]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
Merge remote-tracking branch 'remotes/mjt/tags/pull-trivial-patches-2015-06-03' into...
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "monitor/monitor.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/i386/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "hw/acpi/acpi.h"
60 #include "hw/acpi/cpu_hotplug.h"
61 #include "hw/cpu/icc_bus.h"
62 #include "hw/boards.h"
63 #include "hw/pci/pci_host.h"
64 #include "acpi-build.h"
65 #include "hw/mem/pc-dimm.h"
66 #include "trace.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69
70 /* debug PC/ISA interrupts */
71 //#define DEBUG_IRQ
72
73 #ifdef DEBUG_IRQ
74 #define DPRINTF(fmt, ...) \
75 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76 #else
77 #define DPRINTF(fmt, ...)
78 #endif
79
80 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
81 * (128K) and other BIOS datastructures (less than 4K reported to be used at
82 * the moment, 32K should be enough for a while). */
83 static unsigned acpi_data_size = 0x20000 + 0x8000;
84 void pc_set_legacy_acpi_data_size(void)
85 {
86 acpi_data_size = 0x10000;
87 }
88
89 #define BIOS_CFG_IOPORT 0x510
90 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
91 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
92 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
93 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
94 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
95
96 #define E820_NR_ENTRIES 16
97
98 struct e820_entry {
99 uint64_t address;
100 uint64_t length;
101 uint32_t type;
102 } QEMU_PACKED __attribute((__aligned__(4)));
103
104 struct e820_table {
105 uint32_t count;
106 struct e820_entry entry[E820_NR_ENTRIES];
107 } QEMU_PACKED __attribute((__aligned__(4)));
108
109 static struct e820_table e820_reserve;
110 static struct e820_entry *e820_table;
111 static unsigned e820_entries;
112 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
113
114 void gsi_handler(void *opaque, int n, int level)
115 {
116 GSIState *s = opaque;
117
118 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
119 if (n < ISA_NUM_IRQS) {
120 qemu_set_irq(s->i8259_irq[n], level);
121 }
122 qemu_set_irq(s->ioapic_irq[n], level);
123 }
124
125 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
126 unsigned size)
127 {
128 }
129
130 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
131 {
132 return 0xffffffffffffffffULL;
133 }
134
135 /* MSDOS compatibility mode FPU exception support */
136 static qemu_irq ferr_irq;
137
138 void pc_register_ferr_irq(qemu_irq irq)
139 {
140 ferr_irq = irq;
141 }
142
143 /* XXX: add IGNNE support */
144 void cpu_set_ferr(CPUX86State *s)
145 {
146 qemu_irq_raise(ferr_irq);
147 }
148
149 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
150 unsigned size)
151 {
152 qemu_irq_lower(ferr_irq);
153 }
154
155 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
156 {
157 return 0xffffffffffffffffULL;
158 }
159
160 /* TSC handling */
161 uint64_t cpu_get_tsc(CPUX86State *env)
162 {
163 return cpu_get_ticks();
164 }
165
166 /* SMM support */
167
168 static cpu_set_smm_t smm_set;
169 static void *smm_arg;
170
171 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
172 {
173 assert(smm_set == NULL);
174 assert(smm_arg == NULL);
175 smm_set = callback;
176 smm_arg = arg;
177 }
178
179 void cpu_smm_update(CPUX86State *env)
180 {
181 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
182 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
183 }
184 }
185
186
187 /* IRQ handling */
188 int cpu_get_pic_interrupt(CPUX86State *env)
189 {
190 X86CPU *cpu = x86_env_get_cpu(env);
191 int intno;
192
193 intno = apic_get_interrupt(cpu->apic_state);
194 if (intno >= 0) {
195 return intno;
196 }
197 /* read the irq from the PIC */
198 if (!apic_accept_pic_intr(cpu->apic_state)) {
199 return -1;
200 }
201
202 intno = pic_read_irq(isa_pic);
203 return intno;
204 }
205
206 static void pic_irq_request(void *opaque, int irq, int level)
207 {
208 CPUState *cs = first_cpu;
209 X86CPU *cpu = X86_CPU(cs);
210
211 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
212 if (cpu->apic_state) {
213 CPU_FOREACH(cs) {
214 cpu = X86_CPU(cs);
215 if (apic_accept_pic_intr(cpu->apic_state)) {
216 apic_deliver_pic_intr(cpu->apic_state, level);
217 }
218 }
219 } else {
220 if (level) {
221 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
222 } else {
223 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
224 }
225 }
226 }
227
228 /* PC cmos mappings */
229
230 #define REG_EQUIPMENT_BYTE 0x14
231
232 static int cmos_get_fd_drive_type(FDriveType fd0)
233 {
234 int val;
235
236 switch (fd0) {
237 case FDRIVE_DRV_144:
238 /* 1.44 Mb 3"5 drive */
239 val = 4;
240 break;
241 case FDRIVE_DRV_288:
242 /* 2.88 Mb 3"5 drive */
243 val = 5;
244 break;
245 case FDRIVE_DRV_120:
246 /* 1.2 Mb 5"5 drive */
247 val = 2;
248 break;
249 case FDRIVE_DRV_NONE:
250 default:
251 val = 0;
252 break;
253 }
254 return val;
255 }
256
257 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
258 int16_t cylinders, int8_t heads, int8_t sectors)
259 {
260 rtc_set_memory(s, type_ofs, 47);
261 rtc_set_memory(s, info_ofs, cylinders);
262 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
263 rtc_set_memory(s, info_ofs + 2, heads);
264 rtc_set_memory(s, info_ofs + 3, 0xff);
265 rtc_set_memory(s, info_ofs + 4, 0xff);
266 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
267 rtc_set_memory(s, info_ofs + 6, cylinders);
268 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
269 rtc_set_memory(s, info_ofs + 8, sectors);
270 }
271
272 /* convert boot_device letter to something recognizable by the bios */
273 static int boot_device2nibble(char boot_device)
274 {
275 switch(boot_device) {
276 case 'a':
277 case 'b':
278 return 0x01; /* floppy boot */
279 case 'c':
280 return 0x02; /* hard drive boot */
281 case 'd':
282 return 0x03; /* CD-ROM boot */
283 case 'n':
284 return 0x04; /* Network boot */
285 }
286 return 0;
287 }
288
289 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
290 {
291 #define PC_MAX_BOOT_DEVICES 3
292 int nbds, bds[3] = { 0, };
293 int i;
294
295 nbds = strlen(boot_device);
296 if (nbds > PC_MAX_BOOT_DEVICES) {
297 error_setg(errp, "Too many boot devices for PC");
298 return;
299 }
300 for (i = 0; i < nbds; i++) {
301 bds[i] = boot_device2nibble(boot_device[i]);
302 if (bds[i] == 0) {
303 error_setg(errp, "Invalid boot device for PC: '%c'",
304 boot_device[i]);
305 return;
306 }
307 }
308 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
309 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
310 }
311
312 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
313 {
314 set_boot_dev(opaque, boot_device, errp);
315 }
316
317 typedef struct pc_cmos_init_late_arg {
318 ISADevice *rtc_state;
319 BusState *idebus[2];
320 } pc_cmos_init_late_arg;
321
322 static void pc_cmos_init_late(void *opaque)
323 {
324 pc_cmos_init_late_arg *arg = opaque;
325 ISADevice *s = arg->rtc_state;
326 int16_t cylinders;
327 int8_t heads, sectors;
328 int val;
329 int i, trans;
330
331 val = 0;
332 if (ide_get_geometry(arg->idebus[0], 0,
333 &cylinders, &heads, &sectors) >= 0) {
334 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
335 val |= 0xf0;
336 }
337 if (ide_get_geometry(arg->idebus[0], 1,
338 &cylinders, &heads, &sectors) >= 0) {
339 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
340 val |= 0x0f;
341 }
342 rtc_set_memory(s, 0x12, val);
343
344 val = 0;
345 for (i = 0; i < 4; i++) {
346 /* NOTE: ide_get_geometry() returns the physical
347 geometry. It is always such that: 1 <= sects <= 63, 1
348 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
349 geometry can be different if a translation is done. */
350 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
351 &cylinders, &heads, &sectors) >= 0) {
352 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
353 assert((trans & ~3) == 0);
354 val |= trans << (i * 2);
355 }
356 }
357 rtc_set_memory(s, 0x39, val);
358
359 qemu_unregister_reset(pc_cmos_init_late, opaque);
360 }
361
362 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
363 const char *boot_device, MachineState *machine,
364 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
365 ISADevice *s)
366 {
367 int val, nb, i;
368 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
369 static pc_cmos_init_late_arg arg;
370 PCMachineState *pc_machine = PC_MACHINE(machine);
371 Error *local_err = NULL;
372
373 /* various important CMOS locations needed by PC/Bochs bios */
374
375 /* memory size */
376 /* base memory (first MiB) */
377 val = MIN(ram_size / 1024, 640);
378 rtc_set_memory(s, 0x15, val);
379 rtc_set_memory(s, 0x16, val >> 8);
380 /* extended memory (next 64MiB) */
381 if (ram_size > 1024 * 1024) {
382 val = (ram_size - 1024 * 1024) / 1024;
383 } else {
384 val = 0;
385 }
386 if (val > 65535)
387 val = 65535;
388 rtc_set_memory(s, 0x17, val);
389 rtc_set_memory(s, 0x18, val >> 8);
390 rtc_set_memory(s, 0x30, val);
391 rtc_set_memory(s, 0x31, val >> 8);
392 /* memory between 16MiB and 4GiB */
393 if (ram_size > 16 * 1024 * 1024) {
394 val = (ram_size - 16 * 1024 * 1024) / 65536;
395 } else {
396 val = 0;
397 }
398 if (val > 65535)
399 val = 65535;
400 rtc_set_memory(s, 0x34, val);
401 rtc_set_memory(s, 0x35, val >> 8);
402 /* memory above 4GiB */
403 val = above_4g_mem_size / 65536;
404 rtc_set_memory(s, 0x5b, val);
405 rtc_set_memory(s, 0x5c, val >> 8);
406 rtc_set_memory(s, 0x5d, val >> 16);
407
408 /* set the number of CPU */
409 rtc_set_memory(s, 0x5f, smp_cpus - 1);
410
411 object_property_add_link(OBJECT(machine), "rtc_state",
412 TYPE_ISA_DEVICE,
413 (Object **)&pc_machine->rtc,
414 object_property_allow_set_link,
415 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
416 object_property_set_link(OBJECT(machine), OBJECT(s),
417 "rtc_state", &error_abort);
418
419 set_boot_dev(s, boot_device, &local_err);
420 if (local_err) {
421 error_report_err(local_err);
422 exit(1);
423 }
424
425 /* floppy type */
426 if (floppy) {
427 for (i = 0; i < 2; i++) {
428 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
429 }
430 }
431 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
432 cmos_get_fd_drive_type(fd_type[1]);
433 rtc_set_memory(s, 0x10, val);
434
435 val = 0;
436 nb = 0;
437 if (fd_type[0] < FDRIVE_DRV_NONE) {
438 nb++;
439 }
440 if (fd_type[1] < FDRIVE_DRV_NONE) {
441 nb++;
442 }
443 switch (nb) {
444 case 0:
445 break;
446 case 1:
447 val |= 0x01; /* 1 drive, ready for boot */
448 break;
449 case 2:
450 val |= 0x41; /* 2 drives, ready for boot */
451 break;
452 }
453 val |= 0x02; /* FPU is there */
454 val |= 0x04; /* PS/2 mouse installed */
455 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
456
457 /* hard drives */
458 arg.rtc_state = s;
459 arg.idebus[0] = idebus0;
460 arg.idebus[1] = idebus1;
461 qemu_register_reset(pc_cmos_init_late, &arg);
462 }
463
464 #define TYPE_PORT92 "port92"
465 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
466
467 /* port 92 stuff: could be split off */
468 typedef struct Port92State {
469 ISADevice parent_obj;
470
471 MemoryRegion io;
472 uint8_t outport;
473 qemu_irq *a20_out;
474 } Port92State;
475
476 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
477 unsigned size)
478 {
479 Port92State *s = opaque;
480 int oldval = s->outport;
481
482 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
483 s->outport = val;
484 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
485 if ((val & 1) && !(oldval & 1)) {
486 qemu_system_reset_request();
487 }
488 }
489
490 static uint64_t port92_read(void *opaque, hwaddr addr,
491 unsigned size)
492 {
493 Port92State *s = opaque;
494 uint32_t ret;
495
496 ret = s->outport;
497 DPRINTF("port92: read 0x%02x\n", ret);
498 return ret;
499 }
500
501 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
502 {
503 Port92State *s = PORT92(dev);
504
505 s->a20_out = a20_out;
506 }
507
508 static const VMStateDescription vmstate_port92_isa = {
509 .name = "port92",
510 .version_id = 1,
511 .minimum_version_id = 1,
512 .fields = (VMStateField[]) {
513 VMSTATE_UINT8(outport, Port92State),
514 VMSTATE_END_OF_LIST()
515 }
516 };
517
518 static void port92_reset(DeviceState *d)
519 {
520 Port92State *s = PORT92(d);
521
522 s->outport &= ~1;
523 }
524
525 static const MemoryRegionOps port92_ops = {
526 .read = port92_read,
527 .write = port92_write,
528 .impl = {
529 .min_access_size = 1,
530 .max_access_size = 1,
531 },
532 .endianness = DEVICE_LITTLE_ENDIAN,
533 };
534
535 static void port92_initfn(Object *obj)
536 {
537 Port92State *s = PORT92(obj);
538
539 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
540
541 s->outport = 0;
542 }
543
544 static void port92_realizefn(DeviceState *dev, Error **errp)
545 {
546 ISADevice *isadev = ISA_DEVICE(dev);
547 Port92State *s = PORT92(dev);
548
549 isa_register_ioport(isadev, &s->io, 0x92);
550 }
551
552 static void port92_class_initfn(ObjectClass *klass, void *data)
553 {
554 DeviceClass *dc = DEVICE_CLASS(klass);
555
556 dc->realize = port92_realizefn;
557 dc->reset = port92_reset;
558 dc->vmsd = &vmstate_port92_isa;
559 /*
560 * Reason: unlike ordinary ISA devices, this one needs additional
561 * wiring: its A20 output line needs to be wired up by
562 * port92_init().
563 */
564 dc->cannot_instantiate_with_device_add_yet = true;
565 }
566
567 static const TypeInfo port92_info = {
568 .name = TYPE_PORT92,
569 .parent = TYPE_ISA_DEVICE,
570 .instance_size = sizeof(Port92State),
571 .instance_init = port92_initfn,
572 .class_init = port92_class_initfn,
573 };
574
575 static void port92_register_types(void)
576 {
577 type_register_static(&port92_info);
578 }
579
580 type_init(port92_register_types)
581
582 static void handle_a20_line_change(void *opaque, int irq, int level)
583 {
584 X86CPU *cpu = opaque;
585
586 /* XXX: send to all CPUs ? */
587 /* XXX: add logic to handle multiple A20 line sources */
588 x86_cpu_set_a20(cpu, level);
589 }
590
591 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
592 {
593 int index = le32_to_cpu(e820_reserve.count);
594 struct e820_entry *entry;
595
596 if (type != E820_RAM) {
597 /* old FW_CFG_E820_TABLE entry -- reservations only */
598 if (index >= E820_NR_ENTRIES) {
599 return -EBUSY;
600 }
601 entry = &e820_reserve.entry[index++];
602
603 entry->address = cpu_to_le64(address);
604 entry->length = cpu_to_le64(length);
605 entry->type = cpu_to_le32(type);
606
607 e820_reserve.count = cpu_to_le32(index);
608 }
609
610 /* new "etc/e820" file -- include ram too */
611 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
612 e820_table[e820_entries].address = cpu_to_le64(address);
613 e820_table[e820_entries].length = cpu_to_le64(length);
614 e820_table[e820_entries].type = cpu_to_le32(type);
615 e820_entries++;
616
617 return e820_entries;
618 }
619
620 int e820_get_num_entries(void)
621 {
622 return e820_entries;
623 }
624
625 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
626 {
627 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
628 *address = le64_to_cpu(e820_table[idx].address);
629 *length = le64_to_cpu(e820_table[idx].length);
630 return true;
631 }
632 return false;
633 }
634
635 /* Enables contiguous-apic-ID mode, for compatibility */
636 static bool compat_apic_id_mode;
637
638 void enable_compat_apic_id_mode(void)
639 {
640 compat_apic_id_mode = true;
641 }
642
643 /* Calculates initial APIC ID for a specific CPU index
644 *
645 * Currently we need to be able to calculate the APIC ID from the CPU index
646 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
647 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
648 * all CPUs up to max_cpus.
649 */
650 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
651 {
652 uint32_t correct_id;
653 static bool warned;
654
655 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
656 if (compat_apic_id_mode) {
657 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
658 error_report("APIC IDs set in compatibility mode, "
659 "CPU topology won't match the configuration");
660 warned = true;
661 }
662 return cpu_index;
663 } else {
664 return correct_id;
665 }
666 }
667
668 /* Calculates the limit to CPU APIC ID values
669 *
670 * This function returns the limit for the APIC ID value, so that all
671 * CPU APIC IDs are < pc_apic_id_limit().
672 *
673 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
674 */
675 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
676 {
677 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
678 }
679
680 static FWCfgState *bochs_bios_init(void)
681 {
682 FWCfgState *fw_cfg;
683 uint8_t *smbios_tables, *smbios_anchor;
684 size_t smbios_tables_len, smbios_anchor_len;
685 uint64_t *numa_fw_cfg;
686 int i, j;
687 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
688
689 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
690 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
691 *
692 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
693 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
694 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
695 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
696 * may see".
697 *
698 * So, this means we must not use max_cpus, here, but the maximum possible
699 * APIC ID value, plus one.
700 *
701 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
702 * the APIC ID, not the "CPU index"
703 */
704 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
705 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
706 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
707 acpi_tables, acpi_tables_len);
708 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
709
710 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
711 if (smbios_tables) {
712 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
713 smbios_tables, smbios_tables_len);
714 }
715
716 smbios_get_tables(&smbios_tables, &smbios_tables_len,
717 &smbios_anchor, &smbios_anchor_len);
718 if (smbios_anchor) {
719 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
720 smbios_tables, smbios_tables_len);
721 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
722 smbios_anchor, smbios_anchor_len);
723 }
724
725 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
726 &e820_reserve, sizeof(e820_reserve));
727 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
728 sizeof(struct e820_entry) * e820_entries);
729
730 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
731 /* allocate memory for the NUMA channel: one (64bit) word for the number
732 * of nodes, one word for each VCPU->node and one word for each node to
733 * hold the amount of memory.
734 */
735 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
736 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
737 for (i = 0; i < max_cpus; i++) {
738 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
739 assert(apic_id < apic_id_limit);
740 for (j = 0; j < nb_numa_nodes; j++) {
741 if (test_bit(i, numa_info[j].node_cpu)) {
742 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
743 break;
744 }
745 }
746 }
747 for (i = 0; i < nb_numa_nodes; i++) {
748 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
749 }
750 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
751 (1 + apic_id_limit + nb_numa_nodes) *
752 sizeof(*numa_fw_cfg));
753
754 return fw_cfg;
755 }
756
757 static long get_file_size(FILE *f)
758 {
759 long where, size;
760
761 /* XXX: on Unix systems, using fstat() probably makes more sense */
762
763 where = ftell(f);
764 fseek(f, 0, SEEK_END);
765 size = ftell(f);
766 fseek(f, where, SEEK_SET);
767
768 return size;
769 }
770
771 static void load_linux(FWCfgState *fw_cfg,
772 const char *kernel_filename,
773 const char *initrd_filename,
774 const char *kernel_cmdline,
775 hwaddr max_ram_size)
776 {
777 uint16_t protocol;
778 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
779 uint32_t initrd_max;
780 uint8_t header[8192], *setup, *kernel, *initrd_data;
781 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
782 FILE *f;
783 char *vmode;
784
785 /* Align to 16 bytes as a paranoia measure */
786 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
787
788 /* load the kernel header */
789 f = fopen(kernel_filename, "rb");
790 if (!f || !(kernel_size = get_file_size(f)) ||
791 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
792 MIN(ARRAY_SIZE(header), kernel_size)) {
793 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
794 kernel_filename, strerror(errno));
795 exit(1);
796 }
797
798 /* kernel protocol version */
799 #if 0
800 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
801 #endif
802 if (ldl_p(header+0x202) == 0x53726448) {
803 protocol = lduw_p(header+0x206);
804 } else {
805 /* This looks like a multiboot kernel. If it is, let's stop
806 treating it like a Linux kernel. */
807 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
808 kernel_cmdline, kernel_size, header)) {
809 return;
810 }
811 protocol = 0;
812 }
813
814 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
815 /* Low kernel */
816 real_addr = 0x90000;
817 cmdline_addr = 0x9a000 - cmdline_size;
818 prot_addr = 0x10000;
819 } else if (protocol < 0x202) {
820 /* High but ancient kernel */
821 real_addr = 0x90000;
822 cmdline_addr = 0x9a000 - cmdline_size;
823 prot_addr = 0x100000;
824 } else {
825 /* High and recent kernel */
826 real_addr = 0x10000;
827 cmdline_addr = 0x20000;
828 prot_addr = 0x100000;
829 }
830
831 #if 0
832 fprintf(stderr,
833 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
834 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
835 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
836 real_addr,
837 cmdline_addr,
838 prot_addr);
839 #endif
840
841 /* highest address for loading the initrd */
842 if (protocol >= 0x203) {
843 initrd_max = ldl_p(header+0x22c);
844 } else {
845 initrd_max = 0x37ffffff;
846 }
847
848 if (initrd_max >= max_ram_size - acpi_data_size) {
849 initrd_max = max_ram_size - acpi_data_size - 1;
850 }
851
852 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
853 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
854 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
855
856 if (protocol >= 0x202) {
857 stl_p(header+0x228, cmdline_addr);
858 } else {
859 stw_p(header+0x20, 0xA33F);
860 stw_p(header+0x22, cmdline_addr-real_addr);
861 }
862
863 /* handle vga= parameter */
864 vmode = strstr(kernel_cmdline, "vga=");
865 if (vmode) {
866 unsigned int video_mode;
867 /* skip "vga=" */
868 vmode += 4;
869 if (!strncmp(vmode, "normal", 6)) {
870 video_mode = 0xffff;
871 } else if (!strncmp(vmode, "ext", 3)) {
872 video_mode = 0xfffe;
873 } else if (!strncmp(vmode, "ask", 3)) {
874 video_mode = 0xfffd;
875 } else {
876 video_mode = strtol(vmode, NULL, 0);
877 }
878 stw_p(header+0x1fa, video_mode);
879 }
880
881 /* loader type */
882 /* High nybble = B reserved for QEMU; low nybble is revision number.
883 If this code is substantially changed, you may want to consider
884 incrementing the revision. */
885 if (protocol >= 0x200) {
886 header[0x210] = 0xB0;
887 }
888 /* heap */
889 if (protocol >= 0x201) {
890 header[0x211] |= 0x80; /* CAN_USE_HEAP */
891 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
892 }
893
894 /* load initrd */
895 if (initrd_filename) {
896 if (protocol < 0x200) {
897 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
898 exit(1);
899 }
900
901 initrd_size = get_image_size(initrd_filename);
902 if (initrd_size < 0) {
903 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
904 initrd_filename, strerror(errno));
905 exit(1);
906 }
907
908 initrd_addr = (initrd_max-initrd_size) & ~4095;
909
910 initrd_data = g_malloc(initrd_size);
911 load_image(initrd_filename, initrd_data);
912
913 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
914 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
915 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
916
917 stl_p(header+0x218, initrd_addr);
918 stl_p(header+0x21c, initrd_size);
919 }
920
921 /* load kernel and setup */
922 setup_size = header[0x1f1];
923 if (setup_size == 0) {
924 setup_size = 4;
925 }
926 setup_size = (setup_size+1)*512;
927 kernel_size -= setup_size;
928
929 setup = g_malloc(setup_size);
930 kernel = g_malloc(kernel_size);
931 fseek(f, 0, SEEK_SET);
932 if (fread(setup, 1, setup_size, f) != setup_size) {
933 fprintf(stderr, "fread() failed\n");
934 exit(1);
935 }
936 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
937 fprintf(stderr, "fread() failed\n");
938 exit(1);
939 }
940 fclose(f);
941 memcpy(setup, header, MIN(sizeof(header), setup_size));
942
943 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
944 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
945 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
946
947 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
948 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
949 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
950
951 option_rom[nb_option_roms].name = "linuxboot.bin";
952 option_rom[nb_option_roms].bootindex = 0;
953 nb_option_roms++;
954 }
955
956 #define NE2000_NB_MAX 6
957
958 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
959 0x280, 0x380 };
960 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
961
962 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
963 {
964 static int nb_ne2k = 0;
965
966 if (nb_ne2k == NE2000_NB_MAX)
967 return;
968 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
969 ne2000_irq[nb_ne2k], nd);
970 nb_ne2k++;
971 }
972
973 DeviceState *cpu_get_current_apic(void)
974 {
975 if (current_cpu) {
976 X86CPU *cpu = X86_CPU(current_cpu);
977 return cpu->apic_state;
978 } else {
979 return NULL;
980 }
981 }
982
983 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
984 {
985 X86CPU *cpu = opaque;
986
987 if (level) {
988 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
989 }
990 }
991
992 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
993 DeviceState *icc_bridge, Error **errp)
994 {
995 X86CPU *cpu = NULL;
996 Error *local_err = NULL;
997
998 if (icc_bridge == NULL) {
999 error_setg(&local_err, "Invalid icc-bridge value");
1000 goto out;
1001 }
1002
1003 cpu = cpu_x86_create(cpu_model, &local_err);
1004 if (local_err != NULL) {
1005 goto out;
1006 }
1007
1008 qdev_set_parent_bus(DEVICE(cpu), qdev_get_child_bus(icc_bridge, "icc"));
1009
1010 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1011 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1012
1013 out:
1014 if (local_err) {
1015 error_propagate(errp, local_err);
1016 object_unref(OBJECT(cpu));
1017 cpu = NULL;
1018 }
1019 return cpu;
1020 }
1021
1022 static const char *current_cpu_model;
1023
1024 void pc_hot_add_cpu(const int64_t id, Error **errp)
1025 {
1026 DeviceState *icc_bridge;
1027 X86CPU *cpu;
1028 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1029 Error *local_err = NULL;
1030
1031 if (id < 0) {
1032 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1033 return;
1034 }
1035
1036 if (cpu_exists(apic_id)) {
1037 error_setg(errp, "Unable to add CPU: %" PRIi64
1038 ", it already exists", id);
1039 return;
1040 }
1041
1042 if (id >= max_cpus) {
1043 error_setg(errp, "Unable to add CPU: %" PRIi64
1044 ", max allowed: %d", id, max_cpus - 1);
1045 return;
1046 }
1047
1048 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1049 error_setg(errp, "Unable to add CPU: %" PRIi64
1050 ", resulting APIC ID (%" PRIi64 ") is too large",
1051 id, apic_id);
1052 return;
1053 }
1054
1055 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1056 TYPE_ICC_BRIDGE, NULL));
1057 cpu = pc_new_cpu(current_cpu_model, apic_id, icc_bridge, &local_err);
1058 if (local_err) {
1059 error_propagate(errp, local_err);
1060 return;
1061 }
1062 object_unref(OBJECT(cpu));
1063 }
1064
1065 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1066 {
1067 int i;
1068 X86CPU *cpu = NULL;
1069 Error *error = NULL;
1070 unsigned long apic_id_limit;
1071
1072 /* init CPUs */
1073 if (cpu_model == NULL) {
1074 #ifdef TARGET_X86_64
1075 cpu_model = "qemu64";
1076 #else
1077 cpu_model = "qemu32";
1078 #endif
1079 }
1080 current_cpu_model = cpu_model;
1081
1082 apic_id_limit = pc_apic_id_limit(max_cpus);
1083 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1084 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1085 apic_id_limit - 1);
1086 exit(1);
1087 }
1088
1089 for (i = 0; i < smp_cpus; i++) {
1090 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1091 icc_bridge, &error);
1092 if (error) {
1093 error_report_err(error);
1094 exit(1);
1095 }
1096 object_unref(OBJECT(cpu));
1097 }
1098
1099 /* map APIC MMIO area if CPU has APIC */
1100 if (cpu && cpu->apic_state) {
1101 /* XXX: what if the base changes? */
1102 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1103 APIC_DEFAULT_ADDRESS, 0x1000);
1104 }
1105
1106 /* tell smbios about cpuid version and features */
1107 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1108 }
1109
1110 /* pci-info ROM file. Little endian format */
1111 typedef struct PcRomPciInfo {
1112 uint64_t w32_min;
1113 uint64_t w32_max;
1114 uint64_t w64_min;
1115 uint64_t w64_max;
1116 } PcRomPciInfo;
1117
1118 typedef struct PcGuestInfoState {
1119 PcGuestInfo info;
1120 Notifier machine_done;
1121 } PcGuestInfoState;
1122
1123 static
1124 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1125 {
1126 PcGuestInfoState *guest_info_state = container_of(notifier,
1127 PcGuestInfoState,
1128 machine_done);
1129 acpi_setup(&guest_info_state->info);
1130 }
1131
1132 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1133 ram_addr_t above_4g_mem_size)
1134 {
1135 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1136 PcGuestInfo *guest_info = &guest_info_state->info;
1137 int i, j;
1138
1139 guest_info->ram_size_below_4g = below_4g_mem_size;
1140 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1141 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1142 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1143 guest_info->numa_nodes = nb_numa_nodes;
1144 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1145 sizeof *guest_info->node_mem);
1146 for (i = 0; i < nb_numa_nodes; i++) {
1147 guest_info->node_mem[i] = numa_info[i].node_mem;
1148 }
1149
1150 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1151 sizeof *guest_info->node_cpu);
1152
1153 for (i = 0; i < max_cpus; i++) {
1154 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1155 assert(apic_id < guest_info->apic_id_limit);
1156 for (j = 0; j < nb_numa_nodes; j++) {
1157 if (test_bit(i, numa_info[j].node_cpu)) {
1158 guest_info->node_cpu[apic_id] = j;
1159 break;
1160 }
1161 }
1162 }
1163
1164 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1165 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1166 return guest_info;
1167 }
1168
1169 /* setup pci memory address space mapping into system address space */
1170 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1171 MemoryRegion *pci_address_space)
1172 {
1173 /* Set to lower priority than RAM */
1174 memory_region_add_subregion_overlap(system_memory, 0x0,
1175 pci_address_space, -1);
1176 }
1177
1178 void pc_acpi_init(const char *default_dsdt)
1179 {
1180 char *filename;
1181
1182 if (acpi_tables != NULL) {
1183 /* manually set via -acpitable, leave it alone */
1184 return;
1185 }
1186
1187 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1188 if (filename == NULL) {
1189 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1190 } else {
1191 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1192 &error_abort);
1193 Error *err = NULL;
1194
1195 qemu_opt_set(opts, "file", filename, &error_abort);
1196
1197 acpi_table_add_builtin(opts, &err);
1198 if (err) {
1199 error_report("WARNING: failed to load %s: %s", filename,
1200 error_get_pretty(err));
1201 error_free(err);
1202 }
1203 g_free(filename);
1204 }
1205 }
1206
1207 FWCfgState *xen_load_linux(const char *kernel_filename,
1208 const char *kernel_cmdline,
1209 const char *initrd_filename,
1210 ram_addr_t below_4g_mem_size,
1211 PcGuestInfo *guest_info)
1212 {
1213 int i;
1214 FWCfgState *fw_cfg;
1215
1216 assert(kernel_filename != NULL);
1217
1218 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1219 rom_set_fw(fw_cfg);
1220
1221 load_linux(fw_cfg, kernel_filename, initrd_filename,
1222 kernel_cmdline, below_4g_mem_size);
1223 for (i = 0; i < nb_option_roms; i++) {
1224 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1225 !strcmp(option_rom[i].name, "multiboot.bin"));
1226 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1227 }
1228 guest_info->fw_cfg = fw_cfg;
1229 return fw_cfg;
1230 }
1231
1232 FWCfgState *pc_memory_init(MachineState *machine,
1233 MemoryRegion *system_memory,
1234 ram_addr_t below_4g_mem_size,
1235 ram_addr_t above_4g_mem_size,
1236 MemoryRegion *rom_memory,
1237 MemoryRegion **ram_memory,
1238 PcGuestInfo *guest_info)
1239 {
1240 int linux_boot, i;
1241 MemoryRegion *ram, *option_rom_mr;
1242 MemoryRegion *ram_below_4g, *ram_above_4g;
1243 FWCfgState *fw_cfg;
1244 PCMachineState *pcms = PC_MACHINE(machine);
1245
1246 assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1247
1248 linux_boot = (machine->kernel_filename != NULL);
1249
1250 /* Allocate RAM. We allocate it as a single memory region and use
1251 * aliases to address portions of it, mostly for backwards compatibility
1252 * with older qemus that used qemu_ram_alloc().
1253 */
1254 ram = g_malloc(sizeof(*ram));
1255 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1256 machine->ram_size);
1257 *ram_memory = ram;
1258 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1259 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1260 0, below_4g_mem_size);
1261 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1262 e820_add_entry(0, below_4g_mem_size, E820_RAM);
1263 if (above_4g_mem_size > 0) {
1264 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1265 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1266 below_4g_mem_size, above_4g_mem_size);
1267 memory_region_add_subregion(system_memory, 0x100000000ULL,
1268 ram_above_4g);
1269 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1270 }
1271
1272 if (!guest_info->has_reserved_memory &&
1273 (machine->ram_slots ||
1274 (machine->maxram_size > machine->ram_size))) {
1275 MachineClass *mc = MACHINE_GET_CLASS(machine);
1276
1277 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1278 mc->name);
1279 exit(EXIT_FAILURE);
1280 }
1281
1282 /* initialize hotplug memory address space */
1283 if (guest_info->has_reserved_memory &&
1284 (machine->ram_size < machine->maxram_size)) {
1285 ram_addr_t hotplug_mem_size =
1286 machine->maxram_size - machine->ram_size;
1287
1288 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1289 error_report("unsupported amount of memory slots: %"PRIu64,
1290 machine->ram_slots);
1291 exit(EXIT_FAILURE);
1292 }
1293
1294 if (QEMU_ALIGN_UP(machine->maxram_size,
1295 TARGET_PAGE_SIZE) != machine->maxram_size) {
1296 error_report("maximum memory size must by aligned to multiple of "
1297 "%d bytes", TARGET_PAGE_SIZE);
1298 exit(EXIT_FAILURE);
1299 }
1300
1301 pcms->hotplug_memory_base =
1302 ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1303
1304 if (pcms->enforce_aligned_dimm) {
1305 /* size hotplug region assuming 1G page max alignment per slot */
1306 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1307 }
1308
1309 if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1310 hotplug_mem_size) {
1311 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1312 machine->maxram_size);
1313 exit(EXIT_FAILURE);
1314 }
1315
1316 memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1317 "hotplug-memory", hotplug_mem_size);
1318 memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1319 &pcms->hotplug_memory);
1320 }
1321
1322 /* Initialize PC system firmware */
1323 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1324
1325 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1326 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1327 &error_abort);
1328 vmstate_register_ram_global(option_rom_mr);
1329 memory_region_add_subregion_overlap(rom_memory,
1330 PC_ROM_MIN_VGA,
1331 option_rom_mr,
1332 1);
1333
1334 fw_cfg = bochs_bios_init();
1335 rom_set_fw(fw_cfg);
1336
1337 if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1338 uint64_t *val = g_malloc(sizeof(*val));
1339 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1340 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1341 }
1342
1343 if (linux_boot) {
1344 load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1345 machine->kernel_cmdline, below_4g_mem_size);
1346 }
1347
1348 for (i = 0; i < nb_option_roms; i++) {
1349 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1350 }
1351 guest_info->fw_cfg = fw_cfg;
1352 return fw_cfg;
1353 }
1354
1355 qemu_irq pc_allocate_cpu_irq(void)
1356 {
1357 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1358 }
1359
1360 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1361 {
1362 DeviceState *dev = NULL;
1363
1364 if (pci_bus) {
1365 PCIDevice *pcidev = pci_vga_init(pci_bus);
1366 dev = pcidev ? &pcidev->qdev : NULL;
1367 } else if (isa_bus) {
1368 ISADevice *isadev = isa_vga_init(isa_bus);
1369 dev = isadev ? DEVICE(isadev) : NULL;
1370 }
1371 return dev;
1372 }
1373
1374 static void cpu_request_exit(void *opaque, int irq, int level)
1375 {
1376 CPUState *cpu = current_cpu;
1377
1378 if (cpu && level) {
1379 cpu_exit(cpu);
1380 }
1381 }
1382
1383 static const MemoryRegionOps ioport80_io_ops = {
1384 .write = ioport80_write,
1385 .read = ioport80_read,
1386 .endianness = DEVICE_NATIVE_ENDIAN,
1387 .impl = {
1388 .min_access_size = 1,
1389 .max_access_size = 1,
1390 },
1391 };
1392
1393 static const MemoryRegionOps ioportF0_io_ops = {
1394 .write = ioportF0_write,
1395 .read = ioportF0_read,
1396 .endianness = DEVICE_NATIVE_ENDIAN,
1397 .impl = {
1398 .min_access_size = 1,
1399 .max_access_size = 1,
1400 },
1401 };
1402
1403 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1404 ISADevice **rtc_state,
1405 bool create_fdctrl,
1406 ISADevice **floppy,
1407 bool no_vmport,
1408 uint32 hpet_irqs)
1409 {
1410 int i;
1411 DriveInfo *fd[MAX_FD];
1412 DeviceState *hpet = NULL;
1413 int pit_isa_irq = 0;
1414 qemu_irq pit_alt_irq = NULL;
1415 qemu_irq rtc_irq = NULL;
1416 qemu_irq *a20_line;
1417 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1418 qemu_irq *cpu_exit_irq;
1419 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1420 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1421
1422 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1423 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1424
1425 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1426 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1427
1428 /*
1429 * Check if an HPET shall be created.
1430 *
1431 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1432 * when the HPET wants to take over. Thus we have to disable the latter.
1433 */
1434 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1435 /* In order to set property, here not using sysbus_try_create_simple */
1436 hpet = qdev_try_create(NULL, TYPE_HPET);
1437 if (hpet) {
1438 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1439 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1440 * IRQ8 and IRQ2.
1441 */
1442 uint8_t compat = object_property_get_int(OBJECT(hpet),
1443 HPET_INTCAP, NULL);
1444 if (!compat) {
1445 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1446 }
1447 qdev_init_nofail(hpet);
1448 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1449
1450 for (i = 0; i < GSI_NUM_PINS; i++) {
1451 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1452 }
1453 pit_isa_irq = -1;
1454 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1455 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1456 }
1457 }
1458 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1459
1460 qemu_register_boot_set(pc_boot_set, *rtc_state);
1461
1462 if (!xen_enabled()) {
1463 if (kvm_irqchip_in_kernel()) {
1464 pit = kvm_pit_init(isa_bus, 0x40);
1465 } else {
1466 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1467 }
1468 if (hpet) {
1469 /* connect PIT to output control line of the HPET */
1470 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1471 }
1472 pcspk_init(isa_bus, pit);
1473 }
1474
1475 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1476 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1477
1478 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1479 i8042 = isa_create_simple(isa_bus, "i8042");
1480 i8042_setup_a20_line(i8042, &a20_line[0]);
1481 if (!no_vmport) {
1482 vmport_init(isa_bus);
1483 vmmouse = isa_try_create(isa_bus, "vmmouse");
1484 } else {
1485 vmmouse = NULL;
1486 }
1487 if (vmmouse) {
1488 DeviceState *dev = DEVICE(vmmouse);
1489 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1490 qdev_init_nofail(dev);
1491 }
1492 port92 = isa_create_simple(isa_bus, "port92");
1493 port92_init(port92, &a20_line[1]);
1494
1495 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1496 DMA_init(0, cpu_exit_irq);
1497
1498 for(i = 0; i < MAX_FD; i++) {
1499 fd[i] = drive_get(IF_FLOPPY, 0, i);
1500 create_fdctrl |= !!fd[i];
1501 }
1502 *floppy = create_fdctrl ? fdctrl_init_isa(isa_bus, fd) : NULL;
1503 }
1504
1505 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1506 {
1507 int i;
1508
1509 for (i = 0; i < nb_nics; i++) {
1510 NICInfo *nd = &nd_table[i];
1511
1512 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1513 pc_init_ne2k_isa(isa_bus, nd);
1514 } else {
1515 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1516 }
1517 }
1518 }
1519
1520 void pc_pci_device_init(PCIBus *pci_bus)
1521 {
1522 int max_bus;
1523 int bus;
1524
1525 max_bus = drive_get_max_bus(IF_SCSI);
1526 for (bus = 0; bus <= max_bus; bus++) {
1527 pci_create_simple(pci_bus, -1, "lsi53c895a");
1528 }
1529 }
1530
1531 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1532 {
1533 DeviceState *dev;
1534 SysBusDevice *d;
1535 unsigned int i;
1536
1537 if (kvm_irqchip_in_kernel()) {
1538 dev = qdev_create(NULL, "kvm-ioapic");
1539 } else {
1540 dev = qdev_create(NULL, "ioapic");
1541 }
1542 if (parent_name) {
1543 object_property_add_child(object_resolve_path(parent_name, NULL),
1544 "ioapic", OBJECT(dev), NULL);
1545 }
1546 qdev_init_nofail(dev);
1547 d = SYS_BUS_DEVICE(dev);
1548 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1549
1550 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1551 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1552 }
1553 }
1554
1555 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1556 DeviceState *dev, Error **errp)
1557 {
1558 int slot;
1559 HotplugHandlerClass *hhc;
1560 Error *local_err = NULL;
1561 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1562 MachineState *machine = MACHINE(hotplug_dev);
1563 PCDIMMDevice *dimm = PC_DIMM(dev);
1564 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1565 MemoryRegion *mr = ddc->get_memory_region(dimm);
1566 uint64_t existing_dimms_capacity = 0;
1567 uint64_t align = TARGET_PAGE_SIZE;
1568 uint64_t addr;
1569
1570 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
1571 if (local_err) {
1572 goto out;
1573 }
1574
1575 if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1576 align = memory_region_get_alignment(mr);
1577 }
1578
1579 addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1580 memory_region_size(&pcms->hotplug_memory),
1581 !addr ? NULL : &addr, align,
1582 memory_region_size(mr), &local_err);
1583 if (local_err) {
1584 goto out;
1585 }
1586
1587 existing_dimms_capacity = pc_existing_dimms_capacity(&local_err);
1588 if (local_err) {
1589 goto out;
1590 }
1591
1592 if (existing_dimms_capacity + memory_region_size(mr) >
1593 machine->maxram_size - machine->ram_size) {
1594 error_setg(&local_err, "not enough space, currently 0x%" PRIx64
1595 " in use of total hot pluggable 0x" RAM_ADDR_FMT,
1596 existing_dimms_capacity,
1597 machine->maxram_size - machine->ram_size);
1598 goto out;
1599 }
1600
1601 object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1602 if (local_err) {
1603 goto out;
1604 }
1605 trace_mhp_pc_dimm_assigned_address(addr);
1606
1607 slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1608 if (local_err) {
1609 goto out;
1610 }
1611
1612 slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1613 machine->ram_slots, &local_err);
1614 if (local_err) {
1615 goto out;
1616 }
1617 object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1618 if (local_err) {
1619 goto out;
1620 }
1621 trace_mhp_pc_dimm_assigned_slot(slot);
1622
1623 if (!pcms->acpi_dev) {
1624 error_setg(&local_err,
1625 "memory hotplug is not enabled: missing acpi device");
1626 goto out;
1627 }
1628
1629 if (kvm_enabled() && !kvm_has_free_slot(machine)) {
1630 error_setg(&local_err, "hypervisor has no free memory slots left");
1631 goto out;
1632 }
1633
1634 memory_region_add_subregion(&pcms->hotplug_memory,
1635 addr - pcms->hotplug_memory_base, mr);
1636 vmstate_register_ram(mr, dev);
1637
1638 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1639 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1640 out:
1641 error_propagate(errp, local_err);
1642 }
1643
1644 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1645 DeviceState *dev, Error **errp)
1646 {
1647 HotplugHandlerClass *hhc;
1648 Error *local_err = NULL;
1649 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1650
1651 if (!pcms->acpi_dev) {
1652 error_setg(&local_err,
1653 "memory hotplug is not enabled: missing acpi device");
1654 goto out;
1655 }
1656
1657 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1658 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1659
1660 out:
1661 error_propagate(errp, local_err);
1662 }
1663
1664 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1665 DeviceState *dev, Error **errp)
1666 {
1667 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1668 PCDIMMDevice *dimm = PC_DIMM(dev);
1669 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1670 MemoryRegion *mr = ddc->get_memory_region(dimm);
1671 HotplugHandlerClass *hhc;
1672 Error *local_err = NULL;
1673
1674 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1675 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1676
1677 if (local_err) {
1678 goto out;
1679 }
1680
1681 memory_region_del_subregion(&pcms->hotplug_memory, mr);
1682 vmstate_unregister_ram(mr, dev);
1683
1684 object_unparent(OBJECT(dev));
1685
1686 out:
1687 error_propagate(errp, local_err);
1688 }
1689
1690 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1691 DeviceState *dev, Error **errp)
1692 {
1693 HotplugHandlerClass *hhc;
1694 Error *local_err = NULL;
1695 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1696
1697 if (!dev->hotplugged) {
1698 goto out;
1699 }
1700
1701 if (!pcms->acpi_dev) {
1702 error_setg(&local_err,
1703 "cpu hotplug is not enabled: missing acpi device");
1704 goto out;
1705 }
1706
1707 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1708 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1709 if (local_err) {
1710 goto out;
1711 }
1712
1713 /* increment the number of CPUs */
1714 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1715 out:
1716 error_propagate(errp, local_err);
1717 }
1718
1719 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1720 DeviceState *dev, Error **errp)
1721 {
1722 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1723 pc_dimm_plug(hotplug_dev, dev, errp);
1724 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1725 pc_cpu_plug(hotplug_dev, dev, errp);
1726 }
1727 }
1728
1729 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1730 DeviceState *dev, Error **errp)
1731 {
1732 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1733 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1734 } else {
1735 error_setg(errp, "acpi: device unplug request for not supported device"
1736 " type: %s", object_get_typename(OBJECT(dev)));
1737 }
1738 }
1739
1740 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1741 DeviceState *dev, Error **errp)
1742 {
1743 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1744 pc_dimm_unplug(hotplug_dev, dev, errp);
1745 } else {
1746 error_setg(errp, "acpi: device unplug for not supported device"
1747 " type: %s", object_get_typename(OBJECT(dev)));
1748 }
1749 }
1750
1751 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1752 DeviceState *dev)
1753 {
1754 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1755
1756 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1757 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1758 return HOTPLUG_HANDLER(machine);
1759 }
1760
1761 return pcmc->get_hotplug_handler ?
1762 pcmc->get_hotplug_handler(machine, dev) : NULL;
1763 }
1764
1765 static void
1766 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1767 const char *name, Error **errp)
1768 {
1769 PCMachineState *pcms = PC_MACHINE(obj);
1770 int64_t value = memory_region_size(&pcms->hotplug_memory);
1771
1772 visit_type_int(v, &value, name, errp);
1773 }
1774
1775 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1776 void *opaque, const char *name,
1777 Error **errp)
1778 {
1779 PCMachineState *pcms = PC_MACHINE(obj);
1780 uint64_t value = pcms->max_ram_below_4g;
1781
1782 visit_type_size(v, &value, name, errp);
1783 }
1784
1785 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1786 void *opaque, const char *name,
1787 Error **errp)
1788 {
1789 PCMachineState *pcms = PC_MACHINE(obj);
1790 Error *error = NULL;
1791 uint64_t value;
1792
1793 visit_type_size(v, &value, name, &error);
1794 if (error) {
1795 error_propagate(errp, error);
1796 return;
1797 }
1798 if (value > (1ULL << 32)) {
1799 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1800 "Machine option 'max-ram-below-4g=%"PRIu64
1801 "' expects size less than or equal to 4G", value);
1802 error_propagate(errp, error);
1803 return;
1804 }
1805
1806 if (value < (1ULL << 20)) {
1807 error_report("Warning: small max_ram_below_4g(%"PRIu64
1808 ") less than 1M. BIOS may not work..",
1809 value);
1810 }
1811
1812 pcms->max_ram_below_4g = value;
1813 }
1814
1815 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1816 const char *name, Error **errp)
1817 {
1818 PCMachineState *pcms = PC_MACHINE(obj);
1819 OnOffAuto vmport = pcms->vmport;
1820
1821 visit_type_OnOffAuto(v, &vmport, name, errp);
1822 }
1823
1824 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1825 const char *name, Error **errp)
1826 {
1827 PCMachineState *pcms = PC_MACHINE(obj);
1828
1829 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1830 }
1831
1832 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1833 {
1834 PCMachineState *pcms = PC_MACHINE(obj);
1835
1836 return pcms->enforce_aligned_dimm;
1837 }
1838
1839 static void pc_machine_initfn(Object *obj)
1840 {
1841 PCMachineState *pcms = PC_MACHINE(obj);
1842
1843 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1844 pc_machine_get_hotplug_memory_region_size,
1845 NULL, NULL, NULL, NULL);
1846
1847 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1848 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1849 pc_machine_get_max_ram_below_4g,
1850 pc_machine_set_max_ram_below_4g,
1851 NULL, NULL, NULL);
1852 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1853 "Maximum ram below the 4G boundary (32bit boundary)",
1854 NULL);
1855
1856 pcms->vmport = ON_OFF_AUTO_AUTO;
1857 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1858 pc_machine_get_vmport,
1859 pc_machine_set_vmport,
1860 NULL, NULL, NULL);
1861 object_property_set_description(obj, PC_MACHINE_VMPORT,
1862 "Enable vmport (pc & q35)",
1863 NULL);
1864
1865 pcms->enforce_aligned_dimm = true;
1866 object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1867 pc_machine_get_aligned_dimm,
1868 NULL, NULL);
1869 }
1870
1871 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1872 {
1873 unsigned pkg_id, core_id, smt_id;
1874 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1875 &pkg_id, &core_id, &smt_id);
1876 return pkg_id;
1877 }
1878
1879 static void pc_machine_class_init(ObjectClass *oc, void *data)
1880 {
1881 MachineClass *mc = MACHINE_CLASS(oc);
1882 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1883 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1884
1885 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1886 mc->get_hotplug_handler = pc_get_hotpug_handler;
1887 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1888 hc->plug = pc_machine_device_plug_cb;
1889 hc->unplug_request = pc_machine_device_unplug_request_cb;
1890 hc->unplug = pc_machine_device_unplug_cb;
1891 }
1892
1893 static const TypeInfo pc_machine_info = {
1894 .name = TYPE_PC_MACHINE,
1895 .parent = TYPE_MACHINE,
1896 .abstract = true,
1897 .instance_size = sizeof(PCMachineState),
1898 .instance_init = pc_machine_initfn,
1899 .class_size = sizeof(PCMachineClass),
1900 .class_init = pc_machine_class_init,
1901 .interfaces = (InterfaceInfo[]) {
1902 { TYPE_HOTPLUG_HANDLER },
1903 { }
1904 },
1905 };
1906
1907 static void pc_machine_register_types(void)
1908 {
1909 type_register_static(&pc_machine_info);
1910 }
1911
1912 type_init(pc_machine_register_types)