]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
compat: replace PC_COMPAT_3_0 & HW_COMPAT_3_0 macros
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...) \
83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93
94 #define E820_NR_ENTRIES 16
95
96 struct e820_entry {
97 uint64_t address;
98 uint64_t length;
99 uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 struct e820_table {
103 uint32_t count;
104 struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111
112 GlobalProperty pc_compat_3_1[] = {
113 {
114 .driver = "intel-iommu",
115 .property = "dma-drain",
116 .value = "off",
117 },
118 };
119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
120
121 GlobalProperty pc_compat_3_0[] = {
122 {
123 .driver = TYPE_X86_CPU,
124 .property = "x-hv-synic-kvm-only",
125 .value = "on",
126 },{
127 .driver = "Skylake-Server" "-" TYPE_X86_CPU,
128 .property = "pku",
129 .value = "off",
130 },{
131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU,
132 .property = "pku",
133 .value = "off",
134 },
135 };
136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
137
138 void gsi_handler(void *opaque, int n, int level)
139 {
140 GSIState *s = opaque;
141
142 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
143 if (n < ISA_NUM_IRQS) {
144 qemu_set_irq(s->i8259_irq[n], level);
145 }
146 qemu_set_irq(s->ioapic_irq[n], level);
147 }
148
149 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
150 unsigned size)
151 {
152 }
153
154 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
155 {
156 return 0xffffffffffffffffULL;
157 }
158
159 /* MSDOS compatibility mode FPU exception support */
160 static qemu_irq ferr_irq;
161
162 void pc_register_ferr_irq(qemu_irq irq)
163 {
164 ferr_irq = irq;
165 }
166
167 /* XXX: add IGNNE support */
168 void cpu_set_ferr(CPUX86State *s)
169 {
170 qemu_irq_raise(ferr_irq);
171 }
172
173 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
174 unsigned size)
175 {
176 qemu_irq_lower(ferr_irq);
177 }
178
179 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
180 {
181 return 0xffffffffffffffffULL;
182 }
183
184 /* TSC handling */
185 uint64_t cpu_get_tsc(CPUX86State *env)
186 {
187 return cpu_get_ticks();
188 }
189
190 /* IRQ handling */
191 int cpu_get_pic_interrupt(CPUX86State *env)
192 {
193 X86CPU *cpu = x86_env_get_cpu(env);
194 int intno;
195
196 if (!kvm_irqchip_in_kernel()) {
197 intno = apic_get_interrupt(cpu->apic_state);
198 if (intno >= 0) {
199 return intno;
200 }
201 /* read the irq from the PIC */
202 if (!apic_accept_pic_intr(cpu->apic_state)) {
203 return -1;
204 }
205 }
206
207 intno = pic_read_irq(isa_pic);
208 return intno;
209 }
210
211 static void pic_irq_request(void *opaque, int irq, int level)
212 {
213 CPUState *cs = first_cpu;
214 X86CPU *cpu = X86_CPU(cs);
215
216 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
217 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
218 CPU_FOREACH(cs) {
219 cpu = X86_CPU(cs);
220 if (apic_accept_pic_intr(cpu->apic_state)) {
221 apic_deliver_pic_intr(cpu->apic_state, level);
222 }
223 }
224 } else {
225 if (level) {
226 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
227 } else {
228 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
229 }
230 }
231 }
232
233 /* PC cmos mappings */
234
235 #define REG_EQUIPMENT_BYTE 0x14
236
237 int cmos_get_fd_drive_type(FloppyDriveType fd0)
238 {
239 int val;
240
241 switch (fd0) {
242 case FLOPPY_DRIVE_TYPE_144:
243 /* 1.44 Mb 3"5 drive */
244 val = 4;
245 break;
246 case FLOPPY_DRIVE_TYPE_288:
247 /* 2.88 Mb 3"5 drive */
248 val = 5;
249 break;
250 case FLOPPY_DRIVE_TYPE_120:
251 /* 1.2 Mb 5"5 drive */
252 val = 2;
253 break;
254 case FLOPPY_DRIVE_TYPE_NONE:
255 default:
256 val = 0;
257 break;
258 }
259 return val;
260 }
261
262 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
263 int16_t cylinders, int8_t heads, int8_t sectors)
264 {
265 rtc_set_memory(s, type_ofs, 47);
266 rtc_set_memory(s, info_ofs, cylinders);
267 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
268 rtc_set_memory(s, info_ofs + 2, heads);
269 rtc_set_memory(s, info_ofs + 3, 0xff);
270 rtc_set_memory(s, info_ofs + 4, 0xff);
271 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
272 rtc_set_memory(s, info_ofs + 6, cylinders);
273 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
274 rtc_set_memory(s, info_ofs + 8, sectors);
275 }
276
277 /* convert boot_device letter to something recognizable by the bios */
278 static int boot_device2nibble(char boot_device)
279 {
280 switch(boot_device) {
281 case 'a':
282 case 'b':
283 return 0x01; /* floppy boot */
284 case 'c':
285 return 0x02; /* hard drive boot */
286 case 'd':
287 return 0x03; /* CD-ROM boot */
288 case 'n':
289 return 0x04; /* Network boot */
290 }
291 return 0;
292 }
293
294 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
295 {
296 #define PC_MAX_BOOT_DEVICES 3
297 int nbds, bds[3] = { 0, };
298 int i;
299
300 nbds = strlen(boot_device);
301 if (nbds > PC_MAX_BOOT_DEVICES) {
302 error_setg(errp, "Too many boot devices for PC");
303 return;
304 }
305 for (i = 0; i < nbds; i++) {
306 bds[i] = boot_device2nibble(boot_device[i]);
307 if (bds[i] == 0) {
308 error_setg(errp, "Invalid boot device for PC: '%c'",
309 boot_device[i]);
310 return;
311 }
312 }
313 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
314 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
315 }
316
317 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
318 {
319 set_boot_dev(opaque, boot_device, errp);
320 }
321
322 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
323 {
324 int val, nb, i;
325 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
326 FLOPPY_DRIVE_TYPE_NONE };
327
328 /* floppy type */
329 if (floppy) {
330 for (i = 0; i < 2; i++) {
331 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
332 }
333 }
334 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
335 cmos_get_fd_drive_type(fd_type[1]);
336 rtc_set_memory(rtc_state, 0x10, val);
337
338 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
339 nb = 0;
340 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
341 nb++;
342 }
343 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
344 nb++;
345 }
346 switch (nb) {
347 case 0:
348 break;
349 case 1:
350 val |= 0x01; /* 1 drive, ready for boot */
351 break;
352 case 2:
353 val |= 0x41; /* 2 drives, ready for boot */
354 break;
355 }
356 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
357 }
358
359 typedef struct pc_cmos_init_late_arg {
360 ISADevice *rtc_state;
361 BusState *idebus[2];
362 } pc_cmos_init_late_arg;
363
364 typedef struct check_fdc_state {
365 ISADevice *floppy;
366 bool multiple;
367 } CheckFdcState;
368
369 static int check_fdc(Object *obj, void *opaque)
370 {
371 CheckFdcState *state = opaque;
372 Object *fdc;
373 uint32_t iobase;
374 Error *local_err = NULL;
375
376 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
377 if (!fdc) {
378 return 0;
379 }
380
381 iobase = object_property_get_uint(obj, "iobase", &local_err);
382 if (local_err || iobase != 0x3f0) {
383 error_free(local_err);
384 return 0;
385 }
386
387 if (state->floppy) {
388 state->multiple = true;
389 } else {
390 state->floppy = ISA_DEVICE(obj);
391 }
392 return 0;
393 }
394
395 static const char * const fdc_container_path[] = {
396 "/unattached", "/peripheral", "/peripheral-anon"
397 };
398
399 /*
400 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
401 * and ACPI objects.
402 */
403 ISADevice *pc_find_fdc0(void)
404 {
405 int i;
406 Object *container;
407 CheckFdcState state = { 0 };
408
409 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
410 container = container_get(qdev_get_machine(), fdc_container_path[i]);
411 object_child_foreach(container, check_fdc, &state);
412 }
413
414 if (state.multiple) {
415 warn_report("multiple floppy disk controllers with "
416 "iobase=0x3f0 have been found");
417 error_printf("the one being picked for CMOS setup might not reflect "
418 "your intent");
419 }
420
421 return state.floppy;
422 }
423
424 static void pc_cmos_init_late(void *opaque)
425 {
426 pc_cmos_init_late_arg *arg = opaque;
427 ISADevice *s = arg->rtc_state;
428 int16_t cylinders;
429 int8_t heads, sectors;
430 int val;
431 int i, trans;
432
433 val = 0;
434 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
435 &cylinders, &heads, &sectors) >= 0) {
436 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
437 val |= 0xf0;
438 }
439 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
440 &cylinders, &heads, &sectors) >= 0) {
441 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
442 val |= 0x0f;
443 }
444 rtc_set_memory(s, 0x12, val);
445
446 val = 0;
447 for (i = 0; i < 4; i++) {
448 /* NOTE: ide_get_geometry() returns the physical
449 geometry. It is always such that: 1 <= sects <= 63, 1
450 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
451 geometry can be different if a translation is done. */
452 if (arg->idebus[i / 2] &&
453 ide_get_geometry(arg->idebus[i / 2], i % 2,
454 &cylinders, &heads, &sectors) >= 0) {
455 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
456 assert((trans & ~3) == 0);
457 val |= trans << (i * 2);
458 }
459 }
460 rtc_set_memory(s, 0x39, val);
461
462 pc_cmos_init_floppy(s, pc_find_fdc0());
463
464 qemu_unregister_reset(pc_cmos_init_late, opaque);
465 }
466
467 void pc_cmos_init(PCMachineState *pcms,
468 BusState *idebus0, BusState *idebus1,
469 ISADevice *s)
470 {
471 int val;
472 static pc_cmos_init_late_arg arg;
473
474 /* various important CMOS locations needed by PC/Bochs bios */
475
476 /* memory size */
477 /* base memory (first MiB) */
478 val = MIN(pcms->below_4g_mem_size / KiB, 640);
479 rtc_set_memory(s, 0x15, val);
480 rtc_set_memory(s, 0x16, val >> 8);
481 /* extended memory (next 64MiB) */
482 if (pcms->below_4g_mem_size > 1 * MiB) {
483 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
484 } else {
485 val = 0;
486 }
487 if (val > 65535)
488 val = 65535;
489 rtc_set_memory(s, 0x17, val);
490 rtc_set_memory(s, 0x18, val >> 8);
491 rtc_set_memory(s, 0x30, val);
492 rtc_set_memory(s, 0x31, val >> 8);
493 /* memory between 16MiB and 4GiB */
494 if (pcms->below_4g_mem_size > 16 * MiB) {
495 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
496 } else {
497 val = 0;
498 }
499 if (val > 65535)
500 val = 65535;
501 rtc_set_memory(s, 0x34, val);
502 rtc_set_memory(s, 0x35, val >> 8);
503 /* memory above 4GiB */
504 val = pcms->above_4g_mem_size / 65536;
505 rtc_set_memory(s, 0x5b, val);
506 rtc_set_memory(s, 0x5c, val >> 8);
507 rtc_set_memory(s, 0x5d, val >> 16);
508
509 object_property_add_link(OBJECT(pcms), "rtc_state",
510 TYPE_ISA_DEVICE,
511 (Object **)&pcms->rtc,
512 object_property_allow_set_link,
513 OBJ_PROP_LINK_STRONG, &error_abort);
514 object_property_set_link(OBJECT(pcms), OBJECT(s),
515 "rtc_state", &error_abort);
516
517 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
518
519 val = 0;
520 val |= 0x02; /* FPU is there */
521 val |= 0x04; /* PS/2 mouse installed */
522 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
523
524 /* hard drives and FDC */
525 arg.rtc_state = s;
526 arg.idebus[0] = idebus0;
527 arg.idebus[1] = idebus1;
528 qemu_register_reset(pc_cmos_init_late, &arg);
529 }
530
531 #define TYPE_PORT92 "port92"
532 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
533
534 /* port 92 stuff: could be split off */
535 typedef struct Port92State {
536 ISADevice parent_obj;
537
538 MemoryRegion io;
539 uint8_t outport;
540 qemu_irq a20_out;
541 } Port92State;
542
543 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
544 unsigned size)
545 {
546 Port92State *s = opaque;
547 int oldval = s->outport;
548
549 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
550 s->outport = val;
551 qemu_set_irq(s->a20_out, (val >> 1) & 1);
552 if ((val & 1) && !(oldval & 1)) {
553 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
554 }
555 }
556
557 static uint64_t port92_read(void *opaque, hwaddr addr,
558 unsigned size)
559 {
560 Port92State *s = opaque;
561 uint32_t ret;
562
563 ret = s->outport;
564 DPRINTF("port92: read 0x%02x\n", ret);
565 return ret;
566 }
567
568 static void port92_init(ISADevice *dev, qemu_irq a20_out)
569 {
570 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
571 }
572
573 static const VMStateDescription vmstate_port92_isa = {
574 .name = "port92",
575 .version_id = 1,
576 .minimum_version_id = 1,
577 .fields = (VMStateField[]) {
578 VMSTATE_UINT8(outport, Port92State),
579 VMSTATE_END_OF_LIST()
580 }
581 };
582
583 static void port92_reset(DeviceState *d)
584 {
585 Port92State *s = PORT92(d);
586
587 s->outport &= ~1;
588 }
589
590 static const MemoryRegionOps port92_ops = {
591 .read = port92_read,
592 .write = port92_write,
593 .impl = {
594 .min_access_size = 1,
595 .max_access_size = 1,
596 },
597 .endianness = DEVICE_LITTLE_ENDIAN,
598 };
599
600 static void port92_initfn(Object *obj)
601 {
602 Port92State *s = PORT92(obj);
603
604 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
605
606 s->outport = 0;
607
608 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
609 }
610
611 static void port92_realizefn(DeviceState *dev, Error **errp)
612 {
613 ISADevice *isadev = ISA_DEVICE(dev);
614 Port92State *s = PORT92(dev);
615
616 isa_register_ioport(isadev, &s->io, 0x92);
617 }
618
619 static void port92_class_initfn(ObjectClass *klass, void *data)
620 {
621 DeviceClass *dc = DEVICE_CLASS(klass);
622
623 dc->realize = port92_realizefn;
624 dc->reset = port92_reset;
625 dc->vmsd = &vmstate_port92_isa;
626 /*
627 * Reason: unlike ordinary ISA devices, this one needs additional
628 * wiring: its A20 output line needs to be wired up by
629 * port92_init().
630 */
631 dc->user_creatable = false;
632 }
633
634 static const TypeInfo port92_info = {
635 .name = TYPE_PORT92,
636 .parent = TYPE_ISA_DEVICE,
637 .instance_size = sizeof(Port92State),
638 .instance_init = port92_initfn,
639 .class_init = port92_class_initfn,
640 };
641
642 static void port92_register_types(void)
643 {
644 type_register_static(&port92_info);
645 }
646
647 type_init(port92_register_types)
648
649 static void handle_a20_line_change(void *opaque, int irq, int level)
650 {
651 X86CPU *cpu = opaque;
652
653 /* XXX: send to all CPUs ? */
654 /* XXX: add logic to handle multiple A20 line sources */
655 x86_cpu_set_a20(cpu, level);
656 }
657
658 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
659 {
660 int index = le32_to_cpu(e820_reserve.count);
661 struct e820_entry *entry;
662
663 if (type != E820_RAM) {
664 /* old FW_CFG_E820_TABLE entry -- reservations only */
665 if (index >= E820_NR_ENTRIES) {
666 return -EBUSY;
667 }
668 entry = &e820_reserve.entry[index++];
669
670 entry->address = cpu_to_le64(address);
671 entry->length = cpu_to_le64(length);
672 entry->type = cpu_to_le32(type);
673
674 e820_reserve.count = cpu_to_le32(index);
675 }
676
677 /* new "etc/e820" file -- include ram too */
678 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
679 e820_table[e820_entries].address = cpu_to_le64(address);
680 e820_table[e820_entries].length = cpu_to_le64(length);
681 e820_table[e820_entries].type = cpu_to_le32(type);
682 e820_entries++;
683
684 return e820_entries;
685 }
686
687 int e820_get_num_entries(void)
688 {
689 return e820_entries;
690 }
691
692 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
693 {
694 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
695 *address = le64_to_cpu(e820_table[idx].address);
696 *length = le64_to_cpu(e820_table[idx].length);
697 return true;
698 }
699 return false;
700 }
701
702 /* Enables contiguous-apic-ID mode, for compatibility */
703 static bool compat_apic_id_mode;
704
705 void enable_compat_apic_id_mode(void)
706 {
707 compat_apic_id_mode = true;
708 }
709
710 /* Calculates initial APIC ID for a specific CPU index
711 *
712 * Currently we need to be able to calculate the APIC ID from the CPU index
713 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
714 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
715 * all CPUs up to max_cpus.
716 */
717 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
718 {
719 uint32_t correct_id;
720 static bool warned;
721
722 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
723 if (compat_apic_id_mode) {
724 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
725 error_report("APIC IDs set in compatibility mode, "
726 "CPU topology won't match the configuration");
727 warned = true;
728 }
729 return cpu_index;
730 } else {
731 return correct_id;
732 }
733 }
734
735 static void pc_build_smbios(PCMachineState *pcms)
736 {
737 uint8_t *smbios_tables, *smbios_anchor;
738 size_t smbios_tables_len, smbios_anchor_len;
739 struct smbios_phys_mem_area *mem_array;
740 unsigned i, array_count;
741 MachineState *ms = MACHINE(pcms);
742 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
743
744 /* tell smbios about cpuid version and features */
745 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
746
747 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
748 if (smbios_tables) {
749 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
750 smbios_tables, smbios_tables_len);
751 }
752
753 /* build the array of physical mem area from e820 table */
754 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
755 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
756 uint64_t addr, len;
757
758 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
759 mem_array[array_count].address = addr;
760 mem_array[array_count].length = len;
761 array_count++;
762 }
763 }
764 smbios_get_tables(mem_array, array_count,
765 &smbios_tables, &smbios_tables_len,
766 &smbios_anchor, &smbios_anchor_len);
767 g_free(mem_array);
768
769 if (smbios_anchor) {
770 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
771 smbios_tables, smbios_tables_len);
772 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
773 smbios_anchor, smbios_anchor_len);
774 }
775 }
776
777 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
778 {
779 FWCfgState *fw_cfg;
780 uint64_t *numa_fw_cfg;
781 int i;
782 const CPUArchIdList *cpus;
783 MachineClass *mc = MACHINE_GET_CLASS(pcms);
784
785 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
786 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
787
788 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
789 *
790 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
791 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
792 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
793 * for CPU hotplug also uses APIC ID and not "CPU index".
794 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
795 * but the "limit to the APIC ID values SeaBIOS may see".
796 *
797 * So for compatibility reasons with old BIOSes we are stuck with
798 * "etc/max-cpus" actually being apic_id_limit
799 */
800 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
801 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
802 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
803 acpi_tables, acpi_tables_len);
804 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
805
806 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
807 &e820_reserve, sizeof(e820_reserve));
808 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
809 sizeof(struct e820_entry) * e820_entries);
810
811 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
812 /* allocate memory for the NUMA channel: one (64bit) word for the number
813 * of nodes, one word for each VCPU->node and one word for each node to
814 * hold the amount of memory.
815 */
816 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
817 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
818 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
819 for (i = 0; i < cpus->len; i++) {
820 unsigned int apic_id = cpus->cpus[i].arch_id;
821 assert(apic_id < pcms->apic_id_limit);
822 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
823 }
824 for (i = 0; i < nb_numa_nodes; i++) {
825 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
826 cpu_to_le64(numa_info[i].node_mem);
827 }
828 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
829 (1 + pcms->apic_id_limit + nb_numa_nodes) *
830 sizeof(*numa_fw_cfg));
831
832 return fw_cfg;
833 }
834
835 static long get_file_size(FILE *f)
836 {
837 long where, size;
838
839 /* XXX: on Unix systems, using fstat() probably makes more sense */
840
841 where = ftell(f);
842 fseek(f, 0, SEEK_END);
843 size = ftell(f);
844 fseek(f, where, SEEK_SET);
845
846 return size;
847 }
848
849 /* setup_data types */
850 #define SETUP_NONE 0
851 #define SETUP_E820_EXT 1
852 #define SETUP_DTB 2
853 #define SETUP_PCI 3
854 #define SETUP_EFI 4
855
856 struct setup_data {
857 uint64_t next;
858 uint32_t type;
859 uint32_t len;
860 uint8_t data[0];
861 } __attribute__((packed));
862
863 static void load_linux(PCMachineState *pcms,
864 FWCfgState *fw_cfg)
865 {
866 uint16_t protocol;
867 int setup_size, kernel_size, cmdline_size;
868 int dtb_size, setup_data_offset;
869 uint32_t initrd_max;
870 uint8_t header[8192], *setup, *kernel;
871 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
872 FILE *f;
873 char *vmode;
874 MachineState *machine = MACHINE(pcms);
875 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
876 struct setup_data *setup_data;
877 const char *kernel_filename = machine->kernel_filename;
878 const char *initrd_filename = machine->initrd_filename;
879 const char *dtb_filename = machine->dtb;
880 const char *kernel_cmdline = machine->kernel_cmdline;
881
882 /* Align to 16 bytes as a paranoia measure */
883 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
884
885 /* load the kernel header */
886 f = fopen(kernel_filename, "rb");
887 if (!f || !(kernel_size = get_file_size(f)) ||
888 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
889 MIN(ARRAY_SIZE(header), kernel_size)) {
890 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
891 kernel_filename, strerror(errno));
892 exit(1);
893 }
894
895 /* kernel protocol version */
896 #if 0
897 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
898 #endif
899 if (ldl_p(header+0x202) == 0x53726448) {
900 protocol = lduw_p(header+0x206);
901 } else {
902 /* This looks like a multiboot kernel. If it is, let's stop
903 treating it like a Linux kernel. */
904 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
905 kernel_cmdline, kernel_size, header)) {
906 return;
907 }
908 protocol = 0;
909 }
910
911 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
912 /* Low kernel */
913 real_addr = 0x90000;
914 cmdline_addr = 0x9a000 - cmdline_size;
915 prot_addr = 0x10000;
916 } else if (protocol < 0x202) {
917 /* High but ancient kernel */
918 real_addr = 0x90000;
919 cmdline_addr = 0x9a000 - cmdline_size;
920 prot_addr = 0x100000;
921 } else {
922 /* High and recent kernel */
923 real_addr = 0x10000;
924 cmdline_addr = 0x20000;
925 prot_addr = 0x100000;
926 }
927
928 #if 0
929 fprintf(stderr,
930 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
931 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
932 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
933 real_addr,
934 cmdline_addr,
935 prot_addr);
936 #endif
937
938 /* highest address for loading the initrd */
939 if (protocol >= 0x203) {
940 initrd_max = ldl_p(header+0x22c);
941 } else {
942 initrd_max = 0x37ffffff;
943 }
944
945 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
946 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
947 }
948
949 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
950 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
951 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
952
953 if (protocol >= 0x202) {
954 stl_p(header+0x228, cmdline_addr);
955 } else {
956 stw_p(header+0x20, 0xA33F);
957 stw_p(header+0x22, cmdline_addr-real_addr);
958 }
959
960 /* handle vga= parameter */
961 vmode = strstr(kernel_cmdline, "vga=");
962 if (vmode) {
963 unsigned int video_mode;
964 /* skip "vga=" */
965 vmode += 4;
966 if (!strncmp(vmode, "normal", 6)) {
967 video_mode = 0xffff;
968 } else if (!strncmp(vmode, "ext", 3)) {
969 video_mode = 0xfffe;
970 } else if (!strncmp(vmode, "ask", 3)) {
971 video_mode = 0xfffd;
972 } else {
973 video_mode = strtol(vmode, NULL, 0);
974 }
975 stw_p(header+0x1fa, video_mode);
976 }
977
978 /* loader type */
979 /* High nybble = B reserved for QEMU; low nybble is revision number.
980 If this code is substantially changed, you may want to consider
981 incrementing the revision. */
982 if (protocol >= 0x200) {
983 header[0x210] = 0xB0;
984 }
985 /* heap */
986 if (protocol >= 0x201) {
987 header[0x211] |= 0x80; /* CAN_USE_HEAP */
988 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
989 }
990
991 /* load initrd */
992 if (initrd_filename) {
993 gsize initrd_size;
994 gchar *initrd_data;
995 GError *gerr = NULL;
996
997 if (protocol < 0x200) {
998 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
999 exit(1);
1000 }
1001
1002 if (!g_file_get_contents(initrd_filename, &initrd_data,
1003 &initrd_size, &gerr)) {
1004 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1005 initrd_filename, gerr->message);
1006 exit(1);
1007 }
1008 if (initrd_size >= initrd_max) {
1009 fprintf(stderr, "qemu: initrd is too large, cannot support."
1010 "(max: %"PRIu32", need %"PRId64")\n",
1011 initrd_max, (uint64_t)initrd_size);
1012 exit(1);
1013 }
1014
1015 initrd_addr = (initrd_max-initrd_size) & ~4095;
1016
1017 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1018 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1019 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1020
1021 stl_p(header+0x218, initrd_addr);
1022 stl_p(header+0x21c, initrd_size);
1023 }
1024
1025 /* load kernel and setup */
1026 setup_size = header[0x1f1];
1027 if (setup_size == 0) {
1028 setup_size = 4;
1029 }
1030 setup_size = (setup_size+1)*512;
1031 if (setup_size > kernel_size) {
1032 fprintf(stderr, "qemu: invalid kernel header\n");
1033 exit(1);
1034 }
1035 kernel_size -= setup_size;
1036
1037 setup = g_malloc(setup_size);
1038 kernel = g_malloc(kernel_size);
1039 fseek(f, 0, SEEK_SET);
1040 if (fread(setup, 1, setup_size, f) != setup_size) {
1041 fprintf(stderr, "fread() failed\n");
1042 exit(1);
1043 }
1044 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1045 fprintf(stderr, "fread() failed\n");
1046 exit(1);
1047 }
1048 fclose(f);
1049
1050 /* append dtb to kernel */
1051 if (dtb_filename) {
1052 if (protocol < 0x209) {
1053 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1054 exit(1);
1055 }
1056
1057 dtb_size = get_image_size(dtb_filename);
1058 if (dtb_size <= 0) {
1059 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1060 dtb_filename, strerror(errno));
1061 exit(1);
1062 }
1063
1064 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1065 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1066 kernel = g_realloc(kernel, kernel_size);
1067
1068 stq_p(header+0x250, prot_addr + setup_data_offset);
1069
1070 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1071 setup_data->next = 0;
1072 setup_data->type = cpu_to_le32(SETUP_DTB);
1073 setup_data->len = cpu_to_le32(dtb_size);
1074
1075 load_image_size(dtb_filename, setup_data->data, dtb_size);
1076 }
1077
1078 memcpy(setup, header, MIN(sizeof(header), setup_size));
1079
1080 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1081 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1082 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1083
1084 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1085 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1086 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1087
1088 option_rom[nb_option_roms].bootindex = 0;
1089 option_rom[nb_option_roms].name = "linuxboot.bin";
1090 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1091 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1092 }
1093 nb_option_roms++;
1094 }
1095
1096 #define NE2000_NB_MAX 6
1097
1098 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1099 0x280, 0x380 };
1100 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1101
1102 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1103 {
1104 static int nb_ne2k = 0;
1105
1106 if (nb_ne2k == NE2000_NB_MAX)
1107 return;
1108 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1109 ne2000_irq[nb_ne2k], nd);
1110 nb_ne2k++;
1111 }
1112
1113 DeviceState *cpu_get_current_apic(void)
1114 {
1115 if (current_cpu) {
1116 X86CPU *cpu = X86_CPU(current_cpu);
1117 return cpu->apic_state;
1118 } else {
1119 return NULL;
1120 }
1121 }
1122
1123 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1124 {
1125 X86CPU *cpu = opaque;
1126
1127 if (level) {
1128 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1129 }
1130 }
1131
1132 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1133 {
1134 Object *cpu = NULL;
1135 Error *local_err = NULL;
1136
1137 cpu = object_new(typename);
1138
1139 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1140 object_property_set_bool(cpu, true, "realized", &local_err);
1141
1142 object_unref(cpu);
1143 error_propagate(errp, local_err);
1144 }
1145
1146 void pc_hot_add_cpu(const int64_t id, Error **errp)
1147 {
1148 MachineState *ms = MACHINE(qdev_get_machine());
1149 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1150 Error *local_err = NULL;
1151
1152 if (id < 0) {
1153 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1154 return;
1155 }
1156
1157 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1158 error_setg(errp, "Unable to add CPU: %" PRIi64
1159 ", resulting APIC ID (%" PRIi64 ") is too large",
1160 id, apic_id);
1161 return;
1162 }
1163
1164 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1165 if (local_err) {
1166 error_propagate(errp, local_err);
1167 return;
1168 }
1169 }
1170
1171 void pc_cpus_init(PCMachineState *pcms)
1172 {
1173 int i;
1174 const CPUArchIdList *possible_cpus;
1175 MachineState *ms = MACHINE(pcms);
1176 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1177
1178 /* Calculates the limit to CPU APIC ID values
1179 *
1180 * Limit for the APIC ID value, so that all
1181 * CPU APIC IDs are < pcms->apic_id_limit.
1182 *
1183 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1184 */
1185 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1186 possible_cpus = mc->possible_cpu_arch_ids(ms);
1187 for (i = 0; i < smp_cpus; i++) {
1188 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1189 &error_fatal);
1190 }
1191 }
1192
1193 static void pc_build_feature_control_file(PCMachineState *pcms)
1194 {
1195 MachineState *ms = MACHINE(pcms);
1196 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1197 CPUX86State *env = &cpu->env;
1198 uint32_t unused, ecx, edx;
1199 uint64_t feature_control_bits = 0;
1200 uint64_t *val;
1201
1202 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1203 if (ecx & CPUID_EXT_VMX) {
1204 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1205 }
1206
1207 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1208 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1209 (env->mcg_cap & MCG_LMCE_P)) {
1210 feature_control_bits |= FEATURE_CONTROL_LMCE;
1211 }
1212
1213 if (!feature_control_bits) {
1214 return;
1215 }
1216
1217 val = g_malloc(sizeof(*val));
1218 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1219 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1220 }
1221
1222 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1223 {
1224 if (cpus_count > 0xff) {
1225 /* If the number of CPUs can't be represented in 8 bits, the
1226 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1227 * to make old BIOSes fail more predictably.
1228 */
1229 rtc_set_memory(rtc, 0x5f, 0);
1230 } else {
1231 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1232 }
1233 }
1234
1235 static
1236 void pc_machine_done(Notifier *notifier, void *data)
1237 {
1238 PCMachineState *pcms = container_of(notifier,
1239 PCMachineState, machine_done);
1240 PCIBus *bus = pcms->bus;
1241
1242 /* set the number of CPUs */
1243 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1244
1245 if (bus) {
1246 int extra_hosts = 0;
1247
1248 QLIST_FOREACH(bus, &bus->child, sibling) {
1249 /* look for expander root buses */
1250 if (pci_bus_is_root(bus)) {
1251 extra_hosts++;
1252 }
1253 }
1254 if (extra_hosts && pcms->fw_cfg) {
1255 uint64_t *val = g_malloc(sizeof(*val));
1256 *val = cpu_to_le64(extra_hosts);
1257 fw_cfg_add_file(pcms->fw_cfg,
1258 "etc/extra-pci-roots", val, sizeof(*val));
1259 }
1260 }
1261
1262 acpi_setup();
1263 if (pcms->fw_cfg) {
1264 pc_build_smbios(pcms);
1265 pc_build_feature_control_file(pcms);
1266 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1267 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1268 }
1269
1270 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1271 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1272
1273 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1274 iommu->intr_eim != ON_OFF_AUTO_ON) {
1275 error_report("current -smp configuration requires "
1276 "Extended Interrupt Mode enabled. "
1277 "You can add an IOMMU using: "
1278 "-device intel-iommu,intremap=on,eim=on");
1279 exit(EXIT_FAILURE);
1280 }
1281 }
1282 }
1283
1284 void pc_guest_info_init(PCMachineState *pcms)
1285 {
1286 int i;
1287
1288 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1289 pcms->numa_nodes = nb_numa_nodes;
1290 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1291 sizeof *pcms->node_mem);
1292 for (i = 0; i < nb_numa_nodes; i++) {
1293 pcms->node_mem[i] = numa_info[i].node_mem;
1294 }
1295
1296 pcms->machine_done.notify = pc_machine_done;
1297 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1298 }
1299
1300 /* setup pci memory address space mapping into system address space */
1301 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1302 MemoryRegion *pci_address_space)
1303 {
1304 /* Set to lower priority than RAM */
1305 memory_region_add_subregion_overlap(system_memory, 0x0,
1306 pci_address_space, -1);
1307 }
1308
1309 void pc_acpi_init(const char *default_dsdt)
1310 {
1311 char *filename;
1312
1313 if (acpi_tables != NULL) {
1314 /* manually set via -acpitable, leave it alone */
1315 return;
1316 }
1317
1318 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1319 if (filename == NULL) {
1320 warn_report("failed to find %s", default_dsdt);
1321 } else {
1322 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1323 &error_abort);
1324 Error *err = NULL;
1325
1326 qemu_opt_set(opts, "file", filename, &error_abort);
1327
1328 acpi_table_add_builtin(opts, &err);
1329 if (err) {
1330 warn_reportf_err(err, "failed to load %s: ", filename);
1331 }
1332 g_free(filename);
1333 }
1334 }
1335
1336 void xen_load_linux(PCMachineState *pcms)
1337 {
1338 int i;
1339 FWCfgState *fw_cfg;
1340
1341 assert(MACHINE(pcms)->kernel_filename != NULL);
1342
1343 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1344 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1345 rom_set_fw(fw_cfg);
1346
1347 load_linux(pcms, fw_cfg);
1348 for (i = 0; i < nb_option_roms; i++) {
1349 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1350 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1351 !strcmp(option_rom[i].name, "multiboot.bin"));
1352 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1353 }
1354 pcms->fw_cfg = fw_cfg;
1355 }
1356
1357 void pc_memory_init(PCMachineState *pcms,
1358 MemoryRegion *system_memory,
1359 MemoryRegion *rom_memory,
1360 MemoryRegion **ram_memory)
1361 {
1362 int linux_boot, i;
1363 MemoryRegion *ram, *option_rom_mr;
1364 MemoryRegion *ram_below_4g, *ram_above_4g;
1365 FWCfgState *fw_cfg;
1366 MachineState *machine = MACHINE(pcms);
1367 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1368
1369 assert(machine->ram_size == pcms->below_4g_mem_size +
1370 pcms->above_4g_mem_size);
1371
1372 linux_boot = (machine->kernel_filename != NULL);
1373
1374 /* Allocate RAM. We allocate it as a single memory region and use
1375 * aliases to address portions of it, mostly for backwards compatibility
1376 * with older qemus that used qemu_ram_alloc().
1377 */
1378 ram = g_malloc(sizeof(*ram));
1379 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1380 machine->ram_size);
1381 *ram_memory = ram;
1382 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1383 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1384 0, pcms->below_4g_mem_size);
1385 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1386 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1387 if (pcms->above_4g_mem_size > 0) {
1388 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1389 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1390 pcms->below_4g_mem_size,
1391 pcms->above_4g_mem_size);
1392 memory_region_add_subregion(system_memory, 0x100000000ULL,
1393 ram_above_4g);
1394 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1395 }
1396
1397 if (!pcmc->has_reserved_memory &&
1398 (machine->ram_slots ||
1399 (machine->maxram_size > machine->ram_size))) {
1400 MachineClass *mc = MACHINE_GET_CLASS(machine);
1401
1402 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1403 mc->name);
1404 exit(EXIT_FAILURE);
1405 }
1406
1407 /* always allocate the device memory information */
1408 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1409
1410 /* initialize device memory address space */
1411 if (pcmc->has_reserved_memory &&
1412 (machine->ram_size < machine->maxram_size)) {
1413 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1414
1415 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1416 error_report("unsupported amount of memory slots: %"PRIu64,
1417 machine->ram_slots);
1418 exit(EXIT_FAILURE);
1419 }
1420
1421 if (QEMU_ALIGN_UP(machine->maxram_size,
1422 TARGET_PAGE_SIZE) != machine->maxram_size) {
1423 error_report("maximum memory size must by aligned to multiple of "
1424 "%d bytes", TARGET_PAGE_SIZE);
1425 exit(EXIT_FAILURE);
1426 }
1427
1428 machine->device_memory->base =
1429 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1430
1431 if (pcmc->enforce_aligned_dimm) {
1432 /* size device region assuming 1G page max alignment per slot */
1433 device_mem_size += (1 * GiB) * machine->ram_slots;
1434 }
1435
1436 if ((machine->device_memory->base + device_mem_size) <
1437 device_mem_size) {
1438 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1439 machine->maxram_size);
1440 exit(EXIT_FAILURE);
1441 }
1442
1443 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1444 "device-memory", device_mem_size);
1445 memory_region_add_subregion(system_memory, machine->device_memory->base,
1446 &machine->device_memory->mr);
1447 }
1448
1449 /* Initialize PC system firmware */
1450 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1451
1452 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1453 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1454 &error_fatal);
1455 if (pcmc->pci_enabled) {
1456 memory_region_set_readonly(option_rom_mr, true);
1457 }
1458 memory_region_add_subregion_overlap(rom_memory,
1459 PC_ROM_MIN_VGA,
1460 option_rom_mr,
1461 1);
1462
1463 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1464
1465 rom_set_fw(fw_cfg);
1466
1467 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1468 uint64_t *val = g_malloc(sizeof(*val));
1469 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1470 uint64_t res_mem_end = machine->device_memory->base;
1471
1472 if (!pcmc->broken_reserved_end) {
1473 res_mem_end += memory_region_size(&machine->device_memory->mr);
1474 }
1475 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1476 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1477 }
1478
1479 if (linux_boot) {
1480 load_linux(pcms, fw_cfg);
1481 }
1482
1483 for (i = 0; i < nb_option_roms; i++) {
1484 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1485 }
1486 pcms->fw_cfg = fw_cfg;
1487
1488 /* Init default IOAPIC address space */
1489 pcms->ioapic_as = &address_space_memory;
1490 }
1491
1492 /*
1493 * The 64bit pci hole starts after "above 4G RAM" and
1494 * potentially the space reserved for memory hotplug.
1495 */
1496 uint64_t pc_pci_hole64_start(void)
1497 {
1498 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1499 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1500 MachineState *ms = MACHINE(pcms);
1501 uint64_t hole64_start = 0;
1502
1503 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1504 hole64_start = ms->device_memory->base;
1505 if (!pcmc->broken_reserved_end) {
1506 hole64_start += memory_region_size(&ms->device_memory->mr);
1507 }
1508 } else {
1509 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1510 }
1511
1512 return ROUND_UP(hole64_start, 1 * GiB);
1513 }
1514
1515 qemu_irq pc_allocate_cpu_irq(void)
1516 {
1517 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1518 }
1519
1520 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1521 {
1522 DeviceState *dev = NULL;
1523
1524 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1525 if (pci_bus) {
1526 PCIDevice *pcidev = pci_vga_init(pci_bus);
1527 dev = pcidev ? &pcidev->qdev : NULL;
1528 } else if (isa_bus) {
1529 ISADevice *isadev = isa_vga_init(isa_bus);
1530 dev = isadev ? DEVICE(isadev) : NULL;
1531 }
1532 rom_reset_order_override();
1533 return dev;
1534 }
1535
1536 static const MemoryRegionOps ioport80_io_ops = {
1537 .write = ioport80_write,
1538 .read = ioport80_read,
1539 .endianness = DEVICE_NATIVE_ENDIAN,
1540 .impl = {
1541 .min_access_size = 1,
1542 .max_access_size = 1,
1543 },
1544 };
1545
1546 static const MemoryRegionOps ioportF0_io_ops = {
1547 .write = ioportF0_write,
1548 .read = ioportF0_read,
1549 .endianness = DEVICE_NATIVE_ENDIAN,
1550 .impl = {
1551 .min_access_size = 1,
1552 .max_access_size = 1,
1553 },
1554 };
1555
1556 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1557 {
1558 int i;
1559 DriveInfo *fd[MAX_FD];
1560 qemu_irq *a20_line;
1561 ISADevice *i8042, *port92, *vmmouse;
1562
1563 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1564 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1565
1566 for (i = 0; i < MAX_FD; i++) {
1567 fd[i] = drive_get(IF_FLOPPY, 0, i);
1568 create_fdctrl |= !!fd[i];
1569 }
1570 if (create_fdctrl) {
1571 fdctrl_init_isa(isa_bus, fd);
1572 }
1573
1574 i8042 = isa_create_simple(isa_bus, "i8042");
1575 if (!no_vmport) {
1576 vmport_init(isa_bus);
1577 vmmouse = isa_try_create(isa_bus, "vmmouse");
1578 } else {
1579 vmmouse = NULL;
1580 }
1581 if (vmmouse) {
1582 DeviceState *dev = DEVICE(vmmouse);
1583 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1584 qdev_init_nofail(dev);
1585 }
1586 port92 = isa_create_simple(isa_bus, "port92");
1587
1588 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1589 i8042_setup_a20_line(i8042, a20_line[0]);
1590 port92_init(port92, a20_line[1]);
1591 g_free(a20_line);
1592 }
1593
1594 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1595 ISADevice **rtc_state,
1596 bool create_fdctrl,
1597 bool no_vmport,
1598 bool has_pit,
1599 uint32_t hpet_irqs)
1600 {
1601 int i;
1602 DeviceState *hpet = NULL;
1603 int pit_isa_irq = 0;
1604 qemu_irq pit_alt_irq = NULL;
1605 qemu_irq rtc_irq = NULL;
1606 ISADevice *pit = NULL;
1607 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1608 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1609
1610 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1611 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1612
1613 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1614 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1615
1616 /*
1617 * Check if an HPET shall be created.
1618 *
1619 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1620 * when the HPET wants to take over. Thus we have to disable the latter.
1621 */
1622 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1623 /* In order to set property, here not using sysbus_try_create_simple */
1624 hpet = qdev_try_create(NULL, TYPE_HPET);
1625 if (hpet) {
1626 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1627 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1628 * IRQ8 and IRQ2.
1629 */
1630 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1631 HPET_INTCAP, NULL);
1632 if (!compat) {
1633 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1634 }
1635 qdev_init_nofail(hpet);
1636 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1637
1638 for (i = 0; i < GSI_NUM_PINS; i++) {
1639 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1640 }
1641 pit_isa_irq = -1;
1642 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1643 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1644 }
1645 }
1646 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1647
1648 qemu_register_boot_set(pc_boot_set, *rtc_state);
1649
1650 if (!xen_enabled() && has_pit) {
1651 if (kvm_pit_in_kernel()) {
1652 pit = kvm_pit_init(isa_bus, 0x40);
1653 } else {
1654 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1655 }
1656 if (hpet) {
1657 /* connect PIT to output control line of the HPET */
1658 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1659 }
1660 pcspk_init(isa_bus, pit);
1661 }
1662
1663 i8257_dma_init(isa_bus, 0);
1664
1665 /* Super I/O */
1666 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1667 }
1668
1669 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1670 {
1671 int i;
1672
1673 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1674 for (i = 0; i < nb_nics; i++) {
1675 NICInfo *nd = &nd_table[i];
1676 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1677
1678 if (g_str_equal(model, "ne2k_isa")) {
1679 pc_init_ne2k_isa(isa_bus, nd);
1680 } else {
1681 pci_nic_init_nofail(nd, pci_bus, model, NULL);
1682 }
1683 }
1684 rom_reset_order_override();
1685 }
1686
1687 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1688 {
1689 DeviceState *dev;
1690 SysBusDevice *d;
1691 unsigned int i;
1692
1693 if (kvm_ioapic_in_kernel()) {
1694 dev = qdev_create(NULL, "kvm-ioapic");
1695 } else {
1696 dev = qdev_create(NULL, "ioapic");
1697 }
1698 if (parent_name) {
1699 object_property_add_child(object_resolve_path(parent_name, NULL),
1700 "ioapic", OBJECT(dev), NULL);
1701 }
1702 qdev_init_nofail(dev);
1703 d = SYS_BUS_DEVICE(dev);
1704 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1705
1706 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1707 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1708 }
1709 }
1710
1711 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1712 Error **errp)
1713 {
1714 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1715 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1716 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1717 const uint64_t legacy_align = TARGET_PAGE_SIZE;
1718
1719 /*
1720 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1721 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1722 * addition to cover this case.
1723 */
1724 if (!pcms->acpi_dev || !acpi_enabled) {
1725 error_setg(errp,
1726 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1727 return;
1728 }
1729
1730 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1731 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1732 return;
1733 }
1734
1735 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1736 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1737 }
1738
1739 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1740 DeviceState *dev, Error **errp)
1741 {
1742 HotplugHandlerClass *hhc;
1743 Error *local_err = NULL;
1744 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1745 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1746
1747 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1748 if (local_err) {
1749 goto out;
1750 }
1751
1752 if (is_nvdimm) {
1753 nvdimm_plug(&pcms->acpi_nvdimm_state);
1754 }
1755
1756 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1757 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1758 out:
1759 error_propagate(errp, local_err);
1760 }
1761
1762 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1763 DeviceState *dev, Error **errp)
1764 {
1765 HotplugHandlerClass *hhc;
1766 Error *local_err = NULL;
1767 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1768
1769 /*
1770 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1771 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1772 * addition to cover this case.
1773 */
1774 if (!pcms->acpi_dev || !acpi_enabled) {
1775 error_setg(&local_err,
1776 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1777 goto out;
1778 }
1779
1780 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1781 error_setg(&local_err,
1782 "nvdimm device hot unplug is not supported yet.");
1783 goto out;
1784 }
1785
1786 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1787 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1788
1789 out:
1790 error_propagate(errp, local_err);
1791 }
1792
1793 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1794 DeviceState *dev, Error **errp)
1795 {
1796 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1797 HotplugHandlerClass *hhc;
1798 Error *local_err = NULL;
1799
1800 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1801 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1802
1803 if (local_err) {
1804 goto out;
1805 }
1806
1807 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
1808 object_unparent(OBJECT(dev));
1809
1810 out:
1811 error_propagate(errp, local_err);
1812 }
1813
1814 static int pc_apic_cmp(const void *a, const void *b)
1815 {
1816 CPUArchId *apic_a = (CPUArchId *)a;
1817 CPUArchId *apic_b = (CPUArchId *)b;
1818
1819 return apic_a->arch_id - apic_b->arch_id;
1820 }
1821
1822 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1823 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1824 * entry corresponding to CPU's apic_id returns NULL.
1825 */
1826 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1827 {
1828 CPUArchId apic_id, *found_cpu;
1829
1830 apic_id.arch_id = id;
1831 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1832 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1833 pc_apic_cmp);
1834 if (found_cpu && idx) {
1835 *idx = found_cpu - ms->possible_cpus->cpus;
1836 }
1837 return found_cpu;
1838 }
1839
1840 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1841 DeviceState *dev, Error **errp)
1842 {
1843 CPUArchId *found_cpu;
1844 HotplugHandlerClass *hhc;
1845 Error *local_err = NULL;
1846 X86CPU *cpu = X86_CPU(dev);
1847 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1848
1849 if (pcms->acpi_dev) {
1850 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1851 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1852 if (local_err) {
1853 goto out;
1854 }
1855 }
1856
1857 /* increment the number of CPUs */
1858 pcms->boot_cpus++;
1859 if (pcms->rtc) {
1860 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1861 }
1862 if (pcms->fw_cfg) {
1863 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1864 }
1865
1866 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1867 found_cpu->cpu = OBJECT(dev);
1868 out:
1869 error_propagate(errp, local_err);
1870 }
1871 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1872 DeviceState *dev, Error **errp)
1873 {
1874 int idx = -1;
1875 HotplugHandlerClass *hhc;
1876 Error *local_err = NULL;
1877 X86CPU *cpu = X86_CPU(dev);
1878 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1879
1880 if (!pcms->acpi_dev) {
1881 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1882 goto out;
1883 }
1884
1885 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1886 assert(idx != -1);
1887 if (idx == 0) {
1888 error_setg(&local_err, "Boot CPU is unpluggable");
1889 goto out;
1890 }
1891
1892 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1893 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1894
1895 if (local_err) {
1896 goto out;
1897 }
1898
1899 out:
1900 error_propagate(errp, local_err);
1901
1902 }
1903
1904 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1905 DeviceState *dev, Error **errp)
1906 {
1907 CPUArchId *found_cpu;
1908 HotplugHandlerClass *hhc;
1909 Error *local_err = NULL;
1910 X86CPU *cpu = X86_CPU(dev);
1911 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1912
1913 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1914 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1915
1916 if (local_err) {
1917 goto out;
1918 }
1919
1920 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1921 found_cpu->cpu = NULL;
1922 object_unparent(OBJECT(dev));
1923
1924 /* decrement the number of CPUs */
1925 pcms->boot_cpus--;
1926 /* Update the number of CPUs in CMOS */
1927 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1928 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1929 out:
1930 error_propagate(errp, local_err);
1931 }
1932
1933 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1934 DeviceState *dev, Error **errp)
1935 {
1936 int idx;
1937 CPUState *cs;
1938 CPUArchId *cpu_slot;
1939 X86CPUTopoInfo topo;
1940 X86CPU *cpu = X86_CPU(dev);
1941 MachineState *ms = MACHINE(hotplug_dev);
1942 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1943
1944 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1945 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1946 ms->cpu_type);
1947 return;
1948 }
1949
1950 /* if APIC ID is not set, set it based on socket/core/thread properties */
1951 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1952 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1953
1954 if (cpu->socket_id < 0) {
1955 error_setg(errp, "CPU socket-id is not set");
1956 return;
1957 } else if (cpu->socket_id > max_socket) {
1958 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1959 cpu->socket_id, max_socket);
1960 return;
1961 }
1962 if (cpu->core_id < 0) {
1963 error_setg(errp, "CPU core-id is not set");
1964 return;
1965 } else if (cpu->core_id > (smp_cores - 1)) {
1966 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1967 cpu->core_id, smp_cores - 1);
1968 return;
1969 }
1970 if (cpu->thread_id < 0) {
1971 error_setg(errp, "CPU thread-id is not set");
1972 return;
1973 } else if (cpu->thread_id > (smp_threads - 1)) {
1974 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1975 cpu->thread_id, smp_threads - 1);
1976 return;
1977 }
1978
1979 topo.pkg_id = cpu->socket_id;
1980 topo.core_id = cpu->core_id;
1981 topo.smt_id = cpu->thread_id;
1982 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1983 }
1984
1985 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1986 if (!cpu_slot) {
1987 MachineState *ms = MACHINE(pcms);
1988
1989 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1990 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1991 " APIC ID %" PRIu32 ", valid index range 0:%d",
1992 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1993 ms->possible_cpus->len - 1);
1994 return;
1995 }
1996
1997 if (cpu_slot->cpu) {
1998 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1999 idx, cpu->apic_id);
2000 return;
2001 }
2002
2003 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2004 * so that machine_query_hotpluggable_cpus would show correct values
2005 */
2006 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2007 * once -smp refactoring is complete and there will be CPU private
2008 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2009 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2010 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2011 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2012 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2013 return;
2014 }
2015 cpu->socket_id = topo.pkg_id;
2016
2017 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2018 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2019 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2020 return;
2021 }
2022 cpu->core_id = topo.core_id;
2023
2024 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2025 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2026 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2027 return;
2028 }
2029 cpu->thread_id = topo.smt_id;
2030
2031 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2032 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2033 return;
2034 }
2035
2036 cs = CPU(cpu);
2037 cs->cpu_index = idx;
2038
2039 numa_cpu_pre_plug(cpu_slot, dev, errp);
2040 }
2041
2042 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2043 DeviceState *dev, Error **errp)
2044 {
2045 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2046 pc_memory_pre_plug(hotplug_dev, dev, errp);
2047 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2048 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2049 }
2050 }
2051
2052 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2053 DeviceState *dev, Error **errp)
2054 {
2055 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2056 pc_memory_plug(hotplug_dev, dev, errp);
2057 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2058 pc_cpu_plug(hotplug_dev, dev, errp);
2059 }
2060 }
2061
2062 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2063 DeviceState *dev, Error **errp)
2064 {
2065 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2066 pc_memory_unplug_request(hotplug_dev, dev, errp);
2067 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2068 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2069 } else {
2070 error_setg(errp, "acpi: device unplug request for not supported device"
2071 " type: %s", object_get_typename(OBJECT(dev)));
2072 }
2073 }
2074
2075 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2076 DeviceState *dev, Error **errp)
2077 {
2078 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2079 pc_memory_unplug(hotplug_dev, dev, errp);
2080 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2081 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2082 } else {
2083 error_setg(errp, "acpi: device unplug for not supported device"
2084 " type: %s", object_get_typename(OBJECT(dev)));
2085 }
2086 }
2087
2088 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2089 DeviceState *dev)
2090 {
2091 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2092 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2093 return HOTPLUG_HANDLER(machine);
2094 }
2095
2096 return NULL;
2097 }
2098
2099 static void
2100 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2101 const char *name, void *opaque,
2102 Error **errp)
2103 {
2104 MachineState *ms = MACHINE(obj);
2105 int64_t value = memory_region_size(&ms->device_memory->mr);
2106
2107 visit_type_int(v, name, &value, errp);
2108 }
2109
2110 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2111 const char *name, void *opaque,
2112 Error **errp)
2113 {
2114 PCMachineState *pcms = PC_MACHINE(obj);
2115 uint64_t value = pcms->max_ram_below_4g;
2116
2117 visit_type_size(v, name, &value, errp);
2118 }
2119
2120 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2121 const char *name, void *opaque,
2122 Error **errp)
2123 {
2124 PCMachineState *pcms = PC_MACHINE(obj);
2125 Error *error = NULL;
2126 uint64_t value;
2127
2128 visit_type_size(v, name, &value, &error);
2129 if (error) {
2130 error_propagate(errp, error);
2131 return;
2132 }
2133 if (value > 4 * GiB) {
2134 error_setg(&error,
2135 "Machine option 'max-ram-below-4g=%"PRIu64
2136 "' expects size less than or equal to 4G", value);
2137 error_propagate(errp, error);
2138 return;
2139 }
2140
2141 if (value < 1 * MiB) {
2142 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2143 "BIOS may not work with less than 1MiB", value);
2144 }
2145
2146 pcms->max_ram_below_4g = value;
2147 }
2148
2149 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2150 void *opaque, Error **errp)
2151 {
2152 PCMachineState *pcms = PC_MACHINE(obj);
2153 OnOffAuto vmport = pcms->vmport;
2154
2155 visit_type_OnOffAuto(v, name, &vmport, errp);
2156 }
2157
2158 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2159 void *opaque, Error **errp)
2160 {
2161 PCMachineState *pcms = PC_MACHINE(obj);
2162
2163 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2164 }
2165
2166 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2167 {
2168 bool smm_available = false;
2169
2170 if (pcms->smm == ON_OFF_AUTO_OFF) {
2171 return false;
2172 }
2173
2174 if (tcg_enabled() || qtest_enabled()) {
2175 smm_available = true;
2176 } else if (kvm_enabled()) {
2177 smm_available = kvm_has_smm();
2178 }
2179
2180 if (smm_available) {
2181 return true;
2182 }
2183
2184 if (pcms->smm == ON_OFF_AUTO_ON) {
2185 error_report("System Management Mode not supported by this hypervisor.");
2186 exit(1);
2187 }
2188 return false;
2189 }
2190
2191 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2192 void *opaque, Error **errp)
2193 {
2194 PCMachineState *pcms = PC_MACHINE(obj);
2195 OnOffAuto smm = pcms->smm;
2196
2197 visit_type_OnOffAuto(v, name, &smm, errp);
2198 }
2199
2200 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2201 void *opaque, Error **errp)
2202 {
2203 PCMachineState *pcms = PC_MACHINE(obj);
2204
2205 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2206 }
2207
2208 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2209 {
2210 PCMachineState *pcms = PC_MACHINE(obj);
2211
2212 return pcms->acpi_nvdimm_state.is_enabled;
2213 }
2214
2215 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2216 {
2217 PCMachineState *pcms = PC_MACHINE(obj);
2218
2219 pcms->acpi_nvdimm_state.is_enabled = value;
2220 }
2221
2222 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2223 {
2224 PCMachineState *pcms = PC_MACHINE(obj);
2225
2226 return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2227 }
2228
2229 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2230 Error **errp)
2231 {
2232 PCMachineState *pcms = PC_MACHINE(obj);
2233 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2234
2235 if (strcmp(value, "cpu") == 0)
2236 nvdimm_state->persistence = 3;
2237 else if (strcmp(value, "mem-ctrl") == 0)
2238 nvdimm_state->persistence = 2;
2239 else {
2240 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2241 value);
2242 return;
2243 }
2244
2245 g_free(nvdimm_state->persistence_string);
2246 nvdimm_state->persistence_string = g_strdup(value);
2247 }
2248
2249 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2250 {
2251 PCMachineState *pcms = PC_MACHINE(obj);
2252
2253 return pcms->smbus_enabled;
2254 }
2255
2256 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2257 {
2258 PCMachineState *pcms = PC_MACHINE(obj);
2259
2260 pcms->smbus_enabled = value;
2261 }
2262
2263 static bool pc_machine_get_sata(Object *obj, Error **errp)
2264 {
2265 PCMachineState *pcms = PC_MACHINE(obj);
2266
2267 return pcms->sata_enabled;
2268 }
2269
2270 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2271 {
2272 PCMachineState *pcms = PC_MACHINE(obj);
2273
2274 pcms->sata_enabled = value;
2275 }
2276
2277 static bool pc_machine_get_pit(Object *obj, Error **errp)
2278 {
2279 PCMachineState *pcms = PC_MACHINE(obj);
2280
2281 return pcms->pit_enabled;
2282 }
2283
2284 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2285 {
2286 PCMachineState *pcms = PC_MACHINE(obj);
2287
2288 pcms->pit_enabled = value;
2289 }
2290
2291 static void pc_machine_initfn(Object *obj)
2292 {
2293 PCMachineState *pcms = PC_MACHINE(obj);
2294
2295 pcms->max_ram_below_4g = 0; /* use default */
2296 pcms->smm = ON_OFF_AUTO_AUTO;
2297 pcms->vmport = ON_OFF_AUTO_AUTO;
2298 /* nvdimm is disabled on default. */
2299 pcms->acpi_nvdimm_state.is_enabled = false;
2300 /* acpi build is enabled by default if machine supports it */
2301 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2302 pcms->smbus_enabled = true;
2303 pcms->sata_enabled = true;
2304 pcms->pit_enabled = true;
2305 }
2306
2307 static void pc_machine_reset(void)
2308 {
2309 CPUState *cs;
2310 X86CPU *cpu;
2311
2312 qemu_devices_reset();
2313
2314 /* Reset APIC after devices have been reset to cancel
2315 * any changes that qemu_devices_reset() might have done.
2316 */
2317 CPU_FOREACH(cs) {
2318 cpu = X86_CPU(cs);
2319
2320 if (cpu->apic_state) {
2321 device_reset(cpu->apic_state);
2322 }
2323 }
2324 }
2325
2326 static CpuInstanceProperties
2327 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2328 {
2329 MachineClass *mc = MACHINE_GET_CLASS(ms);
2330 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2331
2332 assert(cpu_index < possible_cpus->len);
2333 return possible_cpus->cpus[cpu_index].props;
2334 }
2335
2336 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2337 {
2338 X86CPUTopoInfo topo;
2339
2340 assert(idx < ms->possible_cpus->len);
2341 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2342 smp_cores, smp_threads, &topo);
2343 return topo.pkg_id % nb_numa_nodes;
2344 }
2345
2346 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2347 {
2348 int i;
2349
2350 if (ms->possible_cpus) {
2351 /*
2352 * make sure that max_cpus hasn't changed since the first use, i.e.
2353 * -smp hasn't been parsed after it
2354 */
2355 assert(ms->possible_cpus->len == max_cpus);
2356 return ms->possible_cpus;
2357 }
2358
2359 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2360 sizeof(CPUArchId) * max_cpus);
2361 ms->possible_cpus->len = max_cpus;
2362 for (i = 0; i < ms->possible_cpus->len; i++) {
2363 X86CPUTopoInfo topo;
2364
2365 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2366 ms->possible_cpus->cpus[i].vcpus_count = 1;
2367 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2368 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2369 smp_cores, smp_threads, &topo);
2370 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2371 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2372 ms->possible_cpus->cpus[i].props.has_core_id = true;
2373 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2374 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2375 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2376 }
2377 return ms->possible_cpus;
2378 }
2379
2380 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2381 {
2382 /* cpu index isn't used */
2383 CPUState *cs;
2384
2385 CPU_FOREACH(cs) {
2386 X86CPU *cpu = X86_CPU(cs);
2387
2388 if (!cpu->apic_state) {
2389 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2390 } else {
2391 apic_deliver_nmi(cpu->apic_state);
2392 }
2393 }
2394 }
2395
2396 static void pc_machine_class_init(ObjectClass *oc, void *data)
2397 {
2398 MachineClass *mc = MACHINE_CLASS(oc);
2399 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2400 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2401 NMIClass *nc = NMI_CLASS(oc);
2402
2403 pcmc->pci_enabled = true;
2404 pcmc->has_acpi_build = true;
2405 pcmc->rsdp_in_ram = true;
2406 pcmc->smbios_defaults = true;
2407 pcmc->smbios_uuid_encoded = true;
2408 pcmc->gigabyte_align = true;
2409 pcmc->has_reserved_memory = true;
2410 pcmc->kvmclock_enabled = true;
2411 pcmc->enforce_aligned_dimm = true;
2412 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2413 * to be used at the moment, 32K should be enough for a while. */
2414 pcmc->acpi_data_size = 0x20000 + 0x8000;
2415 pcmc->save_tsc_khz = true;
2416 pcmc->linuxboot_dma_enabled = true;
2417 assert(!mc->get_hotplug_handler);
2418 mc->get_hotplug_handler = pc_get_hotpug_handler;
2419 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2420 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2421 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2422 mc->auto_enable_numa_with_memhp = true;
2423 mc->has_hotpluggable_cpus = true;
2424 mc->default_boot_order = "cad";
2425 mc->hot_add_cpu = pc_hot_add_cpu;
2426 mc->block_default_type = IF_IDE;
2427 mc->max_cpus = 255;
2428 mc->reset = pc_machine_reset;
2429 hc->pre_plug = pc_machine_device_pre_plug_cb;
2430 hc->plug = pc_machine_device_plug_cb;
2431 hc->unplug_request = pc_machine_device_unplug_request_cb;
2432 hc->unplug = pc_machine_device_unplug_cb;
2433 nc->nmi_monitor_handler = x86_nmi;
2434 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2435
2436 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2437 pc_machine_get_device_memory_region_size, NULL,
2438 NULL, NULL, &error_abort);
2439
2440 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2441 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2442 NULL, NULL, &error_abort);
2443
2444 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2445 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2446
2447 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2448 pc_machine_get_smm, pc_machine_set_smm,
2449 NULL, NULL, &error_abort);
2450 object_class_property_set_description(oc, PC_MACHINE_SMM,
2451 "Enable SMM (pc & q35)", &error_abort);
2452
2453 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2454 pc_machine_get_vmport, pc_machine_set_vmport,
2455 NULL, NULL, &error_abort);
2456 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2457 "Enable vmport (pc & q35)", &error_abort);
2458
2459 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2460 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2461
2462 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2463 pc_machine_get_nvdimm_persistence,
2464 pc_machine_set_nvdimm_persistence, &error_abort);
2465
2466 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2467 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2468
2469 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2470 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2471
2472 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2473 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2474 }
2475
2476 static const TypeInfo pc_machine_info = {
2477 .name = TYPE_PC_MACHINE,
2478 .parent = TYPE_MACHINE,
2479 .abstract = true,
2480 .instance_size = sizeof(PCMachineState),
2481 .instance_init = pc_machine_initfn,
2482 .class_size = sizeof(PCMachineClass),
2483 .class_init = pc_machine_class_init,
2484 .interfaces = (InterfaceInfo[]) {
2485 { TYPE_HOTPLUG_HANDLER },
2486 { TYPE_NMI },
2487 { }
2488 },
2489 };
2490
2491 static void pc_machine_register_types(void)
2492 {
2493 type_register_static(&pc_machine_info);
2494 }
2495
2496 type_init(pc_machine_register_types)