]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
9pfs: Fix CLI parsing crash on error
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/smbios/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...) \
83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93
94 #define E820_NR_ENTRIES 16
95
96 struct e820_entry {
97 uint64_t address;
98 uint64_t length;
99 uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 struct e820_table {
103 uint32_t count;
104 struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111
112 void gsi_handler(void *opaque, int n, int level)
113 {
114 GSIState *s = opaque;
115
116 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
117 if (n < ISA_NUM_IRQS) {
118 qemu_set_irq(s->i8259_irq[n], level);
119 }
120 qemu_set_irq(s->ioapic_irq[n], level);
121 }
122
123 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
124 unsigned size)
125 {
126 }
127
128 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
129 {
130 return 0xffffffffffffffffULL;
131 }
132
133 /* MSDOS compatibility mode FPU exception support */
134 static qemu_irq ferr_irq;
135
136 void pc_register_ferr_irq(qemu_irq irq)
137 {
138 ferr_irq = irq;
139 }
140
141 /* XXX: add IGNNE support */
142 void cpu_set_ferr(CPUX86State *s)
143 {
144 qemu_irq_raise(ferr_irq);
145 }
146
147 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
148 unsigned size)
149 {
150 qemu_irq_lower(ferr_irq);
151 }
152
153 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
154 {
155 return 0xffffffffffffffffULL;
156 }
157
158 /* TSC handling */
159 uint64_t cpu_get_tsc(CPUX86State *env)
160 {
161 return cpu_get_ticks();
162 }
163
164 /* IRQ handling */
165 int cpu_get_pic_interrupt(CPUX86State *env)
166 {
167 X86CPU *cpu = x86_env_get_cpu(env);
168 int intno;
169
170 if (!kvm_irqchip_in_kernel()) {
171 intno = apic_get_interrupt(cpu->apic_state);
172 if (intno >= 0) {
173 return intno;
174 }
175 /* read the irq from the PIC */
176 if (!apic_accept_pic_intr(cpu->apic_state)) {
177 return -1;
178 }
179 }
180
181 intno = pic_read_irq(isa_pic);
182 return intno;
183 }
184
185 static void pic_irq_request(void *opaque, int irq, int level)
186 {
187 CPUState *cs = first_cpu;
188 X86CPU *cpu = X86_CPU(cs);
189
190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
192 CPU_FOREACH(cs) {
193 cpu = X86_CPU(cs);
194 if (apic_accept_pic_intr(cpu->apic_state)) {
195 apic_deliver_pic_intr(cpu->apic_state, level);
196 }
197 }
198 } else {
199 if (level) {
200 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
201 } else {
202 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
203 }
204 }
205 }
206
207 /* PC cmos mappings */
208
209 #define REG_EQUIPMENT_BYTE 0x14
210
211 int cmos_get_fd_drive_type(FloppyDriveType fd0)
212 {
213 int val;
214
215 switch (fd0) {
216 case FLOPPY_DRIVE_TYPE_144:
217 /* 1.44 Mb 3"5 drive */
218 val = 4;
219 break;
220 case FLOPPY_DRIVE_TYPE_288:
221 /* 2.88 Mb 3"5 drive */
222 val = 5;
223 break;
224 case FLOPPY_DRIVE_TYPE_120:
225 /* 1.2 Mb 5"5 drive */
226 val = 2;
227 break;
228 case FLOPPY_DRIVE_TYPE_NONE:
229 default:
230 val = 0;
231 break;
232 }
233 return val;
234 }
235
236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
237 int16_t cylinders, int8_t heads, int8_t sectors)
238 {
239 rtc_set_memory(s, type_ofs, 47);
240 rtc_set_memory(s, info_ofs, cylinders);
241 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
242 rtc_set_memory(s, info_ofs + 2, heads);
243 rtc_set_memory(s, info_ofs + 3, 0xff);
244 rtc_set_memory(s, info_ofs + 4, 0xff);
245 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
246 rtc_set_memory(s, info_ofs + 6, cylinders);
247 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
248 rtc_set_memory(s, info_ofs + 8, sectors);
249 }
250
251 /* convert boot_device letter to something recognizable by the bios */
252 static int boot_device2nibble(char boot_device)
253 {
254 switch(boot_device) {
255 case 'a':
256 case 'b':
257 return 0x01; /* floppy boot */
258 case 'c':
259 return 0x02; /* hard drive boot */
260 case 'd':
261 return 0x03; /* CD-ROM boot */
262 case 'n':
263 return 0x04; /* Network boot */
264 }
265 return 0;
266 }
267
268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
269 {
270 #define PC_MAX_BOOT_DEVICES 3
271 int nbds, bds[3] = { 0, };
272 int i;
273
274 nbds = strlen(boot_device);
275 if (nbds > PC_MAX_BOOT_DEVICES) {
276 error_setg(errp, "Too many boot devices for PC");
277 return;
278 }
279 for (i = 0; i < nbds; i++) {
280 bds[i] = boot_device2nibble(boot_device[i]);
281 if (bds[i] == 0) {
282 error_setg(errp, "Invalid boot device for PC: '%c'",
283 boot_device[i]);
284 return;
285 }
286 }
287 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
288 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
289 }
290
291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
292 {
293 set_boot_dev(opaque, boot_device, errp);
294 }
295
296 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
297 {
298 int val, nb, i;
299 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
300 FLOPPY_DRIVE_TYPE_NONE };
301
302 /* floppy type */
303 if (floppy) {
304 for (i = 0; i < 2; i++) {
305 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
306 }
307 }
308 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
309 cmos_get_fd_drive_type(fd_type[1]);
310 rtc_set_memory(rtc_state, 0x10, val);
311
312 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
313 nb = 0;
314 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
315 nb++;
316 }
317 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
318 nb++;
319 }
320 switch (nb) {
321 case 0:
322 break;
323 case 1:
324 val |= 0x01; /* 1 drive, ready for boot */
325 break;
326 case 2:
327 val |= 0x41; /* 2 drives, ready for boot */
328 break;
329 }
330 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
331 }
332
333 typedef struct pc_cmos_init_late_arg {
334 ISADevice *rtc_state;
335 BusState *idebus[2];
336 } pc_cmos_init_late_arg;
337
338 typedef struct check_fdc_state {
339 ISADevice *floppy;
340 bool multiple;
341 } CheckFdcState;
342
343 static int check_fdc(Object *obj, void *opaque)
344 {
345 CheckFdcState *state = opaque;
346 Object *fdc;
347 uint32_t iobase;
348 Error *local_err = NULL;
349
350 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
351 if (!fdc) {
352 return 0;
353 }
354
355 iobase = object_property_get_uint(obj, "iobase", &local_err);
356 if (local_err || iobase != 0x3f0) {
357 error_free(local_err);
358 return 0;
359 }
360
361 if (state->floppy) {
362 state->multiple = true;
363 } else {
364 state->floppy = ISA_DEVICE(obj);
365 }
366 return 0;
367 }
368
369 static const char * const fdc_container_path[] = {
370 "/unattached", "/peripheral", "/peripheral-anon"
371 };
372
373 /*
374 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
375 * and ACPI objects.
376 */
377 ISADevice *pc_find_fdc0(void)
378 {
379 int i;
380 Object *container;
381 CheckFdcState state = { 0 };
382
383 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
384 container = container_get(qdev_get_machine(), fdc_container_path[i]);
385 object_child_foreach(container, check_fdc, &state);
386 }
387
388 if (state.multiple) {
389 warn_report("multiple floppy disk controllers with "
390 "iobase=0x3f0 have been found");
391 error_printf("the one being picked for CMOS setup might not reflect "
392 "your intent");
393 }
394
395 return state.floppy;
396 }
397
398 static void pc_cmos_init_late(void *opaque)
399 {
400 pc_cmos_init_late_arg *arg = opaque;
401 ISADevice *s = arg->rtc_state;
402 int16_t cylinders;
403 int8_t heads, sectors;
404 int val;
405 int i, trans;
406
407 val = 0;
408 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
409 &cylinders, &heads, &sectors) >= 0) {
410 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
411 val |= 0xf0;
412 }
413 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
414 &cylinders, &heads, &sectors) >= 0) {
415 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
416 val |= 0x0f;
417 }
418 rtc_set_memory(s, 0x12, val);
419
420 val = 0;
421 for (i = 0; i < 4; i++) {
422 /* NOTE: ide_get_geometry() returns the physical
423 geometry. It is always such that: 1 <= sects <= 63, 1
424 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
425 geometry can be different if a translation is done. */
426 if (arg->idebus[i / 2] &&
427 ide_get_geometry(arg->idebus[i / 2], i % 2,
428 &cylinders, &heads, &sectors) >= 0) {
429 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
430 assert((trans & ~3) == 0);
431 val |= trans << (i * 2);
432 }
433 }
434 rtc_set_memory(s, 0x39, val);
435
436 pc_cmos_init_floppy(s, pc_find_fdc0());
437
438 qemu_unregister_reset(pc_cmos_init_late, opaque);
439 }
440
441 void pc_cmos_init(PCMachineState *pcms,
442 BusState *idebus0, BusState *idebus1,
443 ISADevice *s)
444 {
445 int val;
446 static pc_cmos_init_late_arg arg;
447
448 /* various important CMOS locations needed by PC/Bochs bios */
449
450 /* memory size */
451 /* base memory (first MiB) */
452 val = MIN(pcms->below_4g_mem_size / KiB, 640);
453 rtc_set_memory(s, 0x15, val);
454 rtc_set_memory(s, 0x16, val >> 8);
455 /* extended memory (next 64MiB) */
456 if (pcms->below_4g_mem_size > 1 * MiB) {
457 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
458 } else {
459 val = 0;
460 }
461 if (val > 65535)
462 val = 65535;
463 rtc_set_memory(s, 0x17, val);
464 rtc_set_memory(s, 0x18, val >> 8);
465 rtc_set_memory(s, 0x30, val);
466 rtc_set_memory(s, 0x31, val >> 8);
467 /* memory between 16MiB and 4GiB */
468 if (pcms->below_4g_mem_size > 16 * MiB) {
469 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
470 } else {
471 val = 0;
472 }
473 if (val > 65535)
474 val = 65535;
475 rtc_set_memory(s, 0x34, val);
476 rtc_set_memory(s, 0x35, val >> 8);
477 /* memory above 4GiB */
478 val = pcms->above_4g_mem_size / 65536;
479 rtc_set_memory(s, 0x5b, val);
480 rtc_set_memory(s, 0x5c, val >> 8);
481 rtc_set_memory(s, 0x5d, val >> 16);
482
483 object_property_add_link(OBJECT(pcms), "rtc_state",
484 TYPE_ISA_DEVICE,
485 (Object **)&pcms->rtc,
486 object_property_allow_set_link,
487 OBJ_PROP_LINK_STRONG, &error_abort);
488 object_property_set_link(OBJECT(pcms), OBJECT(s),
489 "rtc_state", &error_abort);
490
491 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
492
493 val = 0;
494 val |= 0x02; /* FPU is there */
495 val |= 0x04; /* PS/2 mouse installed */
496 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
497
498 /* hard drives and FDC */
499 arg.rtc_state = s;
500 arg.idebus[0] = idebus0;
501 arg.idebus[1] = idebus1;
502 qemu_register_reset(pc_cmos_init_late, &arg);
503 }
504
505 #define TYPE_PORT92 "port92"
506 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
507
508 /* port 92 stuff: could be split off */
509 typedef struct Port92State {
510 ISADevice parent_obj;
511
512 MemoryRegion io;
513 uint8_t outport;
514 qemu_irq a20_out;
515 } Port92State;
516
517 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
518 unsigned size)
519 {
520 Port92State *s = opaque;
521 int oldval = s->outport;
522
523 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
524 s->outport = val;
525 qemu_set_irq(s->a20_out, (val >> 1) & 1);
526 if ((val & 1) && !(oldval & 1)) {
527 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
528 }
529 }
530
531 static uint64_t port92_read(void *opaque, hwaddr addr,
532 unsigned size)
533 {
534 Port92State *s = opaque;
535 uint32_t ret;
536
537 ret = s->outport;
538 DPRINTF("port92: read 0x%02x\n", ret);
539 return ret;
540 }
541
542 static void port92_init(ISADevice *dev, qemu_irq a20_out)
543 {
544 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
545 }
546
547 static const VMStateDescription vmstate_port92_isa = {
548 .name = "port92",
549 .version_id = 1,
550 .minimum_version_id = 1,
551 .fields = (VMStateField[]) {
552 VMSTATE_UINT8(outport, Port92State),
553 VMSTATE_END_OF_LIST()
554 }
555 };
556
557 static void port92_reset(DeviceState *d)
558 {
559 Port92State *s = PORT92(d);
560
561 s->outport &= ~1;
562 }
563
564 static const MemoryRegionOps port92_ops = {
565 .read = port92_read,
566 .write = port92_write,
567 .impl = {
568 .min_access_size = 1,
569 .max_access_size = 1,
570 },
571 .endianness = DEVICE_LITTLE_ENDIAN,
572 };
573
574 static void port92_initfn(Object *obj)
575 {
576 Port92State *s = PORT92(obj);
577
578 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
579
580 s->outport = 0;
581
582 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
583 }
584
585 static void port92_realizefn(DeviceState *dev, Error **errp)
586 {
587 ISADevice *isadev = ISA_DEVICE(dev);
588 Port92State *s = PORT92(dev);
589
590 isa_register_ioport(isadev, &s->io, 0x92);
591 }
592
593 static void port92_class_initfn(ObjectClass *klass, void *data)
594 {
595 DeviceClass *dc = DEVICE_CLASS(klass);
596
597 dc->realize = port92_realizefn;
598 dc->reset = port92_reset;
599 dc->vmsd = &vmstate_port92_isa;
600 /*
601 * Reason: unlike ordinary ISA devices, this one needs additional
602 * wiring: its A20 output line needs to be wired up by
603 * port92_init().
604 */
605 dc->user_creatable = false;
606 }
607
608 static const TypeInfo port92_info = {
609 .name = TYPE_PORT92,
610 .parent = TYPE_ISA_DEVICE,
611 .instance_size = sizeof(Port92State),
612 .instance_init = port92_initfn,
613 .class_init = port92_class_initfn,
614 };
615
616 static void port92_register_types(void)
617 {
618 type_register_static(&port92_info);
619 }
620
621 type_init(port92_register_types)
622
623 static void handle_a20_line_change(void *opaque, int irq, int level)
624 {
625 X86CPU *cpu = opaque;
626
627 /* XXX: send to all CPUs ? */
628 /* XXX: add logic to handle multiple A20 line sources */
629 x86_cpu_set_a20(cpu, level);
630 }
631
632 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
633 {
634 int index = le32_to_cpu(e820_reserve.count);
635 struct e820_entry *entry;
636
637 if (type != E820_RAM) {
638 /* old FW_CFG_E820_TABLE entry -- reservations only */
639 if (index >= E820_NR_ENTRIES) {
640 return -EBUSY;
641 }
642 entry = &e820_reserve.entry[index++];
643
644 entry->address = cpu_to_le64(address);
645 entry->length = cpu_to_le64(length);
646 entry->type = cpu_to_le32(type);
647
648 e820_reserve.count = cpu_to_le32(index);
649 }
650
651 /* new "etc/e820" file -- include ram too */
652 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
653 e820_table[e820_entries].address = cpu_to_le64(address);
654 e820_table[e820_entries].length = cpu_to_le64(length);
655 e820_table[e820_entries].type = cpu_to_le32(type);
656 e820_entries++;
657
658 return e820_entries;
659 }
660
661 int e820_get_num_entries(void)
662 {
663 return e820_entries;
664 }
665
666 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
667 {
668 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
669 *address = le64_to_cpu(e820_table[idx].address);
670 *length = le64_to_cpu(e820_table[idx].length);
671 return true;
672 }
673 return false;
674 }
675
676 /* Enables contiguous-apic-ID mode, for compatibility */
677 static bool compat_apic_id_mode;
678
679 void enable_compat_apic_id_mode(void)
680 {
681 compat_apic_id_mode = true;
682 }
683
684 /* Calculates initial APIC ID for a specific CPU index
685 *
686 * Currently we need to be able to calculate the APIC ID from the CPU index
687 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
688 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
689 * all CPUs up to max_cpus.
690 */
691 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
692 {
693 uint32_t correct_id;
694 static bool warned;
695
696 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
697 if (compat_apic_id_mode) {
698 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
699 error_report("APIC IDs set in compatibility mode, "
700 "CPU topology won't match the configuration");
701 warned = true;
702 }
703 return cpu_index;
704 } else {
705 return correct_id;
706 }
707 }
708
709 static void pc_build_smbios(PCMachineState *pcms)
710 {
711 uint8_t *smbios_tables, *smbios_anchor;
712 size_t smbios_tables_len, smbios_anchor_len;
713 struct smbios_phys_mem_area *mem_array;
714 unsigned i, array_count;
715 MachineState *ms = MACHINE(pcms);
716 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
717
718 /* tell smbios about cpuid version and features */
719 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
720
721 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
722 if (smbios_tables) {
723 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
724 smbios_tables, smbios_tables_len);
725 }
726
727 /* build the array of physical mem area from e820 table */
728 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
729 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
730 uint64_t addr, len;
731
732 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
733 mem_array[array_count].address = addr;
734 mem_array[array_count].length = len;
735 array_count++;
736 }
737 }
738 smbios_get_tables(mem_array, array_count,
739 &smbios_tables, &smbios_tables_len,
740 &smbios_anchor, &smbios_anchor_len);
741 g_free(mem_array);
742
743 if (smbios_anchor) {
744 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
745 smbios_tables, smbios_tables_len);
746 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
747 smbios_anchor, smbios_anchor_len);
748 }
749 }
750
751 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
752 {
753 FWCfgState *fw_cfg;
754 uint64_t *numa_fw_cfg;
755 int i;
756 const CPUArchIdList *cpus;
757 MachineClass *mc = MACHINE_GET_CLASS(pcms);
758
759 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
760 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
761
762 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
763 *
764 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
765 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
766 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
767 * for CPU hotplug also uses APIC ID and not "CPU index".
768 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
769 * but the "limit to the APIC ID values SeaBIOS may see".
770 *
771 * So for compatibility reasons with old BIOSes we are stuck with
772 * "etc/max-cpus" actually being apic_id_limit
773 */
774 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
775 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
776 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
777 acpi_tables, acpi_tables_len);
778 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
779
780 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
781 &e820_reserve, sizeof(e820_reserve));
782 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
783 sizeof(struct e820_entry) * e820_entries);
784
785 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
786 /* allocate memory for the NUMA channel: one (64bit) word for the number
787 * of nodes, one word for each VCPU->node and one word for each node to
788 * hold the amount of memory.
789 */
790 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
791 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
792 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
793 for (i = 0; i < cpus->len; i++) {
794 unsigned int apic_id = cpus->cpus[i].arch_id;
795 assert(apic_id < pcms->apic_id_limit);
796 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
797 }
798 for (i = 0; i < nb_numa_nodes; i++) {
799 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
800 cpu_to_le64(numa_info[i].node_mem);
801 }
802 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
803 (1 + pcms->apic_id_limit + nb_numa_nodes) *
804 sizeof(*numa_fw_cfg));
805
806 return fw_cfg;
807 }
808
809 static long get_file_size(FILE *f)
810 {
811 long where, size;
812
813 /* XXX: on Unix systems, using fstat() probably makes more sense */
814
815 where = ftell(f);
816 fseek(f, 0, SEEK_END);
817 size = ftell(f);
818 fseek(f, where, SEEK_SET);
819
820 return size;
821 }
822
823 /* setup_data types */
824 #define SETUP_NONE 0
825 #define SETUP_E820_EXT 1
826 #define SETUP_DTB 2
827 #define SETUP_PCI 3
828 #define SETUP_EFI 4
829
830 struct setup_data {
831 uint64_t next;
832 uint32_t type;
833 uint32_t len;
834 uint8_t data[0];
835 } __attribute__((packed));
836
837 static void load_linux(PCMachineState *pcms,
838 FWCfgState *fw_cfg)
839 {
840 uint16_t protocol;
841 int setup_size, kernel_size, cmdline_size;
842 int64_t initrd_size = 0;
843 int dtb_size, setup_data_offset;
844 uint32_t initrd_max;
845 uint8_t header[8192], *setup, *kernel, *initrd_data;
846 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
847 FILE *f;
848 char *vmode;
849 MachineState *machine = MACHINE(pcms);
850 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
851 struct setup_data *setup_data;
852 const char *kernel_filename = machine->kernel_filename;
853 const char *initrd_filename = machine->initrd_filename;
854 const char *dtb_filename = machine->dtb;
855 const char *kernel_cmdline = machine->kernel_cmdline;
856
857 /* Align to 16 bytes as a paranoia measure */
858 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
859
860 /* load the kernel header */
861 f = fopen(kernel_filename, "rb");
862 if (!f || !(kernel_size = get_file_size(f)) ||
863 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
864 MIN(ARRAY_SIZE(header), kernel_size)) {
865 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
866 kernel_filename, strerror(errno));
867 exit(1);
868 }
869
870 /* kernel protocol version */
871 #if 0
872 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
873 #endif
874 if (ldl_p(header+0x202) == 0x53726448) {
875 protocol = lduw_p(header+0x206);
876 } else {
877 /* This looks like a multiboot kernel. If it is, let's stop
878 treating it like a Linux kernel. */
879 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
880 kernel_cmdline, kernel_size, header)) {
881 return;
882 }
883 protocol = 0;
884 }
885
886 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
887 /* Low kernel */
888 real_addr = 0x90000;
889 cmdline_addr = 0x9a000 - cmdline_size;
890 prot_addr = 0x10000;
891 } else if (protocol < 0x202) {
892 /* High but ancient kernel */
893 real_addr = 0x90000;
894 cmdline_addr = 0x9a000 - cmdline_size;
895 prot_addr = 0x100000;
896 } else {
897 /* High and recent kernel */
898 real_addr = 0x10000;
899 cmdline_addr = 0x20000;
900 prot_addr = 0x100000;
901 }
902
903 #if 0
904 fprintf(stderr,
905 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
906 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
907 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
908 real_addr,
909 cmdline_addr,
910 prot_addr);
911 #endif
912
913 /* highest address for loading the initrd */
914 if (protocol >= 0x203) {
915 initrd_max = ldl_p(header+0x22c);
916 } else {
917 initrd_max = 0x37ffffff;
918 }
919
920 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
921 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
922 }
923
924 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
925 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
926 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
927
928 if (protocol >= 0x202) {
929 stl_p(header+0x228, cmdline_addr);
930 } else {
931 stw_p(header+0x20, 0xA33F);
932 stw_p(header+0x22, cmdline_addr-real_addr);
933 }
934
935 /* handle vga= parameter */
936 vmode = strstr(kernel_cmdline, "vga=");
937 if (vmode) {
938 unsigned int video_mode;
939 /* skip "vga=" */
940 vmode += 4;
941 if (!strncmp(vmode, "normal", 6)) {
942 video_mode = 0xffff;
943 } else if (!strncmp(vmode, "ext", 3)) {
944 video_mode = 0xfffe;
945 } else if (!strncmp(vmode, "ask", 3)) {
946 video_mode = 0xfffd;
947 } else {
948 video_mode = strtol(vmode, NULL, 0);
949 }
950 stw_p(header+0x1fa, video_mode);
951 }
952
953 /* loader type */
954 /* High nybble = B reserved for QEMU; low nybble is revision number.
955 If this code is substantially changed, you may want to consider
956 incrementing the revision. */
957 if (protocol >= 0x200) {
958 header[0x210] = 0xB0;
959 }
960 /* heap */
961 if (protocol >= 0x201) {
962 header[0x211] |= 0x80; /* CAN_USE_HEAP */
963 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
964 }
965
966 /* load initrd */
967 if (initrd_filename) {
968 if (protocol < 0x200) {
969 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
970 exit(1);
971 }
972
973 initrd_size = get_image_size(initrd_filename);
974 if (initrd_size < 0) {
975 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
976 initrd_filename, strerror(errno));
977 exit(1);
978 } else if (initrd_size >= initrd_max) {
979 fprintf(stderr, "qemu: initrd is too large, cannot support."
980 "(max: %"PRIu32", need %"PRId64")\n", initrd_max, initrd_size);
981 exit(1);
982 }
983
984 initrd_addr = (initrd_max-initrd_size) & ~4095;
985
986 initrd_data = g_malloc(initrd_size);
987 load_image(initrd_filename, initrd_data);
988
989 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
990 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
991 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
992
993 stl_p(header+0x218, initrd_addr);
994 stl_p(header+0x21c, initrd_size);
995 }
996
997 /* load kernel and setup */
998 setup_size = header[0x1f1];
999 if (setup_size == 0) {
1000 setup_size = 4;
1001 }
1002 setup_size = (setup_size+1)*512;
1003 if (setup_size > kernel_size) {
1004 fprintf(stderr, "qemu: invalid kernel header\n");
1005 exit(1);
1006 }
1007 kernel_size -= setup_size;
1008
1009 setup = g_malloc(setup_size);
1010 kernel = g_malloc(kernel_size);
1011 fseek(f, 0, SEEK_SET);
1012 if (fread(setup, 1, setup_size, f) != setup_size) {
1013 fprintf(stderr, "fread() failed\n");
1014 exit(1);
1015 }
1016 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1017 fprintf(stderr, "fread() failed\n");
1018 exit(1);
1019 }
1020 fclose(f);
1021
1022 /* append dtb to kernel */
1023 if (dtb_filename) {
1024 if (protocol < 0x209) {
1025 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1026 exit(1);
1027 }
1028
1029 dtb_size = get_image_size(dtb_filename);
1030 if (dtb_size <= 0) {
1031 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1032 dtb_filename, strerror(errno));
1033 exit(1);
1034 }
1035
1036 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1037 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1038 kernel = g_realloc(kernel, kernel_size);
1039
1040 stq_p(header+0x250, prot_addr + setup_data_offset);
1041
1042 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1043 setup_data->next = 0;
1044 setup_data->type = cpu_to_le32(SETUP_DTB);
1045 setup_data->len = cpu_to_le32(dtb_size);
1046
1047 load_image_size(dtb_filename, setup_data->data, dtb_size);
1048 }
1049
1050 memcpy(setup, header, MIN(sizeof(header), setup_size));
1051
1052 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1053 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1054 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1055
1056 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1057 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1058 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1059
1060 option_rom[nb_option_roms].bootindex = 0;
1061 option_rom[nb_option_roms].name = "linuxboot.bin";
1062 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1063 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1064 }
1065 nb_option_roms++;
1066 }
1067
1068 #define NE2000_NB_MAX 6
1069
1070 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1071 0x280, 0x380 };
1072 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1073
1074 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1075 {
1076 static int nb_ne2k = 0;
1077
1078 if (nb_ne2k == NE2000_NB_MAX)
1079 return;
1080 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1081 ne2000_irq[nb_ne2k], nd);
1082 nb_ne2k++;
1083 }
1084
1085 DeviceState *cpu_get_current_apic(void)
1086 {
1087 if (current_cpu) {
1088 X86CPU *cpu = X86_CPU(current_cpu);
1089 return cpu->apic_state;
1090 } else {
1091 return NULL;
1092 }
1093 }
1094
1095 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1096 {
1097 X86CPU *cpu = opaque;
1098
1099 if (level) {
1100 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1101 }
1102 }
1103
1104 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1105 {
1106 Object *cpu = NULL;
1107 Error *local_err = NULL;
1108
1109 cpu = object_new(typename);
1110
1111 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1112 object_property_set_bool(cpu, true, "realized", &local_err);
1113
1114 object_unref(cpu);
1115 error_propagate(errp, local_err);
1116 }
1117
1118 void pc_hot_add_cpu(const int64_t id, Error **errp)
1119 {
1120 MachineState *ms = MACHINE(qdev_get_machine());
1121 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1122 Error *local_err = NULL;
1123
1124 if (id < 0) {
1125 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1126 return;
1127 }
1128
1129 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1130 error_setg(errp, "Unable to add CPU: %" PRIi64
1131 ", resulting APIC ID (%" PRIi64 ") is too large",
1132 id, apic_id);
1133 return;
1134 }
1135
1136 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1137 if (local_err) {
1138 error_propagate(errp, local_err);
1139 return;
1140 }
1141 }
1142
1143 void pc_cpus_init(PCMachineState *pcms)
1144 {
1145 int i;
1146 const CPUArchIdList *possible_cpus;
1147 MachineState *ms = MACHINE(pcms);
1148 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1149
1150 /* Calculates the limit to CPU APIC ID values
1151 *
1152 * Limit for the APIC ID value, so that all
1153 * CPU APIC IDs are < pcms->apic_id_limit.
1154 *
1155 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1156 */
1157 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1158 possible_cpus = mc->possible_cpu_arch_ids(ms);
1159 for (i = 0; i < smp_cpus; i++) {
1160 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1161 &error_fatal);
1162 }
1163 }
1164
1165 static void pc_build_feature_control_file(PCMachineState *pcms)
1166 {
1167 MachineState *ms = MACHINE(pcms);
1168 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1169 CPUX86State *env = &cpu->env;
1170 uint32_t unused, ecx, edx;
1171 uint64_t feature_control_bits = 0;
1172 uint64_t *val;
1173
1174 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1175 if (ecx & CPUID_EXT_VMX) {
1176 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1177 }
1178
1179 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1180 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1181 (env->mcg_cap & MCG_LMCE_P)) {
1182 feature_control_bits |= FEATURE_CONTROL_LMCE;
1183 }
1184
1185 if (!feature_control_bits) {
1186 return;
1187 }
1188
1189 val = g_malloc(sizeof(*val));
1190 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1191 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1192 }
1193
1194 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1195 {
1196 if (cpus_count > 0xff) {
1197 /* If the number of CPUs can't be represented in 8 bits, the
1198 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1199 * to make old BIOSes fail more predictably.
1200 */
1201 rtc_set_memory(rtc, 0x5f, 0);
1202 } else {
1203 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1204 }
1205 }
1206
1207 static
1208 void pc_machine_done(Notifier *notifier, void *data)
1209 {
1210 PCMachineState *pcms = container_of(notifier,
1211 PCMachineState, machine_done);
1212 PCIBus *bus = pcms->bus;
1213
1214 /* set the number of CPUs */
1215 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1216
1217 if (bus) {
1218 int extra_hosts = 0;
1219
1220 QLIST_FOREACH(bus, &bus->child, sibling) {
1221 /* look for expander root buses */
1222 if (pci_bus_is_root(bus)) {
1223 extra_hosts++;
1224 }
1225 }
1226 if (extra_hosts && pcms->fw_cfg) {
1227 uint64_t *val = g_malloc(sizeof(*val));
1228 *val = cpu_to_le64(extra_hosts);
1229 fw_cfg_add_file(pcms->fw_cfg,
1230 "etc/extra-pci-roots", val, sizeof(*val));
1231 }
1232 }
1233
1234 acpi_setup();
1235 if (pcms->fw_cfg) {
1236 pc_build_smbios(pcms);
1237 pc_build_feature_control_file(pcms);
1238 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1239 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1240 }
1241
1242 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1243 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1244
1245 if (!iommu || !iommu->x86_iommu.intr_supported ||
1246 iommu->intr_eim != ON_OFF_AUTO_ON) {
1247 error_report("current -smp configuration requires "
1248 "Extended Interrupt Mode enabled. "
1249 "You can add an IOMMU using: "
1250 "-device intel-iommu,intremap=on,eim=on");
1251 exit(EXIT_FAILURE);
1252 }
1253 }
1254 }
1255
1256 void pc_guest_info_init(PCMachineState *pcms)
1257 {
1258 int i;
1259
1260 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1261 pcms->numa_nodes = nb_numa_nodes;
1262 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1263 sizeof *pcms->node_mem);
1264 for (i = 0; i < nb_numa_nodes; i++) {
1265 pcms->node_mem[i] = numa_info[i].node_mem;
1266 }
1267
1268 pcms->machine_done.notify = pc_machine_done;
1269 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1270 }
1271
1272 /* setup pci memory address space mapping into system address space */
1273 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1274 MemoryRegion *pci_address_space)
1275 {
1276 /* Set to lower priority than RAM */
1277 memory_region_add_subregion_overlap(system_memory, 0x0,
1278 pci_address_space, -1);
1279 }
1280
1281 void pc_acpi_init(const char *default_dsdt)
1282 {
1283 char *filename;
1284
1285 if (acpi_tables != NULL) {
1286 /* manually set via -acpitable, leave it alone */
1287 return;
1288 }
1289
1290 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1291 if (filename == NULL) {
1292 warn_report("failed to find %s", default_dsdt);
1293 } else {
1294 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1295 &error_abort);
1296 Error *err = NULL;
1297
1298 qemu_opt_set(opts, "file", filename, &error_abort);
1299
1300 acpi_table_add_builtin(opts, &err);
1301 if (err) {
1302 warn_reportf_err(err, "failed to load %s: ", filename);
1303 }
1304 g_free(filename);
1305 }
1306 }
1307
1308 void xen_load_linux(PCMachineState *pcms)
1309 {
1310 int i;
1311 FWCfgState *fw_cfg;
1312
1313 assert(MACHINE(pcms)->kernel_filename != NULL);
1314
1315 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1316 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1317 rom_set_fw(fw_cfg);
1318
1319 load_linux(pcms, fw_cfg);
1320 for (i = 0; i < nb_option_roms; i++) {
1321 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1322 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1323 !strcmp(option_rom[i].name, "multiboot.bin"));
1324 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1325 }
1326 pcms->fw_cfg = fw_cfg;
1327 }
1328
1329 void pc_memory_init(PCMachineState *pcms,
1330 MemoryRegion *system_memory,
1331 MemoryRegion *rom_memory,
1332 MemoryRegion **ram_memory)
1333 {
1334 int linux_boot, i;
1335 MemoryRegion *ram, *option_rom_mr;
1336 MemoryRegion *ram_below_4g, *ram_above_4g;
1337 FWCfgState *fw_cfg;
1338 MachineState *machine = MACHINE(pcms);
1339 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1340
1341 assert(machine->ram_size == pcms->below_4g_mem_size +
1342 pcms->above_4g_mem_size);
1343
1344 linux_boot = (machine->kernel_filename != NULL);
1345
1346 /* Allocate RAM. We allocate it as a single memory region and use
1347 * aliases to address portions of it, mostly for backwards compatibility
1348 * with older qemus that used qemu_ram_alloc().
1349 */
1350 ram = g_malloc(sizeof(*ram));
1351 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1352 machine->ram_size);
1353 *ram_memory = ram;
1354 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1355 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1356 0, pcms->below_4g_mem_size);
1357 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1358 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1359 if (pcms->above_4g_mem_size > 0) {
1360 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1361 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1362 pcms->below_4g_mem_size,
1363 pcms->above_4g_mem_size);
1364 memory_region_add_subregion(system_memory, 0x100000000ULL,
1365 ram_above_4g);
1366 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1367 }
1368
1369 if (!pcmc->has_reserved_memory &&
1370 (machine->ram_slots ||
1371 (machine->maxram_size > machine->ram_size))) {
1372 MachineClass *mc = MACHINE_GET_CLASS(machine);
1373
1374 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1375 mc->name);
1376 exit(EXIT_FAILURE);
1377 }
1378
1379 /* always allocate the device memory information */
1380 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1381
1382 /* initialize device memory address space */
1383 if (pcmc->has_reserved_memory &&
1384 (machine->ram_size < machine->maxram_size)) {
1385 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1386
1387 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1388 error_report("unsupported amount of memory slots: %"PRIu64,
1389 machine->ram_slots);
1390 exit(EXIT_FAILURE);
1391 }
1392
1393 if (QEMU_ALIGN_UP(machine->maxram_size,
1394 TARGET_PAGE_SIZE) != machine->maxram_size) {
1395 error_report("maximum memory size must by aligned to multiple of "
1396 "%d bytes", TARGET_PAGE_SIZE);
1397 exit(EXIT_FAILURE);
1398 }
1399
1400 machine->device_memory->base =
1401 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1402
1403 if (pcmc->enforce_aligned_dimm) {
1404 /* size device region assuming 1G page max alignment per slot */
1405 device_mem_size += (1 * GiB) * machine->ram_slots;
1406 }
1407
1408 if ((machine->device_memory->base + device_mem_size) <
1409 device_mem_size) {
1410 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1411 machine->maxram_size);
1412 exit(EXIT_FAILURE);
1413 }
1414
1415 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1416 "device-memory", device_mem_size);
1417 memory_region_add_subregion(system_memory, machine->device_memory->base,
1418 &machine->device_memory->mr);
1419 }
1420
1421 /* Initialize PC system firmware */
1422 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1423
1424 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1425 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1426 &error_fatal);
1427 if (pcmc->pci_enabled) {
1428 memory_region_set_readonly(option_rom_mr, true);
1429 }
1430 memory_region_add_subregion_overlap(rom_memory,
1431 PC_ROM_MIN_VGA,
1432 option_rom_mr,
1433 1);
1434
1435 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1436
1437 rom_set_fw(fw_cfg);
1438
1439 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1440 uint64_t *val = g_malloc(sizeof(*val));
1441 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1442 uint64_t res_mem_end = machine->device_memory->base;
1443
1444 if (!pcmc->broken_reserved_end) {
1445 res_mem_end += memory_region_size(&machine->device_memory->mr);
1446 }
1447 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1448 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1449 }
1450
1451 if (linux_boot) {
1452 load_linux(pcms, fw_cfg);
1453 }
1454
1455 for (i = 0; i < nb_option_roms; i++) {
1456 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1457 }
1458 pcms->fw_cfg = fw_cfg;
1459
1460 /* Init default IOAPIC address space */
1461 pcms->ioapic_as = &address_space_memory;
1462 }
1463
1464 /*
1465 * The 64bit pci hole starts after "above 4G RAM" and
1466 * potentially the space reserved for memory hotplug.
1467 */
1468 uint64_t pc_pci_hole64_start(void)
1469 {
1470 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1471 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1472 MachineState *ms = MACHINE(pcms);
1473 uint64_t hole64_start = 0;
1474
1475 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1476 hole64_start = ms->device_memory->base;
1477 if (!pcmc->broken_reserved_end) {
1478 hole64_start += memory_region_size(&ms->device_memory->mr);
1479 }
1480 } else {
1481 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1482 }
1483
1484 return ROUND_UP(hole64_start, 1 * GiB);
1485 }
1486
1487 qemu_irq pc_allocate_cpu_irq(void)
1488 {
1489 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1490 }
1491
1492 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1493 {
1494 DeviceState *dev = NULL;
1495
1496 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1497 if (pci_bus) {
1498 PCIDevice *pcidev = pci_vga_init(pci_bus);
1499 dev = pcidev ? &pcidev->qdev : NULL;
1500 } else if (isa_bus) {
1501 ISADevice *isadev = isa_vga_init(isa_bus);
1502 dev = isadev ? DEVICE(isadev) : NULL;
1503 }
1504 rom_reset_order_override();
1505 return dev;
1506 }
1507
1508 static const MemoryRegionOps ioport80_io_ops = {
1509 .write = ioport80_write,
1510 .read = ioport80_read,
1511 .endianness = DEVICE_NATIVE_ENDIAN,
1512 .impl = {
1513 .min_access_size = 1,
1514 .max_access_size = 1,
1515 },
1516 };
1517
1518 static const MemoryRegionOps ioportF0_io_ops = {
1519 .write = ioportF0_write,
1520 .read = ioportF0_read,
1521 .endianness = DEVICE_NATIVE_ENDIAN,
1522 .impl = {
1523 .min_access_size = 1,
1524 .max_access_size = 1,
1525 },
1526 };
1527
1528 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1529 {
1530 int i;
1531 DriveInfo *fd[MAX_FD];
1532 qemu_irq *a20_line;
1533 ISADevice *i8042, *port92, *vmmouse;
1534
1535 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1536 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1537
1538 for (i = 0; i < MAX_FD; i++) {
1539 fd[i] = drive_get(IF_FLOPPY, 0, i);
1540 create_fdctrl |= !!fd[i];
1541 }
1542 if (create_fdctrl) {
1543 fdctrl_init_isa(isa_bus, fd);
1544 }
1545
1546 i8042 = isa_create_simple(isa_bus, "i8042");
1547 if (!no_vmport) {
1548 vmport_init(isa_bus);
1549 vmmouse = isa_try_create(isa_bus, "vmmouse");
1550 } else {
1551 vmmouse = NULL;
1552 }
1553 if (vmmouse) {
1554 DeviceState *dev = DEVICE(vmmouse);
1555 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1556 qdev_init_nofail(dev);
1557 }
1558 port92 = isa_create_simple(isa_bus, "port92");
1559
1560 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1561 i8042_setup_a20_line(i8042, a20_line[0]);
1562 port92_init(port92, a20_line[1]);
1563 g_free(a20_line);
1564 }
1565
1566 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1567 ISADevice **rtc_state,
1568 bool create_fdctrl,
1569 bool no_vmport,
1570 bool has_pit,
1571 uint32_t hpet_irqs)
1572 {
1573 int i;
1574 DeviceState *hpet = NULL;
1575 int pit_isa_irq = 0;
1576 qemu_irq pit_alt_irq = NULL;
1577 qemu_irq rtc_irq = NULL;
1578 ISADevice *pit = NULL;
1579 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1580 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1581
1582 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1583 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1584
1585 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1586 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1587
1588 /*
1589 * Check if an HPET shall be created.
1590 *
1591 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1592 * when the HPET wants to take over. Thus we have to disable the latter.
1593 */
1594 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1595 /* In order to set property, here not using sysbus_try_create_simple */
1596 hpet = qdev_try_create(NULL, TYPE_HPET);
1597 if (hpet) {
1598 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1599 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1600 * IRQ8 and IRQ2.
1601 */
1602 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1603 HPET_INTCAP, NULL);
1604 if (!compat) {
1605 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1606 }
1607 qdev_init_nofail(hpet);
1608 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1609
1610 for (i = 0; i < GSI_NUM_PINS; i++) {
1611 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1612 }
1613 pit_isa_irq = -1;
1614 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1615 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1616 }
1617 }
1618 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1619
1620 qemu_register_boot_set(pc_boot_set, *rtc_state);
1621
1622 if (!xen_enabled() && has_pit) {
1623 if (kvm_pit_in_kernel()) {
1624 pit = kvm_pit_init(isa_bus, 0x40);
1625 } else {
1626 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1627 }
1628 if (hpet) {
1629 /* connect PIT to output control line of the HPET */
1630 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1631 }
1632 pcspk_init(isa_bus, pit);
1633 }
1634
1635 i8257_dma_init(isa_bus, 0);
1636
1637 /* Super I/O */
1638 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1639 }
1640
1641 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1642 {
1643 int i;
1644
1645 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1646 for (i = 0; i < nb_nics; i++) {
1647 NICInfo *nd = &nd_table[i];
1648 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1649
1650 if (g_str_equal(model, "ne2k_isa")) {
1651 pc_init_ne2k_isa(isa_bus, nd);
1652 } else {
1653 pci_nic_init_nofail(nd, pci_bus, model, NULL);
1654 }
1655 }
1656 rom_reset_order_override();
1657 }
1658
1659 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1660 {
1661 DeviceState *dev;
1662 SysBusDevice *d;
1663 unsigned int i;
1664
1665 if (kvm_ioapic_in_kernel()) {
1666 dev = qdev_create(NULL, "kvm-ioapic");
1667 } else {
1668 dev = qdev_create(NULL, "ioapic");
1669 }
1670 if (parent_name) {
1671 object_property_add_child(object_resolve_path(parent_name, NULL),
1672 "ioapic", OBJECT(dev), NULL);
1673 }
1674 qdev_init_nofail(dev);
1675 d = SYS_BUS_DEVICE(dev);
1676 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1677
1678 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1679 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1680 }
1681 }
1682
1683 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1684 Error **errp)
1685 {
1686 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1687 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1688 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1689 const uint64_t legacy_align = TARGET_PAGE_SIZE;
1690
1691 /*
1692 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1693 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1694 * addition to cover this case.
1695 */
1696 if (!pcms->acpi_dev || !acpi_enabled) {
1697 error_setg(errp,
1698 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1699 return;
1700 }
1701
1702 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1703 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1704 return;
1705 }
1706
1707 pc_dimm_pre_plug(dev, MACHINE(hotplug_dev),
1708 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1709 }
1710
1711 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1712 DeviceState *dev, Error **errp)
1713 {
1714 HotplugHandlerClass *hhc;
1715 Error *local_err = NULL;
1716 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1717 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1718
1719 pc_dimm_plug(dev, MACHINE(pcms), &local_err);
1720 if (local_err) {
1721 goto out;
1722 }
1723
1724 if (is_nvdimm) {
1725 nvdimm_plug(&pcms->acpi_nvdimm_state);
1726 }
1727
1728 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1729 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1730 out:
1731 error_propagate(errp, local_err);
1732 }
1733
1734 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1735 DeviceState *dev, Error **errp)
1736 {
1737 HotplugHandlerClass *hhc;
1738 Error *local_err = NULL;
1739 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1740
1741 /*
1742 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1743 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1744 * addition to cover this case.
1745 */
1746 if (!pcms->acpi_dev || !acpi_enabled) {
1747 error_setg(&local_err,
1748 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1749 goto out;
1750 }
1751
1752 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1753 error_setg(&local_err,
1754 "nvdimm device hot unplug is not supported yet.");
1755 goto out;
1756 }
1757
1758 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1759 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1760
1761 out:
1762 error_propagate(errp, local_err);
1763 }
1764
1765 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1766 DeviceState *dev, Error **errp)
1767 {
1768 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1769 HotplugHandlerClass *hhc;
1770 Error *local_err = NULL;
1771
1772 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1773 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1774
1775 if (local_err) {
1776 goto out;
1777 }
1778
1779 pc_dimm_unplug(dev, MACHINE(pcms));
1780 object_unparent(OBJECT(dev));
1781
1782 out:
1783 error_propagate(errp, local_err);
1784 }
1785
1786 static int pc_apic_cmp(const void *a, const void *b)
1787 {
1788 CPUArchId *apic_a = (CPUArchId *)a;
1789 CPUArchId *apic_b = (CPUArchId *)b;
1790
1791 return apic_a->arch_id - apic_b->arch_id;
1792 }
1793
1794 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1795 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1796 * entry corresponding to CPU's apic_id returns NULL.
1797 */
1798 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1799 {
1800 CPUArchId apic_id, *found_cpu;
1801
1802 apic_id.arch_id = id;
1803 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1804 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1805 pc_apic_cmp);
1806 if (found_cpu && idx) {
1807 *idx = found_cpu - ms->possible_cpus->cpus;
1808 }
1809 return found_cpu;
1810 }
1811
1812 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1813 DeviceState *dev, Error **errp)
1814 {
1815 CPUArchId *found_cpu;
1816 HotplugHandlerClass *hhc;
1817 Error *local_err = NULL;
1818 X86CPU *cpu = X86_CPU(dev);
1819 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1820
1821 if (pcms->acpi_dev) {
1822 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1823 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1824 if (local_err) {
1825 goto out;
1826 }
1827 }
1828
1829 /* increment the number of CPUs */
1830 pcms->boot_cpus++;
1831 if (pcms->rtc) {
1832 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1833 }
1834 if (pcms->fw_cfg) {
1835 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1836 }
1837
1838 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1839 found_cpu->cpu = OBJECT(dev);
1840 out:
1841 error_propagate(errp, local_err);
1842 }
1843 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1844 DeviceState *dev, Error **errp)
1845 {
1846 int idx = -1;
1847 HotplugHandlerClass *hhc;
1848 Error *local_err = NULL;
1849 X86CPU *cpu = X86_CPU(dev);
1850 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1851
1852 if (!pcms->acpi_dev) {
1853 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1854 goto out;
1855 }
1856
1857 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1858 assert(idx != -1);
1859 if (idx == 0) {
1860 error_setg(&local_err, "Boot CPU is unpluggable");
1861 goto out;
1862 }
1863
1864 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1865 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1866
1867 if (local_err) {
1868 goto out;
1869 }
1870
1871 out:
1872 error_propagate(errp, local_err);
1873
1874 }
1875
1876 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1877 DeviceState *dev, Error **errp)
1878 {
1879 CPUArchId *found_cpu;
1880 HotplugHandlerClass *hhc;
1881 Error *local_err = NULL;
1882 X86CPU *cpu = X86_CPU(dev);
1883 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1884
1885 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1886 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1887
1888 if (local_err) {
1889 goto out;
1890 }
1891
1892 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1893 found_cpu->cpu = NULL;
1894 object_unparent(OBJECT(dev));
1895
1896 /* decrement the number of CPUs */
1897 pcms->boot_cpus--;
1898 /* Update the number of CPUs in CMOS */
1899 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1900 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1901 out:
1902 error_propagate(errp, local_err);
1903 }
1904
1905 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1906 DeviceState *dev, Error **errp)
1907 {
1908 int idx;
1909 CPUState *cs;
1910 CPUArchId *cpu_slot;
1911 X86CPUTopoInfo topo;
1912 X86CPU *cpu = X86_CPU(dev);
1913 MachineState *ms = MACHINE(hotplug_dev);
1914 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1915
1916 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1917 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1918 ms->cpu_type);
1919 return;
1920 }
1921
1922 /* if APIC ID is not set, set it based on socket/core/thread properties */
1923 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1924 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1925
1926 if (cpu->socket_id < 0) {
1927 error_setg(errp, "CPU socket-id is not set");
1928 return;
1929 } else if (cpu->socket_id > max_socket) {
1930 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1931 cpu->socket_id, max_socket);
1932 return;
1933 }
1934 if (cpu->core_id < 0) {
1935 error_setg(errp, "CPU core-id is not set");
1936 return;
1937 } else if (cpu->core_id > (smp_cores - 1)) {
1938 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1939 cpu->core_id, smp_cores - 1);
1940 return;
1941 }
1942 if (cpu->thread_id < 0) {
1943 error_setg(errp, "CPU thread-id is not set");
1944 return;
1945 } else if (cpu->thread_id > (smp_threads - 1)) {
1946 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1947 cpu->thread_id, smp_threads - 1);
1948 return;
1949 }
1950
1951 topo.pkg_id = cpu->socket_id;
1952 topo.core_id = cpu->core_id;
1953 topo.smt_id = cpu->thread_id;
1954 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1955 }
1956
1957 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1958 if (!cpu_slot) {
1959 MachineState *ms = MACHINE(pcms);
1960
1961 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1962 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1963 " APIC ID %" PRIu32 ", valid index range 0:%d",
1964 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1965 ms->possible_cpus->len - 1);
1966 return;
1967 }
1968
1969 if (cpu_slot->cpu) {
1970 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1971 idx, cpu->apic_id);
1972 return;
1973 }
1974
1975 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1976 * so that machine_query_hotpluggable_cpus would show correct values
1977 */
1978 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1979 * once -smp refactoring is complete and there will be CPU private
1980 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1981 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1982 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1983 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1984 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1985 return;
1986 }
1987 cpu->socket_id = topo.pkg_id;
1988
1989 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1990 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1991 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1992 return;
1993 }
1994 cpu->core_id = topo.core_id;
1995
1996 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1997 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1998 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1999 return;
2000 }
2001 cpu->thread_id = topo.smt_id;
2002
2003 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2004 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2005 return;
2006 }
2007
2008 cs = CPU(cpu);
2009 cs->cpu_index = idx;
2010
2011 numa_cpu_pre_plug(cpu_slot, dev, errp);
2012 }
2013
2014 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2015 DeviceState *dev, Error **errp)
2016 {
2017 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2018 pc_memory_pre_plug(hotplug_dev, dev, errp);
2019 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2020 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2021 }
2022 }
2023
2024 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2025 DeviceState *dev, Error **errp)
2026 {
2027 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2028 pc_memory_plug(hotplug_dev, dev, errp);
2029 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2030 pc_cpu_plug(hotplug_dev, dev, errp);
2031 }
2032 }
2033
2034 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2035 DeviceState *dev, Error **errp)
2036 {
2037 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2038 pc_memory_unplug_request(hotplug_dev, dev, errp);
2039 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2040 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2041 } else {
2042 error_setg(errp, "acpi: device unplug request for not supported device"
2043 " type: %s", object_get_typename(OBJECT(dev)));
2044 }
2045 }
2046
2047 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2048 DeviceState *dev, Error **errp)
2049 {
2050 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2051 pc_memory_unplug(hotplug_dev, dev, errp);
2052 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2053 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2054 } else {
2055 error_setg(errp, "acpi: device unplug for not supported device"
2056 " type: %s", object_get_typename(OBJECT(dev)));
2057 }
2058 }
2059
2060 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2061 DeviceState *dev)
2062 {
2063 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2064 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2065 return HOTPLUG_HANDLER(machine);
2066 }
2067
2068 return NULL;
2069 }
2070
2071 static void
2072 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2073 const char *name, void *opaque,
2074 Error **errp)
2075 {
2076 MachineState *ms = MACHINE(obj);
2077 int64_t value = memory_region_size(&ms->device_memory->mr);
2078
2079 visit_type_int(v, name, &value, errp);
2080 }
2081
2082 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2083 const char *name, void *opaque,
2084 Error **errp)
2085 {
2086 PCMachineState *pcms = PC_MACHINE(obj);
2087 uint64_t value = pcms->max_ram_below_4g;
2088
2089 visit_type_size(v, name, &value, errp);
2090 }
2091
2092 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2093 const char *name, void *opaque,
2094 Error **errp)
2095 {
2096 PCMachineState *pcms = PC_MACHINE(obj);
2097 Error *error = NULL;
2098 uint64_t value;
2099
2100 visit_type_size(v, name, &value, &error);
2101 if (error) {
2102 error_propagate(errp, error);
2103 return;
2104 }
2105 if (value > 4 * GiB) {
2106 error_setg(&error,
2107 "Machine option 'max-ram-below-4g=%"PRIu64
2108 "' expects size less than or equal to 4G", value);
2109 error_propagate(errp, error);
2110 return;
2111 }
2112
2113 if (value < 1 * MiB) {
2114 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2115 "BIOS may not work with less than 1MiB", value);
2116 }
2117
2118 pcms->max_ram_below_4g = value;
2119 }
2120
2121 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2122 void *opaque, Error **errp)
2123 {
2124 PCMachineState *pcms = PC_MACHINE(obj);
2125 OnOffAuto vmport = pcms->vmport;
2126
2127 visit_type_OnOffAuto(v, name, &vmport, errp);
2128 }
2129
2130 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2131 void *opaque, Error **errp)
2132 {
2133 PCMachineState *pcms = PC_MACHINE(obj);
2134
2135 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2136 }
2137
2138 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2139 {
2140 bool smm_available = false;
2141
2142 if (pcms->smm == ON_OFF_AUTO_OFF) {
2143 return false;
2144 }
2145
2146 if (tcg_enabled() || qtest_enabled()) {
2147 smm_available = true;
2148 } else if (kvm_enabled()) {
2149 smm_available = kvm_has_smm();
2150 }
2151
2152 if (smm_available) {
2153 return true;
2154 }
2155
2156 if (pcms->smm == ON_OFF_AUTO_ON) {
2157 error_report("System Management Mode not supported by this hypervisor.");
2158 exit(1);
2159 }
2160 return false;
2161 }
2162
2163 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2164 void *opaque, Error **errp)
2165 {
2166 PCMachineState *pcms = PC_MACHINE(obj);
2167 OnOffAuto smm = pcms->smm;
2168
2169 visit_type_OnOffAuto(v, name, &smm, errp);
2170 }
2171
2172 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2173 void *opaque, Error **errp)
2174 {
2175 PCMachineState *pcms = PC_MACHINE(obj);
2176
2177 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2178 }
2179
2180 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2181 {
2182 PCMachineState *pcms = PC_MACHINE(obj);
2183
2184 return pcms->acpi_nvdimm_state.is_enabled;
2185 }
2186
2187 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2188 {
2189 PCMachineState *pcms = PC_MACHINE(obj);
2190
2191 pcms->acpi_nvdimm_state.is_enabled = value;
2192 }
2193
2194 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2195 {
2196 PCMachineState *pcms = PC_MACHINE(obj);
2197
2198 return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2199 }
2200
2201 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2202 Error **errp)
2203 {
2204 PCMachineState *pcms = PC_MACHINE(obj);
2205 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2206
2207 if (strcmp(value, "cpu") == 0)
2208 nvdimm_state->persistence = 3;
2209 else if (strcmp(value, "mem-ctrl") == 0)
2210 nvdimm_state->persistence = 2;
2211 else {
2212 error_report("-machine nvdimm-persistence=%s: unsupported option", value);
2213 exit(EXIT_FAILURE);
2214 }
2215
2216 g_free(nvdimm_state->persistence_string);
2217 nvdimm_state->persistence_string = g_strdup(value);
2218 }
2219
2220 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2221 {
2222 PCMachineState *pcms = PC_MACHINE(obj);
2223
2224 return pcms->smbus;
2225 }
2226
2227 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2228 {
2229 PCMachineState *pcms = PC_MACHINE(obj);
2230
2231 pcms->smbus = value;
2232 }
2233
2234 static bool pc_machine_get_sata(Object *obj, Error **errp)
2235 {
2236 PCMachineState *pcms = PC_MACHINE(obj);
2237
2238 return pcms->sata;
2239 }
2240
2241 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2242 {
2243 PCMachineState *pcms = PC_MACHINE(obj);
2244
2245 pcms->sata = value;
2246 }
2247
2248 static bool pc_machine_get_pit(Object *obj, Error **errp)
2249 {
2250 PCMachineState *pcms = PC_MACHINE(obj);
2251
2252 return pcms->pit;
2253 }
2254
2255 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2256 {
2257 PCMachineState *pcms = PC_MACHINE(obj);
2258
2259 pcms->pit = value;
2260 }
2261
2262 static void pc_machine_initfn(Object *obj)
2263 {
2264 PCMachineState *pcms = PC_MACHINE(obj);
2265
2266 pcms->max_ram_below_4g = 0; /* use default */
2267 pcms->smm = ON_OFF_AUTO_AUTO;
2268 pcms->vmport = ON_OFF_AUTO_AUTO;
2269 /* nvdimm is disabled on default. */
2270 pcms->acpi_nvdimm_state.is_enabled = false;
2271 /* acpi build is enabled by default if machine supports it */
2272 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2273 pcms->smbus = true;
2274 pcms->sata = true;
2275 pcms->pit = true;
2276 }
2277
2278 static void pc_machine_reset(void)
2279 {
2280 CPUState *cs;
2281 X86CPU *cpu;
2282
2283 qemu_devices_reset();
2284
2285 /* Reset APIC after devices have been reset to cancel
2286 * any changes that qemu_devices_reset() might have done.
2287 */
2288 CPU_FOREACH(cs) {
2289 cpu = X86_CPU(cs);
2290
2291 if (cpu->apic_state) {
2292 device_reset(cpu->apic_state);
2293 }
2294 }
2295 }
2296
2297 static CpuInstanceProperties
2298 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2299 {
2300 MachineClass *mc = MACHINE_GET_CLASS(ms);
2301 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2302
2303 assert(cpu_index < possible_cpus->len);
2304 return possible_cpus->cpus[cpu_index].props;
2305 }
2306
2307 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2308 {
2309 X86CPUTopoInfo topo;
2310
2311 assert(idx < ms->possible_cpus->len);
2312 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2313 smp_cores, smp_threads, &topo);
2314 return topo.pkg_id % nb_numa_nodes;
2315 }
2316
2317 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2318 {
2319 int i;
2320
2321 if (ms->possible_cpus) {
2322 /*
2323 * make sure that max_cpus hasn't changed since the first use, i.e.
2324 * -smp hasn't been parsed after it
2325 */
2326 assert(ms->possible_cpus->len == max_cpus);
2327 return ms->possible_cpus;
2328 }
2329
2330 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2331 sizeof(CPUArchId) * max_cpus);
2332 ms->possible_cpus->len = max_cpus;
2333 for (i = 0; i < ms->possible_cpus->len; i++) {
2334 X86CPUTopoInfo topo;
2335
2336 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2337 ms->possible_cpus->cpus[i].vcpus_count = 1;
2338 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2339 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2340 smp_cores, smp_threads, &topo);
2341 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2342 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2343 ms->possible_cpus->cpus[i].props.has_core_id = true;
2344 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2345 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2346 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2347 }
2348 return ms->possible_cpus;
2349 }
2350
2351 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2352 {
2353 /* cpu index isn't used */
2354 CPUState *cs;
2355
2356 CPU_FOREACH(cs) {
2357 X86CPU *cpu = X86_CPU(cs);
2358
2359 if (!cpu->apic_state) {
2360 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2361 } else {
2362 apic_deliver_nmi(cpu->apic_state);
2363 }
2364 }
2365 }
2366
2367 static void pc_machine_class_init(ObjectClass *oc, void *data)
2368 {
2369 MachineClass *mc = MACHINE_CLASS(oc);
2370 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2371 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2372 NMIClass *nc = NMI_CLASS(oc);
2373
2374 pcmc->pci_enabled = true;
2375 pcmc->has_acpi_build = true;
2376 pcmc->rsdp_in_ram = true;
2377 pcmc->smbios_defaults = true;
2378 pcmc->smbios_uuid_encoded = true;
2379 pcmc->gigabyte_align = true;
2380 pcmc->has_reserved_memory = true;
2381 pcmc->kvmclock_enabled = true;
2382 pcmc->enforce_aligned_dimm = true;
2383 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2384 * to be used at the moment, 32K should be enough for a while. */
2385 pcmc->acpi_data_size = 0x20000 + 0x8000;
2386 pcmc->save_tsc_khz = true;
2387 pcmc->linuxboot_dma_enabled = true;
2388 assert(!mc->get_hotplug_handler);
2389 mc->get_hotplug_handler = pc_get_hotpug_handler;
2390 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2391 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2392 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2393 mc->auto_enable_numa_with_memhp = true;
2394 mc->has_hotpluggable_cpus = true;
2395 mc->default_boot_order = "cad";
2396 mc->hot_add_cpu = pc_hot_add_cpu;
2397 mc->block_default_type = IF_IDE;
2398 mc->max_cpus = 255;
2399 mc->reset = pc_machine_reset;
2400 hc->pre_plug = pc_machine_device_pre_plug_cb;
2401 hc->plug = pc_machine_device_plug_cb;
2402 hc->unplug_request = pc_machine_device_unplug_request_cb;
2403 hc->unplug = pc_machine_device_unplug_cb;
2404 nc->nmi_monitor_handler = x86_nmi;
2405 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2406
2407 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2408 pc_machine_get_device_memory_region_size, NULL,
2409 NULL, NULL, &error_abort);
2410
2411 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2412 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2413 NULL, NULL, &error_abort);
2414
2415 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2416 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2417
2418 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2419 pc_machine_get_smm, pc_machine_set_smm,
2420 NULL, NULL, &error_abort);
2421 object_class_property_set_description(oc, PC_MACHINE_SMM,
2422 "Enable SMM (pc & q35)", &error_abort);
2423
2424 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2425 pc_machine_get_vmport, pc_machine_set_vmport,
2426 NULL, NULL, &error_abort);
2427 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2428 "Enable vmport (pc & q35)", &error_abort);
2429
2430 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2431 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2432
2433 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2434 pc_machine_get_nvdimm_persistence,
2435 pc_machine_set_nvdimm_persistence, &error_abort);
2436
2437 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2438 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2439
2440 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2441 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2442
2443 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2444 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2445 }
2446
2447 static const TypeInfo pc_machine_info = {
2448 .name = TYPE_PC_MACHINE,
2449 .parent = TYPE_MACHINE,
2450 .abstract = true,
2451 .instance_size = sizeof(PCMachineState),
2452 .instance_init = pc_machine_initfn,
2453 .class_size = sizeof(PCMachineClass),
2454 .class_init = pc_machine_class_init,
2455 .interfaces = (InterfaceInfo[]) {
2456 { TYPE_HOTPLUG_HANDLER },
2457 { TYPE_NMI },
2458 { }
2459 },
2460 };
2461
2462 static void pc_machine_register_types(void)
2463 {
2464 type_register_static(&pc_machine_info);
2465 }
2466
2467 type_init(pc_machine_register_types)