]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
compat: replace PC_COMPAT_2_8 & HW_COMPAT_2_8 macros
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...) \
83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93
94 #define E820_NR_ENTRIES 16
95
96 struct e820_entry {
97 uint64_t address;
98 uint64_t length;
99 uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 struct e820_table {
103 uint32_t count;
104 struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111
112 GlobalProperty pc_compat_3_1[] = {
113 {
114 .driver = "intel-iommu",
115 .property = "dma-drain",
116 .value = "off",
117 },
118 };
119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
120
121 GlobalProperty pc_compat_3_0[] = {
122 {
123 .driver = TYPE_X86_CPU,
124 .property = "x-hv-synic-kvm-only",
125 .value = "on",
126 },{
127 .driver = "Skylake-Server" "-" TYPE_X86_CPU,
128 .property = "pku",
129 .value = "off",
130 },{
131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU,
132 .property = "pku",
133 .value = "off",
134 },
135 };
136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
137
138 GlobalProperty pc_compat_2_12[] = {
139 {
140 .driver = TYPE_X86_CPU,
141 .property = "legacy-cache",
142 .value = "on",
143 },{
144 .driver = TYPE_X86_CPU,
145 .property = "topoext",
146 .value = "off",
147 },{
148 .driver = "EPYC-" TYPE_X86_CPU,
149 .property = "xlevel",
150 .value = stringify(0x8000000a),
151 },{
152 .driver = "EPYC-IBPB-" TYPE_X86_CPU,
153 .property = "xlevel",
154 .value = stringify(0x8000000a),
155 },
156 };
157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
158
159 GlobalProperty pc_compat_2_11[] = {
160 {
161 .driver = TYPE_X86_CPU,
162 .property = "x-migrate-smi-count",
163 .value = "off",
164 },{
165 .driver = "Skylake-Server" "-" TYPE_X86_CPU,
166 .property = "clflushopt",
167 .value = "off",
168 },
169 };
170 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
171
172 GlobalProperty pc_compat_2_10[] = {
173 {
174 .driver = TYPE_X86_CPU,
175 .property = "x-hv-max-vps",
176 .value = "0x40",
177 },{
178 .driver = "i440FX-pcihost",
179 .property = "x-pci-hole64-fix",
180 .value = "off",
181 },{
182 .driver = "q35-pcihost",
183 .property = "x-pci-hole64-fix",
184 .value = "off",
185 },
186 };
187 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
188
189 GlobalProperty pc_compat_2_9[] = {
190 {
191 .driver = "mch",
192 .property = "extended-tseg-mbytes",
193 .value = stringify(0),
194 },
195 };
196 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
197
198 GlobalProperty pc_compat_2_8[] = {
199 {
200 .driver = TYPE_X86_CPU,
201 .property = "tcg-cpuid",
202 .value = "off",
203 },
204 {
205 .driver = "kvmclock",
206 .property = "x-mach-use-reliable-get-clock",
207 .value = "off",
208 },
209 {
210 .driver = "ICH9-LPC",
211 .property = "x-smi-broadcast",
212 .value = "off",
213 },
214 {
215 .driver = TYPE_X86_CPU,
216 .property = "vmware-cpuid-freq",
217 .value = "off",
218 },
219 {
220 .driver = "Haswell-" TYPE_X86_CPU,
221 .property = "stepping",
222 .value = "1",
223 },
224 };
225 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
226
227 void gsi_handler(void *opaque, int n, int level)
228 {
229 GSIState *s = opaque;
230
231 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
232 if (n < ISA_NUM_IRQS) {
233 qemu_set_irq(s->i8259_irq[n], level);
234 }
235 qemu_set_irq(s->ioapic_irq[n], level);
236 }
237
238 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
239 unsigned size)
240 {
241 }
242
243 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
244 {
245 return 0xffffffffffffffffULL;
246 }
247
248 /* MSDOS compatibility mode FPU exception support */
249 static qemu_irq ferr_irq;
250
251 void pc_register_ferr_irq(qemu_irq irq)
252 {
253 ferr_irq = irq;
254 }
255
256 /* XXX: add IGNNE support */
257 void cpu_set_ferr(CPUX86State *s)
258 {
259 qemu_irq_raise(ferr_irq);
260 }
261
262 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
263 unsigned size)
264 {
265 qemu_irq_lower(ferr_irq);
266 }
267
268 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
269 {
270 return 0xffffffffffffffffULL;
271 }
272
273 /* TSC handling */
274 uint64_t cpu_get_tsc(CPUX86State *env)
275 {
276 return cpu_get_ticks();
277 }
278
279 /* IRQ handling */
280 int cpu_get_pic_interrupt(CPUX86State *env)
281 {
282 X86CPU *cpu = x86_env_get_cpu(env);
283 int intno;
284
285 if (!kvm_irqchip_in_kernel()) {
286 intno = apic_get_interrupt(cpu->apic_state);
287 if (intno >= 0) {
288 return intno;
289 }
290 /* read the irq from the PIC */
291 if (!apic_accept_pic_intr(cpu->apic_state)) {
292 return -1;
293 }
294 }
295
296 intno = pic_read_irq(isa_pic);
297 return intno;
298 }
299
300 static void pic_irq_request(void *opaque, int irq, int level)
301 {
302 CPUState *cs = first_cpu;
303 X86CPU *cpu = X86_CPU(cs);
304
305 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
306 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
307 CPU_FOREACH(cs) {
308 cpu = X86_CPU(cs);
309 if (apic_accept_pic_intr(cpu->apic_state)) {
310 apic_deliver_pic_intr(cpu->apic_state, level);
311 }
312 }
313 } else {
314 if (level) {
315 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
316 } else {
317 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
318 }
319 }
320 }
321
322 /* PC cmos mappings */
323
324 #define REG_EQUIPMENT_BYTE 0x14
325
326 int cmos_get_fd_drive_type(FloppyDriveType fd0)
327 {
328 int val;
329
330 switch (fd0) {
331 case FLOPPY_DRIVE_TYPE_144:
332 /* 1.44 Mb 3"5 drive */
333 val = 4;
334 break;
335 case FLOPPY_DRIVE_TYPE_288:
336 /* 2.88 Mb 3"5 drive */
337 val = 5;
338 break;
339 case FLOPPY_DRIVE_TYPE_120:
340 /* 1.2 Mb 5"5 drive */
341 val = 2;
342 break;
343 case FLOPPY_DRIVE_TYPE_NONE:
344 default:
345 val = 0;
346 break;
347 }
348 return val;
349 }
350
351 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
352 int16_t cylinders, int8_t heads, int8_t sectors)
353 {
354 rtc_set_memory(s, type_ofs, 47);
355 rtc_set_memory(s, info_ofs, cylinders);
356 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
357 rtc_set_memory(s, info_ofs + 2, heads);
358 rtc_set_memory(s, info_ofs + 3, 0xff);
359 rtc_set_memory(s, info_ofs + 4, 0xff);
360 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
361 rtc_set_memory(s, info_ofs + 6, cylinders);
362 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
363 rtc_set_memory(s, info_ofs + 8, sectors);
364 }
365
366 /* convert boot_device letter to something recognizable by the bios */
367 static int boot_device2nibble(char boot_device)
368 {
369 switch(boot_device) {
370 case 'a':
371 case 'b':
372 return 0x01; /* floppy boot */
373 case 'c':
374 return 0x02; /* hard drive boot */
375 case 'd':
376 return 0x03; /* CD-ROM boot */
377 case 'n':
378 return 0x04; /* Network boot */
379 }
380 return 0;
381 }
382
383 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
384 {
385 #define PC_MAX_BOOT_DEVICES 3
386 int nbds, bds[3] = { 0, };
387 int i;
388
389 nbds = strlen(boot_device);
390 if (nbds > PC_MAX_BOOT_DEVICES) {
391 error_setg(errp, "Too many boot devices for PC");
392 return;
393 }
394 for (i = 0; i < nbds; i++) {
395 bds[i] = boot_device2nibble(boot_device[i]);
396 if (bds[i] == 0) {
397 error_setg(errp, "Invalid boot device for PC: '%c'",
398 boot_device[i]);
399 return;
400 }
401 }
402 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
403 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
404 }
405
406 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
407 {
408 set_boot_dev(opaque, boot_device, errp);
409 }
410
411 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
412 {
413 int val, nb, i;
414 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
415 FLOPPY_DRIVE_TYPE_NONE };
416
417 /* floppy type */
418 if (floppy) {
419 for (i = 0; i < 2; i++) {
420 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
421 }
422 }
423 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
424 cmos_get_fd_drive_type(fd_type[1]);
425 rtc_set_memory(rtc_state, 0x10, val);
426
427 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
428 nb = 0;
429 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
430 nb++;
431 }
432 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
433 nb++;
434 }
435 switch (nb) {
436 case 0:
437 break;
438 case 1:
439 val |= 0x01; /* 1 drive, ready for boot */
440 break;
441 case 2:
442 val |= 0x41; /* 2 drives, ready for boot */
443 break;
444 }
445 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
446 }
447
448 typedef struct pc_cmos_init_late_arg {
449 ISADevice *rtc_state;
450 BusState *idebus[2];
451 } pc_cmos_init_late_arg;
452
453 typedef struct check_fdc_state {
454 ISADevice *floppy;
455 bool multiple;
456 } CheckFdcState;
457
458 static int check_fdc(Object *obj, void *opaque)
459 {
460 CheckFdcState *state = opaque;
461 Object *fdc;
462 uint32_t iobase;
463 Error *local_err = NULL;
464
465 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
466 if (!fdc) {
467 return 0;
468 }
469
470 iobase = object_property_get_uint(obj, "iobase", &local_err);
471 if (local_err || iobase != 0x3f0) {
472 error_free(local_err);
473 return 0;
474 }
475
476 if (state->floppy) {
477 state->multiple = true;
478 } else {
479 state->floppy = ISA_DEVICE(obj);
480 }
481 return 0;
482 }
483
484 static const char * const fdc_container_path[] = {
485 "/unattached", "/peripheral", "/peripheral-anon"
486 };
487
488 /*
489 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
490 * and ACPI objects.
491 */
492 ISADevice *pc_find_fdc0(void)
493 {
494 int i;
495 Object *container;
496 CheckFdcState state = { 0 };
497
498 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
499 container = container_get(qdev_get_machine(), fdc_container_path[i]);
500 object_child_foreach(container, check_fdc, &state);
501 }
502
503 if (state.multiple) {
504 warn_report("multiple floppy disk controllers with "
505 "iobase=0x3f0 have been found");
506 error_printf("the one being picked for CMOS setup might not reflect "
507 "your intent");
508 }
509
510 return state.floppy;
511 }
512
513 static void pc_cmos_init_late(void *opaque)
514 {
515 pc_cmos_init_late_arg *arg = opaque;
516 ISADevice *s = arg->rtc_state;
517 int16_t cylinders;
518 int8_t heads, sectors;
519 int val;
520 int i, trans;
521
522 val = 0;
523 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
524 &cylinders, &heads, &sectors) >= 0) {
525 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
526 val |= 0xf0;
527 }
528 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
529 &cylinders, &heads, &sectors) >= 0) {
530 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
531 val |= 0x0f;
532 }
533 rtc_set_memory(s, 0x12, val);
534
535 val = 0;
536 for (i = 0; i < 4; i++) {
537 /* NOTE: ide_get_geometry() returns the physical
538 geometry. It is always such that: 1 <= sects <= 63, 1
539 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
540 geometry can be different if a translation is done. */
541 if (arg->idebus[i / 2] &&
542 ide_get_geometry(arg->idebus[i / 2], i % 2,
543 &cylinders, &heads, &sectors) >= 0) {
544 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
545 assert((trans & ~3) == 0);
546 val |= trans << (i * 2);
547 }
548 }
549 rtc_set_memory(s, 0x39, val);
550
551 pc_cmos_init_floppy(s, pc_find_fdc0());
552
553 qemu_unregister_reset(pc_cmos_init_late, opaque);
554 }
555
556 void pc_cmos_init(PCMachineState *pcms,
557 BusState *idebus0, BusState *idebus1,
558 ISADevice *s)
559 {
560 int val;
561 static pc_cmos_init_late_arg arg;
562
563 /* various important CMOS locations needed by PC/Bochs bios */
564
565 /* memory size */
566 /* base memory (first MiB) */
567 val = MIN(pcms->below_4g_mem_size / KiB, 640);
568 rtc_set_memory(s, 0x15, val);
569 rtc_set_memory(s, 0x16, val >> 8);
570 /* extended memory (next 64MiB) */
571 if (pcms->below_4g_mem_size > 1 * MiB) {
572 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
573 } else {
574 val = 0;
575 }
576 if (val > 65535)
577 val = 65535;
578 rtc_set_memory(s, 0x17, val);
579 rtc_set_memory(s, 0x18, val >> 8);
580 rtc_set_memory(s, 0x30, val);
581 rtc_set_memory(s, 0x31, val >> 8);
582 /* memory between 16MiB and 4GiB */
583 if (pcms->below_4g_mem_size > 16 * MiB) {
584 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
585 } else {
586 val = 0;
587 }
588 if (val > 65535)
589 val = 65535;
590 rtc_set_memory(s, 0x34, val);
591 rtc_set_memory(s, 0x35, val >> 8);
592 /* memory above 4GiB */
593 val = pcms->above_4g_mem_size / 65536;
594 rtc_set_memory(s, 0x5b, val);
595 rtc_set_memory(s, 0x5c, val >> 8);
596 rtc_set_memory(s, 0x5d, val >> 16);
597
598 object_property_add_link(OBJECT(pcms), "rtc_state",
599 TYPE_ISA_DEVICE,
600 (Object **)&pcms->rtc,
601 object_property_allow_set_link,
602 OBJ_PROP_LINK_STRONG, &error_abort);
603 object_property_set_link(OBJECT(pcms), OBJECT(s),
604 "rtc_state", &error_abort);
605
606 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
607
608 val = 0;
609 val |= 0x02; /* FPU is there */
610 val |= 0x04; /* PS/2 mouse installed */
611 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
612
613 /* hard drives and FDC */
614 arg.rtc_state = s;
615 arg.idebus[0] = idebus0;
616 arg.idebus[1] = idebus1;
617 qemu_register_reset(pc_cmos_init_late, &arg);
618 }
619
620 #define TYPE_PORT92 "port92"
621 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
622
623 /* port 92 stuff: could be split off */
624 typedef struct Port92State {
625 ISADevice parent_obj;
626
627 MemoryRegion io;
628 uint8_t outport;
629 qemu_irq a20_out;
630 } Port92State;
631
632 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
633 unsigned size)
634 {
635 Port92State *s = opaque;
636 int oldval = s->outport;
637
638 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
639 s->outport = val;
640 qemu_set_irq(s->a20_out, (val >> 1) & 1);
641 if ((val & 1) && !(oldval & 1)) {
642 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
643 }
644 }
645
646 static uint64_t port92_read(void *opaque, hwaddr addr,
647 unsigned size)
648 {
649 Port92State *s = opaque;
650 uint32_t ret;
651
652 ret = s->outport;
653 DPRINTF("port92: read 0x%02x\n", ret);
654 return ret;
655 }
656
657 static void port92_init(ISADevice *dev, qemu_irq a20_out)
658 {
659 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
660 }
661
662 static const VMStateDescription vmstate_port92_isa = {
663 .name = "port92",
664 .version_id = 1,
665 .minimum_version_id = 1,
666 .fields = (VMStateField[]) {
667 VMSTATE_UINT8(outport, Port92State),
668 VMSTATE_END_OF_LIST()
669 }
670 };
671
672 static void port92_reset(DeviceState *d)
673 {
674 Port92State *s = PORT92(d);
675
676 s->outport &= ~1;
677 }
678
679 static const MemoryRegionOps port92_ops = {
680 .read = port92_read,
681 .write = port92_write,
682 .impl = {
683 .min_access_size = 1,
684 .max_access_size = 1,
685 },
686 .endianness = DEVICE_LITTLE_ENDIAN,
687 };
688
689 static void port92_initfn(Object *obj)
690 {
691 Port92State *s = PORT92(obj);
692
693 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
694
695 s->outport = 0;
696
697 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
698 }
699
700 static void port92_realizefn(DeviceState *dev, Error **errp)
701 {
702 ISADevice *isadev = ISA_DEVICE(dev);
703 Port92State *s = PORT92(dev);
704
705 isa_register_ioport(isadev, &s->io, 0x92);
706 }
707
708 static void port92_class_initfn(ObjectClass *klass, void *data)
709 {
710 DeviceClass *dc = DEVICE_CLASS(klass);
711
712 dc->realize = port92_realizefn;
713 dc->reset = port92_reset;
714 dc->vmsd = &vmstate_port92_isa;
715 /*
716 * Reason: unlike ordinary ISA devices, this one needs additional
717 * wiring: its A20 output line needs to be wired up by
718 * port92_init().
719 */
720 dc->user_creatable = false;
721 }
722
723 static const TypeInfo port92_info = {
724 .name = TYPE_PORT92,
725 .parent = TYPE_ISA_DEVICE,
726 .instance_size = sizeof(Port92State),
727 .instance_init = port92_initfn,
728 .class_init = port92_class_initfn,
729 };
730
731 static void port92_register_types(void)
732 {
733 type_register_static(&port92_info);
734 }
735
736 type_init(port92_register_types)
737
738 static void handle_a20_line_change(void *opaque, int irq, int level)
739 {
740 X86CPU *cpu = opaque;
741
742 /* XXX: send to all CPUs ? */
743 /* XXX: add logic to handle multiple A20 line sources */
744 x86_cpu_set_a20(cpu, level);
745 }
746
747 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
748 {
749 int index = le32_to_cpu(e820_reserve.count);
750 struct e820_entry *entry;
751
752 if (type != E820_RAM) {
753 /* old FW_CFG_E820_TABLE entry -- reservations only */
754 if (index >= E820_NR_ENTRIES) {
755 return -EBUSY;
756 }
757 entry = &e820_reserve.entry[index++];
758
759 entry->address = cpu_to_le64(address);
760 entry->length = cpu_to_le64(length);
761 entry->type = cpu_to_le32(type);
762
763 e820_reserve.count = cpu_to_le32(index);
764 }
765
766 /* new "etc/e820" file -- include ram too */
767 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
768 e820_table[e820_entries].address = cpu_to_le64(address);
769 e820_table[e820_entries].length = cpu_to_le64(length);
770 e820_table[e820_entries].type = cpu_to_le32(type);
771 e820_entries++;
772
773 return e820_entries;
774 }
775
776 int e820_get_num_entries(void)
777 {
778 return e820_entries;
779 }
780
781 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
782 {
783 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
784 *address = le64_to_cpu(e820_table[idx].address);
785 *length = le64_to_cpu(e820_table[idx].length);
786 return true;
787 }
788 return false;
789 }
790
791 /* Enables contiguous-apic-ID mode, for compatibility */
792 static bool compat_apic_id_mode;
793
794 void enable_compat_apic_id_mode(void)
795 {
796 compat_apic_id_mode = true;
797 }
798
799 /* Calculates initial APIC ID for a specific CPU index
800 *
801 * Currently we need to be able to calculate the APIC ID from the CPU index
802 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
803 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
804 * all CPUs up to max_cpus.
805 */
806 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
807 {
808 uint32_t correct_id;
809 static bool warned;
810
811 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
812 if (compat_apic_id_mode) {
813 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
814 error_report("APIC IDs set in compatibility mode, "
815 "CPU topology won't match the configuration");
816 warned = true;
817 }
818 return cpu_index;
819 } else {
820 return correct_id;
821 }
822 }
823
824 static void pc_build_smbios(PCMachineState *pcms)
825 {
826 uint8_t *smbios_tables, *smbios_anchor;
827 size_t smbios_tables_len, smbios_anchor_len;
828 struct smbios_phys_mem_area *mem_array;
829 unsigned i, array_count;
830 MachineState *ms = MACHINE(pcms);
831 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
832
833 /* tell smbios about cpuid version and features */
834 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
835
836 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
837 if (smbios_tables) {
838 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
839 smbios_tables, smbios_tables_len);
840 }
841
842 /* build the array of physical mem area from e820 table */
843 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
844 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
845 uint64_t addr, len;
846
847 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
848 mem_array[array_count].address = addr;
849 mem_array[array_count].length = len;
850 array_count++;
851 }
852 }
853 smbios_get_tables(mem_array, array_count,
854 &smbios_tables, &smbios_tables_len,
855 &smbios_anchor, &smbios_anchor_len);
856 g_free(mem_array);
857
858 if (smbios_anchor) {
859 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
860 smbios_tables, smbios_tables_len);
861 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
862 smbios_anchor, smbios_anchor_len);
863 }
864 }
865
866 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
867 {
868 FWCfgState *fw_cfg;
869 uint64_t *numa_fw_cfg;
870 int i;
871 const CPUArchIdList *cpus;
872 MachineClass *mc = MACHINE_GET_CLASS(pcms);
873
874 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
875 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
876
877 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
878 *
879 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
880 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
881 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
882 * for CPU hotplug also uses APIC ID and not "CPU index".
883 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
884 * but the "limit to the APIC ID values SeaBIOS may see".
885 *
886 * So for compatibility reasons with old BIOSes we are stuck with
887 * "etc/max-cpus" actually being apic_id_limit
888 */
889 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
890 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
891 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
892 acpi_tables, acpi_tables_len);
893 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
894
895 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
896 &e820_reserve, sizeof(e820_reserve));
897 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
898 sizeof(struct e820_entry) * e820_entries);
899
900 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
901 /* allocate memory for the NUMA channel: one (64bit) word for the number
902 * of nodes, one word for each VCPU->node and one word for each node to
903 * hold the amount of memory.
904 */
905 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
906 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
907 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
908 for (i = 0; i < cpus->len; i++) {
909 unsigned int apic_id = cpus->cpus[i].arch_id;
910 assert(apic_id < pcms->apic_id_limit);
911 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
912 }
913 for (i = 0; i < nb_numa_nodes; i++) {
914 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
915 cpu_to_le64(numa_info[i].node_mem);
916 }
917 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
918 (1 + pcms->apic_id_limit + nb_numa_nodes) *
919 sizeof(*numa_fw_cfg));
920
921 return fw_cfg;
922 }
923
924 static long get_file_size(FILE *f)
925 {
926 long where, size;
927
928 /* XXX: on Unix systems, using fstat() probably makes more sense */
929
930 where = ftell(f);
931 fseek(f, 0, SEEK_END);
932 size = ftell(f);
933 fseek(f, where, SEEK_SET);
934
935 return size;
936 }
937
938 /* setup_data types */
939 #define SETUP_NONE 0
940 #define SETUP_E820_EXT 1
941 #define SETUP_DTB 2
942 #define SETUP_PCI 3
943 #define SETUP_EFI 4
944
945 struct setup_data {
946 uint64_t next;
947 uint32_t type;
948 uint32_t len;
949 uint8_t data[0];
950 } __attribute__((packed));
951
952 static void load_linux(PCMachineState *pcms,
953 FWCfgState *fw_cfg)
954 {
955 uint16_t protocol;
956 int setup_size, kernel_size, cmdline_size;
957 int dtb_size, setup_data_offset;
958 uint32_t initrd_max;
959 uint8_t header[8192], *setup, *kernel;
960 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
961 FILE *f;
962 char *vmode;
963 MachineState *machine = MACHINE(pcms);
964 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
965 struct setup_data *setup_data;
966 const char *kernel_filename = machine->kernel_filename;
967 const char *initrd_filename = machine->initrd_filename;
968 const char *dtb_filename = machine->dtb;
969 const char *kernel_cmdline = machine->kernel_cmdline;
970
971 /* Align to 16 bytes as a paranoia measure */
972 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
973
974 /* load the kernel header */
975 f = fopen(kernel_filename, "rb");
976 if (!f || !(kernel_size = get_file_size(f)) ||
977 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
978 MIN(ARRAY_SIZE(header), kernel_size)) {
979 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
980 kernel_filename, strerror(errno));
981 exit(1);
982 }
983
984 /* kernel protocol version */
985 #if 0
986 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
987 #endif
988 if (ldl_p(header+0x202) == 0x53726448) {
989 protocol = lduw_p(header+0x206);
990 } else {
991 /* This looks like a multiboot kernel. If it is, let's stop
992 treating it like a Linux kernel. */
993 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
994 kernel_cmdline, kernel_size, header)) {
995 return;
996 }
997 protocol = 0;
998 }
999
1000 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1001 /* Low kernel */
1002 real_addr = 0x90000;
1003 cmdline_addr = 0x9a000 - cmdline_size;
1004 prot_addr = 0x10000;
1005 } else if (protocol < 0x202) {
1006 /* High but ancient kernel */
1007 real_addr = 0x90000;
1008 cmdline_addr = 0x9a000 - cmdline_size;
1009 prot_addr = 0x100000;
1010 } else {
1011 /* High and recent kernel */
1012 real_addr = 0x10000;
1013 cmdline_addr = 0x20000;
1014 prot_addr = 0x100000;
1015 }
1016
1017 #if 0
1018 fprintf(stderr,
1019 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1020 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1021 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1022 real_addr,
1023 cmdline_addr,
1024 prot_addr);
1025 #endif
1026
1027 /* highest address for loading the initrd */
1028 if (protocol >= 0x203) {
1029 initrd_max = ldl_p(header+0x22c);
1030 } else {
1031 initrd_max = 0x37ffffff;
1032 }
1033
1034 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1035 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1036 }
1037
1038 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1039 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1040 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1041
1042 if (protocol >= 0x202) {
1043 stl_p(header+0x228, cmdline_addr);
1044 } else {
1045 stw_p(header+0x20, 0xA33F);
1046 stw_p(header+0x22, cmdline_addr-real_addr);
1047 }
1048
1049 /* handle vga= parameter */
1050 vmode = strstr(kernel_cmdline, "vga=");
1051 if (vmode) {
1052 unsigned int video_mode;
1053 /* skip "vga=" */
1054 vmode += 4;
1055 if (!strncmp(vmode, "normal", 6)) {
1056 video_mode = 0xffff;
1057 } else if (!strncmp(vmode, "ext", 3)) {
1058 video_mode = 0xfffe;
1059 } else if (!strncmp(vmode, "ask", 3)) {
1060 video_mode = 0xfffd;
1061 } else {
1062 video_mode = strtol(vmode, NULL, 0);
1063 }
1064 stw_p(header+0x1fa, video_mode);
1065 }
1066
1067 /* loader type */
1068 /* High nybble = B reserved for QEMU; low nybble is revision number.
1069 If this code is substantially changed, you may want to consider
1070 incrementing the revision. */
1071 if (protocol >= 0x200) {
1072 header[0x210] = 0xB0;
1073 }
1074 /* heap */
1075 if (protocol >= 0x201) {
1076 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1077 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1078 }
1079
1080 /* load initrd */
1081 if (initrd_filename) {
1082 gsize initrd_size;
1083 gchar *initrd_data;
1084 GError *gerr = NULL;
1085
1086 if (protocol < 0x200) {
1087 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1088 exit(1);
1089 }
1090
1091 if (!g_file_get_contents(initrd_filename, &initrd_data,
1092 &initrd_size, &gerr)) {
1093 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1094 initrd_filename, gerr->message);
1095 exit(1);
1096 }
1097 if (initrd_size >= initrd_max) {
1098 fprintf(stderr, "qemu: initrd is too large, cannot support."
1099 "(max: %"PRIu32", need %"PRId64")\n",
1100 initrd_max, (uint64_t)initrd_size);
1101 exit(1);
1102 }
1103
1104 initrd_addr = (initrd_max-initrd_size) & ~4095;
1105
1106 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1107 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1108 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1109
1110 stl_p(header+0x218, initrd_addr);
1111 stl_p(header+0x21c, initrd_size);
1112 }
1113
1114 /* load kernel and setup */
1115 setup_size = header[0x1f1];
1116 if (setup_size == 0) {
1117 setup_size = 4;
1118 }
1119 setup_size = (setup_size+1)*512;
1120 if (setup_size > kernel_size) {
1121 fprintf(stderr, "qemu: invalid kernel header\n");
1122 exit(1);
1123 }
1124 kernel_size -= setup_size;
1125
1126 setup = g_malloc(setup_size);
1127 kernel = g_malloc(kernel_size);
1128 fseek(f, 0, SEEK_SET);
1129 if (fread(setup, 1, setup_size, f) != setup_size) {
1130 fprintf(stderr, "fread() failed\n");
1131 exit(1);
1132 }
1133 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1134 fprintf(stderr, "fread() failed\n");
1135 exit(1);
1136 }
1137 fclose(f);
1138
1139 /* append dtb to kernel */
1140 if (dtb_filename) {
1141 if (protocol < 0x209) {
1142 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1143 exit(1);
1144 }
1145
1146 dtb_size = get_image_size(dtb_filename);
1147 if (dtb_size <= 0) {
1148 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1149 dtb_filename, strerror(errno));
1150 exit(1);
1151 }
1152
1153 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1154 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1155 kernel = g_realloc(kernel, kernel_size);
1156
1157 stq_p(header+0x250, prot_addr + setup_data_offset);
1158
1159 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1160 setup_data->next = 0;
1161 setup_data->type = cpu_to_le32(SETUP_DTB);
1162 setup_data->len = cpu_to_le32(dtb_size);
1163
1164 load_image_size(dtb_filename, setup_data->data, dtb_size);
1165 }
1166
1167 memcpy(setup, header, MIN(sizeof(header), setup_size));
1168
1169 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1170 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1171 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1172
1173 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1174 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1175 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1176
1177 option_rom[nb_option_roms].bootindex = 0;
1178 option_rom[nb_option_roms].name = "linuxboot.bin";
1179 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1180 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1181 }
1182 nb_option_roms++;
1183 }
1184
1185 #define NE2000_NB_MAX 6
1186
1187 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1188 0x280, 0x380 };
1189 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1190
1191 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1192 {
1193 static int nb_ne2k = 0;
1194
1195 if (nb_ne2k == NE2000_NB_MAX)
1196 return;
1197 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1198 ne2000_irq[nb_ne2k], nd);
1199 nb_ne2k++;
1200 }
1201
1202 DeviceState *cpu_get_current_apic(void)
1203 {
1204 if (current_cpu) {
1205 X86CPU *cpu = X86_CPU(current_cpu);
1206 return cpu->apic_state;
1207 } else {
1208 return NULL;
1209 }
1210 }
1211
1212 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1213 {
1214 X86CPU *cpu = opaque;
1215
1216 if (level) {
1217 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1218 }
1219 }
1220
1221 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1222 {
1223 Object *cpu = NULL;
1224 Error *local_err = NULL;
1225
1226 cpu = object_new(typename);
1227
1228 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1229 object_property_set_bool(cpu, true, "realized", &local_err);
1230
1231 object_unref(cpu);
1232 error_propagate(errp, local_err);
1233 }
1234
1235 void pc_hot_add_cpu(const int64_t id, Error **errp)
1236 {
1237 MachineState *ms = MACHINE(qdev_get_machine());
1238 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1239 Error *local_err = NULL;
1240
1241 if (id < 0) {
1242 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1243 return;
1244 }
1245
1246 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1247 error_setg(errp, "Unable to add CPU: %" PRIi64
1248 ", resulting APIC ID (%" PRIi64 ") is too large",
1249 id, apic_id);
1250 return;
1251 }
1252
1253 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1254 if (local_err) {
1255 error_propagate(errp, local_err);
1256 return;
1257 }
1258 }
1259
1260 void pc_cpus_init(PCMachineState *pcms)
1261 {
1262 int i;
1263 const CPUArchIdList *possible_cpus;
1264 MachineState *ms = MACHINE(pcms);
1265 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1266
1267 /* Calculates the limit to CPU APIC ID values
1268 *
1269 * Limit for the APIC ID value, so that all
1270 * CPU APIC IDs are < pcms->apic_id_limit.
1271 *
1272 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1273 */
1274 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1275 possible_cpus = mc->possible_cpu_arch_ids(ms);
1276 for (i = 0; i < smp_cpus; i++) {
1277 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1278 &error_fatal);
1279 }
1280 }
1281
1282 static void pc_build_feature_control_file(PCMachineState *pcms)
1283 {
1284 MachineState *ms = MACHINE(pcms);
1285 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1286 CPUX86State *env = &cpu->env;
1287 uint32_t unused, ecx, edx;
1288 uint64_t feature_control_bits = 0;
1289 uint64_t *val;
1290
1291 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1292 if (ecx & CPUID_EXT_VMX) {
1293 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1294 }
1295
1296 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1297 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1298 (env->mcg_cap & MCG_LMCE_P)) {
1299 feature_control_bits |= FEATURE_CONTROL_LMCE;
1300 }
1301
1302 if (!feature_control_bits) {
1303 return;
1304 }
1305
1306 val = g_malloc(sizeof(*val));
1307 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1308 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1309 }
1310
1311 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1312 {
1313 if (cpus_count > 0xff) {
1314 /* If the number of CPUs can't be represented in 8 bits, the
1315 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1316 * to make old BIOSes fail more predictably.
1317 */
1318 rtc_set_memory(rtc, 0x5f, 0);
1319 } else {
1320 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1321 }
1322 }
1323
1324 static
1325 void pc_machine_done(Notifier *notifier, void *data)
1326 {
1327 PCMachineState *pcms = container_of(notifier,
1328 PCMachineState, machine_done);
1329 PCIBus *bus = pcms->bus;
1330
1331 /* set the number of CPUs */
1332 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1333
1334 if (bus) {
1335 int extra_hosts = 0;
1336
1337 QLIST_FOREACH(bus, &bus->child, sibling) {
1338 /* look for expander root buses */
1339 if (pci_bus_is_root(bus)) {
1340 extra_hosts++;
1341 }
1342 }
1343 if (extra_hosts && pcms->fw_cfg) {
1344 uint64_t *val = g_malloc(sizeof(*val));
1345 *val = cpu_to_le64(extra_hosts);
1346 fw_cfg_add_file(pcms->fw_cfg,
1347 "etc/extra-pci-roots", val, sizeof(*val));
1348 }
1349 }
1350
1351 acpi_setup();
1352 if (pcms->fw_cfg) {
1353 pc_build_smbios(pcms);
1354 pc_build_feature_control_file(pcms);
1355 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1356 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1357 }
1358
1359 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1360 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1361
1362 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1363 iommu->intr_eim != ON_OFF_AUTO_ON) {
1364 error_report("current -smp configuration requires "
1365 "Extended Interrupt Mode enabled. "
1366 "You can add an IOMMU using: "
1367 "-device intel-iommu,intremap=on,eim=on");
1368 exit(EXIT_FAILURE);
1369 }
1370 }
1371 }
1372
1373 void pc_guest_info_init(PCMachineState *pcms)
1374 {
1375 int i;
1376
1377 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1378 pcms->numa_nodes = nb_numa_nodes;
1379 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1380 sizeof *pcms->node_mem);
1381 for (i = 0; i < nb_numa_nodes; i++) {
1382 pcms->node_mem[i] = numa_info[i].node_mem;
1383 }
1384
1385 pcms->machine_done.notify = pc_machine_done;
1386 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1387 }
1388
1389 /* setup pci memory address space mapping into system address space */
1390 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1391 MemoryRegion *pci_address_space)
1392 {
1393 /* Set to lower priority than RAM */
1394 memory_region_add_subregion_overlap(system_memory, 0x0,
1395 pci_address_space, -1);
1396 }
1397
1398 void pc_acpi_init(const char *default_dsdt)
1399 {
1400 char *filename;
1401
1402 if (acpi_tables != NULL) {
1403 /* manually set via -acpitable, leave it alone */
1404 return;
1405 }
1406
1407 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1408 if (filename == NULL) {
1409 warn_report("failed to find %s", default_dsdt);
1410 } else {
1411 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1412 &error_abort);
1413 Error *err = NULL;
1414
1415 qemu_opt_set(opts, "file", filename, &error_abort);
1416
1417 acpi_table_add_builtin(opts, &err);
1418 if (err) {
1419 warn_reportf_err(err, "failed to load %s: ", filename);
1420 }
1421 g_free(filename);
1422 }
1423 }
1424
1425 void xen_load_linux(PCMachineState *pcms)
1426 {
1427 int i;
1428 FWCfgState *fw_cfg;
1429
1430 assert(MACHINE(pcms)->kernel_filename != NULL);
1431
1432 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1433 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1434 rom_set_fw(fw_cfg);
1435
1436 load_linux(pcms, fw_cfg);
1437 for (i = 0; i < nb_option_roms; i++) {
1438 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1439 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1440 !strcmp(option_rom[i].name, "multiboot.bin"));
1441 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1442 }
1443 pcms->fw_cfg = fw_cfg;
1444 }
1445
1446 void pc_memory_init(PCMachineState *pcms,
1447 MemoryRegion *system_memory,
1448 MemoryRegion *rom_memory,
1449 MemoryRegion **ram_memory)
1450 {
1451 int linux_boot, i;
1452 MemoryRegion *ram, *option_rom_mr;
1453 MemoryRegion *ram_below_4g, *ram_above_4g;
1454 FWCfgState *fw_cfg;
1455 MachineState *machine = MACHINE(pcms);
1456 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1457
1458 assert(machine->ram_size == pcms->below_4g_mem_size +
1459 pcms->above_4g_mem_size);
1460
1461 linux_boot = (machine->kernel_filename != NULL);
1462
1463 /* Allocate RAM. We allocate it as a single memory region and use
1464 * aliases to address portions of it, mostly for backwards compatibility
1465 * with older qemus that used qemu_ram_alloc().
1466 */
1467 ram = g_malloc(sizeof(*ram));
1468 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1469 machine->ram_size);
1470 *ram_memory = ram;
1471 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1472 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1473 0, pcms->below_4g_mem_size);
1474 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1475 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1476 if (pcms->above_4g_mem_size > 0) {
1477 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1478 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1479 pcms->below_4g_mem_size,
1480 pcms->above_4g_mem_size);
1481 memory_region_add_subregion(system_memory, 0x100000000ULL,
1482 ram_above_4g);
1483 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1484 }
1485
1486 if (!pcmc->has_reserved_memory &&
1487 (machine->ram_slots ||
1488 (machine->maxram_size > machine->ram_size))) {
1489 MachineClass *mc = MACHINE_GET_CLASS(machine);
1490
1491 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1492 mc->name);
1493 exit(EXIT_FAILURE);
1494 }
1495
1496 /* always allocate the device memory information */
1497 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1498
1499 /* initialize device memory address space */
1500 if (pcmc->has_reserved_memory &&
1501 (machine->ram_size < machine->maxram_size)) {
1502 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1503
1504 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1505 error_report("unsupported amount of memory slots: %"PRIu64,
1506 machine->ram_slots);
1507 exit(EXIT_FAILURE);
1508 }
1509
1510 if (QEMU_ALIGN_UP(machine->maxram_size,
1511 TARGET_PAGE_SIZE) != machine->maxram_size) {
1512 error_report("maximum memory size must by aligned to multiple of "
1513 "%d bytes", TARGET_PAGE_SIZE);
1514 exit(EXIT_FAILURE);
1515 }
1516
1517 machine->device_memory->base =
1518 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1519
1520 if (pcmc->enforce_aligned_dimm) {
1521 /* size device region assuming 1G page max alignment per slot */
1522 device_mem_size += (1 * GiB) * machine->ram_slots;
1523 }
1524
1525 if ((machine->device_memory->base + device_mem_size) <
1526 device_mem_size) {
1527 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1528 machine->maxram_size);
1529 exit(EXIT_FAILURE);
1530 }
1531
1532 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1533 "device-memory", device_mem_size);
1534 memory_region_add_subregion(system_memory, machine->device_memory->base,
1535 &machine->device_memory->mr);
1536 }
1537
1538 /* Initialize PC system firmware */
1539 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1540
1541 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1542 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1543 &error_fatal);
1544 if (pcmc->pci_enabled) {
1545 memory_region_set_readonly(option_rom_mr, true);
1546 }
1547 memory_region_add_subregion_overlap(rom_memory,
1548 PC_ROM_MIN_VGA,
1549 option_rom_mr,
1550 1);
1551
1552 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1553
1554 rom_set_fw(fw_cfg);
1555
1556 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1557 uint64_t *val = g_malloc(sizeof(*val));
1558 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1559 uint64_t res_mem_end = machine->device_memory->base;
1560
1561 if (!pcmc->broken_reserved_end) {
1562 res_mem_end += memory_region_size(&machine->device_memory->mr);
1563 }
1564 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1565 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1566 }
1567
1568 if (linux_boot) {
1569 load_linux(pcms, fw_cfg);
1570 }
1571
1572 for (i = 0; i < nb_option_roms; i++) {
1573 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1574 }
1575 pcms->fw_cfg = fw_cfg;
1576
1577 /* Init default IOAPIC address space */
1578 pcms->ioapic_as = &address_space_memory;
1579 }
1580
1581 /*
1582 * The 64bit pci hole starts after "above 4G RAM" and
1583 * potentially the space reserved for memory hotplug.
1584 */
1585 uint64_t pc_pci_hole64_start(void)
1586 {
1587 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1588 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1589 MachineState *ms = MACHINE(pcms);
1590 uint64_t hole64_start = 0;
1591
1592 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1593 hole64_start = ms->device_memory->base;
1594 if (!pcmc->broken_reserved_end) {
1595 hole64_start += memory_region_size(&ms->device_memory->mr);
1596 }
1597 } else {
1598 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1599 }
1600
1601 return ROUND_UP(hole64_start, 1 * GiB);
1602 }
1603
1604 qemu_irq pc_allocate_cpu_irq(void)
1605 {
1606 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1607 }
1608
1609 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1610 {
1611 DeviceState *dev = NULL;
1612
1613 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1614 if (pci_bus) {
1615 PCIDevice *pcidev = pci_vga_init(pci_bus);
1616 dev = pcidev ? &pcidev->qdev : NULL;
1617 } else if (isa_bus) {
1618 ISADevice *isadev = isa_vga_init(isa_bus);
1619 dev = isadev ? DEVICE(isadev) : NULL;
1620 }
1621 rom_reset_order_override();
1622 return dev;
1623 }
1624
1625 static const MemoryRegionOps ioport80_io_ops = {
1626 .write = ioport80_write,
1627 .read = ioport80_read,
1628 .endianness = DEVICE_NATIVE_ENDIAN,
1629 .impl = {
1630 .min_access_size = 1,
1631 .max_access_size = 1,
1632 },
1633 };
1634
1635 static const MemoryRegionOps ioportF0_io_ops = {
1636 .write = ioportF0_write,
1637 .read = ioportF0_read,
1638 .endianness = DEVICE_NATIVE_ENDIAN,
1639 .impl = {
1640 .min_access_size = 1,
1641 .max_access_size = 1,
1642 },
1643 };
1644
1645 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1646 {
1647 int i;
1648 DriveInfo *fd[MAX_FD];
1649 qemu_irq *a20_line;
1650 ISADevice *i8042, *port92, *vmmouse;
1651
1652 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1653 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1654
1655 for (i = 0; i < MAX_FD; i++) {
1656 fd[i] = drive_get(IF_FLOPPY, 0, i);
1657 create_fdctrl |= !!fd[i];
1658 }
1659 if (create_fdctrl) {
1660 fdctrl_init_isa(isa_bus, fd);
1661 }
1662
1663 i8042 = isa_create_simple(isa_bus, "i8042");
1664 if (!no_vmport) {
1665 vmport_init(isa_bus);
1666 vmmouse = isa_try_create(isa_bus, "vmmouse");
1667 } else {
1668 vmmouse = NULL;
1669 }
1670 if (vmmouse) {
1671 DeviceState *dev = DEVICE(vmmouse);
1672 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1673 qdev_init_nofail(dev);
1674 }
1675 port92 = isa_create_simple(isa_bus, "port92");
1676
1677 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1678 i8042_setup_a20_line(i8042, a20_line[0]);
1679 port92_init(port92, a20_line[1]);
1680 g_free(a20_line);
1681 }
1682
1683 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1684 ISADevice **rtc_state,
1685 bool create_fdctrl,
1686 bool no_vmport,
1687 bool has_pit,
1688 uint32_t hpet_irqs)
1689 {
1690 int i;
1691 DeviceState *hpet = NULL;
1692 int pit_isa_irq = 0;
1693 qemu_irq pit_alt_irq = NULL;
1694 qemu_irq rtc_irq = NULL;
1695 ISADevice *pit = NULL;
1696 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1697 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1698
1699 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1700 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1701
1702 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1703 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1704
1705 /*
1706 * Check if an HPET shall be created.
1707 *
1708 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1709 * when the HPET wants to take over. Thus we have to disable the latter.
1710 */
1711 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1712 /* In order to set property, here not using sysbus_try_create_simple */
1713 hpet = qdev_try_create(NULL, TYPE_HPET);
1714 if (hpet) {
1715 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1716 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1717 * IRQ8 and IRQ2.
1718 */
1719 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1720 HPET_INTCAP, NULL);
1721 if (!compat) {
1722 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1723 }
1724 qdev_init_nofail(hpet);
1725 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1726
1727 for (i = 0; i < GSI_NUM_PINS; i++) {
1728 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1729 }
1730 pit_isa_irq = -1;
1731 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1732 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1733 }
1734 }
1735 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1736
1737 qemu_register_boot_set(pc_boot_set, *rtc_state);
1738
1739 if (!xen_enabled() && has_pit) {
1740 if (kvm_pit_in_kernel()) {
1741 pit = kvm_pit_init(isa_bus, 0x40);
1742 } else {
1743 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1744 }
1745 if (hpet) {
1746 /* connect PIT to output control line of the HPET */
1747 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1748 }
1749 pcspk_init(isa_bus, pit);
1750 }
1751
1752 i8257_dma_init(isa_bus, 0);
1753
1754 /* Super I/O */
1755 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1756 }
1757
1758 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1759 {
1760 int i;
1761
1762 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1763 for (i = 0; i < nb_nics; i++) {
1764 NICInfo *nd = &nd_table[i];
1765 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1766
1767 if (g_str_equal(model, "ne2k_isa")) {
1768 pc_init_ne2k_isa(isa_bus, nd);
1769 } else {
1770 pci_nic_init_nofail(nd, pci_bus, model, NULL);
1771 }
1772 }
1773 rom_reset_order_override();
1774 }
1775
1776 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1777 {
1778 DeviceState *dev;
1779 SysBusDevice *d;
1780 unsigned int i;
1781
1782 if (kvm_ioapic_in_kernel()) {
1783 dev = qdev_create(NULL, "kvm-ioapic");
1784 } else {
1785 dev = qdev_create(NULL, "ioapic");
1786 }
1787 if (parent_name) {
1788 object_property_add_child(object_resolve_path(parent_name, NULL),
1789 "ioapic", OBJECT(dev), NULL);
1790 }
1791 qdev_init_nofail(dev);
1792 d = SYS_BUS_DEVICE(dev);
1793 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1794
1795 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1796 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1797 }
1798 }
1799
1800 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1801 Error **errp)
1802 {
1803 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1804 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1805 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1806 const uint64_t legacy_align = TARGET_PAGE_SIZE;
1807
1808 /*
1809 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1810 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1811 * addition to cover this case.
1812 */
1813 if (!pcms->acpi_dev || !acpi_enabled) {
1814 error_setg(errp,
1815 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1816 return;
1817 }
1818
1819 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1820 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1821 return;
1822 }
1823
1824 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1825 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1826 }
1827
1828 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1829 DeviceState *dev, Error **errp)
1830 {
1831 HotplugHandlerClass *hhc;
1832 Error *local_err = NULL;
1833 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1834 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1835
1836 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1837 if (local_err) {
1838 goto out;
1839 }
1840
1841 if (is_nvdimm) {
1842 nvdimm_plug(&pcms->acpi_nvdimm_state);
1843 }
1844
1845 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1846 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1847 out:
1848 error_propagate(errp, local_err);
1849 }
1850
1851 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1852 DeviceState *dev, Error **errp)
1853 {
1854 HotplugHandlerClass *hhc;
1855 Error *local_err = NULL;
1856 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1857
1858 /*
1859 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1860 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1861 * addition to cover this case.
1862 */
1863 if (!pcms->acpi_dev || !acpi_enabled) {
1864 error_setg(&local_err,
1865 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1866 goto out;
1867 }
1868
1869 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1870 error_setg(&local_err,
1871 "nvdimm device hot unplug is not supported yet.");
1872 goto out;
1873 }
1874
1875 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1876 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1877
1878 out:
1879 error_propagate(errp, local_err);
1880 }
1881
1882 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1883 DeviceState *dev, Error **errp)
1884 {
1885 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1886 HotplugHandlerClass *hhc;
1887 Error *local_err = NULL;
1888
1889 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1890 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1891
1892 if (local_err) {
1893 goto out;
1894 }
1895
1896 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
1897 object_unparent(OBJECT(dev));
1898
1899 out:
1900 error_propagate(errp, local_err);
1901 }
1902
1903 static int pc_apic_cmp(const void *a, const void *b)
1904 {
1905 CPUArchId *apic_a = (CPUArchId *)a;
1906 CPUArchId *apic_b = (CPUArchId *)b;
1907
1908 return apic_a->arch_id - apic_b->arch_id;
1909 }
1910
1911 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1912 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1913 * entry corresponding to CPU's apic_id returns NULL.
1914 */
1915 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1916 {
1917 CPUArchId apic_id, *found_cpu;
1918
1919 apic_id.arch_id = id;
1920 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1921 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1922 pc_apic_cmp);
1923 if (found_cpu && idx) {
1924 *idx = found_cpu - ms->possible_cpus->cpus;
1925 }
1926 return found_cpu;
1927 }
1928
1929 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1930 DeviceState *dev, Error **errp)
1931 {
1932 CPUArchId *found_cpu;
1933 HotplugHandlerClass *hhc;
1934 Error *local_err = NULL;
1935 X86CPU *cpu = X86_CPU(dev);
1936 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1937
1938 if (pcms->acpi_dev) {
1939 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1940 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1941 if (local_err) {
1942 goto out;
1943 }
1944 }
1945
1946 /* increment the number of CPUs */
1947 pcms->boot_cpus++;
1948 if (pcms->rtc) {
1949 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1950 }
1951 if (pcms->fw_cfg) {
1952 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1953 }
1954
1955 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1956 found_cpu->cpu = OBJECT(dev);
1957 out:
1958 error_propagate(errp, local_err);
1959 }
1960 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1961 DeviceState *dev, Error **errp)
1962 {
1963 int idx = -1;
1964 HotplugHandlerClass *hhc;
1965 Error *local_err = NULL;
1966 X86CPU *cpu = X86_CPU(dev);
1967 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1968
1969 if (!pcms->acpi_dev) {
1970 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1971 goto out;
1972 }
1973
1974 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1975 assert(idx != -1);
1976 if (idx == 0) {
1977 error_setg(&local_err, "Boot CPU is unpluggable");
1978 goto out;
1979 }
1980
1981 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1982 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1983
1984 if (local_err) {
1985 goto out;
1986 }
1987
1988 out:
1989 error_propagate(errp, local_err);
1990
1991 }
1992
1993 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1994 DeviceState *dev, Error **errp)
1995 {
1996 CPUArchId *found_cpu;
1997 HotplugHandlerClass *hhc;
1998 Error *local_err = NULL;
1999 X86CPU *cpu = X86_CPU(dev);
2000 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2001
2002 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2003 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2004
2005 if (local_err) {
2006 goto out;
2007 }
2008
2009 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2010 found_cpu->cpu = NULL;
2011 object_unparent(OBJECT(dev));
2012
2013 /* decrement the number of CPUs */
2014 pcms->boot_cpus--;
2015 /* Update the number of CPUs in CMOS */
2016 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2017 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2018 out:
2019 error_propagate(errp, local_err);
2020 }
2021
2022 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2023 DeviceState *dev, Error **errp)
2024 {
2025 int idx;
2026 CPUState *cs;
2027 CPUArchId *cpu_slot;
2028 X86CPUTopoInfo topo;
2029 X86CPU *cpu = X86_CPU(dev);
2030 MachineState *ms = MACHINE(hotplug_dev);
2031 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2032
2033 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2034 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2035 ms->cpu_type);
2036 return;
2037 }
2038
2039 /* if APIC ID is not set, set it based on socket/core/thread properties */
2040 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2041 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2042
2043 if (cpu->socket_id < 0) {
2044 error_setg(errp, "CPU socket-id is not set");
2045 return;
2046 } else if (cpu->socket_id > max_socket) {
2047 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2048 cpu->socket_id, max_socket);
2049 return;
2050 }
2051 if (cpu->core_id < 0) {
2052 error_setg(errp, "CPU core-id is not set");
2053 return;
2054 } else if (cpu->core_id > (smp_cores - 1)) {
2055 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2056 cpu->core_id, smp_cores - 1);
2057 return;
2058 }
2059 if (cpu->thread_id < 0) {
2060 error_setg(errp, "CPU thread-id is not set");
2061 return;
2062 } else if (cpu->thread_id > (smp_threads - 1)) {
2063 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2064 cpu->thread_id, smp_threads - 1);
2065 return;
2066 }
2067
2068 topo.pkg_id = cpu->socket_id;
2069 topo.core_id = cpu->core_id;
2070 topo.smt_id = cpu->thread_id;
2071 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2072 }
2073
2074 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2075 if (!cpu_slot) {
2076 MachineState *ms = MACHINE(pcms);
2077
2078 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2079 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2080 " APIC ID %" PRIu32 ", valid index range 0:%d",
2081 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2082 ms->possible_cpus->len - 1);
2083 return;
2084 }
2085
2086 if (cpu_slot->cpu) {
2087 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2088 idx, cpu->apic_id);
2089 return;
2090 }
2091
2092 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2093 * so that machine_query_hotpluggable_cpus would show correct values
2094 */
2095 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2096 * once -smp refactoring is complete and there will be CPU private
2097 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2098 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2099 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2100 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2101 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2102 return;
2103 }
2104 cpu->socket_id = topo.pkg_id;
2105
2106 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2107 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2108 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2109 return;
2110 }
2111 cpu->core_id = topo.core_id;
2112
2113 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2114 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2115 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2116 return;
2117 }
2118 cpu->thread_id = topo.smt_id;
2119
2120 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2121 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2122 return;
2123 }
2124
2125 cs = CPU(cpu);
2126 cs->cpu_index = idx;
2127
2128 numa_cpu_pre_plug(cpu_slot, dev, errp);
2129 }
2130
2131 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2132 DeviceState *dev, Error **errp)
2133 {
2134 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2135 pc_memory_pre_plug(hotplug_dev, dev, errp);
2136 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2137 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2138 }
2139 }
2140
2141 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2142 DeviceState *dev, Error **errp)
2143 {
2144 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2145 pc_memory_plug(hotplug_dev, dev, errp);
2146 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2147 pc_cpu_plug(hotplug_dev, dev, errp);
2148 }
2149 }
2150
2151 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2152 DeviceState *dev, Error **errp)
2153 {
2154 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2155 pc_memory_unplug_request(hotplug_dev, dev, errp);
2156 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2157 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2158 } else {
2159 error_setg(errp, "acpi: device unplug request for not supported device"
2160 " type: %s", object_get_typename(OBJECT(dev)));
2161 }
2162 }
2163
2164 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2165 DeviceState *dev, Error **errp)
2166 {
2167 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2168 pc_memory_unplug(hotplug_dev, dev, errp);
2169 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2170 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2171 } else {
2172 error_setg(errp, "acpi: device unplug for not supported device"
2173 " type: %s", object_get_typename(OBJECT(dev)));
2174 }
2175 }
2176
2177 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2178 DeviceState *dev)
2179 {
2180 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2181 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2182 return HOTPLUG_HANDLER(machine);
2183 }
2184
2185 return NULL;
2186 }
2187
2188 static void
2189 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2190 const char *name, void *opaque,
2191 Error **errp)
2192 {
2193 MachineState *ms = MACHINE(obj);
2194 int64_t value = memory_region_size(&ms->device_memory->mr);
2195
2196 visit_type_int(v, name, &value, errp);
2197 }
2198
2199 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2200 const char *name, void *opaque,
2201 Error **errp)
2202 {
2203 PCMachineState *pcms = PC_MACHINE(obj);
2204 uint64_t value = pcms->max_ram_below_4g;
2205
2206 visit_type_size(v, name, &value, errp);
2207 }
2208
2209 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2210 const char *name, void *opaque,
2211 Error **errp)
2212 {
2213 PCMachineState *pcms = PC_MACHINE(obj);
2214 Error *error = NULL;
2215 uint64_t value;
2216
2217 visit_type_size(v, name, &value, &error);
2218 if (error) {
2219 error_propagate(errp, error);
2220 return;
2221 }
2222 if (value > 4 * GiB) {
2223 error_setg(&error,
2224 "Machine option 'max-ram-below-4g=%"PRIu64
2225 "' expects size less than or equal to 4G", value);
2226 error_propagate(errp, error);
2227 return;
2228 }
2229
2230 if (value < 1 * MiB) {
2231 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2232 "BIOS may not work with less than 1MiB", value);
2233 }
2234
2235 pcms->max_ram_below_4g = value;
2236 }
2237
2238 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2239 void *opaque, Error **errp)
2240 {
2241 PCMachineState *pcms = PC_MACHINE(obj);
2242 OnOffAuto vmport = pcms->vmport;
2243
2244 visit_type_OnOffAuto(v, name, &vmport, errp);
2245 }
2246
2247 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2248 void *opaque, Error **errp)
2249 {
2250 PCMachineState *pcms = PC_MACHINE(obj);
2251
2252 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2253 }
2254
2255 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2256 {
2257 bool smm_available = false;
2258
2259 if (pcms->smm == ON_OFF_AUTO_OFF) {
2260 return false;
2261 }
2262
2263 if (tcg_enabled() || qtest_enabled()) {
2264 smm_available = true;
2265 } else if (kvm_enabled()) {
2266 smm_available = kvm_has_smm();
2267 }
2268
2269 if (smm_available) {
2270 return true;
2271 }
2272
2273 if (pcms->smm == ON_OFF_AUTO_ON) {
2274 error_report("System Management Mode not supported by this hypervisor.");
2275 exit(1);
2276 }
2277 return false;
2278 }
2279
2280 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2281 void *opaque, Error **errp)
2282 {
2283 PCMachineState *pcms = PC_MACHINE(obj);
2284 OnOffAuto smm = pcms->smm;
2285
2286 visit_type_OnOffAuto(v, name, &smm, errp);
2287 }
2288
2289 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2290 void *opaque, Error **errp)
2291 {
2292 PCMachineState *pcms = PC_MACHINE(obj);
2293
2294 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2295 }
2296
2297 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2298 {
2299 PCMachineState *pcms = PC_MACHINE(obj);
2300
2301 return pcms->acpi_nvdimm_state.is_enabled;
2302 }
2303
2304 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2305 {
2306 PCMachineState *pcms = PC_MACHINE(obj);
2307
2308 pcms->acpi_nvdimm_state.is_enabled = value;
2309 }
2310
2311 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2312 {
2313 PCMachineState *pcms = PC_MACHINE(obj);
2314
2315 return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2316 }
2317
2318 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2319 Error **errp)
2320 {
2321 PCMachineState *pcms = PC_MACHINE(obj);
2322 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2323
2324 if (strcmp(value, "cpu") == 0)
2325 nvdimm_state->persistence = 3;
2326 else if (strcmp(value, "mem-ctrl") == 0)
2327 nvdimm_state->persistence = 2;
2328 else {
2329 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2330 value);
2331 return;
2332 }
2333
2334 g_free(nvdimm_state->persistence_string);
2335 nvdimm_state->persistence_string = g_strdup(value);
2336 }
2337
2338 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2339 {
2340 PCMachineState *pcms = PC_MACHINE(obj);
2341
2342 return pcms->smbus_enabled;
2343 }
2344
2345 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2346 {
2347 PCMachineState *pcms = PC_MACHINE(obj);
2348
2349 pcms->smbus_enabled = value;
2350 }
2351
2352 static bool pc_machine_get_sata(Object *obj, Error **errp)
2353 {
2354 PCMachineState *pcms = PC_MACHINE(obj);
2355
2356 return pcms->sata_enabled;
2357 }
2358
2359 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2360 {
2361 PCMachineState *pcms = PC_MACHINE(obj);
2362
2363 pcms->sata_enabled = value;
2364 }
2365
2366 static bool pc_machine_get_pit(Object *obj, Error **errp)
2367 {
2368 PCMachineState *pcms = PC_MACHINE(obj);
2369
2370 return pcms->pit_enabled;
2371 }
2372
2373 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2374 {
2375 PCMachineState *pcms = PC_MACHINE(obj);
2376
2377 pcms->pit_enabled = value;
2378 }
2379
2380 static void pc_machine_initfn(Object *obj)
2381 {
2382 PCMachineState *pcms = PC_MACHINE(obj);
2383
2384 pcms->max_ram_below_4g = 0; /* use default */
2385 pcms->smm = ON_OFF_AUTO_AUTO;
2386 pcms->vmport = ON_OFF_AUTO_AUTO;
2387 /* nvdimm is disabled on default. */
2388 pcms->acpi_nvdimm_state.is_enabled = false;
2389 /* acpi build is enabled by default if machine supports it */
2390 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2391 pcms->smbus_enabled = true;
2392 pcms->sata_enabled = true;
2393 pcms->pit_enabled = true;
2394 }
2395
2396 static void pc_machine_reset(void)
2397 {
2398 CPUState *cs;
2399 X86CPU *cpu;
2400
2401 qemu_devices_reset();
2402
2403 /* Reset APIC after devices have been reset to cancel
2404 * any changes that qemu_devices_reset() might have done.
2405 */
2406 CPU_FOREACH(cs) {
2407 cpu = X86_CPU(cs);
2408
2409 if (cpu->apic_state) {
2410 device_reset(cpu->apic_state);
2411 }
2412 }
2413 }
2414
2415 static CpuInstanceProperties
2416 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2417 {
2418 MachineClass *mc = MACHINE_GET_CLASS(ms);
2419 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2420
2421 assert(cpu_index < possible_cpus->len);
2422 return possible_cpus->cpus[cpu_index].props;
2423 }
2424
2425 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2426 {
2427 X86CPUTopoInfo topo;
2428
2429 assert(idx < ms->possible_cpus->len);
2430 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2431 smp_cores, smp_threads, &topo);
2432 return topo.pkg_id % nb_numa_nodes;
2433 }
2434
2435 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2436 {
2437 int i;
2438
2439 if (ms->possible_cpus) {
2440 /*
2441 * make sure that max_cpus hasn't changed since the first use, i.e.
2442 * -smp hasn't been parsed after it
2443 */
2444 assert(ms->possible_cpus->len == max_cpus);
2445 return ms->possible_cpus;
2446 }
2447
2448 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2449 sizeof(CPUArchId) * max_cpus);
2450 ms->possible_cpus->len = max_cpus;
2451 for (i = 0; i < ms->possible_cpus->len; i++) {
2452 X86CPUTopoInfo topo;
2453
2454 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2455 ms->possible_cpus->cpus[i].vcpus_count = 1;
2456 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2457 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2458 smp_cores, smp_threads, &topo);
2459 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2460 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2461 ms->possible_cpus->cpus[i].props.has_core_id = true;
2462 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2463 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2464 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2465 }
2466 return ms->possible_cpus;
2467 }
2468
2469 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2470 {
2471 /* cpu index isn't used */
2472 CPUState *cs;
2473
2474 CPU_FOREACH(cs) {
2475 X86CPU *cpu = X86_CPU(cs);
2476
2477 if (!cpu->apic_state) {
2478 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2479 } else {
2480 apic_deliver_nmi(cpu->apic_state);
2481 }
2482 }
2483 }
2484
2485 static void pc_machine_class_init(ObjectClass *oc, void *data)
2486 {
2487 MachineClass *mc = MACHINE_CLASS(oc);
2488 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2489 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2490 NMIClass *nc = NMI_CLASS(oc);
2491
2492 pcmc->pci_enabled = true;
2493 pcmc->has_acpi_build = true;
2494 pcmc->rsdp_in_ram = true;
2495 pcmc->smbios_defaults = true;
2496 pcmc->smbios_uuid_encoded = true;
2497 pcmc->gigabyte_align = true;
2498 pcmc->has_reserved_memory = true;
2499 pcmc->kvmclock_enabled = true;
2500 pcmc->enforce_aligned_dimm = true;
2501 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2502 * to be used at the moment, 32K should be enough for a while. */
2503 pcmc->acpi_data_size = 0x20000 + 0x8000;
2504 pcmc->save_tsc_khz = true;
2505 pcmc->linuxboot_dma_enabled = true;
2506 assert(!mc->get_hotplug_handler);
2507 mc->get_hotplug_handler = pc_get_hotpug_handler;
2508 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2509 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2510 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2511 mc->auto_enable_numa_with_memhp = true;
2512 mc->has_hotpluggable_cpus = true;
2513 mc->default_boot_order = "cad";
2514 mc->hot_add_cpu = pc_hot_add_cpu;
2515 mc->block_default_type = IF_IDE;
2516 mc->max_cpus = 255;
2517 mc->reset = pc_machine_reset;
2518 hc->pre_plug = pc_machine_device_pre_plug_cb;
2519 hc->plug = pc_machine_device_plug_cb;
2520 hc->unplug_request = pc_machine_device_unplug_request_cb;
2521 hc->unplug = pc_machine_device_unplug_cb;
2522 nc->nmi_monitor_handler = x86_nmi;
2523 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2524
2525 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2526 pc_machine_get_device_memory_region_size, NULL,
2527 NULL, NULL, &error_abort);
2528
2529 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2530 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2531 NULL, NULL, &error_abort);
2532
2533 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2534 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2535
2536 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2537 pc_machine_get_smm, pc_machine_set_smm,
2538 NULL, NULL, &error_abort);
2539 object_class_property_set_description(oc, PC_MACHINE_SMM,
2540 "Enable SMM (pc & q35)", &error_abort);
2541
2542 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2543 pc_machine_get_vmport, pc_machine_set_vmport,
2544 NULL, NULL, &error_abort);
2545 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2546 "Enable vmport (pc & q35)", &error_abort);
2547
2548 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2549 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2550
2551 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2552 pc_machine_get_nvdimm_persistence,
2553 pc_machine_set_nvdimm_persistence, &error_abort);
2554
2555 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2556 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2557
2558 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2559 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2560
2561 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2562 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2563 }
2564
2565 static const TypeInfo pc_machine_info = {
2566 .name = TYPE_PC_MACHINE,
2567 .parent = TYPE_MACHINE,
2568 .abstract = true,
2569 .instance_size = sizeof(PCMachineState),
2570 .instance_init = pc_machine_initfn,
2571 .class_size = sizeof(PCMachineClass),
2572 .class_init = pc_machine_class_init,
2573 .interfaces = (InterfaceInfo[]) {
2574 { TYPE_HOTPLUG_HANDLER },
2575 { TYPE_NMI },
2576 { }
2577 },
2578 };
2579
2580 static void pc_machine_register_types(void)
2581 {
2582 type_register_static(&pc_machine_info);
2583 }
2584
2585 type_init(pc_machine_register_types)