]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
fdc: add drive type qapi enum
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/pci_bus.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/smbios/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "hw/acpi/acpi.h"
61 #include "hw/acpi/cpu_hotplug.h"
62 #include "hw/boards.h"
63 #include "hw/pci/pci_host.h"
64 #include "acpi-build.h"
65 #include "hw/mem/pc-dimm.h"
66 #include "qapi/visitor.h"
67 #include "qapi-visit.h"
68 #include "qom/cpu.h"
69
70 /* debug PC/ISA interrupts */
71 //#define DEBUG_IRQ
72
73 #ifdef DEBUG_IRQ
74 #define DPRINTF(fmt, ...) \
75 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76 #else
77 #define DPRINTF(fmt, ...)
78 #endif
79
80 #define BIOS_CFG_IOPORT 0x510
81 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
82 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
83 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
84 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
85 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
86
87 #define E820_NR_ENTRIES 16
88
89 struct e820_entry {
90 uint64_t address;
91 uint64_t length;
92 uint32_t type;
93 } QEMU_PACKED __attribute((__aligned__(4)));
94
95 struct e820_table {
96 uint32_t count;
97 struct e820_entry entry[E820_NR_ENTRIES];
98 } QEMU_PACKED __attribute((__aligned__(4)));
99
100 static struct e820_table e820_reserve;
101 static struct e820_entry *e820_table;
102 static unsigned e820_entries;
103 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
104
105 void gsi_handler(void *opaque, int n, int level)
106 {
107 GSIState *s = opaque;
108
109 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
110 if (n < ISA_NUM_IRQS) {
111 qemu_set_irq(s->i8259_irq[n], level);
112 }
113 qemu_set_irq(s->ioapic_irq[n], level);
114 }
115
116 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
117 unsigned size)
118 {
119 }
120
121 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
122 {
123 return 0xffffffffffffffffULL;
124 }
125
126 /* MSDOS compatibility mode FPU exception support */
127 static qemu_irq ferr_irq;
128
129 void pc_register_ferr_irq(qemu_irq irq)
130 {
131 ferr_irq = irq;
132 }
133
134 /* XXX: add IGNNE support */
135 void cpu_set_ferr(CPUX86State *s)
136 {
137 qemu_irq_raise(ferr_irq);
138 }
139
140 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
141 unsigned size)
142 {
143 qemu_irq_lower(ferr_irq);
144 }
145
146 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
147 {
148 return 0xffffffffffffffffULL;
149 }
150
151 /* TSC handling */
152 uint64_t cpu_get_tsc(CPUX86State *env)
153 {
154 return cpu_get_ticks();
155 }
156
157 /* IRQ handling */
158 int cpu_get_pic_interrupt(CPUX86State *env)
159 {
160 X86CPU *cpu = x86_env_get_cpu(env);
161 int intno;
162
163 intno = apic_get_interrupt(cpu->apic_state);
164 if (intno >= 0) {
165 return intno;
166 }
167 /* read the irq from the PIC */
168 if (!apic_accept_pic_intr(cpu->apic_state)) {
169 return -1;
170 }
171
172 intno = pic_read_irq(isa_pic);
173 return intno;
174 }
175
176 static void pic_irq_request(void *opaque, int irq, int level)
177 {
178 CPUState *cs = first_cpu;
179 X86CPU *cpu = X86_CPU(cs);
180
181 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
182 if (cpu->apic_state) {
183 CPU_FOREACH(cs) {
184 cpu = X86_CPU(cs);
185 if (apic_accept_pic_intr(cpu->apic_state)) {
186 apic_deliver_pic_intr(cpu->apic_state, level);
187 }
188 }
189 } else {
190 if (level) {
191 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
192 } else {
193 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
194 }
195 }
196 }
197
198 /* PC cmos mappings */
199
200 #define REG_EQUIPMENT_BYTE 0x14
201
202 static int cmos_get_fd_drive_type(FloppyDriveType fd0)
203 {
204 int val;
205
206 switch (fd0) {
207 case FLOPPY_DRIVE_TYPE_144:
208 /* 1.44 Mb 3"5 drive */
209 val = 4;
210 break;
211 case FLOPPY_DRIVE_TYPE_288:
212 /* 2.88 Mb 3"5 drive */
213 val = 5;
214 break;
215 case FLOPPY_DRIVE_TYPE_120:
216 /* 1.2 Mb 5"5 drive */
217 val = 2;
218 break;
219 case FLOPPY_DRIVE_TYPE_NONE:
220 default:
221 val = 0;
222 break;
223 }
224 return val;
225 }
226
227 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
228 int16_t cylinders, int8_t heads, int8_t sectors)
229 {
230 rtc_set_memory(s, type_ofs, 47);
231 rtc_set_memory(s, info_ofs, cylinders);
232 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
233 rtc_set_memory(s, info_ofs + 2, heads);
234 rtc_set_memory(s, info_ofs + 3, 0xff);
235 rtc_set_memory(s, info_ofs + 4, 0xff);
236 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
237 rtc_set_memory(s, info_ofs + 6, cylinders);
238 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
239 rtc_set_memory(s, info_ofs + 8, sectors);
240 }
241
242 /* convert boot_device letter to something recognizable by the bios */
243 static int boot_device2nibble(char boot_device)
244 {
245 switch(boot_device) {
246 case 'a':
247 case 'b':
248 return 0x01; /* floppy boot */
249 case 'c':
250 return 0x02; /* hard drive boot */
251 case 'd':
252 return 0x03; /* CD-ROM boot */
253 case 'n':
254 return 0x04; /* Network boot */
255 }
256 return 0;
257 }
258
259 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
260 {
261 #define PC_MAX_BOOT_DEVICES 3
262 int nbds, bds[3] = { 0, };
263 int i;
264
265 nbds = strlen(boot_device);
266 if (nbds > PC_MAX_BOOT_DEVICES) {
267 error_setg(errp, "Too many boot devices for PC");
268 return;
269 }
270 for (i = 0; i < nbds; i++) {
271 bds[i] = boot_device2nibble(boot_device[i]);
272 if (bds[i] == 0) {
273 error_setg(errp, "Invalid boot device for PC: '%c'",
274 boot_device[i]);
275 return;
276 }
277 }
278 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
279 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
280 }
281
282 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
283 {
284 set_boot_dev(opaque, boot_device, errp);
285 }
286
287 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
288 {
289 int val, nb, i;
290 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
291 FLOPPY_DRIVE_TYPE_NONE };
292
293 /* floppy type */
294 if (floppy) {
295 for (i = 0; i < 2; i++) {
296 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
297 }
298 }
299 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
300 cmos_get_fd_drive_type(fd_type[1]);
301 rtc_set_memory(rtc_state, 0x10, val);
302
303 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
304 nb = 0;
305 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
306 nb++;
307 }
308 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
309 nb++;
310 }
311 switch (nb) {
312 case 0:
313 break;
314 case 1:
315 val |= 0x01; /* 1 drive, ready for boot */
316 break;
317 case 2:
318 val |= 0x41; /* 2 drives, ready for boot */
319 break;
320 }
321 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
322 }
323
324 typedef struct pc_cmos_init_late_arg {
325 ISADevice *rtc_state;
326 BusState *idebus[2];
327 } pc_cmos_init_late_arg;
328
329 typedef struct check_fdc_state {
330 ISADevice *floppy;
331 bool multiple;
332 } CheckFdcState;
333
334 static int check_fdc(Object *obj, void *opaque)
335 {
336 CheckFdcState *state = opaque;
337 Object *fdc;
338 uint32_t iobase;
339 Error *local_err = NULL;
340
341 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
342 if (!fdc) {
343 return 0;
344 }
345
346 iobase = object_property_get_int(obj, "iobase", &local_err);
347 if (local_err || iobase != 0x3f0) {
348 error_free(local_err);
349 return 0;
350 }
351
352 if (state->floppy) {
353 state->multiple = true;
354 } else {
355 state->floppy = ISA_DEVICE(obj);
356 }
357 return 0;
358 }
359
360 static const char * const fdc_container_path[] = {
361 "/unattached", "/peripheral", "/peripheral-anon"
362 };
363
364 /*
365 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
366 * and ACPI objects.
367 */
368 ISADevice *pc_find_fdc0(void)
369 {
370 int i;
371 Object *container;
372 CheckFdcState state = { 0 };
373
374 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
375 container = container_get(qdev_get_machine(), fdc_container_path[i]);
376 object_child_foreach(container, check_fdc, &state);
377 }
378
379 if (state.multiple) {
380 error_report("warning: multiple floppy disk controllers with "
381 "iobase=0x3f0 have been found");
382 error_printf("the one being picked for CMOS setup might not reflect "
383 "your intent");
384 }
385
386 return state.floppy;
387 }
388
389 static void pc_cmos_init_late(void *opaque)
390 {
391 pc_cmos_init_late_arg *arg = opaque;
392 ISADevice *s = arg->rtc_state;
393 int16_t cylinders;
394 int8_t heads, sectors;
395 int val;
396 int i, trans;
397
398 val = 0;
399 if (ide_get_geometry(arg->idebus[0], 0,
400 &cylinders, &heads, &sectors) >= 0) {
401 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
402 val |= 0xf0;
403 }
404 if (ide_get_geometry(arg->idebus[0], 1,
405 &cylinders, &heads, &sectors) >= 0) {
406 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
407 val |= 0x0f;
408 }
409 rtc_set_memory(s, 0x12, val);
410
411 val = 0;
412 for (i = 0; i < 4; i++) {
413 /* NOTE: ide_get_geometry() returns the physical
414 geometry. It is always such that: 1 <= sects <= 63, 1
415 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
416 geometry can be different if a translation is done. */
417 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
418 &cylinders, &heads, &sectors) >= 0) {
419 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
420 assert((trans & ~3) == 0);
421 val |= trans << (i * 2);
422 }
423 }
424 rtc_set_memory(s, 0x39, val);
425
426 pc_cmos_init_floppy(s, pc_find_fdc0());
427
428 qemu_unregister_reset(pc_cmos_init_late, opaque);
429 }
430
431 void pc_cmos_init(PCMachineState *pcms,
432 BusState *idebus0, BusState *idebus1,
433 ISADevice *s)
434 {
435 int val;
436 static pc_cmos_init_late_arg arg;
437
438 /* various important CMOS locations needed by PC/Bochs bios */
439
440 /* memory size */
441 /* base memory (first MiB) */
442 val = MIN(pcms->below_4g_mem_size / 1024, 640);
443 rtc_set_memory(s, 0x15, val);
444 rtc_set_memory(s, 0x16, val >> 8);
445 /* extended memory (next 64MiB) */
446 if (pcms->below_4g_mem_size > 1024 * 1024) {
447 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
448 } else {
449 val = 0;
450 }
451 if (val > 65535)
452 val = 65535;
453 rtc_set_memory(s, 0x17, val);
454 rtc_set_memory(s, 0x18, val >> 8);
455 rtc_set_memory(s, 0x30, val);
456 rtc_set_memory(s, 0x31, val >> 8);
457 /* memory between 16MiB and 4GiB */
458 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
459 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
460 } else {
461 val = 0;
462 }
463 if (val > 65535)
464 val = 65535;
465 rtc_set_memory(s, 0x34, val);
466 rtc_set_memory(s, 0x35, val >> 8);
467 /* memory above 4GiB */
468 val = pcms->above_4g_mem_size / 65536;
469 rtc_set_memory(s, 0x5b, val);
470 rtc_set_memory(s, 0x5c, val >> 8);
471 rtc_set_memory(s, 0x5d, val >> 16);
472
473 /* set the number of CPU */
474 rtc_set_memory(s, 0x5f, smp_cpus - 1);
475
476 object_property_add_link(OBJECT(pcms), "rtc_state",
477 TYPE_ISA_DEVICE,
478 (Object **)&pcms->rtc,
479 object_property_allow_set_link,
480 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
481 object_property_set_link(OBJECT(pcms), OBJECT(s),
482 "rtc_state", &error_abort);
483
484 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
485
486 val = 0;
487 val |= 0x02; /* FPU is there */
488 val |= 0x04; /* PS/2 mouse installed */
489 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
490
491 /* hard drives and FDC */
492 arg.rtc_state = s;
493 arg.idebus[0] = idebus0;
494 arg.idebus[1] = idebus1;
495 qemu_register_reset(pc_cmos_init_late, &arg);
496 }
497
498 #define TYPE_PORT92 "port92"
499 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
500
501 /* port 92 stuff: could be split off */
502 typedef struct Port92State {
503 ISADevice parent_obj;
504
505 MemoryRegion io;
506 uint8_t outport;
507 qemu_irq *a20_out;
508 } Port92State;
509
510 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
511 unsigned size)
512 {
513 Port92State *s = opaque;
514 int oldval = s->outport;
515
516 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
517 s->outport = val;
518 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
519 if ((val & 1) && !(oldval & 1)) {
520 qemu_system_reset_request();
521 }
522 }
523
524 static uint64_t port92_read(void *opaque, hwaddr addr,
525 unsigned size)
526 {
527 Port92State *s = opaque;
528 uint32_t ret;
529
530 ret = s->outport;
531 DPRINTF("port92: read 0x%02x\n", ret);
532 return ret;
533 }
534
535 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
536 {
537 Port92State *s = PORT92(dev);
538
539 s->a20_out = a20_out;
540 }
541
542 static const VMStateDescription vmstate_port92_isa = {
543 .name = "port92",
544 .version_id = 1,
545 .minimum_version_id = 1,
546 .fields = (VMStateField[]) {
547 VMSTATE_UINT8(outport, Port92State),
548 VMSTATE_END_OF_LIST()
549 }
550 };
551
552 static void port92_reset(DeviceState *d)
553 {
554 Port92State *s = PORT92(d);
555
556 s->outport &= ~1;
557 }
558
559 static const MemoryRegionOps port92_ops = {
560 .read = port92_read,
561 .write = port92_write,
562 .impl = {
563 .min_access_size = 1,
564 .max_access_size = 1,
565 },
566 .endianness = DEVICE_LITTLE_ENDIAN,
567 };
568
569 static void port92_initfn(Object *obj)
570 {
571 Port92State *s = PORT92(obj);
572
573 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
574
575 s->outport = 0;
576 }
577
578 static void port92_realizefn(DeviceState *dev, Error **errp)
579 {
580 ISADevice *isadev = ISA_DEVICE(dev);
581 Port92State *s = PORT92(dev);
582
583 isa_register_ioport(isadev, &s->io, 0x92);
584 }
585
586 static void port92_class_initfn(ObjectClass *klass, void *data)
587 {
588 DeviceClass *dc = DEVICE_CLASS(klass);
589
590 dc->realize = port92_realizefn;
591 dc->reset = port92_reset;
592 dc->vmsd = &vmstate_port92_isa;
593 /*
594 * Reason: unlike ordinary ISA devices, this one needs additional
595 * wiring: its A20 output line needs to be wired up by
596 * port92_init().
597 */
598 dc->cannot_instantiate_with_device_add_yet = true;
599 }
600
601 static const TypeInfo port92_info = {
602 .name = TYPE_PORT92,
603 .parent = TYPE_ISA_DEVICE,
604 .instance_size = sizeof(Port92State),
605 .instance_init = port92_initfn,
606 .class_init = port92_class_initfn,
607 };
608
609 static void port92_register_types(void)
610 {
611 type_register_static(&port92_info);
612 }
613
614 type_init(port92_register_types)
615
616 static void handle_a20_line_change(void *opaque, int irq, int level)
617 {
618 X86CPU *cpu = opaque;
619
620 /* XXX: send to all CPUs ? */
621 /* XXX: add logic to handle multiple A20 line sources */
622 x86_cpu_set_a20(cpu, level);
623 }
624
625 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
626 {
627 int index = le32_to_cpu(e820_reserve.count);
628 struct e820_entry *entry;
629
630 if (type != E820_RAM) {
631 /* old FW_CFG_E820_TABLE entry -- reservations only */
632 if (index >= E820_NR_ENTRIES) {
633 return -EBUSY;
634 }
635 entry = &e820_reserve.entry[index++];
636
637 entry->address = cpu_to_le64(address);
638 entry->length = cpu_to_le64(length);
639 entry->type = cpu_to_le32(type);
640
641 e820_reserve.count = cpu_to_le32(index);
642 }
643
644 /* new "etc/e820" file -- include ram too */
645 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
646 e820_table[e820_entries].address = cpu_to_le64(address);
647 e820_table[e820_entries].length = cpu_to_le64(length);
648 e820_table[e820_entries].type = cpu_to_le32(type);
649 e820_entries++;
650
651 return e820_entries;
652 }
653
654 int e820_get_num_entries(void)
655 {
656 return e820_entries;
657 }
658
659 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
660 {
661 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
662 *address = le64_to_cpu(e820_table[idx].address);
663 *length = le64_to_cpu(e820_table[idx].length);
664 return true;
665 }
666 return false;
667 }
668
669 /* Enables contiguous-apic-ID mode, for compatibility */
670 static bool compat_apic_id_mode;
671
672 void enable_compat_apic_id_mode(void)
673 {
674 compat_apic_id_mode = true;
675 }
676
677 /* Calculates initial APIC ID for a specific CPU index
678 *
679 * Currently we need to be able to calculate the APIC ID from the CPU index
680 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
681 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
682 * all CPUs up to max_cpus.
683 */
684 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
685 {
686 uint32_t correct_id;
687 static bool warned;
688
689 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
690 if (compat_apic_id_mode) {
691 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
692 error_report("APIC IDs set in compatibility mode, "
693 "CPU topology won't match the configuration");
694 warned = true;
695 }
696 return cpu_index;
697 } else {
698 return correct_id;
699 }
700 }
701
702 /* Calculates the limit to CPU APIC ID values
703 *
704 * This function returns the limit for the APIC ID value, so that all
705 * CPU APIC IDs are < pc_apic_id_limit().
706 *
707 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
708 */
709 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
710 {
711 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
712 }
713
714 static void pc_build_smbios(FWCfgState *fw_cfg)
715 {
716 uint8_t *smbios_tables, *smbios_anchor;
717 size_t smbios_tables_len, smbios_anchor_len;
718 struct smbios_phys_mem_area *mem_array;
719 unsigned i, array_count;
720
721 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
722 if (smbios_tables) {
723 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
724 smbios_tables, smbios_tables_len);
725 }
726
727 /* build the array of physical mem area from e820 table */
728 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
729 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
730 uint64_t addr, len;
731
732 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
733 mem_array[array_count].address = addr;
734 mem_array[array_count].length = len;
735 array_count++;
736 }
737 }
738 smbios_get_tables(mem_array, array_count,
739 &smbios_tables, &smbios_tables_len,
740 &smbios_anchor, &smbios_anchor_len);
741 g_free(mem_array);
742
743 if (smbios_anchor) {
744 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
745 smbios_tables, smbios_tables_len);
746 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
747 smbios_anchor, smbios_anchor_len);
748 }
749 }
750
751 static FWCfgState *bochs_bios_init(AddressSpace *as)
752 {
753 FWCfgState *fw_cfg;
754 uint64_t *numa_fw_cfg;
755 int i, j;
756 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
757
758 fw_cfg = fw_cfg_init_io_dma(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 4, as);
759
760 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
761 *
762 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
763 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
764 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
765 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
766 * may see".
767 *
768 * So, this means we must not use max_cpus, here, but the maximum possible
769 * APIC ID value, plus one.
770 *
771 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
772 * the APIC ID, not the "CPU index"
773 */
774 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
775 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
776 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
777 acpi_tables, acpi_tables_len);
778 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
779
780 pc_build_smbios(fw_cfg);
781
782 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
783 &e820_reserve, sizeof(e820_reserve));
784 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
785 sizeof(struct e820_entry) * e820_entries);
786
787 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
788 /* allocate memory for the NUMA channel: one (64bit) word for the number
789 * of nodes, one word for each VCPU->node and one word for each node to
790 * hold the amount of memory.
791 */
792 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
793 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
794 for (i = 0; i < max_cpus; i++) {
795 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
796 assert(apic_id < apic_id_limit);
797 for (j = 0; j < nb_numa_nodes; j++) {
798 if (test_bit(i, numa_info[j].node_cpu)) {
799 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
800 break;
801 }
802 }
803 }
804 for (i = 0; i < nb_numa_nodes; i++) {
805 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
806 }
807 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
808 (1 + apic_id_limit + nb_numa_nodes) *
809 sizeof(*numa_fw_cfg));
810
811 return fw_cfg;
812 }
813
814 static long get_file_size(FILE *f)
815 {
816 long where, size;
817
818 /* XXX: on Unix systems, using fstat() probably makes more sense */
819
820 where = ftell(f);
821 fseek(f, 0, SEEK_END);
822 size = ftell(f);
823 fseek(f, where, SEEK_SET);
824
825 return size;
826 }
827
828 static void load_linux(PCMachineState *pcms,
829 FWCfgState *fw_cfg)
830 {
831 uint16_t protocol;
832 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
833 uint32_t initrd_max;
834 uint8_t header[8192], *setup, *kernel, *initrd_data;
835 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
836 FILE *f;
837 char *vmode;
838 MachineState *machine = MACHINE(pcms);
839 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
840 const char *kernel_filename = machine->kernel_filename;
841 const char *initrd_filename = machine->initrd_filename;
842 const char *kernel_cmdline = machine->kernel_cmdline;
843
844 /* Align to 16 bytes as a paranoia measure */
845 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
846
847 /* load the kernel header */
848 f = fopen(kernel_filename, "rb");
849 if (!f || !(kernel_size = get_file_size(f)) ||
850 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
851 MIN(ARRAY_SIZE(header), kernel_size)) {
852 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
853 kernel_filename, strerror(errno));
854 exit(1);
855 }
856
857 /* kernel protocol version */
858 #if 0
859 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
860 #endif
861 if (ldl_p(header+0x202) == 0x53726448) {
862 protocol = lduw_p(header+0x206);
863 } else {
864 /* This looks like a multiboot kernel. If it is, let's stop
865 treating it like a Linux kernel. */
866 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
867 kernel_cmdline, kernel_size, header)) {
868 return;
869 }
870 protocol = 0;
871 }
872
873 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
874 /* Low kernel */
875 real_addr = 0x90000;
876 cmdline_addr = 0x9a000 - cmdline_size;
877 prot_addr = 0x10000;
878 } else if (protocol < 0x202) {
879 /* High but ancient kernel */
880 real_addr = 0x90000;
881 cmdline_addr = 0x9a000 - cmdline_size;
882 prot_addr = 0x100000;
883 } else {
884 /* High and recent kernel */
885 real_addr = 0x10000;
886 cmdline_addr = 0x20000;
887 prot_addr = 0x100000;
888 }
889
890 #if 0
891 fprintf(stderr,
892 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
893 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
894 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
895 real_addr,
896 cmdline_addr,
897 prot_addr);
898 #endif
899
900 /* highest address for loading the initrd */
901 if (protocol >= 0x203) {
902 initrd_max = ldl_p(header+0x22c);
903 } else {
904 initrd_max = 0x37ffffff;
905 }
906
907 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
908 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
909 }
910
911 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
912 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
913 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
914
915 if (protocol >= 0x202) {
916 stl_p(header+0x228, cmdline_addr);
917 } else {
918 stw_p(header+0x20, 0xA33F);
919 stw_p(header+0x22, cmdline_addr-real_addr);
920 }
921
922 /* handle vga= parameter */
923 vmode = strstr(kernel_cmdline, "vga=");
924 if (vmode) {
925 unsigned int video_mode;
926 /* skip "vga=" */
927 vmode += 4;
928 if (!strncmp(vmode, "normal", 6)) {
929 video_mode = 0xffff;
930 } else if (!strncmp(vmode, "ext", 3)) {
931 video_mode = 0xfffe;
932 } else if (!strncmp(vmode, "ask", 3)) {
933 video_mode = 0xfffd;
934 } else {
935 video_mode = strtol(vmode, NULL, 0);
936 }
937 stw_p(header+0x1fa, video_mode);
938 }
939
940 /* loader type */
941 /* High nybble = B reserved for QEMU; low nybble is revision number.
942 If this code is substantially changed, you may want to consider
943 incrementing the revision. */
944 if (protocol >= 0x200) {
945 header[0x210] = 0xB0;
946 }
947 /* heap */
948 if (protocol >= 0x201) {
949 header[0x211] |= 0x80; /* CAN_USE_HEAP */
950 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
951 }
952
953 /* load initrd */
954 if (initrd_filename) {
955 if (protocol < 0x200) {
956 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
957 exit(1);
958 }
959
960 initrd_size = get_image_size(initrd_filename);
961 if (initrd_size < 0) {
962 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
963 initrd_filename, strerror(errno));
964 exit(1);
965 }
966
967 initrd_addr = (initrd_max-initrd_size) & ~4095;
968
969 initrd_data = g_malloc(initrd_size);
970 load_image(initrd_filename, initrd_data);
971
972 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
973 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
974 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
975
976 stl_p(header+0x218, initrd_addr);
977 stl_p(header+0x21c, initrd_size);
978 }
979
980 /* load kernel and setup */
981 setup_size = header[0x1f1];
982 if (setup_size == 0) {
983 setup_size = 4;
984 }
985 setup_size = (setup_size+1)*512;
986 if (setup_size > kernel_size) {
987 fprintf(stderr, "qemu: invalid kernel header\n");
988 exit(1);
989 }
990 kernel_size -= setup_size;
991
992 setup = g_malloc(setup_size);
993 kernel = g_malloc(kernel_size);
994 fseek(f, 0, SEEK_SET);
995 if (fread(setup, 1, setup_size, f) != setup_size) {
996 fprintf(stderr, "fread() failed\n");
997 exit(1);
998 }
999 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1000 fprintf(stderr, "fread() failed\n");
1001 exit(1);
1002 }
1003 fclose(f);
1004 memcpy(setup, header, MIN(sizeof(header), setup_size));
1005
1006 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1007 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1008 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1009
1010 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1011 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1012 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1013
1014 option_rom[nb_option_roms].name = "linuxboot.bin";
1015 option_rom[nb_option_roms].bootindex = 0;
1016 nb_option_roms++;
1017 }
1018
1019 #define NE2000_NB_MAX 6
1020
1021 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1022 0x280, 0x380 };
1023 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1024
1025 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1026 {
1027 static int nb_ne2k = 0;
1028
1029 if (nb_ne2k == NE2000_NB_MAX)
1030 return;
1031 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1032 ne2000_irq[nb_ne2k], nd);
1033 nb_ne2k++;
1034 }
1035
1036 DeviceState *cpu_get_current_apic(void)
1037 {
1038 if (current_cpu) {
1039 X86CPU *cpu = X86_CPU(current_cpu);
1040 return cpu->apic_state;
1041 } else {
1042 return NULL;
1043 }
1044 }
1045
1046 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1047 {
1048 X86CPU *cpu = opaque;
1049
1050 if (level) {
1051 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1052 }
1053 }
1054
1055 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1056 Error **errp)
1057 {
1058 X86CPU *cpu = NULL;
1059 Error *local_err = NULL;
1060
1061 cpu = cpu_x86_create(cpu_model, &local_err);
1062 if (local_err != NULL) {
1063 goto out;
1064 }
1065
1066 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1067 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1068
1069 out:
1070 if (local_err) {
1071 error_propagate(errp, local_err);
1072 object_unref(OBJECT(cpu));
1073 cpu = NULL;
1074 }
1075 return cpu;
1076 }
1077
1078 void pc_hot_add_cpu(const int64_t id, Error **errp)
1079 {
1080 X86CPU *cpu;
1081 MachineState *machine = MACHINE(qdev_get_machine());
1082 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1083 Error *local_err = NULL;
1084
1085 if (id < 0) {
1086 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1087 return;
1088 }
1089
1090 if (cpu_exists(apic_id)) {
1091 error_setg(errp, "Unable to add CPU: %" PRIi64
1092 ", it already exists", id);
1093 return;
1094 }
1095
1096 if (id >= max_cpus) {
1097 error_setg(errp, "Unable to add CPU: %" PRIi64
1098 ", max allowed: %d", id, max_cpus - 1);
1099 return;
1100 }
1101
1102 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1103 error_setg(errp, "Unable to add CPU: %" PRIi64
1104 ", resulting APIC ID (%" PRIi64 ") is too large",
1105 id, apic_id);
1106 return;
1107 }
1108
1109 cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1110 if (local_err) {
1111 error_propagate(errp, local_err);
1112 return;
1113 }
1114 object_unref(OBJECT(cpu));
1115 }
1116
1117 void pc_cpus_init(PCMachineState *pcms)
1118 {
1119 int i;
1120 X86CPU *cpu = NULL;
1121 MachineState *machine = MACHINE(pcms);
1122 unsigned long apic_id_limit;
1123
1124 /* init CPUs */
1125 if (machine->cpu_model == NULL) {
1126 #ifdef TARGET_X86_64
1127 machine->cpu_model = "qemu64";
1128 #else
1129 machine->cpu_model = "qemu32";
1130 #endif
1131 }
1132
1133 apic_id_limit = pc_apic_id_limit(max_cpus);
1134 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1135 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1136 apic_id_limit - 1);
1137 exit(1);
1138 }
1139
1140 for (i = 0; i < smp_cpus; i++) {
1141 cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1142 &error_fatal);
1143 object_unref(OBJECT(cpu));
1144 }
1145
1146 /* tell smbios about cpuid version and features */
1147 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1148 }
1149
1150 /* pci-info ROM file. Little endian format */
1151 typedef struct PcRomPciInfo {
1152 uint64_t w32_min;
1153 uint64_t w32_max;
1154 uint64_t w64_min;
1155 uint64_t w64_max;
1156 } PcRomPciInfo;
1157
1158 typedef struct PcGuestInfoState {
1159 PcGuestInfo info;
1160 Notifier machine_done;
1161 } PcGuestInfoState;
1162
1163 static
1164 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1165 {
1166 PcGuestInfoState *guest_info_state = container_of(notifier,
1167 PcGuestInfoState,
1168 machine_done);
1169 PCIBus *bus = PC_MACHINE(qdev_get_machine())->bus;
1170
1171 if (bus) {
1172 int extra_hosts = 0;
1173
1174 QLIST_FOREACH(bus, &bus->child, sibling) {
1175 /* look for expander root buses */
1176 if (pci_bus_is_root(bus)) {
1177 extra_hosts++;
1178 }
1179 }
1180 if (extra_hosts && guest_info_state->info.fw_cfg) {
1181 uint64_t *val = g_malloc(sizeof(*val));
1182 *val = cpu_to_le64(extra_hosts);
1183 fw_cfg_add_file(guest_info_state->info.fw_cfg,
1184 "etc/extra-pci-roots", val, sizeof(*val));
1185 }
1186 }
1187
1188 acpi_setup(&guest_info_state->info);
1189 }
1190
1191 PcGuestInfo *pc_guest_info_init(PCMachineState *pcms)
1192 {
1193 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1194 PcGuestInfo *guest_info = &guest_info_state->info;
1195 int i, j;
1196
1197 guest_info->ram_size_below_4g = pcms->below_4g_mem_size;
1198 guest_info->ram_size = pcms->below_4g_mem_size + pcms->above_4g_mem_size;
1199 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1200 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1201 guest_info->numa_nodes = nb_numa_nodes;
1202 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1203 sizeof *guest_info->node_mem);
1204 for (i = 0; i < nb_numa_nodes; i++) {
1205 guest_info->node_mem[i] = numa_info[i].node_mem;
1206 }
1207
1208 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1209 sizeof *guest_info->node_cpu);
1210
1211 for (i = 0; i < max_cpus; i++) {
1212 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1213 assert(apic_id < guest_info->apic_id_limit);
1214 for (j = 0; j < nb_numa_nodes; j++) {
1215 if (test_bit(i, numa_info[j].node_cpu)) {
1216 guest_info->node_cpu[apic_id] = j;
1217 break;
1218 }
1219 }
1220 }
1221
1222 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1223 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1224 return guest_info;
1225 }
1226
1227 /* setup pci memory address space mapping into system address space */
1228 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1229 MemoryRegion *pci_address_space)
1230 {
1231 /* Set to lower priority than RAM */
1232 memory_region_add_subregion_overlap(system_memory, 0x0,
1233 pci_address_space, -1);
1234 }
1235
1236 void pc_acpi_init(const char *default_dsdt)
1237 {
1238 char *filename;
1239
1240 if (acpi_tables != NULL) {
1241 /* manually set via -acpitable, leave it alone */
1242 return;
1243 }
1244
1245 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1246 if (filename == NULL) {
1247 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1248 } else {
1249 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1250 &error_abort);
1251 Error *err = NULL;
1252
1253 qemu_opt_set(opts, "file", filename, &error_abort);
1254
1255 acpi_table_add_builtin(opts, &err);
1256 if (err) {
1257 error_reportf_err(err, "WARNING: failed to load %s: ",
1258 filename);
1259 }
1260 g_free(filename);
1261 }
1262 }
1263
1264 FWCfgState *xen_load_linux(PCMachineState *pcms,
1265 PcGuestInfo *guest_info)
1266 {
1267 int i;
1268 FWCfgState *fw_cfg;
1269
1270 assert(MACHINE(pcms)->kernel_filename != NULL);
1271
1272 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1273 rom_set_fw(fw_cfg);
1274
1275 load_linux(pcms, fw_cfg);
1276 for (i = 0; i < nb_option_roms; i++) {
1277 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1278 !strcmp(option_rom[i].name, "multiboot.bin"));
1279 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1280 }
1281 guest_info->fw_cfg = fw_cfg;
1282 return fw_cfg;
1283 }
1284
1285 FWCfgState *pc_memory_init(PCMachineState *pcms,
1286 MemoryRegion *system_memory,
1287 MemoryRegion *rom_memory,
1288 MemoryRegion **ram_memory,
1289 PcGuestInfo *guest_info)
1290 {
1291 int linux_boot, i;
1292 MemoryRegion *ram, *option_rom_mr;
1293 MemoryRegion *ram_below_4g, *ram_above_4g;
1294 FWCfgState *fw_cfg;
1295 MachineState *machine = MACHINE(pcms);
1296 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1297
1298 assert(machine->ram_size == pcms->below_4g_mem_size +
1299 pcms->above_4g_mem_size);
1300
1301 linux_boot = (machine->kernel_filename != NULL);
1302
1303 /* Allocate RAM. We allocate it as a single memory region and use
1304 * aliases to address portions of it, mostly for backwards compatibility
1305 * with older qemus that used qemu_ram_alloc().
1306 */
1307 ram = g_malloc(sizeof(*ram));
1308 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1309 machine->ram_size);
1310 *ram_memory = ram;
1311 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1312 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1313 0, pcms->below_4g_mem_size);
1314 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1315 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1316 if (pcms->above_4g_mem_size > 0) {
1317 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1318 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1319 pcms->below_4g_mem_size,
1320 pcms->above_4g_mem_size);
1321 memory_region_add_subregion(system_memory, 0x100000000ULL,
1322 ram_above_4g);
1323 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1324 }
1325
1326 if (!guest_info->has_reserved_memory &&
1327 (machine->ram_slots ||
1328 (machine->maxram_size > machine->ram_size))) {
1329 MachineClass *mc = MACHINE_GET_CLASS(machine);
1330
1331 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1332 mc->name);
1333 exit(EXIT_FAILURE);
1334 }
1335
1336 /* initialize hotplug memory address space */
1337 if (guest_info->has_reserved_memory &&
1338 (machine->ram_size < machine->maxram_size)) {
1339 ram_addr_t hotplug_mem_size =
1340 machine->maxram_size - machine->ram_size;
1341
1342 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1343 error_report("unsupported amount of memory slots: %"PRIu64,
1344 machine->ram_slots);
1345 exit(EXIT_FAILURE);
1346 }
1347
1348 if (QEMU_ALIGN_UP(machine->maxram_size,
1349 TARGET_PAGE_SIZE) != machine->maxram_size) {
1350 error_report("maximum memory size must by aligned to multiple of "
1351 "%d bytes", TARGET_PAGE_SIZE);
1352 exit(EXIT_FAILURE);
1353 }
1354
1355 pcms->hotplug_memory.base =
1356 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1357
1358 if (pcmc->enforce_aligned_dimm) {
1359 /* size hotplug region assuming 1G page max alignment per slot */
1360 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1361 }
1362
1363 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1364 hotplug_mem_size) {
1365 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1366 machine->maxram_size);
1367 exit(EXIT_FAILURE);
1368 }
1369
1370 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1371 "hotplug-memory", hotplug_mem_size);
1372 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1373 &pcms->hotplug_memory.mr);
1374 }
1375
1376 /* Initialize PC system firmware */
1377 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1378
1379 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1380 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1381 &error_fatal);
1382 vmstate_register_ram_global(option_rom_mr);
1383 memory_region_add_subregion_overlap(rom_memory,
1384 PC_ROM_MIN_VGA,
1385 option_rom_mr,
1386 1);
1387
1388 fw_cfg = bochs_bios_init(&address_space_memory);
1389
1390 rom_set_fw(fw_cfg);
1391
1392 if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1393 uint64_t *val = g_malloc(sizeof(*val));
1394 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1395 uint64_t res_mem_end = pcms->hotplug_memory.base;
1396
1397 if (!pcmc->broken_reserved_end) {
1398 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1399 }
1400 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1401 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1402 }
1403
1404 if (linux_boot) {
1405 load_linux(pcms, fw_cfg);
1406 }
1407
1408 for (i = 0; i < nb_option_roms; i++) {
1409 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1410 }
1411 guest_info->fw_cfg = fw_cfg;
1412 return fw_cfg;
1413 }
1414
1415 qemu_irq pc_allocate_cpu_irq(void)
1416 {
1417 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1418 }
1419
1420 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1421 {
1422 DeviceState *dev = NULL;
1423
1424 if (pci_bus) {
1425 PCIDevice *pcidev = pci_vga_init(pci_bus);
1426 dev = pcidev ? &pcidev->qdev : NULL;
1427 } else if (isa_bus) {
1428 ISADevice *isadev = isa_vga_init(isa_bus);
1429 dev = isadev ? DEVICE(isadev) : NULL;
1430 }
1431 return dev;
1432 }
1433
1434 static const MemoryRegionOps ioport80_io_ops = {
1435 .write = ioport80_write,
1436 .read = ioport80_read,
1437 .endianness = DEVICE_NATIVE_ENDIAN,
1438 .impl = {
1439 .min_access_size = 1,
1440 .max_access_size = 1,
1441 },
1442 };
1443
1444 static const MemoryRegionOps ioportF0_io_ops = {
1445 .write = ioportF0_write,
1446 .read = ioportF0_read,
1447 .endianness = DEVICE_NATIVE_ENDIAN,
1448 .impl = {
1449 .min_access_size = 1,
1450 .max_access_size = 1,
1451 },
1452 };
1453
1454 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1455 ISADevice **rtc_state,
1456 bool create_fdctrl,
1457 bool no_vmport,
1458 uint32_t hpet_irqs)
1459 {
1460 int i;
1461 DriveInfo *fd[MAX_FD];
1462 DeviceState *hpet = NULL;
1463 int pit_isa_irq = 0;
1464 qemu_irq pit_alt_irq = NULL;
1465 qemu_irq rtc_irq = NULL;
1466 qemu_irq *a20_line;
1467 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1468 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1469 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1470
1471 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1472 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1473
1474 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1475 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1476
1477 /*
1478 * Check if an HPET shall be created.
1479 *
1480 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1481 * when the HPET wants to take over. Thus we have to disable the latter.
1482 */
1483 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1484 /* In order to set property, here not using sysbus_try_create_simple */
1485 hpet = qdev_try_create(NULL, TYPE_HPET);
1486 if (hpet) {
1487 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1488 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1489 * IRQ8 and IRQ2.
1490 */
1491 uint8_t compat = object_property_get_int(OBJECT(hpet),
1492 HPET_INTCAP, NULL);
1493 if (!compat) {
1494 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1495 }
1496 qdev_init_nofail(hpet);
1497 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1498
1499 for (i = 0; i < GSI_NUM_PINS; i++) {
1500 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1501 }
1502 pit_isa_irq = -1;
1503 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1504 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1505 }
1506 }
1507 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1508
1509 qemu_register_boot_set(pc_boot_set, *rtc_state);
1510
1511 if (!xen_enabled()) {
1512 if (kvm_pit_in_kernel()) {
1513 pit = kvm_pit_init(isa_bus, 0x40);
1514 } else {
1515 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1516 }
1517 if (hpet) {
1518 /* connect PIT to output control line of the HPET */
1519 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1520 }
1521 pcspk_init(isa_bus, pit);
1522 }
1523
1524 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1525 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1526
1527 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1528 i8042 = isa_create_simple(isa_bus, "i8042");
1529 i8042_setup_a20_line(i8042, &a20_line[0]);
1530 if (!no_vmport) {
1531 vmport_init(isa_bus);
1532 vmmouse = isa_try_create(isa_bus, "vmmouse");
1533 } else {
1534 vmmouse = NULL;
1535 }
1536 if (vmmouse) {
1537 DeviceState *dev = DEVICE(vmmouse);
1538 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1539 qdev_init_nofail(dev);
1540 }
1541 port92 = isa_create_simple(isa_bus, "port92");
1542 port92_init(port92, &a20_line[1]);
1543
1544 DMA_init(0);
1545
1546 for(i = 0; i < MAX_FD; i++) {
1547 fd[i] = drive_get(IF_FLOPPY, 0, i);
1548 create_fdctrl |= !!fd[i];
1549 }
1550 if (create_fdctrl) {
1551 fdctrl_init_isa(isa_bus, fd);
1552 }
1553 }
1554
1555 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1556 {
1557 int i;
1558
1559 for (i = 0; i < nb_nics; i++) {
1560 NICInfo *nd = &nd_table[i];
1561
1562 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1563 pc_init_ne2k_isa(isa_bus, nd);
1564 } else {
1565 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1566 }
1567 }
1568 }
1569
1570 void pc_pci_device_init(PCIBus *pci_bus)
1571 {
1572 int max_bus;
1573 int bus;
1574
1575 max_bus = drive_get_max_bus(IF_SCSI);
1576 for (bus = 0; bus <= max_bus; bus++) {
1577 pci_create_simple(pci_bus, -1, "lsi53c895a");
1578 }
1579 }
1580
1581 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1582 {
1583 DeviceState *dev;
1584 SysBusDevice *d;
1585 unsigned int i;
1586
1587 if (kvm_ioapic_in_kernel()) {
1588 dev = qdev_create(NULL, "kvm-ioapic");
1589 } else {
1590 dev = qdev_create(NULL, "ioapic");
1591 }
1592 if (parent_name) {
1593 object_property_add_child(object_resolve_path(parent_name, NULL),
1594 "ioapic", OBJECT(dev), NULL);
1595 }
1596 qdev_init_nofail(dev);
1597 d = SYS_BUS_DEVICE(dev);
1598 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1599
1600 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1601 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1602 }
1603 }
1604
1605 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1606 DeviceState *dev, Error **errp)
1607 {
1608 HotplugHandlerClass *hhc;
1609 Error *local_err = NULL;
1610 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1611 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1612 PCDIMMDevice *dimm = PC_DIMM(dev);
1613 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1614 MemoryRegion *mr = ddc->get_memory_region(dimm);
1615 uint64_t align = TARGET_PAGE_SIZE;
1616
1617 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1618 align = memory_region_get_alignment(mr);
1619 }
1620
1621 if (!pcms->acpi_dev) {
1622 error_setg(&local_err,
1623 "memory hotplug is not enabled: missing acpi device");
1624 goto out;
1625 }
1626
1627 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1628 if (local_err) {
1629 goto out;
1630 }
1631
1632 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1633 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1634 out:
1635 error_propagate(errp, local_err);
1636 }
1637
1638 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1639 DeviceState *dev, Error **errp)
1640 {
1641 HotplugHandlerClass *hhc;
1642 Error *local_err = NULL;
1643 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1644
1645 if (!pcms->acpi_dev) {
1646 error_setg(&local_err,
1647 "memory hotplug is not enabled: missing acpi device");
1648 goto out;
1649 }
1650
1651 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1652 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1653
1654 out:
1655 error_propagate(errp, local_err);
1656 }
1657
1658 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1659 DeviceState *dev, Error **errp)
1660 {
1661 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1662 PCDIMMDevice *dimm = PC_DIMM(dev);
1663 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1664 MemoryRegion *mr = ddc->get_memory_region(dimm);
1665 HotplugHandlerClass *hhc;
1666 Error *local_err = NULL;
1667
1668 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1669 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1670
1671 if (local_err) {
1672 goto out;
1673 }
1674
1675 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1676 object_unparent(OBJECT(dev));
1677
1678 out:
1679 error_propagate(errp, local_err);
1680 }
1681
1682 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1683 DeviceState *dev, Error **errp)
1684 {
1685 HotplugHandlerClass *hhc;
1686 Error *local_err = NULL;
1687 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1688
1689 if (!dev->hotplugged) {
1690 goto out;
1691 }
1692
1693 if (!pcms->acpi_dev) {
1694 error_setg(&local_err,
1695 "cpu hotplug is not enabled: missing acpi device");
1696 goto out;
1697 }
1698
1699 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1700 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1701 if (local_err) {
1702 goto out;
1703 }
1704
1705 /* increment the number of CPUs */
1706 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1707 out:
1708 error_propagate(errp, local_err);
1709 }
1710
1711 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1712 DeviceState *dev, Error **errp)
1713 {
1714 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1715 pc_dimm_plug(hotplug_dev, dev, errp);
1716 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1717 pc_cpu_plug(hotplug_dev, dev, errp);
1718 }
1719 }
1720
1721 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1722 DeviceState *dev, Error **errp)
1723 {
1724 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1725 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1726 } else {
1727 error_setg(errp, "acpi: device unplug request for not supported device"
1728 " type: %s", object_get_typename(OBJECT(dev)));
1729 }
1730 }
1731
1732 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1733 DeviceState *dev, Error **errp)
1734 {
1735 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1736 pc_dimm_unplug(hotplug_dev, dev, errp);
1737 } else {
1738 error_setg(errp, "acpi: device unplug for not supported device"
1739 " type: %s", object_get_typename(OBJECT(dev)));
1740 }
1741 }
1742
1743 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1744 DeviceState *dev)
1745 {
1746 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1747
1748 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1749 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1750 return HOTPLUG_HANDLER(machine);
1751 }
1752
1753 return pcmc->get_hotplug_handler ?
1754 pcmc->get_hotplug_handler(machine, dev) : NULL;
1755 }
1756
1757 static void
1758 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1759 const char *name, Error **errp)
1760 {
1761 PCMachineState *pcms = PC_MACHINE(obj);
1762 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1763
1764 visit_type_int(v, &value, name, errp);
1765 }
1766
1767 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1768 void *opaque, const char *name,
1769 Error **errp)
1770 {
1771 PCMachineState *pcms = PC_MACHINE(obj);
1772 uint64_t value = pcms->max_ram_below_4g;
1773
1774 visit_type_size(v, &value, name, errp);
1775 }
1776
1777 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1778 void *opaque, const char *name,
1779 Error **errp)
1780 {
1781 PCMachineState *pcms = PC_MACHINE(obj);
1782 Error *error = NULL;
1783 uint64_t value;
1784
1785 visit_type_size(v, &value, name, &error);
1786 if (error) {
1787 error_propagate(errp, error);
1788 return;
1789 }
1790 if (value > (1ULL << 32)) {
1791 error_setg(&error,
1792 "Machine option 'max-ram-below-4g=%"PRIu64
1793 "' expects size less than or equal to 4G", value);
1794 error_propagate(errp, error);
1795 return;
1796 }
1797
1798 if (value < (1ULL << 20)) {
1799 error_report("Warning: small max_ram_below_4g(%"PRIu64
1800 ") less than 1M. BIOS may not work..",
1801 value);
1802 }
1803
1804 pcms->max_ram_below_4g = value;
1805 }
1806
1807 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1808 const char *name, Error **errp)
1809 {
1810 PCMachineState *pcms = PC_MACHINE(obj);
1811 OnOffAuto vmport = pcms->vmport;
1812
1813 visit_type_OnOffAuto(v, &vmport, name, errp);
1814 }
1815
1816 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1817 const char *name, Error **errp)
1818 {
1819 PCMachineState *pcms = PC_MACHINE(obj);
1820
1821 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1822 }
1823
1824 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1825 {
1826 bool smm_available = false;
1827
1828 if (pcms->smm == ON_OFF_AUTO_OFF) {
1829 return false;
1830 }
1831
1832 if (tcg_enabled() || qtest_enabled()) {
1833 smm_available = true;
1834 } else if (kvm_enabled()) {
1835 smm_available = kvm_has_smm();
1836 }
1837
1838 if (smm_available) {
1839 return true;
1840 }
1841
1842 if (pcms->smm == ON_OFF_AUTO_ON) {
1843 error_report("System Management Mode not supported by this hypervisor.");
1844 exit(1);
1845 }
1846 return false;
1847 }
1848
1849 static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
1850 const char *name, Error **errp)
1851 {
1852 PCMachineState *pcms = PC_MACHINE(obj);
1853 OnOffAuto smm = pcms->smm;
1854
1855 visit_type_OnOffAuto(v, &smm, name, errp);
1856 }
1857
1858 static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
1859 const char *name, Error **errp)
1860 {
1861 PCMachineState *pcms = PC_MACHINE(obj);
1862
1863 visit_type_OnOffAuto(v, &pcms->smm, name, errp);
1864 }
1865
1866 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
1867 {
1868 PCMachineState *pcms = PC_MACHINE(obj);
1869
1870 return pcms->nvdimm;
1871 }
1872
1873 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
1874 {
1875 PCMachineState *pcms = PC_MACHINE(obj);
1876
1877 pcms->nvdimm = value;
1878 }
1879
1880 static void pc_machine_initfn(Object *obj)
1881 {
1882 PCMachineState *pcms = PC_MACHINE(obj);
1883
1884 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1885 pc_machine_get_hotplug_memory_region_size,
1886 NULL, NULL, NULL, &error_abort);
1887
1888 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1889 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1890 pc_machine_get_max_ram_below_4g,
1891 pc_machine_set_max_ram_below_4g,
1892 NULL, NULL, &error_abort);
1893 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1894 "Maximum ram below the 4G boundary (32bit boundary)",
1895 &error_abort);
1896
1897 pcms->smm = ON_OFF_AUTO_AUTO;
1898 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1899 pc_machine_get_smm,
1900 pc_machine_set_smm,
1901 NULL, NULL, &error_abort);
1902 object_property_set_description(obj, PC_MACHINE_SMM,
1903 "Enable SMM (pc & q35)",
1904 &error_abort);
1905
1906 pcms->vmport = ON_OFF_AUTO_AUTO;
1907 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1908 pc_machine_get_vmport,
1909 pc_machine_set_vmport,
1910 NULL, NULL, &error_abort);
1911 object_property_set_description(obj, PC_MACHINE_VMPORT,
1912 "Enable vmport (pc & q35)",
1913 &error_abort);
1914
1915 /* nvdimm is disabled on default. */
1916 pcms->nvdimm = false;
1917 object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
1918 pc_machine_set_nvdimm, &error_abort);
1919 }
1920
1921 static void pc_machine_reset(void)
1922 {
1923 CPUState *cs;
1924 X86CPU *cpu;
1925
1926 qemu_devices_reset();
1927
1928 /* Reset APIC after devices have been reset to cancel
1929 * any changes that qemu_devices_reset() might have done.
1930 */
1931 CPU_FOREACH(cs) {
1932 cpu = X86_CPU(cs);
1933
1934 if (cpu->apic_state) {
1935 device_reset(cpu->apic_state);
1936 }
1937 }
1938 }
1939
1940 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1941 {
1942 X86CPUTopoInfo topo;
1943 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1944 &topo);
1945 return topo.pkg_id;
1946 }
1947
1948 static void pc_machine_class_init(ObjectClass *oc, void *data)
1949 {
1950 MachineClass *mc = MACHINE_CLASS(oc);
1951 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1952 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1953
1954 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1955 pcmc->pci_enabled = true;
1956 pcmc->has_acpi_build = true;
1957 pcmc->rsdp_in_ram = true;
1958 pcmc->smbios_defaults = true;
1959 pcmc->smbios_uuid_encoded = true;
1960 pcmc->gigabyte_align = true;
1961 pcmc->has_reserved_memory = true;
1962 pcmc->kvmclock_enabled = true;
1963 pcmc->enforce_aligned_dimm = true;
1964 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
1965 * to be used at the moment, 32K should be enough for a while. */
1966 pcmc->acpi_data_size = 0x20000 + 0x8000;
1967 pcmc->save_tsc_khz = true;
1968 mc->get_hotplug_handler = pc_get_hotpug_handler;
1969 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1970 mc->default_boot_order = "cad";
1971 mc->hot_add_cpu = pc_hot_add_cpu;
1972 mc->max_cpus = 255;
1973 mc->reset = pc_machine_reset;
1974 hc->plug = pc_machine_device_plug_cb;
1975 hc->unplug_request = pc_machine_device_unplug_request_cb;
1976 hc->unplug = pc_machine_device_unplug_cb;
1977 }
1978
1979 static const TypeInfo pc_machine_info = {
1980 .name = TYPE_PC_MACHINE,
1981 .parent = TYPE_MACHINE,
1982 .abstract = true,
1983 .instance_size = sizeof(PCMachineState),
1984 .instance_init = pc_machine_initfn,
1985 .class_size = sizeof(PCMachineClass),
1986 .class_init = pc_machine_class_init,
1987 .interfaces = (InterfaceInfo[]) {
1988 { TYPE_HOTPLUG_HANDLER },
1989 { }
1990 },
1991 };
1992
1993 static void pc_machine_register_types(void)
1994 {
1995 type_register_static(&pc_machine_info);
1996 }
1997
1998 type_init(pc_machine_register_types)