]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
8fa51d8ebae056ed852b3438b8280badd445dfe9
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/char/parallel.h"
30 #include "hw/i386/apic.h"
31 #include "hw/i386/topology.h"
32 #include "sysemu/cpus.h"
33 #include "hw/block/fdc.h"
34 #include "hw/ide.h"
35 #include "hw/pci/pci.h"
36 #include "hw/pci/pci_bus.h"
37 #include "hw/nvram/fw_cfg.h"
38 #include "hw/timer/hpet.h"
39 #include "hw/smbios/smbios.h"
40 #include "hw/loader.h"
41 #include "elf.h"
42 #include "multiboot.h"
43 #include "hw/timer/mc146818rtc.h"
44 #include "hw/timer/i8254.h"
45 #include "hw/audio/pcspk.h"
46 #include "hw/pci/msi.h"
47 #include "hw/sysbus.h"
48 #include "sysemu/sysemu.h"
49 #include "sysemu/numa.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/qtest.h"
52 #include "kvm_i386.h"
53 #include "hw/xen/xen.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "qemu/option.h"
62 #include "hw/acpi/acpi.h"
63 #include "hw/acpi/cpu_hotplug.h"
64 #include "hw/boards.h"
65 #include "hw/pci/pci_host.h"
66 #include "acpi-build.h"
67 #include "hw/mem/pc-dimm.h"
68 #include "qapi/error.h"
69 #include "qapi/qapi-visit-common.h"
70 #include "qapi/visitor.h"
71 #include "qom/cpu.h"
72 #include "hw/nmi.h"
73 #include "hw/i386/intel_iommu.h"
74 #include "hw/net/ne2000-isa.h"
75
76 /* debug PC/ISA interrupts */
77 //#define DEBUG_IRQ
78
79 #ifdef DEBUG_IRQ
80 #define DPRINTF(fmt, ...) \
81 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
82 #else
83 #define DPRINTF(fmt, ...)
84 #endif
85
86 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
87 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
88 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
89 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
90 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
91
92 #define E820_NR_ENTRIES 16
93
94 struct e820_entry {
95 uint64_t address;
96 uint64_t length;
97 uint32_t type;
98 } QEMU_PACKED __attribute((__aligned__(4)));
99
100 struct e820_table {
101 uint32_t count;
102 struct e820_entry entry[E820_NR_ENTRIES];
103 } QEMU_PACKED __attribute((__aligned__(4)));
104
105 static struct e820_table e820_reserve;
106 static struct e820_entry *e820_table;
107 static unsigned e820_entries;
108 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
109
110 void gsi_handler(void *opaque, int n, int level)
111 {
112 GSIState *s = opaque;
113
114 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
115 if (n < ISA_NUM_IRQS) {
116 qemu_set_irq(s->i8259_irq[n], level);
117 }
118 qemu_set_irq(s->ioapic_irq[n], level);
119 }
120
121 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
122 unsigned size)
123 {
124 }
125
126 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
127 {
128 return 0xffffffffffffffffULL;
129 }
130
131 /* MSDOS compatibility mode FPU exception support */
132 static qemu_irq ferr_irq;
133
134 void pc_register_ferr_irq(qemu_irq irq)
135 {
136 ferr_irq = irq;
137 }
138
139 /* XXX: add IGNNE support */
140 void cpu_set_ferr(CPUX86State *s)
141 {
142 qemu_irq_raise(ferr_irq);
143 }
144
145 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
146 unsigned size)
147 {
148 qemu_irq_lower(ferr_irq);
149 }
150
151 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
152 {
153 return 0xffffffffffffffffULL;
154 }
155
156 /* TSC handling */
157 uint64_t cpu_get_tsc(CPUX86State *env)
158 {
159 return cpu_get_ticks();
160 }
161
162 /* IRQ handling */
163 int cpu_get_pic_interrupt(CPUX86State *env)
164 {
165 X86CPU *cpu = x86_env_get_cpu(env);
166 int intno;
167
168 if (!kvm_irqchip_in_kernel()) {
169 intno = apic_get_interrupt(cpu->apic_state);
170 if (intno >= 0) {
171 return intno;
172 }
173 /* read the irq from the PIC */
174 if (!apic_accept_pic_intr(cpu->apic_state)) {
175 return -1;
176 }
177 }
178
179 intno = pic_read_irq(isa_pic);
180 return intno;
181 }
182
183 static void pic_irq_request(void *opaque, int irq, int level)
184 {
185 CPUState *cs = first_cpu;
186 X86CPU *cpu = X86_CPU(cs);
187
188 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
189 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
190 CPU_FOREACH(cs) {
191 cpu = X86_CPU(cs);
192 if (apic_accept_pic_intr(cpu->apic_state)) {
193 apic_deliver_pic_intr(cpu->apic_state, level);
194 }
195 }
196 } else {
197 if (level) {
198 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
199 } else {
200 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
201 }
202 }
203 }
204
205 /* PC cmos mappings */
206
207 #define REG_EQUIPMENT_BYTE 0x14
208
209 int cmos_get_fd_drive_type(FloppyDriveType fd0)
210 {
211 int val;
212
213 switch (fd0) {
214 case FLOPPY_DRIVE_TYPE_144:
215 /* 1.44 Mb 3"5 drive */
216 val = 4;
217 break;
218 case FLOPPY_DRIVE_TYPE_288:
219 /* 2.88 Mb 3"5 drive */
220 val = 5;
221 break;
222 case FLOPPY_DRIVE_TYPE_120:
223 /* 1.2 Mb 5"5 drive */
224 val = 2;
225 break;
226 case FLOPPY_DRIVE_TYPE_NONE:
227 default:
228 val = 0;
229 break;
230 }
231 return val;
232 }
233
234 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
235 int16_t cylinders, int8_t heads, int8_t sectors)
236 {
237 rtc_set_memory(s, type_ofs, 47);
238 rtc_set_memory(s, info_ofs, cylinders);
239 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
240 rtc_set_memory(s, info_ofs + 2, heads);
241 rtc_set_memory(s, info_ofs + 3, 0xff);
242 rtc_set_memory(s, info_ofs + 4, 0xff);
243 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
244 rtc_set_memory(s, info_ofs + 6, cylinders);
245 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
246 rtc_set_memory(s, info_ofs + 8, sectors);
247 }
248
249 /* convert boot_device letter to something recognizable by the bios */
250 static int boot_device2nibble(char boot_device)
251 {
252 switch(boot_device) {
253 case 'a':
254 case 'b':
255 return 0x01; /* floppy boot */
256 case 'c':
257 return 0x02; /* hard drive boot */
258 case 'd':
259 return 0x03; /* CD-ROM boot */
260 case 'n':
261 return 0x04; /* Network boot */
262 }
263 return 0;
264 }
265
266 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
267 {
268 #define PC_MAX_BOOT_DEVICES 3
269 int nbds, bds[3] = { 0, };
270 int i;
271
272 nbds = strlen(boot_device);
273 if (nbds > PC_MAX_BOOT_DEVICES) {
274 error_setg(errp, "Too many boot devices for PC");
275 return;
276 }
277 for (i = 0; i < nbds; i++) {
278 bds[i] = boot_device2nibble(boot_device[i]);
279 if (bds[i] == 0) {
280 error_setg(errp, "Invalid boot device for PC: '%c'",
281 boot_device[i]);
282 return;
283 }
284 }
285 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
286 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
287 }
288
289 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
290 {
291 set_boot_dev(opaque, boot_device, errp);
292 }
293
294 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
295 {
296 int val, nb, i;
297 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
298 FLOPPY_DRIVE_TYPE_NONE };
299
300 /* floppy type */
301 if (floppy) {
302 for (i = 0; i < 2; i++) {
303 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
304 }
305 }
306 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
307 cmos_get_fd_drive_type(fd_type[1]);
308 rtc_set_memory(rtc_state, 0x10, val);
309
310 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
311 nb = 0;
312 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
313 nb++;
314 }
315 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
316 nb++;
317 }
318 switch (nb) {
319 case 0:
320 break;
321 case 1:
322 val |= 0x01; /* 1 drive, ready for boot */
323 break;
324 case 2:
325 val |= 0x41; /* 2 drives, ready for boot */
326 break;
327 }
328 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
329 }
330
331 typedef struct pc_cmos_init_late_arg {
332 ISADevice *rtc_state;
333 BusState *idebus[2];
334 } pc_cmos_init_late_arg;
335
336 typedef struct check_fdc_state {
337 ISADevice *floppy;
338 bool multiple;
339 } CheckFdcState;
340
341 static int check_fdc(Object *obj, void *opaque)
342 {
343 CheckFdcState *state = opaque;
344 Object *fdc;
345 uint32_t iobase;
346 Error *local_err = NULL;
347
348 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
349 if (!fdc) {
350 return 0;
351 }
352
353 iobase = object_property_get_uint(obj, "iobase", &local_err);
354 if (local_err || iobase != 0x3f0) {
355 error_free(local_err);
356 return 0;
357 }
358
359 if (state->floppy) {
360 state->multiple = true;
361 } else {
362 state->floppy = ISA_DEVICE(obj);
363 }
364 return 0;
365 }
366
367 static const char * const fdc_container_path[] = {
368 "/unattached", "/peripheral", "/peripheral-anon"
369 };
370
371 /*
372 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
373 * and ACPI objects.
374 */
375 ISADevice *pc_find_fdc0(void)
376 {
377 int i;
378 Object *container;
379 CheckFdcState state = { 0 };
380
381 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
382 container = container_get(qdev_get_machine(), fdc_container_path[i]);
383 object_child_foreach(container, check_fdc, &state);
384 }
385
386 if (state.multiple) {
387 warn_report("multiple floppy disk controllers with "
388 "iobase=0x3f0 have been found");
389 error_printf("the one being picked for CMOS setup might not reflect "
390 "your intent");
391 }
392
393 return state.floppy;
394 }
395
396 static void pc_cmos_init_late(void *opaque)
397 {
398 pc_cmos_init_late_arg *arg = opaque;
399 ISADevice *s = arg->rtc_state;
400 int16_t cylinders;
401 int8_t heads, sectors;
402 int val;
403 int i, trans;
404
405 val = 0;
406 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
407 &cylinders, &heads, &sectors) >= 0) {
408 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
409 val |= 0xf0;
410 }
411 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
412 &cylinders, &heads, &sectors) >= 0) {
413 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
414 val |= 0x0f;
415 }
416 rtc_set_memory(s, 0x12, val);
417
418 val = 0;
419 for (i = 0; i < 4; i++) {
420 /* NOTE: ide_get_geometry() returns the physical
421 geometry. It is always such that: 1 <= sects <= 63, 1
422 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
423 geometry can be different if a translation is done. */
424 if (arg->idebus[i / 2] &&
425 ide_get_geometry(arg->idebus[i / 2], i % 2,
426 &cylinders, &heads, &sectors) >= 0) {
427 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
428 assert((trans & ~3) == 0);
429 val |= trans << (i * 2);
430 }
431 }
432 rtc_set_memory(s, 0x39, val);
433
434 pc_cmos_init_floppy(s, pc_find_fdc0());
435
436 qemu_unregister_reset(pc_cmos_init_late, opaque);
437 }
438
439 void pc_cmos_init(PCMachineState *pcms,
440 BusState *idebus0, BusState *idebus1,
441 ISADevice *s)
442 {
443 int val;
444 static pc_cmos_init_late_arg arg;
445
446 /* various important CMOS locations needed by PC/Bochs bios */
447
448 /* memory size */
449 /* base memory (first MiB) */
450 val = MIN(pcms->below_4g_mem_size / 1024, 640);
451 rtc_set_memory(s, 0x15, val);
452 rtc_set_memory(s, 0x16, val >> 8);
453 /* extended memory (next 64MiB) */
454 if (pcms->below_4g_mem_size > 1024 * 1024) {
455 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
456 } else {
457 val = 0;
458 }
459 if (val > 65535)
460 val = 65535;
461 rtc_set_memory(s, 0x17, val);
462 rtc_set_memory(s, 0x18, val >> 8);
463 rtc_set_memory(s, 0x30, val);
464 rtc_set_memory(s, 0x31, val >> 8);
465 /* memory between 16MiB and 4GiB */
466 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
467 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
468 } else {
469 val = 0;
470 }
471 if (val > 65535)
472 val = 65535;
473 rtc_set_memory(s, 0x34, val);
474 rtc_set_memory(s, 0x35, val >> 8);
475 /* memory above 4GiB */
476 val = pcms->above_4g_mem_size / 65536;
477 rtc_set_memory(s, 0x5b, val);
478 rtc_set_memory(s, 0x5c, val >> 8);
479 rtc_set_memory(s, 0x5d, val >> 16);
480
481 object_property_add_link(OBJECT(pcms), "rtc_state",
482 TYPE_ISA_DEVICE,
483 (Object **)&pcms->rtc,
484 object_property_allow_set_link,
485 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
486 object_property_set_link(OBJECT(pcms), OBJECT(s),
487 "rtc_state", &error_abort);
488
489 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
490
491 val = 0;
492 val |= 0x02; /* FPU is there */
493 val |= 0x04; /* PS/2 mouse installed */
494 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
495
496 /* hard drives and FDC */
497 arg.rtc_state = s;
498 arg.idebus[0] = idebus0;
499 arg.idebus[1] = idebus1;
500 qemu_register_reset(pc_cmos_init_late, &arg);
501 }
502
503 #define TYPE_PORT92 "port92"
504 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
505
506 /* port 92 stuff: could be split off */
507 typedef struct Port92State {
508 ISADevice parent_obj;
509
510 MemoryRegion io;
511 uint8_t outport;
512 qemu_irq a20_out;
513 } Port92State;
514
515 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
516 unsigned size)
517 {
518 Port92State *s = opaque;
519 int oldval = s->outport;
520
521 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
522 s->outport = val;
523 qemu_set_irq(s->a20_out, (val >> 1) & 1);
524 if ((val & 1) && !(oldval & 1)) {
525 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
526 }
527 }
528
529 static uint64_t port92_read(void *opaque, hwaddr addr,
530 unsigned size)
531 {
532 Port92State *s = opaque;
533 uint32_t ret;
534
535 ret = s->outport;
536 DPRINTF("port92: read 0x%02x\n", ret);
537 return ret;
538 }
539
540 static void port92_init(ISADevice *dev, qemu_irq a20_out)
541 {
542 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
543 }
544
545 static const VMStateDescription vmstate_port92_isa = {
546 .name = "port92",
547 .version_id = 1,
548 .minimum_version_id = 1,
549 .fields = (VMStateField[]) {
550 VMSTATE_UINT8(outport, Port92State),
551 VMSTATE_END_OF_LIST()
552 }
553 };
554
555 static void port92_reset(DeviceState *d)
556 {
557 Port92State *s = PORT92(d);
558
559 s->outport &= ~1;
560 }
561
562 static const MemoryRegionOps port92_ops = {
563 .read = port92_read,
564 .write = port92_write,
565 .impl = {
566 .min_access_size = 1,
567 .max_access_size = 1,
568 },
569 .endianness = DEVICE_LITTLE_ENDIAN,
570 };
571
572 static void port92_initfn(Object *obj)
573 {
574 Port92State *s = PORT92(obj);
575
576 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
577
578 s->outport = 0;
579
580 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
581 }
582
583 static void port92_realizefn(DeviceState *dev, Error **errp)
584 {
585 ISADevice *isadev = ISA_DEVICE(dev);
586 Port92State *s = PORT92(dev);
587
588 isa_register_ioport(isadev, &s->io, 0x92);
589 }
590
591 static void port92_class_initfn(ObjectClass *klass, void *data)
592 {
593 DeviceClass *dc = DEVICE_CLASS(klass);
594
595 dc->realize = port92_realizefn;
596 dc->reset = port92_reset;
597 dc->vmsd = &vmstate_port92_isa;
598 /*
599 * Reason: unlike ordinary ISA devices, this one needs additional
600 * wiring: its A20 output line needs to be wired up by
601 * port92_init().
602 */
603 dc->user_creatable = false;
604 }
605
606 static const TypeInfo port92_info = {
607 .name = TYPE_PORT92,
608 .parent = TYPE_ISA_DEVICE,
609 .instance_size = sizeof(Port92State),
610 .instance_init = port92_initfn,
611 .class_init = port92_class_initfn,
612 };
613
614 static void port92_register_types(void)
615 {
616 type_register_static(&port92_info);
617 }
618
619 type_init(port92_register_types)
620
621 static void handle_a20_line_change(void *opaque, int irq, int level)
622 {
623 X86CPU *cpu = opaque;
624
625 /* XXX: send to all CPUs ? */
626 /* XXX: add logic to handle multiple A20 line sources */
627 x86_cpu_set_a20(cpu, level);
628 }
629
630 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
631 {
632 int index = le32_to_cpu(e820_reserve.count);
633 struct e820_entry *entry;
634
635 if (type != E820_RAM) {
636 /* old FW_CFG_E820_TABLE entry -- reservations only */
637 if (index >= E820_NR_ENTRIES) {
638 return -EBUSY;
639 }
640 entry = &e820_reserve.entry[index++];
641
642 entry->address = cpu_to_le64(address);
643 entry->length = cpu_to_le64(length);
644 entry->type = cpu_to_le32(type);
645
646 e820_reserve.count = cpu_to_le32(index);
647 }
648
649 /* new "etc/e820" file -- include ram too */
650 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
651 e820_table[e820_entries].address = cpu_to_le64(address);
652 e820_table[e820_entries].length = cpu_to_le64(length);
653 e820_table[e820_entries].type = cpu_to_le32(type);
654 e820_entries++;
655
656 return e820_entries;
657 }
658
659 int e820_get_num_entries(void)
660 {
661 return e820_entries;
662 }
663
664 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
665 {
666 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
667 *address = le64_to_cpu(e820_table[idx].address);
668 *length = le64_to_cpu(e820_table[idx].length);
669 return true;
670 }
671 return false;
672 }
673
674 /* Enables contiguous-apic-ID mode, for compatibility */
675 static bool compat_apic_id_mode;
676
677 void enable_compat_apic_id_mode(void)
678 {
679 compat_apic_id_mode = true;
680 }
681
682 /* Calculates initial APIC ID for a specific CPU index
683 *
684 * Currently we need to be able to calculate the APIC ID from the CPU index
685 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
686 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
687 * all CPUs up to max_cpus.
688 */
689 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
690 {
691 uint32_t correct_id;
692 static bool warned;
693
694 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
695 if (compat_apic_id_mode) {
696 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
697 error_report("APIC IDs set in compatibility mode, "
698 "CPU topology won't match the configuration");
699 warned = true;
700 }
701 return cpu_index;
702 } else {
703 return correct_id;
704 }
705 }
706
707 static void pc_build_smbios(PCMachineState *pcms)
708 {
709 uint8_t *smbios_tables, *smbios_anchor;
710 size_t smbios_tables_len, smbios_anchor_len;
711 struct smbios_phys_mem_area *mem_array;
712 unsigned i, array_count;
713 MachineState *ms = MACHINE(pcms);
714 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
715
716 /* tell smbios about cpuid version and features */
717 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
718
719 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
720 if (smbios_tables) {
721 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
722 smbios_tables, smbios_tables_len);
723 }
724
725 /* build the array of physical mem area from e820 table */
726 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
727 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
728 uint64_t addr, len;
729
730 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
731 mem_array[array_count].address = addr;
732 mem_array[array_count].length = len;
733 array_count++;
734 }
735 }
736 smbios_get_tables(mem_array, array_count,
737 &smbios_tables, &smbios_tables_len,
738 &smbios_anchor, &smbios_anchor_len);
739 g_free(mem_array);
740
741 if (smbios_anchor) {
742 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
743 smbios_tables, smbios_tables_len);
744 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
745 smbios_anchor, smbios_anchor_len);
746 }
747 }
748
749 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
750 {
751 FWCfgState *fw_cfg;
752 uint64_t *numa_fw_cfg;
753 int i;
754 const CPUArchIdList *cpus;
755 MachineClass *mc = MACHINE_GET_CLASS(pcms);
756
757 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
758 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
759
760 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
761 *
762 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
763 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
764 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
765 * for CPU hotplug also uses APIC ID and not "CPU index".
766 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
767 * but the "limit to the APIC ID values SeaBIOS may see".
768 *
769 * So for compatibility reasons with old BIOSes we are stuck with
770 * "etc/max-cpus" actually being apic_id_limit
771 */
772 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
773 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
774 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
775 acpi_tables, acpi_tables_len);
776 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
777
778 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
779 &e820_reserve, sizeof(e820_reserve));
780 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
781 sizeof(struct e820_entry) * e820_entries);
782
783 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
784 /* allocate memory for the NUMA channel: one (64bit) word for the number
785 * of nodes, one word for each VCPU->node and one word for each node to
786 * hold the amount of memory.
787 */
788 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
789 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
790 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
791 for (i = 0; i < cpus->len; i++) {
792 unsigned int apic_id = cpus->cpus[i].arch_id;
793 assert(apic_id < pcms->apic_id_limit);
794 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
795 }
796 for (i = 0; i < nb_numa_nodes; i++) {
797 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
798 cpu_to_le64(numa_info[i].node_mem);
799 }
800 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
801 (1 + pcms->apic_id_limit + nb_numa_nodes) *
802 sizeof(*numa_fw_cfg));
803
804 return fw_cfg;
805 }
806
807 static long get_file_size(FILE *f)
808 {
809 long where, size;
810
811 /* XXX: on Unix systems, using fstat() probably makes more sense */
812
813 where = ftell(f);
814 fseek(f, 0, SEEK_END);
815 size = ftell(f);
816 fseek(f, where, SEEK_SET);
817
818 return size;
819 }
820
821 /* setup_data types */
822 #define SETUP_NONE 0
823 #define SETUP_E820_EXT 1
824 #define SETUP_DTB 2
825 #define SETUP_PCI 3
826 #define SETUP_EFI 4
827
828 struct setup_data {
829 uint64_t next;
830 uint32_t type;
831 uint32_t len;
832 uint8_t data[0];
833 } __attribute__((packed));
834
835 static void load_linux(PCMachineState *pcms,
836 FWCfgState *fw_cfg)
837 {
838 uint16_t protocol;
839 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
840 int dtb_size, setup_data_offset;
841 uint32_t initrd_max;
842 uint8_t header[8192], *setup, *kernel, *initrd_data;
843 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
844 FILE *f;
845 char *vmode;
846 MachineState *machine = MACHINE(pcms);
847 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
848 struct setup_data *setup_data;
849 const char *kernel_filename = machine->kernel_filename;
850 const char *initrd_filename = machine->initrd_filename;
851 const char *dtb_filename = machine->dtb;
852 const char *kernel_cmdline = machine->kernel_cmdline;
853
854 /* Align to 16 bytes as a paranoia measure */
855 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
856
857 /* load the kernel header */
858 f = fopen(kernel_filename, "rb");
859 if (!f || !(kernel_size = get_file_size(f)) ||
860 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
861 MIN(ARRAY_SIZE(header), kernel_size)) {
862 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
863 kernel_filename, strerror(errno));
864 exit(1);
865 }
866
867 /* kernel protocol version */
868 #if 0
869 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
870 #endif
871 if (ldl_p(header+0x202) == 0x53726448) {
872 protocol = lduw_p(header+0x206);
873 } else {
874 /* This looks like a multiboot kernel. If it is, let's stop
875 treating it like a Linux kernel. */
876 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
877 kernel_cmdline, kernel_size, header)) {
878 return;
879 }
880 protocol = 0;
881 }
882
883 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
884 /* Low kernel */
885 real_addr = 0x90000;
886 cmdline_addr = 0x9a000 - cmdline_size;
887 prot_addr = 0x10000;
888 } else if (protocol < 0x202) {
889 /* High but ancient kernel */
890 real_addr = 0x90000;
891 cmdline_addr = 0x9a000 - cmdline_size;
892 prot_addr = 0x100000;
893 } else {
894 /* High and recent kernel */
895 real_addr = 0x10000;
896 cmdline_addr = 0x20000;
897 prot_addr = 0x100000;
898 }
899
900 #if 0
901 fprintf(stderr,
902 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
903 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
904 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
905 real_addr,
906 cmdline_addr,
907 prot_addr);
908 #endif
909
910 /* highest address for loading the initrd */
911 if (protocol >= 0x203) {
912 initrd_max = ldl_p(header+0x22c);
913 } else {
914 initrd_max = 0x37ffffff;
915 }
916
917 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
918 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
919 }
920
921 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
922 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
923 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
924
925 if (protocol >= 0x202) {
926 stl_p(header+0x228, cmdline_addr);
927 } else {
928 stw_p(header+0x20, 0xA33F);
929 stw_p(header+0x22, cmdline_addr-real_addr);
930 }
931
932 /* handle vga= parameter */
933 vmode = strstr(kernel_cmdline, "vga=");
934 if (vmode) {
935 unsigned int video_mode;
936 /* skip "vga=" */
937 vmode += 4;
938 if (!strncmp(vmode, "normal", 6)) {
939 video_mode = 0xffff;
940 } else if (!strncmp(vmode, "ext", 3)) {
941 video_mode = 0xfffe;
942 } else if (!strncmp(vmode, "ask", 3)) {
943 video_mode = 0xfffd;
944 } else {
945 video_mode = strtol(vmode, NULL, 0);
946 }
947 stw_p(header+0x1fa, video_mode);
948 }
949
950 /* loader type */
951 /* High nybble = B reserved for QEMU; low nybble is revision number.
952 If this code is substantially changed, you may want to consider
953 incrementing the revision. */
954 if (protocol >= 0x200) {
955 header[0x210] = 0xB0;
956 }
957 /* heap */
958 if (protocol >= 0x201) {
959 header[0x211] |= 0x80; /* CAN_USE_HEAP */
960 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
961 }
962
963 /* load initrd */
964 if (initrd_filename) {
965 if (protocol < 0x200) {
966 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
967 exit(1);
968 }
969
970 initrd_size = get_image_size(initrd_filename);
971 if (initrd_size < 0) {
972 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
973 initrd_filename, strerror(errno));
974 exit(1);
975 }
976
977 initrd_addr = (initrd_max-initrd_size) & ~4095;
978
979 initrd_data = g_malloc(initrd_size);
980 load_image(initrd_filename, initrd_data);
981
982 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
983 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
984 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
985
986 stl_p(header+0x218, initrd_addr);
987 stl_p(header+0x21c, initrd_size);
988 }
989
990 /* load kernel and setup */
991 setup_size = header[0x1f1];
992 if (setup_size == 0) {
993 setup_size = 4;
994 }
995 setup_size = (setup_size+1)*512;
996 if (setup_size > kernel_size) {
997 fprintf(stderr, "qemu: invalid kernel header\n");
998 exit(1);
999 }
1000 kernel_size -= setup_size;
1001
1002 setup = g_malloc(setup_size);
1003 kernel = g_malloc(kernel_size);
1004 fseek(f, 0, SEEK_SET);
1005 if (fread(setup, 1, setup_size, f) != setup_size) {
1006 fprintf(stderr, "fread() failed\n");
1007 exit(1);
1008 }
1009 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1010 fprintf(stderr, "fread() failed\n");
1011 exit(1);
1012 }
1013 fclose(f);
1014
1015 /* append dtb to kernel */
1016 if (dtb_filename) {
1017 if (protocol < 0x209) {
1018 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1019 exit(1);
1020 }
1021
1022 dtb_size = get_image_size(dtb_filename);
1023 if (dtb_size <= 0) {
1024 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1025 dtb_filename, strerror(errno));
1026 exit(1);
1027 }
1028
1029 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1030 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1031 kernel = g_realloc(kernel, kernel_size);
1032
1033 stq_p(header+0x250, prot_addr + setup_data_offset);
1034
1035 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1036 setup_data->next = 0;
1037 setup_data->type = cpu_to_le32(SETUP_DTB);
1038 setup_data->len = cpu_to_le32(dtb_size);
1039
1040 load_image_size(dtb_filename, setup_data->data, dtb_size);
1041 }
1042
1043 memcpy(setup, header, MIN(sizeof(header), setup_size));
1044
1045 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1046 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1047 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1048
1049 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1050 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1051 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1052
1053 option_rom[nb_option_roms].bootindex = 0;
1054 option_rom[nb_option_roms].name = "linuxboot.bin";
1055 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1056 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1057 }
1058 nb_option_roms++;
1059 }
1060
1061 #define NE2000_NB_MAX 6
1062
1063 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1064 0x280, 0x380 };
1065 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1066
1067 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1068 {
1069 static int nb_ne2k = 0;
1070
1071 if (nb_ne2k == NE2000_NB_MAX)
1072 return;
1073 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1074 ne2000_irq[nb_ne2k], nd);
1075 nb_ne2k++;
1076 }
1077
1078 DeviceState *cpu_get_current_apic(void)
1079 {
1080 if (current_cpu) {
1081 X86CPU *cpu = X86_CPU(current_cpu);
1082 return cpu->apic_state;
1083 } else {
1084 return NULL;
1085 }
1086 }
1087
1088 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1089 {
1090 X86CPU *cpu = opaque;
1091
1092 if (level) {
1093 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1094 }
1095 }
1096
1097 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1098 {
1099 Object *cpu = NULL;
1100 Error *local_err = NULL;
1101
1102 cpu = object_new(typename);
1103
1104 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1105 object_property_set_bool(cpu, true, "realized", &local_err);
1106
1107 object_unref(cpu);
1108 error_propagate(errp, local_err);
1109 }
1110
1111 void pc_hot_add_cpu(const int64_t id, Error **errp)
1112 {
1113 MachineState *ms = MACHINE(qdev_get_machine());
1114 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1115 Error *local_err = NULL;
1116
1117 if (id < 0) {
1118 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1119 return;
1120 }
1121
1122 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1123 error_setg(errp, "Unable to add CPU: %" PRIi64
1124 ", resulting APIC ID (%" PRIi64 ") is too large",
1125 id, apic_id);
1126 return;
1127 }
1128
1129 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1130 if (local_err) {
1131 error_propagate(errp, local_err);
1132 return;
1133 }
1134 }
1135
1136 void pc_cpus_init(PCMachineState *pcms)
1137 {
1138 int i;
1139 const CPUArchIdList *possible_cpus;
1140 MachineState *ms = MACHINE(pcms);
1141 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1142
1143 /* Calculates the limit to CPU APIC ID values
1144 *
1145 * Limit for the APIC ID value, so that all
1146 * CPU APIC IDs are < pcms->apic_id_limit.
1147 *
1148 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1149 */
1150 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1151 possible_cpus = mc->possible_cpu_arch_ids(ms);
1152 for (i = 0; i < smp_cpus; i++) {
1153 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1154 &error_fatal);
1155 }
1156 }
1157
1158 static void pc_build_feature_control_file(PCMachineState *pcms)
1159 {
1160 MachineState *ms = MACHINE(pcms);
1161 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1162 CPUX86State *env = &cpu->env;
1163 uint32_t unused, ecx, edx;
1164 uint64_t feature_control_bits = 0;
1165 uint64_t *val;
1166
1167 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1168 if (ecx & CPUID_EXT_VMX) {
1169 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1170 }
1171
1172 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1173 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1174 (env->mcg_cap & MCG_LMCE_P)) {
1175 feature_control_bits |= FEATURE_CONTROL_LMCE;
1176 }
1177
1178 if (!feature_control_bits) {
1179 return;
1180 }
1181
1182 val = g_malloc(sizeof(*val));
1183 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1184 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1185 }
1186
1187 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1188 {
1189 if (cpus_count > 0xff) {
1190 /* If the number of CPUs can't be represented in 8 bits, the
1191 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1192 * to make old BIOSes fail more predictably.
1193 */
1194 rtc_set_memory(rtc, 0x5f, 0);
1195 } else {
1196 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1197 }
1198 }
1199
1200 static
1201 void pc_machine_done(Notifier *notifier, void *data)
1202 {
1203 PCMachineState *pcms = container_of(notifier,
1204 PCMachineState, machine_done);
1205 PCIBus *bus = pcms->bus;
1206
1207 /* set the number of CPUs */
1208 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1209
1210 if (bus) {
1211 int extra_hosts = 0;
1212
1213 QLIST_FOREACH(bus, &bus->child, sibling) {
1214 /* look for expander root buses */
1215 if (pci_bus_is_root(bus)) {
1216 extra_hosts++;
1217 }
1218 }
1219 if (extra_hosts && pcms->fw_cfg) {
1220 uint64_t *val = g_malloc(sizeof(*val));
1221 *val = cpu_to_le64(extra_hosts);
1222 fw_cfg_add_file(pcms->fw_cfg,
1223 "etc/extra-pci-roots", val, sizeof(*val));
1224 }
1225 }
1226
1227 acpi_setup();
1228 if (pcms->fw_cfg) {
1229 pc_build_smbios(pcms);
1230 pc_build_feature_control_file(pcms);
1231 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1232 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1233 }
1234
1235 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1236 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1237
1238 if (!iommu || !iommu->x86_iommu.intr_supported ||
1239 iommu->intr_eim != ON_OFF_AUTO_ON) {
1240 error_report("current -smp configuration requires "
1241 "Extended Interrupt Mode enabled. "
1242 "You can add an IOMMU using: "
1243 "-device intel-iommu,intremap=on,eim=on");
1244 exit(EXIT_FAILURE);
1245 }
1246 }
1247 }
1248
1249 void pc_guest_info_init(PCMachineState *pcms)
1250 {
1251 int i;
1252
1253 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1254 pcms->numa_nodes = nb_numa_nodes;
1255 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1256 sizeof *pcms->node_mem);
1257 for (i = 0; i < nb_numa_nodes; i++) {
1258 pcms->node_mem[i] = numa_info[i].node_mem;
1259 }
1260
1261 pcms->machine_done.notify = pc_machine_done;
1262 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1263 }
1264
1265 /* setup pci memory address space mapping into system address space */
1266 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1267 MemoryRegion *pci_address_space)
1268 {
1269 /* Set to lower priority than RAM */
1270 memory_region_add_subregion_overlap(system_memory, 0x0,
1271 pci_address_space, -1);
1272 }
1273
1274 void pc_acpi_init(const char *default_dsdt)
1275 {
1276 char *filename;
1277
1278 if (acpi_tables != NULL) {
1279 /* manually set via -acpitable, leave it alone */
1280 return;
1281 }
1282
1283 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1284 if (filename == NULL) {
1285 warn_report("failed to find %s", default_dsdt);
1286 } else {
1287 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1288 &error_abort);
1289 Error *err = NULL;
1290
1291 qemu_opt_set(opts, "file", filename, &error_abort);
1292
1293 acpi_table_add_builtin(opts, &err);
1294 if (err) {
1295 warn_reportf_err(err, "failed to load %s: ", filename);
1296 }
1297 g_free(filename);
1298 }
1299 }
1300
1301 void xen_load_linux(PCMachineState *pcms)
1302 {
1303 int i;
1304 FWCfgState *fw_cfg;
1305
1306 assert(MACHINE(pcms)->kernel_filename != NULL);
1307
1308 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1309 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1310 rom_set_fw(fw_cfg);
1311
1312 load_linux(pcms, fw_cfg);
1313 for (i = 0; i < nb_option_roms; i++) {
1314 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1315 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1316 !strcmp(option_rom[i].name, "multiboot.bin"));
1317 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1318 }
1319 pcms->fw_cfg = fw_cfg;
1320 }
1321
1322 void pc_memory_init(PCMachineState *pcms,
1323 MemoryRegion *system_memory,
1324 MemoryRegion *rom_memory,
1325 MemoryRegion **ram_memory)
1326 {
1327 int linux_boot, i;
1328 MemoryRegion *ram, *option_rom_mr;
1329 MemoryRegion *ram_below_4g, *ram_above_4g;
1330 FWCfgState *fw_cfg;
1331 MachineState *machine = MACHINE(pcms);
1332 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1333
1334 assert(machine->ram_size == pcms->below_4g_mem_size +
1335 pcms->above_4g_mem_size);
1336
1337 linux_boot = (machine->kernel_filename != NULL);
1338
1339 /* Allocate RAM. We allocate it as a single memory region and use
1340 * aliases to address portions of it, mostly for backwards compatibility
1341 * with older qemus that used qemu_ram_alloc().
1342 */
1343 ram = g_malloc(sizeof(*ram));
1344 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1345 machine->ram_size);
1346 *ram_memory = ram;
1347 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1348 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1349 0, pcms->below_4g_mem_size);
1350 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1351 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1352 if (pcms->above_4g_mem_size > 0) {
1353 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1354 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1355 pcms->below_4g_mem_size,
1356 pcms->above_4g_mem_size);
1357 memory_region_add_subregion(system_memory, 0x100000000ULL,
1358 ram_above_4g);
1359 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1360 }
1361
1362 if (!pcmc->has_reserved_memory &&
1363 (machine->ram_slots ||
1364 (machine->maxram_size > machine->ram_size))) {
1365 MachineClass *mc = MACHINE_GET_CLASS(machine);
1366
1367 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1368 mc->name);
1369 exit(EXIT_FAILURE);
1370 }
1371
1372 /* initialize hotplug memory address space */
1373 if (pcmc->has_reserved_memory &&
1374 (machine->ram_size < machine->maxram_size)) {
1375 ram_addr_t hotplug_mem_size =
1376 machine->maxram_size - machine->ram_size;
1377
1378 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1379 error_report("unsupported amount of memory slots: %"PRIu64,
1380 machine->ram_slots);
1381 exit(EXIT_FAILURE);
1382 }
1383
1384 if (QEMU_ALIGN_UP(machine->maxram_size,
1385 TARGET_PAGE_SIZE) != machine->maxram_size) {
1386 error_report("maximum memory size must by aligned to multiple of "
1387 "%d bytes", TARGET_PAGE_SIZE);
1388 exit(EXIT_FAILURE);
1389 }
1390
1391 pcms->hotplug_memory.base =
1392 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1393
1394 if (pcmc->enforce_aligned_dimm) {
1395 /* size hotplug region assuming 1G page max alignment per slot */
1396 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1397 }
1398
1399 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1400 hotplug_mem_size) {
1401 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1402 machine->maxram_size);
1403 exit(EXIT_FAILURE);
1404 }
1405
1406 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1407 "hotplug-memory", hotplug_mem_size);
1408 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1409 &pcms->hotplug_memory.mr);
1410 }
1411
1412 /* Initialize PC system firmware */
1413 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1414
1415 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1416 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1417 &error_fatal);
1418 if (pcmc->pci_enabled) {
1419 memory_region_set_readonly(option_rom_mr, true);
1420 }
1421 memory_region_add_subregion_overlap(rom_memory,
1422 PC_ROM_MIN_VGA,
1423 option_rom_mr,
1424 1);
1425
1426 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1427
1428 rom_set_fw(fw_cfg);
1429
1430 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1431 uint64_t *val = g_malloc(sizeof(*val));
1432 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1433 uint64_t res_mem_end = pcms->hotplug_memory.base;
1434
1435 if (!pcmc->broken_reserved_end) {
1436 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1437 }
1438 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1439 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1440 }
1441
1442 if (linux_boot) {
1443 load_linux(pcms, fw_cfg);
1444 }
1445
1446 for (i = 0; i < nb_option_roms; i++) {
1447 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1448 }
1449 pcms->fw_cfg = fw_cfg;
1450
1451 /* Init default IOAPIC address space */
1452 pcms->ioapic_as = &address_space_memory;
1453 }
1454
1455 /*
1456 * The 64bit pci hole starts after "above 4G RAM" and
1457 * potentially the space reserved for memory hotplug.
1458 */
1459 uint64_t pc_pci_hole64_start(void)
1460 {
1461 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1462 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1463 uint64_t hole64_start = 0;
1464
1465 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1466 hole64_start = pcms->hotplug_memory.base;
1467 if (!pcmc->broken_reserved_end) {
1468 hole64_start += memory_region_size(&pcms->hotplug_memory.mr);
1469 }
1470 } else {
1471 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1472 }
1473
1474 return ROUND_UP(hole64_start, 1ULL << 30);
1475 }
1476
1477 qemu_irq pc_allocate_cpu_irq(void)
1478 {
1479 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1480 }
1481
1482 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1483 {
1484 DeviceState *dev = NULL;
1485
1486 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1487 if (pci_bus) {
1488 PCIDevice *pcidev = pci_vga_init(pci_bus);
1489 dev = pcidev ? &pcidev->qdev : NULL;
1490 } else if (isa_bus) {
1491 ISADevice *isadev = isa_vga_init(isa_bus);
1492 dev = isadev ? DEVICE(isadev) : NULL;
1493 }
1494 rom_reset_order_override();
1495 return dev;
1496 }
1497
1498 static const MemoryRegionOps ioport80_io_ops = {
1499 .write = ioport80_write,
1500 .read = ioport80_read,
1501 .endianness = DEVICE_NATIVE_ENDIAN,
1502 .impl = {
1503 .min_access_size = 1,
1504 .max_access_size = 1,
1505 },
1506 };
1507
1508 static const MemoryRegionOps ioportF0_io_ops = {
1509 .write = ioportF0_write,
1510 .read = ioportF0_read,
1511 .endianness = DEVICE_NATIVE_ENDIAN,
1512 .impl = {
1513 .min_access_size = 1,
1514 .max_access_size = 1,
1515 },
1516 };
1517
1518 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1519 ISADevice **rtc_state,
1520 bool create_fdctrl,
1521 bool no_vmport,
1522 bool has_pit,
1523 uint32_t hpet_irqs)
1524 {
1525 int i;
1526 DriveInfo *fd[MAX_FD];
1527 DeviceState *hpet = NULL;
1528 int pit_isa_irq = 0;
1529 qemu_irq pit_alt_irq = NULL;
1530 qemu_irq rtc_irq = NULL;
1531 qemu_irq *a20_line;
1532 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1533 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1534 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1535
1536 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1537 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1538
1539 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1540 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1541
1542 /*
1543 * Check if an HPET shall be created.
1544 *
1545 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1546 * when the HPET wants to take over. Thus we have to disable the latter.
1547 */
1548 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1549 /* In order to set property, here not using sysbus_try_create_simple */
1550 hpet = qdev_try_create(NULL, TYPE_HPET);
1551 if (hpet) {
1552 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1553 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1554 * IRQ8 and IRQ2.
1555 */
1556 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1557 HPET_INTCAP, NULL);
1558 if (!compat) {
1559 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1560 }
1561 qdev_init_nofail(hpet);
1562 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1563
1564 for (i = 0; i < GSI_NUM_PINS; i++) {
1565 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1566 }
1567 pit_isa_irq = -1;
1568 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1569 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1570 }
1571 }
1572 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1573
1574 qemu_register_boot_set(pc_boot_set, *rtc_state);
1575
1576 if (!xen_enabled() && has_pit) {
1577 if (kvm_pit_in_kernel()) {
1578 pit = kvm_pit_init(isa_bus, 0x40);
1579 } else {
1580 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1581 }
1582 if (hpet) {
1583 /* connect PIT to output control line of the HPET */
1584 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1585 }
1586 pcspk_init(isa_bus, pit);
1587 }
1588
1589 serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1590 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1591
1592 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1593 i8042 = isa_create_simple(isa_bus, "i8042");
1594 i8042_setup_a20_line(i8042, a20_line[0]);
1595 if (!no_vmport) {
1596 vmport_init(isa_bus);
1597 vmmouse = isa_try_create(isa_bus, "vmmouse");
1598 } else {
1599 vmmouse = NULL;
1600 }
1601 if (vmmouse) {
1602 DeviceState *dev = DEVICE(vmmouse);
1603 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1604 qdev_init_nofail(dev);
1605 }
1606 port92 = isa_create_simple(isa_bus, "port92");
1607 port92_init(port92, a20_line[1]);
1608 g_free(a20_line);
1609
1610 DMA_init(isa_bus, 0);
1611
1612 for(i = 0; i < MAX_FD; i++) {
1613 fd[i] = drive_get(IF_FLOPPY, 0, i);
1614 create_fdctrl |= !!fd[i];
1615 }
1616 if (create_fdctrl) {
1617 fdctrl_init_isa(isa_bus, fd);
1618 }
1619 }
1620
1621 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1622 {
1623 int i;
1624
1625 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1626 for (i = 0; i < nb_nics; i++) {
1627 NICInfo *nd = &nd_table[i];
1628 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1629
1630 if (g_str_equal(model, "ne2k_isa")) {
1631 pc_init_ne2k_isa(isa_bus, nd);
1632 } else {
1633 pci_nic_init_nofail(nd, pci_bus, model, NULL);
1634 }
1635 }
1636 rom_reset_order_override();
1637 }
1638
1639 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1640 {
1641 DeviceState *dev;
1642 SysBusDevice *d;
1643 unsigned int i;
1644
1645 if (kvm_ioapic_in_kernel()) {
1646 dev = qdev_create(NULL, "kvm-ioapic");
1647 } else {
1648 dev = qdev_create(NULL, "ioapic");
1649 }
1650 if (parent_name) {
1651 object_property_add_child(object_resolve_path(parent_name, NULL),
1652 "ioapic", OBJECT(dev), NULL);
1653 }
1654 qdev_init_nofail(dev);
1655 d = SYS_BUS_DEVICE(dev);
1656 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1657
1658 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1659 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1660 }
1661 }
1662
1663 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1664 DeviceState *dev, Error **errp)
1665 {
1666 HotplugHandlerClass *hhc;
1667 Error *local_err = NULL;
1668 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1669 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1670 PCDIMMDevice *dimm = PC_DIMM(dev);
1671 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1672 MemoryRegion *mr;
1673 uint64_t align = TARGET_PAGE_SIZE;
1674 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1675
1676 mr = ddc->get_memory_region(dimm, &local_err);
1677 if (local_err) {
1678 goto out;
1679 }
1680
1681 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1682 align = memory_region_get_alignment(mr);
1683 }
1684
1685 /*
1686 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1687 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1688 * addition to cover this case.
1689 */
1690 if (!pcms->acpi_dev || !acpi_enabled) {
1691 error_setg(&local_err,
1692 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1693 goto out;
1694 }
1695
1696 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1697 error_setg(&local_err,
1698 "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1699 goto out;
1700 }
1701
1702 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1703 if (local_err) {
1704 goto out;
1705 }
1706
1707 if (is_nvdimm) {
1708 nvdimm_plug(&pcms->acpi_nvdimm_state);
1709 }
1710
1711 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1712 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1713 out:
1714 error_propagate(errp, local_err);
1715 }
1716
1717 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1718 DeviceState *dev, Error **errp)
1719 {
1720 HotplugHandlerClass *hhc;
1721 Error *local_err = NULL;
1722 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1723
1724 /*
1725 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1726 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1727 * addition to cover this case.
1728 */
1729 if (!pcms->acpi_dev || !acpi_enabled) {
1730 error_setg(&local_err,
1731 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1732 goto out;
1733 }
1734
1735 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1736 error_setg(&local_err,
1737 "nvdimm device hot unplug is not supported yet.");
1738 goto out;
1739 }
1740
1741 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1742 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1743
1744 out:
1745 error_propagate(errp, local_err);
1746 }
1747
1748 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1749 DeviceState *dev, Error **errp)
1750 {
1751 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1752 PCDIMMDevice *dimm = PC_DIMM(dev);
1753 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1754 MemoryRegion *mr;
1755 HotplugHandlerClass *hhc;
1756 Error *local_err = NULL;
1757
1758 mr = ddc->get_memory_region(dimm, &local_err);
1759 if (local_err) {
1760 goto out;
1761 }
1762
1763 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1764 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1765
1766 if (local_err) {
1767 goto out;
1768 }
1769
1770 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1771 object_unparent(OBJECT(dev));
1772
1773 out:
1774 error_propagate(errp, local_err);
1775 }
1776
1777 static int pc_apic_cmp(const void *a, const void *b)
1778 {
1779 CPUArchId *apic_a = (CPUArchId *)a;
1780 CPUArchId *apic_b = (CPUArchId *)b;
1781
1782 return apic_a->arch_id - apic_b->arch_id;
1783 }
1784
1785 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1786 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1787 * entry corresponding to CPU's apic_id returns NULL.
1788 */
1789 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1790 {
1791 CPUArchId apic_id, *found_cpu;
1792
1793 apic_id.arch_id = id;
1794 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1795 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1796 pc_apic_cmp);
1797 if (found_cpu && idx) {
1798 *idx = found_cpu - ms->possible_cpus->cpus;
1799 }
1800 return found_cpu;
1801 }
1802
1803 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1804 DeviceState *dev, Error **errp)
1805 {
1806 CPUArchId *found_cpu;
1807 HotplugHandlerClass *hhc;
1808 Error *local_err = NULL;
1809 X86CPU *cpu = X86_CPU(dev);
1810 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1811
1812 if (pcms->acpi_dev) {
1813 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1814 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1815 if (local_err) {
1816 goto out;
1817 }
1818 }
1819
1820 /* increment the number of CPUs */
1821 pcms->boot_cpus++;
1822 if (pcms->rtc) {
1823 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1824 }
1825 if (pcms->fw_cfg) {
1826 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1827 }
1828
1829 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1830 found_cpu->cpu = OBJECT(dev);
1831 out:
1832 error_propagate(errp, local_err);
1833 }
1834 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1835 DeviceState *dev, Error **errp)
1836 {
1837 int idx = -1;
1838 HotplugHandlerClass *hhc;
1839 Error *local_err = NULL;
1840 X86CPU *cpu = X86_CPU(dev);
1841 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1842
1843 if (!pcms->acpi_dev) {
1844 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1845 goto out;
1846 }
1847
1848 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1849 assert(idx != -1);
1850 if (idx == 0) {
1851 error_setg(&local_err, "Boot CPU is unpluggable");
1852 goto out;
1853 }
1854
1855 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1856 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1857
1858 if (local_err) {
1859 goto out;
1860 }
1861
1862 out:
1863 error_propagate(errp, local_err);
1864
1865 }
1866
1867 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1868 DeviceState *dev, Error **errp)
1869 {
1870 CPUArchId *found_cpu;
1871 HotplugHandlerClass *hhc;
1872 Error *local_err = NULL;
1873 X86CPU *cpu = X86_CPU(dev);
1874 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1875
1876 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1877 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1878
1879 if (local_err) {
1880 goto out;
1881 }
1882
1883 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1884 found_cpu->cpu = NULL;
1885 object_unparent(OBJECT(dev));
1886
1887 /* decrement the number of CPUs */
1888 pcms->boot_cpus--;
1889 /* Update the number of CPUs in CMOS */
1890 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1891 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1892 out:
1893 error_propagate(errp, local_err);
1894 }
1895
1896 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1897 DeviceState *dev, Error **errp)
1898 {
1899 int idx;
1900 CPUState *cs;
1901 CPUArchId *cpu_slot;
1902 X86CPUTopoInfo topo;
1903 X86CPU *cpu = X86_CPU(dev);
1904 MachineState *ms = MACHINE(hotplug_dev);
1905 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1906
1907 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1908 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1909 ms->cpu_type);
1910 return;
1911 }
1912
1913 /* if APIC ID is not set, set it based on socket/core/thread properties */
1914 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1915 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1916
1917 if (cpu->socket_id < 0) {
1918 error_setg(errp, "CPU socket-id is not set");
1919 return;
1920 } else if (cpu->socket_id > max_socket) {
1921 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1922 cpu->socket_id, max_socket);
1923 return;
1924 }
1925 if (cpu->core_id < 0) {
1926 error_setg(errp, "CPU core-id is not set");
1927 return;
1928 } else if (cpu->core_id > (smp_cores - 1)) {
1929 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1930 cpu->core_id, smp_cores - 1);
1931 return;
1932 }
1933 if (cpu->thread_id < 0) {
1934 error_setg(errp, "CPU thread-id is not set");
1935 return;
1936 } else if (cpu->thread_id > (smp_threads - 1)) {
1937 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1938 cpu->thread_id, smp_threads - 1);
1939 return;
1940 }
1941
1942 topo.pkg_id = cpu->socket_id;
1943 topo.core_id = cpu->core_id;
1944 topo.smt_id = cpu->thread_id;
1945 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1946 }
1947
1948 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1949 if (!cpu_slot) {
1950 MachineState *ms = MACHINE(pcms);
1951
1952 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1953 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1954 " APIC ID %" PRIu32 ", valid index range 0:%d",
1955 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1956 ms->possible_cpus->len - 1);
1957 return;
1958 }
1959
1960 if (cpu_slot->cpu) {
1961 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1962 idx, cpu->apic_id);
1963 return;
1964 }
1965
1966 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1967 * so that machine_query_hotpluggable_cpus would show correct values
1968 */
1969 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1970 * once -smp refactoring is complete and there will be CPU private
1971 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1972 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1973 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1974 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1975 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1976 return;
1977 }
1978 cpu->socket_id = topo.pkg_id;
1979
1980 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1981 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1982 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1983 return;
1984 }
1985 cpu->core_id = topo.core_id;
1986
1987 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1988 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1989 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1990 return;
1991 }
1992 cpu->thread_id = topo.smt_id;
1993
1994 cs = CPU(cpu);
1995 cs->cpu_index = idx;
1996
1997 numa_cpu_pre_plug(cpu_slot, dev, errp);
1998 }
1999
2000 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2001 DeviceState *dev, Error **errp)
2002 {
2003 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2004 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2005 }
2006 }
2007
2008 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2009 DeviceState *dev, Error **errp)
2010 {
2011 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2012 pc_dimm_plug(hotplug_dev, dev, errp);
2013 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2014 pc_cpu_plug(hotplug_dev, dev, errp);
2015 }
2016 }
2017
2018 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2019 DeviceState *dev, Error **errp)
2020 {
2021 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2022 pc_dimm_unplug_request(hotplug_dev, dev, errp);
2023 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2024 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2025 } else {
2026 error_setg(errp, "acpi: device unplug request for not supported device"
2027 " type: %s", object_get_typename(OBJECT(dev)));
2028 }
2029 }
2030
2031 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2032 DeviceState *dev, Error **errp)
2033 {
2034 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2035 pc_dimm_unplug(hotplug_dev, dev, errp);
2036 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2037 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2038 } else {
2039 error_setg(errp, "acpi: device unplug for not supported device"
2040 " type: %s", object_get_typename(OBJECT(dev)));
2041 }
2042 }
2043
2044 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2045 DeviceState *dev)
2046 {
2047 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2048
2049 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2050 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2051 return HOTPLUG_HANDLER(machine);
2052 }
2053
2054 return pcmc->get_hotplug_handler ?
2055 pcmc->get_hotplug_handler(machine, dev) : NULL;
2056 }
2057
2058 static void
2059 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2060 const char *name, void *opaque,
2061 Error **errp)
2062 {
2063 PCMachineState *pcms = PC_MACHINE(obj);
2064 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2065
2066 visit_type_int(v, name, &value, errp);
2067 }
2068
2069 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2070 const char *name, void *opaque,
2071 Error **errp)
2072 {
2073 PCMachineState *pcms = PC_MACHINE(obj);
2074 uint64_t value = pcms->max_ram_below_4g;
2075
2076 visit_type_size(v, name, &value, errp);
2077 }
2078
2079 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2080 const char *name, void *opaque,
2081 Error **errp)
2082 {
2083 PCMachineState *pcms = PC_MACHINE(obj);
2084 Error *error = NULL;
2085 uint64_t value;
2086
2087 visit_type_size(v, name, &value, &error);
2088 if (error) {
2089 error_propagate(errp, error);
2090 return;
2091 }
2092 if (value > (1ULL << 32)) {
2093 error_setg(&error,
2094 "Machine option 'max-ram-below-4g=%"PRIu64
2095 "' expects size less than or equal to 4G", value);
2096 error_propagate(errp, error);
2097 return;
2098 }
2099
2100 if (value < (1ULL << 20)) {
2101 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2102 "BIOS may not work with less than 1MiB", value);
2103 }
2104
2105 pcms->max_ram_below_4g = value;
2106 }
2107
2108 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2109 void *opaque, Error **errp)
2110 {
2111 PCMachineState *pcms = PC_MACHINE(obj);
2112 OnOffAuto vmport = pcms->vmport;
2113
2114 visit_type_OnOffAuto(v, name, &vmport, errp);
2115 }
2116
2117 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2118 void *opaque, Error **errp)
2119 {
2120 PCMachineState *pcms = PC_MACHINE(obj);
2121
2122 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2123 }
2124
2125 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2126 {
2127 bool smm_available = false;
2128
2129 if (pcms->smm == ON_OFF_AUTO_OFF) {
2130 return false;
2131 }
2132
2133 if (tcg_enabled() || qtest_enabled()) {
2134 smm_available = true;
2135 } else if (kvm_enabled()) {
2136 smm_available = kvm_has_smm();
2137 }
2138
2139 if (smm_available) {
2140 return true;
2141 }
2142
2143 if (pcms->smm == ON_OFF_AUTO_ON) {
2144 error_report("System Management Mode not supported by this hypervisor.");
2145 exit(1);
2146 }
2147 return false;
2148 }
2149
2150 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2151 void *opaque, Error **errp)
2152 {
2153 PCMachineState *pcms = PC_MACHINE(obj);
2154 OnOffAuto smm = pcms->smm;
2155
2156 visit_type_OnOffAuto(v, name, &smm, errp);
2157 }
2158
2159 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2160 void *opaque, Error **errp)
2161 {
2162 PCMachineState *pcms = PC_MACHINE(obj);
2163
2164 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2165 }
2166
2167 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2168 {
2169 PCMachineState *pcms = PC_MACHINE(obj);
2170
2171 return pcms->acpi_nvdimm_state.is_enabled;
2172 }
2173
2174 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2175 {
2176 PCMachineState *pcms = PC_MACHINE(obj);
2177
2178 pcms->acpi_nvdimm_state.is_enabled = value;
2179 }
2180
2181 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2182 {
2183 PCMachineState *pcms = PC_MACHINE(obj);
2184
2185 return pcms->smbus;
2186 }
2187
2188 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2189 {
2190 PCMachineState *pcms = PC_MACHINE(obj);
2191
2192 pcms->smbus = value;
2193 }
2194
2195 static bool pc_machine_get_sata(Object *obj, Error **errp)
2196 {
2197 PCMachineState *pcms = PC_MACHINE(obj);
2198
2199 return pcms->sata;
2200 }
2201
2202 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2203 {
2204 PCMachineState *pcms = PC_MACHINE(obj);
2205
2206 pcms->sata = value;
2207 }
2208
2209 static bool pc_machine_get_pit(Object *obj, Error **errp)
2210 {
2211 PCMachineState *pcms = PC_MACHINE(obj);
2212
2213 return pcms->pit;
2214 }
2215
2216 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2217 {
2218 PCMachineState *pcms = PC_MACHINE(obj);
2219
2220 pcms->pit = value;
2221 }
2222
2223 static void pc_machine_initfn(Object *obj)
2224 {
2225 PCMachineState *pcms = PC_MACHINE(obj);
2226
2227 pcms->max_ram_below_4g = 0; /* use default */
2228 pcms->smm = ON_OFF_AUTO_AUTO;
2229 pcms->vmport = ON_OFF_AUTO_AUTO;
2230 /* nvdimm is disabled on default. */
2231 pcms->acpi_nvdimm_state.is_enabled = false;
2232 /* acpi build is enabled by default if machine supports it */
2233 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2234 pcms->smbus = true;
2235 pcms->sata = true;
2236 pcms->pit = true;
2237 }
2238
2239 static void pc_machine_reset(void)
2240 {
2241 CPUState *cs;
2242 X86CPU *cpu;
2243
2244 qemu_devices_reset();
2245
2246 /* Reset APIC after devices have been reset to cancel
2247 * any changes that qemu_devices_reset() might have done.
2248 */
2249 CPU_FOREACH(cs) {
2250 cpu = X86_CPU(cs);
2251
2252 if (cpu->apic_state) {
2253 device_reset(cpu->apic_state);
2254 }
2255 }
2256 }
2257
2258 static CpuInstanceProperties
2259 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2260 {
2261 MachineClass *mc = MACHINE_GET_CLASS(ms);
2262 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2263
2264 assert(cpu_index < possible_cpus->len);
2265 return possible_cpus->cpus[cpu_index].props;
2266 }
2267
2268 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2269 {
2270 X86CPUTopoInfo topo;
2271
2272 assert(idx < ms->possible_cpus->len);
2273 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2274 smp_cores, smp_threads, &topo);
2275 return topo.pkg_id % nb_numa_nodes;
2276 }
2277
2278 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2279 {
2280 int i;
2281
2282 if (ms->possible_cpus) {
2283 /*
2284 * make sure that max_cpus hasn't changed since the first use, i.e.
2285 * -smp hasn't been parsed after it
2286 */
2287 assert(ms->possible_cpus->len == max_cpus);
2288 return ms->possible_cpus;
2289 }
2290
2291 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2292 sizeof(CPUArchId) * max_cpus);
2293 ms->possible_cpus->len = max_cpus;
2294 for (i = 0; i < ms->possible_cpus->len; i++) {
2295 X86CPUTopoInfo topo;
2296
2297 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2298 ms->possible_cpus->cpus[i].vcpus_count = 1;
2299 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2300 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2301 smp_cores, smp_threads, &topo);
2302 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2303 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2304 ms->possible_cpus->cpus[i].props.has_core_id = true;
2305 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2306 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2307 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2308 }
2309 return ms->possible_cpus;
2310 }
2311
2312 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2313 {
2314 /* cpu index isn't used */
2315 CPUState *cs;
2316
2317 CPU_FOREACH(cs) {
2318 X86CPU *cpu = X86_CPU(cs);
2319
2320 if (!cpu->apic_state) {
2321 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2322 } else {
2323 apic_deliver_nmi(cpu->apic_state);
2324 }
2325 }
2326 }
2327
2328 static void pc_machine_class_init(ObjectClass *oc, void *data)
2329 {
2330 MachineClass *mc = MACHINE_CLASS(oc);
2331 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2332 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2333 NMIClass *nc = NMI_CLASS(oc);
2334
2335 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2336 pcmc->pci_enabled = true;
2337 pcmc->has_acpi_build = true;
2338 pcmc->rsdp_in_ram = true;
2339 pcmc->smbios_defaults = true;
2340 pcmc->smbios_uuid_encoded = true;
2341 pcmc->gigabyte_align = true;
2342 pcmc->has_reserved_memory = true;
2343 pcmc->kvmclock_enabled = true;
2344 pcmc->enforce_aligned_dimm = true;
2345 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2346 * to be used at the moment, 32K should be enough for a while. */
2347 pcmc->acpi_data_size = 0x20000 + 0x8000;
2348 pcmc->save_tsc_khz = true;
2349 pcmc->linuxboot_dma_enabled = true;
2350 mc->get_hotplug_handler = pc_get_hotpug_handler;
2351 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2352 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2353 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2354 mc->auto_enable_numa_with_memhp = true;
2355 mc->has_hotpluggable_cpus = true;
2356 mc->default_boot_order = "cad";
2357 mc->hot_add_cpu = pc_hot_add_cpu;
2358 mc->block_default_type = IF_IDE;
2359 mc->max_cpus = 255;
2360 mc->reset = pc_machine_reset;
2361 hc->pre_plug = pc_machine_device_pre_plug_cb;
2362 hc->plug = pc_machine_device_plug_cb;
2363 hc->unplug_request = pc_machine_device_unplug_request_cb;
2364 hc->unplug = pc_machine_device_unplug_cb;
2365 nc->nmi_monitor_handler = x86_nmi;
2366 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2367
2368 object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2369 pc_machine_get_hotplug_memory_region_size, NULL,
2370 NULL, NULL, &error_abort);
2371
2372 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2373 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2374 NULL, NULL, &error_abort);
2375
2376 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2377 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2378
2379 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2380 pc_machine_get_smm, pc_machine_set_smm,
2381 NULL, NULL, &error_abort);
2382 object_class_property_set_description(oc, PC_MACHINE_SMM,
2383 "Enable SMM (pc & q35)", &error_abort);
2384
2385 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2386 pc_machine_get_vmport, pc_machine_set_vmport,
2387 NULL, NULL, &error_abort);
2388 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2389 "Enable vmport (pc & q35)", &error_abort);
2390
2391 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2392 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2393
2394 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2395 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2396
2397 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2398 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2399
2400 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2401 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2402 }
2403
2404 static const TypeInfo pc_machine_info = {
2405 .name = TYPE_PC_MACHINE,
2406 .parent = TYPE_MACHINE,
2407 .abstract = true,
2408 .instance_size = sizeof(PCMachineState),
2409 .instance_init = pc_machine_initfn,
2410 .class_size = sizeof(PCMachineClass),
2411 .class_init = pc_machine_class_init,
2412 .interfaces = (InterfaceInfo[]) {
2413 { TYPE_HOTPLUG_HANDLER },
2414 { TYPE_NMI },
2415 { }
2416 },
2417 };
2418
2419 static void pc_machine_register_types(void)
2420 {
2421 type_register_static(&pc_machine_info);
2422 }
2423
2424 type_init(pc_machine_register_types)