo pc_machine_info = {
1893 .name = TYPE_PC_MACHINE,
1894 .parent = TYPE_MACHINE,
1895 .abstract = true,
1896 .instance_size = sizeof(PCMachineState),
1897 .instance_init = pc_machine_initfn,
1898 .class_size = sizeof(PCMachineClass),
1899 .class_init = pc_machine_class_init,
1900 .interfaces = (InterfaceInfo[]) {
1901 { TYPE_HOTPLUG_HANDLER },
1902 { }
1903 },
1904 };
1905
1906 static void pc_machine_register_types(void)
1907 {
1908 type_register_static(&pc_machine_info);
1909 }
1910
1911 type_init(pc_machine_register_types)