]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
Merge remote-tracking branch 'remotes/cohuck/tags/s390x-20170224' into staging
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71 #include "hw/i386/intel_iommu.h"
72
73 /* debug PC/ISA interrupts */
74 //#define DEBUG_IRQ
75
76 #ifdef DEBUG_IRQ
77 #define DPRINTF(fmt, ...) \
78 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
79 #else
80 #define DPRINTF(fmt, ...)
81 #endif
82
83 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
84 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
85 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
86 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
87 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
88
89 #define E820_NR_ENTRIES 16
90
91 struct e820_entry {
92 uint64_t address;
93 uint64_t length;
94 uint32_t type;
95 } QEMU_PACKED __attribute((__aligned__(4)));
96
97 struct e820_table {
98 uint32_t count;
99 struct e820_entry entry[E820_NR_ENTRIES];
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 static struct e820_table e820_reserve;
103 static struct e820_entry *e820_table;
104 static unsigned e820_entries;
105 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
106
107 void gsi_handler(void *opaque, int n, int level)
108 {
109 GSIState *s = opaque;
110
111 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
112 if (n < ISA_NUM_IRQS) {
113 qemu_set_irq(s->i8259_irq[n], level);
114 }
115 qemu_set_irq(s->ioapic_irq[n], level);
116 }
117
118 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
119 unsigned size)
120 {
121 }
122
123 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
124 {
125 return 0xffffffffffffffffULL;
126 }
127
128 /* MSDOS compatibility mode FPU exception support */
129 static qemu_irq ferr_irq;
130
131 void pc_register_ferr_irq(qemu_irq irq)
132 {
133 ferr_irq = irq;
134 }
135
136 /* XXX: add IGNNE support */
137 void cpu_set_ferr(CPUX86State *s)
138 {
139 qemu_irq_raise(ferr_irq);
140 }
141
142 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
143 unsigned size)
144 {
145 qemu_irq_lower(ferr_irq);
146 }
147
148 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
149 {
150 return 0xffffffffffffffffULL;
151 }
152
153 /* TSC handling */
154 uint64_t cpu_get_tsc(CPUX86State *env)
155 {
156 return cpu_get_ticks();
157 }
158
159 /* IRQ handling */
160 int cpu_get_pic_interrupt(CPUX86State *env)
161 {
162 X86CPU *cpu = x86_env_get_cpu(env);
163 int intno;
164
165 if (!kvm_irqchip_in_kernel()) {
166 intno = apic_get_interrupt(cpu->apic_state);
167 if (intno >= 0) {
168 return intno;
169 }
170 /* read the irq from the PIC */
171 if (!apic_accept_pic_intr(cpu->apic_state)) {
172 return -1;
173 }
174 }
175
176 intno = pic_read_irq(isa_pic);
177 return intno;
178 }
179
180 static void pic_irq_request(void *opaque, int irq, int level)
181 {
182 CPUState *cs = first_cpu;
183 X86CPU *cpu = X86_CPU(cs);
184
185 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
186 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
187 CPU_FOREACH(cs) {
188 cpu = X86_CPU(cs);
189 if (apic_accept_pic_intr(cpu->apic_state)) {
190 apic_deliver_pic_intr(cpu->apic_state, level);
191 }
192 }
193 } else {
194 if (level) {
195 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
196 } else {
197 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
198 }
199 }
200 }
201
202 /* PC cmos mappings */
203
204 #define REG_EQUIPMENT_BYTE 0x14
205
206 int cmos_get_fd_drive_type(FloppyDriveType fd0)
207 {
208 int val;
209
210 switch (fd0) {
211 case FLOPPY_DRIVE_TYPE_144:
212 /* 1.44 Mb 3"5 drive */
213 val = 4;
214 break;
215 case FLOPPY_DRIVE_TYPE_288:
216 /* 2.88 Mb 3"5 drive */
217 val = 5;
218 break;
219 case FLOPPY_DRIVE_TYPE_120:
220 /* 1.2 Mb 5"5 drive */
221 val = 2;
222 break;
223 case FLOPPY_DRIVE_TYPE_NONE:
224 default:
225 val = 0;
226 break;
227 }
228 return val;
229 }
230
231 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
232 int16_t cylinders, int8_t heads, int8_t sectors)
233 {
234 rtc_set_memory(s, type_ofs, 47);
235 rtc_set_memory(s, info_ofs, cylinders);
236 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
237 rtc_set_memory(s, info_ofs + 2, heads);
238 rtc_set_memory(s, info_ofs + 3, 0xff);
239 rtc_set_memory(s, info_ofs + 4, 0xff);
240 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
241 rtc_set_memory(s, info_ofs + 6, cylinders);
242 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
243 rtc_set_memory(s, info_ofs + 8, sectors);
244 }
245
246 /* convert boot_device letter to something recognizable by the bios */
247 static int boot_device2nibble(char boot_device)
248 {
249 switch(boot_device) {
250 case 'a':
251 case 'b':
252 return 0x01; /* floppy boot */
253 case 'c':
254 return 0x02; /* hard drive boot */
255 case 'd':
256 return 0x03; /* CD-ROM boot */
257 case 'n':
258 return 0x04; /* Network boot */
259 }
260 return 0;
261 }
262
263 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
264 {
265 #define PC_MAX_BOOT_DEVICES 3
266 int nbds, bds[3] = { 0, };
267 int i;
268
269 nbds = strlen(boot_device);
270 if (nbds > PC_MAX_BOOT_DEVICES) {
271 error_setg(errp, "Too many boot devices for PC");
272 return;
273 }
274 for (i = 0; i < nbds; i++) {
275 bds[i] = boot_device2nibble(boot_device[i]);
276 if (bds[i] == 0) {
277 error_setg(errp, "Invalid boot device for PC: '%c'",
278 boot_device[i]);
279 return;
280 }
281 }
282 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
283 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
284 }
285
286 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
287 {
288 set_boot_dev(opaque, boot_device, errp);
289 }
290
291 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
292 {
293 int val, nb, i;
294 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
295 FLOPPY_DRIVE_TYPE_NONE };
296
297 /* floppy type */
298 if (floppy) {
299 for (i = 0; i < 2; i++) {
300 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
301 }
302 }
303 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
304 cmos_get_fd_drive_type(fd_type[1]);
305 rtc_set_memory(rtc_state, 0x10, val);
306
307 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
308 nb = 0;
309 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
310 nb++;
311 }
312 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
313 nb++;
314 }
315 switch (nb) {
316 case 0:
317 break;
318 case 1:
319 val |= 0x01; /* 1 drive, ready for boot */
320 break;
321 case 2:
322 val |= 0x41; /* 2 drives, ready for boot */
323 break;
324 }
325 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
326 }
327
328 typedef struct pc_cmos_init_late_arg {
329 ISADevice *rtc_state;
330 BusState *idebus[2];
331 } pc_cmos_init_late_arg;
332
333 typedef struct check_fdc_state {
334 ISADevice *floppy;
335 bool multiple;
336 } CheckFdcState;
337
338 static int check_fdc(Object *obj, void *opaque)
339 {
340 CheckFdcState *state = opaque;
341 Object *fdc;
342 uint32_t iobase;
343 Error *local_err = NULL;
344
345 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
346 if (!fdc) {
347 return 0;
348 }
349
350 iobase = object_property_get_int(obj, "iobase", &local_err);
351 if (local_err || iobase != 0x3f0) {
352 error_free(local_err);
353 return 0;
354 }
355
356 if (state->floppy) {
357 state->multiple = true;
358 } else {
359 state->floppy = ISA_DEVICE(obj);
360 }
361 return 0;
362 }
363
364 static const char * const fdc_container_path[] = {
365 "/unattached", "/peripheral", "/peripheral-anon"
366 };
367
368 /*
369 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
370 * and ACPI objects.
371 */
372 ISADevice *pc_find_fdc0(void)
373 {
374 int i;
375 Object *container;
376 CheckFdcState state = { 0 };
377
378 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
379 container = container_get(qdev_get_machine(), fdc_container_path[i]);
380 object_child_foreach(container, check_fdc, &state);
381 }
382
383 if (state.multiple) {
384 error_report("warning: multiple floppy disk controllers with "
385 "iobase=0x3f0 have been found");
386 error_printf("the one being picked for CMOS setup might not reflect "
387 "your intent\n");
388 }
389
390 return state.floppy;
391 }
392
393 static void pc_cmos_init_late(void *opaque)
394 {
395 pc_cmos_init_late_arg *arg = opaque;
396 ISADevice *s = arg->rtc_state;
397 int16_t cylinders;
398 int8_t heads, sectors;
399 int val;
400 int i, trans;
401
402 val = 0;
403 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
404 &cylinders, &heads, &sectors) >= 0) {
405 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
406 val |= 0xf0;
407 }
408 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
409 &cylinders, &heads, &sectors) >= 0) {
410 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
411 val |= 0x0f;
412 }
413 rtc_set_memory(s, 0x12, val);
414
415 val = 0;
416 for (i = 0; i < 4; i++) {
417 /* NOTE: ide_get_geometry() returns the physical
418 geometry. It is always such that: 1 <= sects <= 63, 1
419 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
420 geometry can be different if a translation is done. */
421 if (arg->idebus[i / 2] &&
422 ide_get_geometry(arg->idebus[i / 2], i % 2,
423 &cylinders, &heads, &sectors) >= 0) {
424 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
425 assert((trans & ~3) == 0);
426 val |= trans << (i * 2);
427 }
428 }
429 rtc_set_memory(s, 0x39, val);
430
431 pc_cmos_init_floppy(s, pc_find_fdc0());
432
433 qemu_unregister_reset(pc_cmos_init_late, opaque);
434 }
435
436 void pc_cmos_init(PCMachineState *pcms,
437 BusState *idebus0, BusState *idebus1,
438 ISADevice *s)
439 {
440 int val;
441 static pc_cmos_init_late_arg arg;
442
443 /* various important CMOS locations needed by PC/Bochs bios */
444
445 /* memory size */
446 /* base memory (first MiB) */
447 val = MIN(pcms->below_4g_mem_size / 1024, 640);
448 rtc_set_memory(s, 0x15, val);
449 rtc_set_memory(s, 0x16, val >> 8);
450 /* extended memory (next 64MiB) */
451 if (pcms->below_4g_mem_size > 1024 * 1024) {
452 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
453 } else {
454 val = 0;
455 }
456 if (val > 65535)
457 val = 65535;
458 rtc_set_memory(s, 0x17, val);
459 rtc_set_memory(s, 0x18, val >> 8);
460 rtc_set_memory(s, 0x30, val);
461 rtc_set_memory(s, 0x31, val >> 8);
462 /* memory between 16MiB and 4GiB */
463 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
464 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
465 } else {
466 val = 0;
467 }
468 if (val > 65535)
469 val = 65535;
470 rtc_set_memory(s, 0x34, val);
471 rtc_set_memory(s, 0x35, val >> 8);
472 /* memory above 4GiB */
473 val = pcms->above_4g_mem_size / 65536;
474 rtc_set_memory(s, 0x5b, val);
475 rtc_set_memory(s, 0x5c, val >> 8);
476 rtc_set_memory(s, 0x5d, val >> 16);
477
478 object_property_add_link(OBJECT(pcms), "rtc_state",
479 TYPE_ISA_DEVICE,
480 (Object **)&pcms->rtc,
481 object_property_allow_set_link,
482 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
483 object_property_set_link(OBJECT(pcms), OBJECT(s),
484 "rtc_state", &error_abort);
485
486 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
487
488 val = 0;
489 val |= 0x02; /* FPU is there */
490 val |= 0x04; /* PS/2 mouse installed */
491 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
492
493 /* hard drives and FDC */
494 arg.rtc_state = s;
495 arg.idebus[0] = idebus0;
496 arg.idebus[1] = idebus1;
497 qemu_register_reset(pc_cmos_init_late, &arg);
498 }
499
500 #define TYPE_PORT92 "port92"
501 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
502
503 /* port 92 stuff: could be split off */
504 typedef struct Port92State {
505 ISADevice parent_obj;
506
507 MemoryRegion io;
508 uint8_t outport;
509 qemu_irq a20_out;
510 } Port92State;
511
512 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
513 unsigned size)
514 {
515 Port92State *s = opaque;
516 int oldval = s->outport;
517
518 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
519 s->outport = val;
520 qemu_set_irq(s->a20_out, (val >> 1) & 1);
521 if ((val & 1) && !(oldval & 1)) {
522 qemu_system_reset_request();
523 }
524 }
525
526 static uint64_t port92_read(void *opaque, hwaddr addr,
527 unsigned size)
528 {
529 Port92State *s = opaque;
530 uint32_t ret;
531
532 ret = s->outport;
533 DPRINTF("port92: read 0x%02x\n", ret);
534 return ret;
535 }
536
537 static void port92_init(ISADevice *dev, qemu_irq a20_out)
538 {
539 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
540 }
541
542 static const VMStateDescription vmstate_port92_isa = {
543 .name = "port92",
544 .version_id = 1,
545 .minimum_version_id = 1,
546 .fields = (VMStateField[]) {
547 VMSTATE_UINT8(outport, Port92State),
548 VMSTATE_END_OF_LIST()
549 }
550 };
551
552 static void port92_reset(DeviceState *d)
553 {
554 Port92State *s = PORT92(d);
555
556 s->outport &= ~1;
557 }
558
559 static const MemoryRegionOps port92_ops = {
560 .read = port92_read,
561 .write = port92_write,
562 .impl = {
563 .min_access_size = 1,
564 .max_access_size = 1,
565 },
566 .endianness = DEVICE_LITTLE_ENDIAN,
567 };
568
569 static void port92_initfn(Object *obj)
570 {
571 Port92State *s = PORT92(obj);
572
573 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
574
575 s->outport = 0;
576
577 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
578 }
579
580 static void port92_realizefn(DeviceState *dev, Error **errp)
581 {
582 ISADevice *isadev = ISA_DEVICE(dev);
583 Port92State *s = PORT92(dev);
584
585 isa_register_ioport(isadev, &s->io, 0x92);
586 }
587
588 static void port92_class_initfn(ObjectClass *klass, void *data)
589 {
590 DeviceClass *dc = DEVICE_CLASS(klass);
591
592 dc->realize = port92_realizefn;
593 dc->reset = port92_reset;
594 dc->vmsd = &vmstate_port92_isa;
595 /*
596 * Reason: unlike ordinary ISA devices, this one needs additional
597 * wiring: its A20 output line needs to be wired up by
598 * port92_init().
599 */
600 dc->cannot_instantiate_with_device_add_yet = true;
601 }
602
603 static const TypeInfo port92_info = {
604 .name = TYPE_PORT92,
605 .parent = TYPE_ISA_DEVICE,
606 .instance_size = sizeof(Port92State),
607 .instance_init = port92_initfn,
608 .class_init = port92_class_initfn,
609 };
610
611 static void port92_register_types(void)
612 {
613 type_register_static(&port92_info);
614 }
615
616 type_init(port92_register_types)
617
618 static void handle_a20_line_change(void *opaque, int irq, int level)
619 {
620 X86CPU *cpu = opaque;
621
622 /* XXX: send to all CPUs ? */
623 /* XXX: add logic to handle multiple A20 line sources */
624 x86_cpu_set_a20(cpu, level);
625 }
626
627 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
628 {
629 int index = le32_to_cpu(e820_reserve.count);
630 struct e820_entry *entry;
631
632 if (type != E820_RAM) {
633 /* old FW_CFG_E820_TABLE entry -- reservations only */
634 if (index >= E820_NR_ENTRIES) {
635 return -EBUSY;
636 }
637 entry = &e820_reserve.entry[index++];
638
639 entry->address = cpu_to_le64(address);
640 entry->length = cpu_to_le64(length);
641 entry->type = cpu_to_le32(type);
642
643 e820_reserve.count = cpu_to_le32(index);
644 }
645
646 /* new "etc/e820" file -- include ram too */
647 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
648 e820_table[e820_entries].address = cpu_to_le64(address);
649 e820_table[e820_entries].length = cpu_to_le64(length);
650 e820_table[e820_entries].type = cpu_to_le32(type);
651 e820_entries++;
652
653 return e820_entries;
654 }
655
656 int e820_get_num_entries(void)
657 {
658 return e820_entries;
659 }
660
661 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
662 {
663 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
664 *address = le64_to_cpu(e820_table[idx].address);
665 *length = le64_to_cpu(e820_table[idx].length);
666 return true;
667 }
668 return false;
669 }
670
671 /* Enables contiguous-apic-ID mode, for compatibility */
672 static bool compat_apic_id_mode;
673
674 void enable_compat_apic_id_mode(void)
675 {
676 compat_apic_id_mode = true;
677 }
678
679 /* Calculates initial APIC ID for a specific CPU index
680 *
681 * Currently we need to be able to calculate the APIC ID from the CPU index
682 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
683 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
684 * all CPUs up to max_cpus.
685 */
686 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
687 {
688 uint32_t correct_id;
689 static bool warned;
690
691 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
692 if (compat_apic_id_mode) {
693 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
694 error_report("APIC IDs set in compatibility mode, "
695 "CPU topology won't match the configuration");
696 warned = true;
697 }
698 return cpu_index;
699 } else {
700 return correct_id;
701 }
702 }
703
704 static void pc_build_smbios(PCMachineState *pcms)
705 {
706 uint8_t *smbios_tables, *smbios_anchor;
707 size_t smbios_tables_len, smbios_anchor_len;
708 struct smbios_phys_mem_area *mem_array;
709 unsigned i, array_count;
710 MachineState *ms = MACHINE(pcms);
711 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
712
713 /* tell smbios about cpuid version and features */
714 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
715
716 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
717 if (smbios_tables) {
718 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
719 smbios_tables, smbios_tables_len);
720 }
721
722 /* build the array of physical mem area from e820 table */
723 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
724 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
725 uint64_t addr, len;
726
727 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
728 mem_array[array_count].address = addr;
729 mem_array[array_count].length = len;
730 array_count++;
731 }
732 }
733 smbios_get_tables(mem_array, array_count,
734 &smbios_tables, &smbios_tables_len,
735 &smbios_anchor, &smbios_anchor_len);
736 g_free(mem_array);
737
738 if (smbios_anchor) {
739 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
740 smbios_tables, smbios_tables_len);
741 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
742 smbios_anchor, smbios_anchor_len);
743 }
744 }
745
746 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
747 {
748 FWCfgState *fw_cfg;
749 uint64_t *numa_fw_cfg;
750 int i, j;
751
752 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
753 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
754
755 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
756 *
757 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
758 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
759 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
760 * for CPU hotplug also uses APIC ID and not "CPU index".
761 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
762 * but the "limit to the APIC ID values SeaBIOS may see".
763 *
764 * So for compatibility reasons with old BIOSes we are stuck with
765 * "etc/max-cpus" actually being apic_id_limit
766 */
767 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
768 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
769 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
770 acpi_tables, acpi_tables_len);
771 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
772
773 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
774 &e820_reserve, sizeof(e820_reserve));
775 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
776 sizeof(struct e820_entry) * e820_entries);
777
778 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
779 /* allocate memory for the NUMA channel: one (64bit) word for the number
780 * of nodes, one word for each VCPU->node and one word for each node to
781 * hold the amount of memory.
782 */
783 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
784 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
785 for (i = 0; i < max_cpus; i++) {
786 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
787 assert(apic_id < pcms->apic_id_limit);
788 j = numa_get_node_for_cpu(i);
789 if (j < nb_numa_nodes) {
790 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
791 }
792 }
793 for (i = 0; i < nb_numa_nodes; i++) {
794 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
795 cpu_to_le64(numa_info[i].node_mem);
796 }
797 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
798 (1 + pcms->apic_id_limit + nb_numa_nodes) *
799 sizeof(*numa_fw_cfg));
800
801 return fw_cfg;
802 }
803
804 static long get_file_size(FILE *f)
805 {
806 long where, size;
807
808 /* XXX: on Unix systems, using fstat() probably makes more sense */
809
810 where = ftell(f);
811 fseek(f, 0, SEEK_END);
812 size = ftell(f);
813 fseek(f, where, SEEK_SET);
814
815 return size;
816 }
817
818 /* setup_data types */
819 #define SETUP_NONE 0
820 #define SETUP_E820_EXT 1
821 #define SETUP_DTB 2
822 #define SETUP_PCI 3
823 #define SETUP_EFI 4
824
825 struct setup_data {
826 uint64_t next;
827 uint32_t type;
828 uint32_t len;
829 uint8_t data[0];
830 } __attribute__((packed));
831
832 static void load_linux(PCMachineState *pcms,
833 FWCfgState *fw_cfg)
834 {
835 uint16_t protocol;
836 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
837 int dtb_size, setup_data_offset;
838 uint32_t initrd_max;
839 uint8_t header[8192], *setup, *kernel, *initrd_data;
840 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
841 FILE *f;
842 char *vmode;
843 MachineState *machine = MACHINE(pcms);
844 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
845 struct setup_data *setup_data;
846 const char *kernel_filename = machine->kernel_filename;
847 const char *initrd_filename = machine->initrd_filename;
848 const char *dtb_filename = machine->dtb;
849 const char *kernel_cmdline = machine->kernel_cmdline;
850
851 /* Align to 16 bytes as a paranoia measure */
852 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
853
854 /* load the kernel header */
855 f = fopen(kernel_filename, "rb");
856 if (!f || !(kernel_size = get_file_size(f)) ||
857 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
858 MIN(ARRAY_SIZE(header), kernel_size)) {
859 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
860 kernel_filename, strerror(errno));
861 exit(1);
862 }
863
864 /* kernel protocol version */
865 #if 0
866 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
867 #endif
868 if (ldl_p(header+0x202) == 0x53726448) {
869 protocol = lduw_p(header+0x206);
870 } else {
871 /* This looks like a multiboot kernel. If it is, let's stop
872 treating it like a Linux kernel. */
873 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
874 kernel_cmdline, kernel_size, header)) {
875 return;
876 }
877 protocol = 0;
878 }
879
880 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
881 /* Low kernel */
882 real_addr = 0x90000;
883 cmdline_addr = 0x9a000 - cmdline_size;
884 prot_addr = 0x10000;
885 } else if (protocol < 0x202) {
886 /* High but ancient kernel */
887 real_addr = 0x90000;
888 cmdline_addr = 0x9a000 - cmdline_size;
889 prot_addr = 0x100000;
890 } else {
891 /* High and recent kernel */
892 real_addr = 0x10000;
893 cmdline_addr = 0x20000;
894 prot_addr = 0x100000;
895 }
896
897 #if 0
898 fprintf(stderr,
899 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
900 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
901 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
902 real_addr,
903 cmdline_addr,
904 prot_addr);
905 #endif
906
907 /* highest address for loading the initrd */
908 if (protocol >= 0x203) {
909 initrd_max = ldl_p(header+0x22c);
910 } else {
911 initrd_max = 0x37ffffff;
912 }
913
914 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
915 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
916 }
917
918 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
919 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
920 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
921
922 if (protocol >= 0x202) {
923 stl_p(header+0x228, cmdline_addr);
924 } else {
925 stw_p(header+0x20, 0xA33F);
926 stw_p(header+0x22, cmdline_addr-real_addr);
927 }
928
929 /* handle vga= parameter */
930 vmode = strstr(kernel_cmdline, "vga=");
931 if (vmode) {
932 unsigned int video_mode;
933 /* skip "vga=" */
934 vmode += 4;
935 if (!strncmp(vmode, "normal", 6)) {
936 video_mode = 0xffff;
937 } else if (!strncmp(vmode, "ext", 3)) {
938 video_mode = 0xfffe;
939 } else if (!strncmp(vmode, "ask", 3)) {
940 video_mode = 0xfffd;
941 } else {
942 video_mode = strtol(vmode, NULL, 0);
943 }
944 stw_p(header+0x1fa, video_mode);
945 }
946
947 /* loader type */
948 /* High nybble = B reserved for QEMU; low nybble is revision number.
949 If this code is substantially changed, you may want to consider
950 incrementing the revision. */
951 if (protocol >= 0x200) {
952 header[0x210] = 0xB0;
953 }
954 /* heap */
955 if (protocol >= 0x201) {
956 header[0x211] |= 0x80; /* CAN_USE_HEAP */
957 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
958 }
959
960 /* load initrd */
961 if (initrd_filename) {
962 if (protocol < 0x200) {
963 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
964 exit(1);
965 }
966
967 initrd_size = get_image_size(initrd_filename);
968 if (initrd_size < 0) {
969 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
970 initrd_filename, strerror(errno));
971 exit(1);
972 }
973
974 initrd_addr = (initrd_max-initrd_size) & ~4095;
975
976 initrd_data = g_malloc(initrd_size);
977 load_image(initrd_filename, initrd_data);
978
979 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
980 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
981 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
982
983 stl_p(header+0x218, initrd_addr);
984 stl_p(header+0x21c, initrd_size);
985 }
986
987 /* load kernel and setup */
988 setup_size = header[0x1f1];
989 if (setup_size == 0) {
990 setup_size = 4;
991 }
992 setup_size = (setup_size+1)*512;
993 if (setup_size > kernel_size) {
994 fprintf(stderr, "qemu: invalid kernel header\n");
995 exit(1);
996 }
997 kernel_size -= setup_size;
998
999 setup = g_malloc(setup_size);
1000 kernel = g_malloc(kernel_size);
1001 fseek(f, 0, SEEK_SET);
1002 if (fread(setup, 1, setup_size, f) != setup_size) {
1003 fprintf(stderr, "fread() failed\n");
1004 exit(1);
1005 }
1006 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1007 fprintf(stderr, "fread() failed\n");
1008 exit(1);
1009 }
1010 fclose(f);
1011
1012 /* append dtb to kernel */
1013 if (dtb_filename) {
1014 if (protocol < 0x209) {
1015 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1016 exit(1);
1017 }
1018
1019 dtb_size = get_image_size(dtb_filename);
1020 if (dtb_size <= 0) {
1021 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1022 dtb_filename, strerror(errno));
1023 exit(1);
1024 }
1025
1026 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1027 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1028 kernel = g_realloc(kernel, kernel_size);
1029
1030 stq_p(header+0x250, prot_addr + setup_data_offset);
1031
1032 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1033 setup_data->next = 0;
1034 setup_data->type = cpu_to_le32(SETUP_DTB);
1035 setup_data->len = cpu_to_le32(dtb_size);
1036
1037 load_image_size(dtb_filename, setup_data->data, dtb_size);
1038 }
1039
1040 memcpy(setup, header, MIN(sizeof(header), setup_size));
1041
1042 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1043 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1044 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1045
1046 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1047 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1048 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1049
1050 if (fw_cfg_dma_enabled(fw_cfg)) {
1051 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1052 option_rom[nb_option_roms].bootindex = 0;
1053 } else {
1054 option_rom[nb_option_roms].name = "linuxboot.bin";
1055 option_rom[nb_option_roms].bootindex = 0;
1056 }
1057 nb_option_roms++;
1058 }
1059
1060 #define NE2000_NB_MAX 6
1061
1062 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1063 0x280, 0x380 };
1064 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1065
1066 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1067 {
1068 static int nb_ne2k = 0;
1069
1070 if (nb_ne2k == NE2000_NB_MAX)
1071 return;
1072 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1073 ne2000_irq[nb_ne2k], nd);
1074 nb_ne2k++;
1075 }
1076
1077 DeviceState *cpu_get_current_apic(void)
1078 {
1079 if (current_cpu) {
1080 X86CPU *cpu = X86_CPU(current_cpu);
1081 return cpu->apic_state;
1082 } else {
1083 return NULL;
1084 }
1085 }
1086
1087 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1088 {
1089 X86CPU *cpu = opaque;
1090
1091 if (level) {
1092 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1093 }
1094 }
1095
1096 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1097 {
1098 Object *cpu = NULL;
1099 Error *local_err = NULL;
1100
1101 cpu = object_new(typename);
1102
1103 object_property_set_int(cpu, apic_id, "apic-id", &local_err);
1104 object_property_set_bool(cpu, true, "realized", &local_err);
1105
1106 object_unref(cpu);
1107 if (local_err) {
1108 error_propagate(errp, local_err);
1109 }
1110 }
1111
1112 void pc_hot_add_cpu(const int64_t id, Error **errp)
1113 {
1114 ObjectClass *oc;
1115 MachineState *ms = MACHINE(qdev_get_machine());
1116 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1117 Error *local_err = NULL;
1118
1119 if (id < 0) {
1120 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1121 return;
1122 }
1123
1124 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1125 error_setg(errp, "Unable to add CPU: %" PRIi64
1126 ", resulting APIC ID (%" PRIi64 ") is too large",
1127 id, apic_id);
1128 return;
1129 }
1130
1131 assert(ms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1132 oc = OBJECT_CLASS(CPU_GET_CLASS(ms->possible_cpus->cpus[0].cpu));
1133 pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1134 if (local_err) {
1135 error_propagate(errp, local_err);
1136 return;
1137 }
1138 }
1139
1140 void pc_cpus_init(PCMachineState *pcms)
1141 {
1142 int i;
1143 CPUClass *cc;
1144 ObjectClass *oc;
1145 const char *typename;
1146 gchar **model_pieces;
1147 const CPUArchIdList *possible_cpus;
1148 MachineState *machine = MACHINE(pcms);
1149 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1150
1151 /* init CPUs */
1152 if (machine->cpu_model == NULL) {
1153 #ifdef TARGET_X86_64
1154 machine->cpu_model = "qemu64";
1155 #else
1156 machine->cpu_model = "qemu32";
1157 #endif
1158 }
1159
1160 model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1161 if (!model_pieces[0]) {
1162 error_report("Invalid/empty CPU model name");
1163 exit(1);
1164 }
1165
1166 oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1167 if (oc == NULL) {
1168 error_report("Unable to find CPU definition: %s", model_pieces[0]);
1169 exit(1);
1170 }
1171 typename = object_class_get_name(oc);
1172 cc = CPU_CLASS(oc);
1173 cc->parse_features(typename, model_pieces[1], &error_fatal);
1174 g_strfreev(model_pieces);
1175
1176 /* Calculates the limit to CPU APIC ID values
1177 *
1178 * Limit for the APIC ID value, so that all
1179 * CPU APIC IDs are < pcms->apic_id_limit.
1180 *
1181 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1182 */
1183 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1184 possible_cpus = mc->possible_cpu_arch_ids(machine);
1185 for (i = 0; i < smp_cpus; i++) {
1186 pc_new_cpu(typename, possible_cpus->cpus[i].arch_id, &error_fatal);
1187 }
1188 }
1189
1190 static void pc_build_feature_control_file(PCMachineState *pcms)
1191 {
1192 MachineState *ms = MACHINE(pcms);
1193 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1194 CPUX86State *env = &cpu->env;
1195 uint32_t unused, ecx, edx;
1196 uint64_t feature_control_bits = 0;
1197 uint64_t *val;
1198
1199 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1200 if (ecx & CPUID_EXT_VMX) {
1201 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1202 }
1203
1204 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1205 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1206 (env->mcg_cap & MCG_LMCE_P)) {
1207 feature_control_bits |= FEATURE_CONTROL_LMCE;
1208 }
1209
1210 if (!feature_control_bits) {
1211 return;
1212 }
1213
1214 val = g_malloc(sizeof(*val));
1215 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1216 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1217 }
1218
1219 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1220 {
1221 if (cpus_count > 0xff) {
1222 /* If the number of CPUs can't be represented in 8 bits, the
1223 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1224 * to make old BIOSes fail more predictably.
1225 */
1226 rtc_set_memory(rtc, 0x5f, 0);
1227 } else {
1228 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1229 }
1230 }
1231
1232 static
1233 void pc_machine_done(Notifier *notifier, void *data)
1234 {
1235 PCMachineState *pcms = container_of(notifier,
1236 PCMachineState, machine_done);
1237 PCIBus *bus = pcms->bus;
1238
1239 /* set the number of CPUs */
1240 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1241
1242 if (bus) {
1243 int extra_hosts = 0;
1244
1245 QLIST_FOREACH(bus, &bus->child, sibling) {
1246 /* look for expander root buses */
1247 if (pci_bus_is_root(bus)) {
1248 extra_hosts++;
1249 }
1250 }
1251 if (extra_hosts && pcms->fw_cfg) {
1252 uint64_t *val = g_malloc(sizeof(*val));
1253 *val = cpu_to_le64(extra_hosts);
1254 fw_cfg_add_file(pcms->fw_cfg,
1255 "etc/extra-pci-roots", val, sizeof(*val));
1256 }
1257 }
1258
1259 acpi_setup();
1260 if (pcms->fw_cfg) {
1261 pc_build_smbios(pcms);
1262 pc_build_feature_control_file(pcms);
1263 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1264 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1265 }
1266
1267 if (pcms->apic_id_limit > 255) {
1268 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1269
1270 if (!iommu || !iommu->x86_iommu.intr_supported ||
1271 iommu->intr_eim != ON_OFF_AUTO_ON) {
1272 error_report("current -smp configuration requires "
1273 "Extended Interrupt Mode enabled. "
1274 "You can add an IOMMU using: "
1275 "-device intel-iommu,intremap=on,eim=on");
1276 exit(EXIT_FAILURE);
1277 }
1278 }
1279 }
1280
1281 void pc_guest_info_init(PCMachineState *pcms)
1282 {
1283 int i;
1284
1285 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1286 pcms->numa_nodes = nb_numa_nodes;
1287 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1288 sizeof *pcms->node_mem);
1289 for (i = 0; i < nb_numa_nodes; i++) {
1290 pcms->node_mem[i] = numa_info[i].node_mem;
1291 }
1292
1293 pcms->machine_done.notify = pc_machine_done;
1294 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1295 }
1296
1297 /* setup pci memory address space mapping into system address space */
1298 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1299 MemoryRegion *pci_address_space)
1300 {
1301 /* Set to lower priority than RAM */
1302 memory_region_add_subregion_overlap(system_memory, 0x0,
1303 pci_address_space, -1);
1304 }
1305
1306 void pc_acpi_init(const char *default_dsdt)
1307 {
1308 char *filename;
1309
1310 if (acpi_tables != NULL) {
1311 /* manually set via -acpitable, leave it alone */
1312 return;
1313 }
1314
1315 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1316 if (filename == NULL) {
1317 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1318 } else {
1319 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1320 &error_abort);
1321 Error *err = NULL;
1322
1323 qemu_opt_set(opts, "file", filename, &error_abort);
1324
1325 acpi_table_add_builtin(opts, &err);
1326 if (err) {
1327 error_reportf_err(err, "WARNING: failed to load %s: ",
1328 filename);
1329 }
1330 g_free(filename);
1331 }
1332 }
1333
1334 void xen_load_linux(PCMachineState *pcms)
1335 {
1336 int i;
1337 FWCfgState *fw_cfg;
1338
1339 assert(MACHINE(pcms)->kernel_filename != NULL);
1340
1341 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1342 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1343 rom_set_fw(fw_cfg);
1344
1345 load_linux(pcms, fw_cfg);
1346 for (i = 0; i < nb_option_roms; i++) {
1347 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1348 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1349 !strcmp(option_rom[i].name, "multiboot.bin"));
1350 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1351 }
1352 pcms->fw_cfg = fw_cfg;
1353 }
1354
1355 void pc_memory_init(PCMachineState *pcms,
1356 MemoryRegion *system_memory,
1357 MemoryRegion *rom_memory,
1358 MemoryRegion **ram_memory)
1359 {
1360 int linux_boot, i;
1361 MemoryRegion *ram, *option_rom_mr;
1362 MemoryRegion *ram_below_4g, *ram_above_4g;
1363 FWCfgState *fw_cfg;
1364 MachineState *machine = MACHINE(pcms);
1365 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1366
1367 assert(machine->ram_size == pcms->below_4g_mem_size +
1368 pcms->above_4g_mem_size);
1369
1370 linux_boot = (machine->kernel_filename != NULL);
1371
1372 /* Allocate RAM. We allocate it as a single memory region and use
1373 * aliases to address portions of it, mostly for backwards compatibility
1374 * with older qemus that used qemu_ram_alloc().
1375 */
1376 ram = g_malloc(sizeof(*ram));
1377 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1378 machine->ram_size);
1379 *ram_memory = ram;
1380 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1381 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1382 0, pcms->below_4g_mem_size);
1383 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1384 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1385 if (pcms->above_4g_mem_size > 0) {
1386 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1387 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1388 pcms->below_4g_mem_size,
1389 pcms->above_4g_mem_size);
1390 memory_region_add_subregion(system_memory, 0x100000000ULL,
1391 ram_above_4g);
1392 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1393 }
1394
1395 if (!pcmc->has_reserved_memory &&
1396 (machine->ram_slots ||
1397 (machine->maxram_size > machine->ram_size))) {
1398 MachineClass *mc = MACHINE_GET_CLASS(machine);
1399
1400 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1401 mc->name);
1402 exit(EXIT_FAILURE);
1403 }
1404
1405 /* initialize hotplug memory address space */
1406 if (pcmc->has_reserved_memory &&
1407 (machine->ram_size < machine->maxram_size)) {
1408 ram_addr_t hotplug_mem_size =
1409 machine->maxram_size - machine->ram_size;
1410
1411 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1412 error_report("unsupported amount of memory slots: %"PRIu64,
1413 machine->ram_slots);
1414 exit(EXIT_FAILURE);
1415 }
1416
1417 if (QEMU_ALIGN_UP(machine->maxram_size,
1418 TARGET_PAGE_SIZE) != machine->maxram_size) {
1419 error_report("maximum memory size must by aligned to multiple of "
1420 "%d bytes", TARGET_PAGE_SIZE);
1421 exit(EXIT_FAILURE);
1422 }
1423
1424 pcms->hotplug_memory.base =
1425 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1426
1427 if (pcmc->enforce_aligned_dimm) {
1428 /* size hotplug region assuming 1G page max alignment per slot */
1429 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1430 }
1431
1432 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1433 hotplug_mem_size) {
1434 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1435 machine->maxram_size);
1436 exit(EXIT_FAILURE);
1437 }
1438
1439 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1440 "hotplug-memory", hotplug_mem_size);
1441 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1442 &pcms->hotplug_memory.mr);
1443 }
1444
1445 /* Initialize PC system firmware */
1446 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1447
1448 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1449 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1450 &error_fatal);
1451 vmstate_register_ram_global(option_rom_mr);
1452 memory_region_add_subregion_overlap(rom_memory,
1453 PC_ROM_MIN_VGA,
1454 option_rom_mr,
1455 1);
1456
1457 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1458
1459 rom_set_fw(fw_cfg);
1460
1461 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1462 uint64_t *val = g_malloc(sizeof(*val));
1463 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1464 uint64_t res_mem_end = pcms->hotplug_memory.base;
1465
1466 if (!pcmc->broken_reserved_end) {
1467 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1468 }
1469 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1470 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1471 }
1472
1473 if (linux_boot) {
1474 load_linux(pcms, fw_cfg);
1475 }
1476
1477 for (i = 0; i < nb_option_roms; i++) {
1478 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1479 }
1480 pcms->fw_cfg = fw_cfg;
1481
1482 /* Init default IOAPIC address space */
1483 pcms->ioapic_as = &address_space_memory;
1484 }
1485
1486 qemu_irq pc_allocate_cpu_irq(void)
1487 {
1488 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1489 }
1490
1491 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1492 {
1493 DeviceState *dev = NULL;
1494
1495 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1496 if (pci_bus) {
1497 PCIDevice *pcidev = pci_vga_init(pci_bus);
1498 dev = pcidev ? &pcidev->qdev : NULL;
1499 } else if (isa_bus) {
1500 ISADevice *isadev = isa_vga_init(isa_bus);
1501 dev = isadev ? DEVICE(isadev) : NULL;
1502 }
1503 rom_reset_order_override();
1504 return dev;
1505 }
1506
1507 static const MemoryRegionOps ioport80_io_ops = {
1508 .write = ioport80_write,
1509 .read = ioport80_read,
1510 .endianness = DEVICE_NATIVE_ENDIAN,
1511 .impl = {
1512 .min_access_size = 1,
1513 .max_access_size = 1,
1514 },
1515 };
1516
1517 static const MemoryRegionOps ioportF0_io_ops = {
1518 .write = ioportF0_write,
1519 .read = ioportF0_read,
1520 .endianness = DEVICE_NATIVE_ENDIAN,
1521 .impl = {
1522 .min_access_size = 1,
1523 .max_access_size = 1,
1524 },
1525 };
1526
1527 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1528 ISADevice **rtc_state,
1529 bool create_fdctrl,
1530 bool no_vmport,
1531 bool has_pit,
1532 uint32_t hpet_irqs)
1533 {
1534 int i;
1535 DriveInfo *fd[MAX_FD];
1536 DeviceState *hpet = NULL;
1537 int pit_isa_irq = 0;
1538 qemu_irq pit_alt_irq = NULL;
1539 qemu_irq rtc_irq = NULL;
1540 qemu_irq *a20_line;
1541 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1542 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1543 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1544
1545 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1546 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1547
1548 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1549 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1550
1551 /*
1552 * Check if an HPET shall be created.
1553 *
1554 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1555 * when the HPET wants to take over. Thus we have to disable the latter.
1556 */
1557 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1558 /* In order to set property, here not using sysbus_try_create_simple */
1559 hpet = qdev_try_create(NULL, TYPE_HPET);
1560 if (hpet) {
1561 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1562 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1563 * IRQ8 and IRQ2.
1564 */
1565 uint8_t compat = object_property_get_int(OBJECT(hpet),
1566 HPET_INTCAP, NULL);
1567 if (!compat) {
1568 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1569 }
1570 qdev_init_nofail(hpet);
1571 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1572
1573 for (i = 0; i < GSI_NUM_PINS; i++) {
1574 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1575 }
1576 pit_isa_irq = -1;
1577 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1578 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1579 }
1580 }
1581 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1582
1583 qemu_register_boot_set(pc_boot_set, *rtc_state);
1584
1585 if (!xen_enabled() && has_pit) {
1586 if (kvm_pit_in_kernel()) {
1587 pit = kvm_pit_init(isa_bus, 0x40);
1588 } else {
1589 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1590 }
1591 if (hpet) {
1592 /* connect PIT to output control line of the HPET */
1593 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1594 }
1595 pcspk_init(isa_bus, pit);
1596 }
1597
1598 serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1599 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1600
1601 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1602 i8042 = isa_create_simple(isa_bus, "i8042");
1603 i8042_setup_a20_line(i8042, a20_line[0]);
1604 if (!no_vmport) {
1605 vmport_init(isa_bus);
1606 vmmouse = isa_try_create(isa_bus, "vmmouse");
1607 } else {
1608 vmmouse = NULL;
1609 }
1610 if (vmmouse) {
1611 DeviceState *dev = DEVICE(vmmouse);
1612 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1613 qdev_init_nofail(dev);
1614 }
1615 port92 = isa_create_simple(isa_bus, "port92");
1616 port92_init(port92, a20_line[1]);
1617 g_free(a20_line);
1618
1619 DMA_init(isa_bus, 0);
1620
1621 for(i = 0; i < MAX_FD; i++) {
1622 fd[i] = drive_get(IF_FLOPPY, 0, i);
1623 create_fdctrl |= !!fd[i];
1624 }
1625 if (create_fdctrl) {
1626 fdctrl_init_isa(isa_bus, fd);
1627 }
1628 }
1629
1630 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1631 {
1632 int i;
1633
1634 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1635 for (i = 0; i < nb_nics; i++) {
1636 NICInfo *nd = &nd_table[i];
1637
1638 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1639 pc_init_ne2k_isa(isa_bus, nd);
1640 } else {
1641 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1642 }
1643 }
1644 rom_reset_order_override();
1645 }
1646
1647 void pc_pci_device_init(PCIBus *pci_bus)
1648 {
1649 int max_bus;
1650 int bus;
1651
1652 /* Note: if=scsi is deprecated with PC machine types */
1653 max_bus = drive_get_max_bus(IF_SCSI);
1654 for (bus = 0; bus <= max_bus; bus++) {
1655 pci_create_simple(pci_bus, -1, "lsi53c895a");
1656 /*
1657 * By not creating frontends here, we make
1658 * scsi_legacy_handle_cmdline() create them, and warn that
1659 * this usage is deprecated.
1660 */
1661 }
1662 }
1663
1664 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1665 {
1666 DeviceState *dev;
1667 SysBusDevice *d;
1668 unsigned int i;
1669
1670 if (kvm_ioapic_in_kernel()) {
1671 dev = qdev_create(NULL, "kvm-ioapic");
1672 } else {
1673 dev = qdev_create(NULL, "ioapic");
1674 }
1675 if (parent_name) {
1676 object_property_add_child(object_resolve_path(parent_name, NULL),
1677 "ioapic", OBJECT(dev), NULL);
1678 }
1679 qdev_init_nofail(dev);
1680 d = SYS_BUS_DEVICE(dev);
1681 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1682
1683 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1684 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1685 }
1686 }
1687
1688 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1689 DeviceState *dev, Error **errp)
1690 {
1691 HotplugHandlerClass *hhc;
1692 Error *local_err = NULL;
1693 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1694 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1695 PCDIMMDevice *dimm = PC_DIMM(dev);
1696 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1697 MemoryRegion *mr = ddc->get_memory_region(dimm);
1698 uint64_t align = TARGET_PAGE_SIZE;
1699
1700 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1701 align = memory_region_get_alignment(mr);
1702 }
1703
1704 if (!pcms->acpi_dev) {
1705 error_setg(&local_err,
1706 "memory hotplug is not enabled: missing acpi device");
1707 goto out;
1708 }
1709
1710 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1711 if (local_err) {
1712 goto out;
1713 }
1714
1715 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1716 if (!pcms->acpi_nvdimm_state.is_enabled) {
1717 error_setg(&local_err,
1718 "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1719 goto out;
1720 }
1721 nvdimm_plug(&pcms->acpi_nvdimm_state);
1722 }
1723
1724 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1725 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1726 out:
1727 error_propagate(errp, local_err);
1728 }
1729
1730 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1731 DeviceState *dev, Error **errp)
1732 {
1733 HotplugHandlerClass *hhc;
1734 Error *local_err = NULL;
1735 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1736
1737 if (!pcms->acpi_dev) {
1738 error_setg(&local_err,
1739 "memory hotplug is not enabled: missing acpi device");
1740 goto out;
1741 }
1742
1743 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1744 error_setg(&local_err,
1745 "nvdimm device hot unplug is not supported yet.");
1746 goto out;
1747 }
1748
1749 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1750 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1751
1752 out:
1753 error_propagate(errp, local_err);
1754 }
1755
1756 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1757 DeviceState *dev, Error **errp)
1758 {
1759 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1760 PCDIMMDevice *dimm = PC_DIMM(dev);
1761 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1762 MemoryRegion *mr = ddc->get_memory_region(dimm);
1763 HotplugHandlerClass *hhc;
1764 Error *local_err = NULL;
1765
1766 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1767 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1768
1769 if (local_err) {
1770 goto out;
1771 }
1772
1773 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1774 object_unparent(OBJECT(dev));
1775
1776 out:
1777 error_propagate(errp, local_err);
1778 }
1779
1780 static int pc_apic_cmp(const void *a, const void *b)
1781 {
1782 CPUArchId *apic_a = (CPUArchId *)a;
1783 CPUArchId *apic_b = (CPUArchId *)b;
1784
1785 return apic_a->arch_id - apic_b->arch_id;
1786 }
1787
1788 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1789 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1790 * entry corresponding to CPU's apic_id returns NULL.
1791 */
1792 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1793 {
1794 CPUArchId apic_id, *found_cpu;
1795
1796 apic_id.arch_id = id;
1797 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1798 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1799 pc_apic_cmp);
1800 if (found_cpu && idx) {
1801 *idx = found_cpu - ms->possible_cpus->cpus;
1802 }
1803 return found_cpu;
1804 }
1805
1806 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1807 DeviceState *dev, Error **errp)
1808 {
1809 CPUArchId *found_cpu;
1810 HotplugHandlerClass *hhc;
1811 Error *local_err = NULL;
1812 X86CPU *cpu = X86_CPU(dev);
1813 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1814
1815 if (pcms->acpi_dev) {
1816 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1817 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1818 if (local_err) {
1819 goto out;
1820 }
1821 }
1822
1823 /* increment the number of CPUs */
1824 pcms->boot_cpus++;
1825 if (pcms->rtc) {
1826 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1827 }
1828 if (pcms->fw_cfg) {
1829 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1830 }
1831
1832 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1833 found_cpu->cpu = OBJECT(dev);
1834 out:
1835 error_propagate(errp, local_err);
1836 }
1837 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1838 DeviceState *dev, Error **errp)
1839 {
1840 int idx = -1;
1841 HotplugHandlerClass *hhc;
1842 Error *local_err = NULL;
1843 X86CPU *cpu = X86_CPU(dev);
1844 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1845
1846 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1847 assert(idx != -1);
1848 if (idx == 0) {
1849 error_setg(&local_err, "Boot CPU is unpluggable");
1850 goto out;
1851 }
1852
1853 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1854 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1855
1856 if (local_err) {
1857 goto out;
1858 }
1859
1860 out:
1861 error_propagate(errp, local_err);
1862
1863 }
1864
1865 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1866 DeviceState *dev, Error **errp)
1867 {
1868 CPUArchId *found_cpu;
1869 HotplugHandlerClass *hhc;
1870 Error *local_err = NULL;
1871 X86CPU *cpu = X86_CPU(dev);
1872 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1873
1874 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1875 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1876
1877 if (local_err) {
1878 goto out;
1879 }
1880
1881 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1882 found_cpu->cpu = NULL;
1883 object_unparent(OBJECT(dev));
1884
1885 /* decrement the number of CPUs */
1886 pcms->boot_cpus--;
1887 /* Update the number of CPUs in CMOS */
1888 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1889 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1890 out:
1891 error_propagate(errp, local_err);
1892 }
1893
1894 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1895 DeviceState *dev, Error **errp)
1896 {
1897 int idx;
1898 CPUState *cs;
1899 CPUArchId *cpu_slot;
1900 X86CPUTopoInfo topo;
1901 X86CPU *cpu = X86_CPU(dev);
1902 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1903
1904 /* if APIC ID is not set, set it based on socket/core/thread properties */
1905 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1906 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1907
1908 if (cpu->socket_id < 0) {
1909 error_setg(errp, "CPU socket-id is not set");
1910 return;
1911 } else if (cpu->socket_id > max_socket) {
1912 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1913 cpu->socket_id, max_socket);
1914 return;
1915 }
1916 if (cpu->core_id < 0) {
1917 error_setg(errp, "CPU core-id is not set");
1918 return;
1919 } else if (cpu->core_id > (smp_cores - 1)) {
1920 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1921 cpu->core_id, smp_cores - 1);
1922 return;
1923 }
1924 if (cpu->thread_id < 0) {
1925 error_setg(errp, "CPU thread-id is not set");
1926 return;
1927 } else if (cpu->thread_id > (smp_threads - 1)) {
1928 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1929 cpu->thread_id, smp_threads - 1);
1930 return;
1931 }
1932
1933 topo.pkg_id = cpu->socket_id;
1934 topo.core_id = cpu->core_id;
1935 topo.smt_id = cpu->thread_id;
1936 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1937 }
1938
1939 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1940 if (!cpu_slot) {
1941 MachineState *ms = MACHINE(pcms);
1942
1943 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1944 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1945 " APIC ID %" PRIu32 ", valid index range 0:%d",
1946 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1947 ms->possible_cpus->len - 1);
1948 return;
1949 }
1950
1951 if (cpu_slot->cpu) {
1952 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1953 idx, cpu->apic_id);
1954 return;
1955 }
1956
1957 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1958 * so that machine_query_hotpluggable_cpus would show correct values
1959 */
1960 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1961 * once -smp refactoring is complete and there will be CPU private
1962 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1963 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1964 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1965 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1966 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1967 return;
1968 }
1969 cpu->socket_id = topo.pkg_id;
1970
1971 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1972 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1973 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1974 return;
1975 }
1976 cpu->core_id = topo.core_id;
1977
1978 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1979 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1980 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1981 return;
1982 }
1983 cpu->thread_id = topo.smt_id;
1984
1985 cs = CPU(cpu);
1986 cs->cpu_index = idx;
1987 }
1988
1989 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1990 DeviceState *dev, Error **errp)
1991 {
1992 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1993 pc_cpu_pre_plug(hotplug_dev, dev, errp);
1994 }
1995 }
1996
1997 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1998 DeviceState *dev, Error **errp)
1999 {
2000 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2001 pc_dimm_plug(hotplug_dev, dev, errp);
2002 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2003 pc_cpu_plug(hotplug_dev, dev, errp);
2004 }
2005 }
2006
2007 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2008 DeviceState *dev, Error **errp)
2009 {
2010 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2011 pc_dimm_unplug_request(hotplug_dev, dev, errp);
2012 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2013 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2014 } else {
2015 error_setg(errp, "acpi: device unplug request for not supported device"
2016 " type: %s", object_get_typename(OBJECT(dev)));
2017 }
2018 }
2019
2020 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2021 DeviceState *dev, Error **errp)
2022 {
2023 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2024 pc_dimm_unplug(hotplug_dev, dev, errp);
2025 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2026 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2027 } else {
2028 error_setg(errp, "acpi: device unplug for not supported device"
2029 " type: %s", object_get_typename(OBJECT(dev)));
2030 }
2031 }
2032
2033 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2034 DeviceState *dev)
2035 {
2036 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2037
2038 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2039 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2040 return HOTPLUG_HANDLER(machine);
2041 }
2042
2043 return pcmc->get_hotplug_handler ?
2044 pcmc->get_hotplug_handler(machine, dev) : NULL;
2045 }
2046
2047 static void
2048 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2049 const char *name, void *opaque,
2050 Error **errp)
2051 {
2052 PCMachineState *pcms = PC_MACHINE(obj);
2053 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2054
2055 visit_type_int(v, name, &value, errp);
2056 }
2057
2058 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2059 const char *name, void *opaque,
2060 Error **errp)
2061 {
2062 PCMachineState *pcms = PC_MACHINE(obj);
2063 uint64_t value = pcms->max_ram_below_4g;
2064
2065 visit_type_size(v, name, &value, errp);
2066 }
2067
2068 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2069 const char *name, void *opaque,
2070 Error **errp)
2071 {
2072 PCMachineState *pcms = PC_MACHINE(obj);
2073 Error *error = NULL;
2074 uint64_t value;
2075
2076 visit_type_size(v, name, &value, &error);
2077 if (error) {
2078 error_propagate(errp, error);
2079 return;
2080 }
2081 if (value > (1ULL << 32)) {
2082 error_setg(&error,
2083 "Machine option 'max-ram-below-4g=%"PRIu64
2084 "' expects size less than or equal to 4G", value);
2085 error_propagate(errp, error);
2086 return;
2087 }
2088
2089 if (value < (1ULL << 20)) {
2090 error_report("Warning: small max_ram_below_4g(%"PRIu64
2091 ") less than 1M. BIOS may not work..",
2092 value);
2093 }
2094
2095 pcms->max_ram_below_4g = value;
2096 }
2097
2098 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2099 void *opaque, Error **errp)
2100 {
2101 PCMachineState *pcms = PC_MACHINE(obj);
2102 OnOffAuto vmport = pcms->vmport;
2103
2104 visit_type_OnOffAuto(v, name, &vmport, errp);
2105 }
2106
2107 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2108 void *opaque, Error **errp)
2109 {
2110 PCMachineState *pcms = PC_MACHINE(obj);
2111
2112 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2113 }
2114
2115 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2116 {
2117 bool smm_available = false;
2118
2119 if (pcms->smm == ON_OFF_AUTO_OFF) {
2120 return false;
2121 }
2122
2123 if (tcg_enabled() || qtest_enabled()) {
2124 smm_available = true;
2125 } else if (kvm_enabled()) {
2126 smm_available = kvm_has_smm();
2127 }
2128
2129 if (smm_available) {
2130 return true;
2131 }
2132
2133 if (pcms->smm == ON_OFF_AUTO_ON) {
2134 error_report("System Management Mode not supported by this hypervisor.");
2135 exit(1);
2136 }
2137 return false;
2138 }
2139
2140 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2141 void *opaque, Error **errp)
2142 {
2143 PCMachineState *pcms = PC_MACHINE(obj);
2144 OnOffAuto smm = pcms->smm;
2145
2146 visit_type_OnOffAuto(v, name, &smm, errp);
2147 }
2148
2149 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2150 void *opaque, Error **errp)
2151 {
2152 PCMachineState *pcms = PC_MACHINE(obj);
2153
2154 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2155 }
2156
2157 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2158 {
2159 PCMachineState *pcms = PC_MACHINE(obj);
2160
2161 return pcms->acpi_nvdimm_state.is_enabled;
2162 }
2163
2164 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2165 {
2166 PCMachineState *pcms = PC_MACHINE(obj);
2167
2168 pcms->acpi_nvdimm_state.is_enabled = value;
2169 }
2170
2171 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2172 {
2173 PCMachineState *pcms = PC_MACHINE(obj);
2174
2175 return pcms->smbus;
2176 }
2177
2178 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2179 {
2180 PCMachineState *pcms = PC_MACHINE(obj);
2181
2182 pcms->smbus = value;
2183 }
2184
2185 static bool pc_machine_get_sata(Object *obj, Error **errp)
2186 {
2187 PCMachineState *pcms = PC_MACHINE(obj);
2188
2189 return pcms->sata;
2190 }
2191
2192 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2193 {
2194 PCMachineState *pcms = PC_MACHINE(obj);
2195
2196 pcms->sata = value;
2197 }
2198
2199 static bool pc_machine_get_pit(Object *obj, Error **errp)
2200 {
2201 PCMachineState *pcms = PC_MACHINE(obj);
2202
2203 return pcms->pit;
2204 }
2205
2206 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2207 {
2208 PCMachineState *pcms = PC_MACHINE(obj);
2209
2210 pcms->pit = value;
2211 }
2212
2213 static void pc_machine_initfn(Object *obj)
2214 {
2215 PCMachineState *pcms = PC_MACHINE(obj);
2216
2217 pcms->max_ram_below_4g = 0; /* use default */
2218 pcms->smm = ON_OFF_AUTO_AUTO;
2219 pcms->vmport = ON_OFF_AUTO_AUTO;
2220 /* nvdimm is disabled on default. */
2221 pcms->acpi_nvdimm_state.is_enabled = false;
2222 /* acpi build is enabled by default if machine supports it */
2223 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2224 pcms->smbus = true;
2225 pcms->sata = true;
2226 pcms->pit = true;
2227 }
2228
2229 static void pc_machine_reset(void)
2230 {
2231 CPUState *cs;
2232 X86CPU *cpu;
2233
2234 qemu_devices_reset();
2235
2236 /* Reset APIC after devices have been reset to cancel
2237 * any changes that qemu_devices_reset() might have done.
2238 */
2239 CPU_FOREACH(cs) {
2240 cpu = X86_CPU(cs);
2241
2242 if (cpu->apic_state) {
2243 device_reset(cpu->apic_state);
2244 }
2245 }
2246 }
2247
2248 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2249 {
2250 X86CPUTopoInfo topo;
2251 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2252 &topo);
2253 return topo.pkg_id;
2254 }
2255
2256 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2257 {
2258 int i;
2259
2260 if (ms->possible_cpus) {
2261 /*
2262 * make sure that max_cpus hasn't changed since the first use, i.e.
2263 * -smp hasn't been parsed after it
2264 */
2265 assert(ms->possible_cpus->len == max_cpus);
2266 return ms->possible_cpus;
2267 }
2268
2269 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2270 sizeof(CPUArchId) * max_cpus);
2271 ms->possible_cpus->len = max_cpus;
2272 for (i = 0; i < ms->possible_cpus->len; i++) {
2273 X86CPUTopoInfo topo;
2274
2275 ms->possible_cpus->cpus[i].vcpus_count = 1;
2276 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2277 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2278 smp_cores, smp_threads, &topo);
2279 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2280 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2281 ms->possible_cpus->cpus[i].props.has_core_id = true;
2282 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2283 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2284 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2285 }
2286 return ms->possible_cpus;
2287 }
2288
2289 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2290 {
2291 /* cpu index isn't used */
2292 CPUState *cs;
2293
2294 CPU_FOREACH(cs) {
2295 X86CPU *cpu = X86_CPU(cs);
2296
2297 if (!cpu->apic_state) {
2298 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2299 } else {
2300 apic_deliver_nmi(cpu->apic_state);
2301 }
2302 }
2303 }
2304
2305 static void pc_machine_class_init(ObjectClass *oc, void *data)
2306 {
2307 MachineClass *mc = MACHINE_CLASS(oc);
2308 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2309 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2310 NMIClass *nc = NMI_CLASS(oc);
2311
2312 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2313 pcmc->pci_enabled = true;
2314 pcmc->has_acpi_build = true;
2315 pcmc->rsdp_in_ram = true;
2316 pcmc->smbios_defaults = true;
2317 pcmc->smbios_uuid_encoded = true;
2318 pcmc->gigabyte_align = true;
2319 pcmc->has_reserved_memory = true;
2320 pcmc->kvmclock_enabled = true;
2321 pcmc->enforce_aligned_dimm = true;
2322 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2323 * to be used at the moment, 32K should be enough for a while. */
2324 pcmc->acpi_data_size = 0x20000 + 0x8000;
2325 pcmc->save_tsc_khz = true;
2326 mc->get_hotplug_handler = pc_get_hotpug_handler;
2327 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2328 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2329 mc->has_hotpluggable_cpus = true;
2330 mc->default_boot_order = "cad";
2331 mc->hot_add_cpu = pc_hot_add_cpu;
2332 mc->block_default_type = IF_IDE;
2333 mc->max_cpus = 255;
2334 mc->reset = pc_machine_reset;
2335 hc->pre_plug = pc_machine_device_pre_plug_cb;
2336 hc->plug = pc_machine_device_plug_cb;
2337 hc->unplug_request = pc_machine_device_unplug_request_cb;
2338 hc->unplug = pc_machine_device_unplug_cb;
2339 nc->nmi_monitor_handler = x86_nmi;
2340
2341 object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2342 pc_machine_get_hotplug_memory_region_size, NULL,
2343 NULL, NULL, &error_abort);
2344
2345 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2346 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2347 NULL, NULL, &error_abort);
2348
2349 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2350 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2351
2352 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2353 pc_machine_get_smm, pc_machine_set_smm,
2354 NULL, NULL, &error_abort);
2355 object_class_property_set_description(oc, PC_MACHINE_SMM,
2356 "Enable SMM (pc & q35)", &error_abort);
2357
2358 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2359 pc_machine_get_vmport, pc_machine_set_vmport,
2360 NULL, NULL, &error_abort);
2361 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2362 "Enable vmport (pc & q35)", &error_abort);
2363
2364 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2365 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2366
2367 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2368 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2369
2370 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2371 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2372
2373 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2374 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2375 }
2376
2377 static const TypeInfo pc_machine_info = {
2378 .name = TYPE_PC_MACHINE,
2379 .parent = TYPE_MACHINE,
2380 .abstract = true,
2381 .instance_size = sizeof(PCMachineState),
2382 .instance_init = pc_machine_initfn,
2383 .class_size = sizeof(PCMachineClass),
2384 .class_init = pc_machine_class_init,
2385 .interfaces = (InterfaceInfo[]) {
2386 { TYPE_HOTPLUG_HANDLER },
2387 { TYPE_NMI },
2388 { }
2389 },
2390 };
2391
2392 static void pc_machine_register_types(void)
2393 {
2394 type_register_static(&pc_machine_info);
2395 }
2396
2397 type_init(pc_machine_register_types)