]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
Merge remote-tracking branch 'remotes/kraxel/tags/usb-20190607-pull-request' into...
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "hw/i386/fw_cfg.h"
34 #include "sysemu/cpus.h"
35 #include "hw/block/fdc.h"
36 #include "hw/ide.h"
37 #include "hw/pci/pci.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/nvram/fw_cfg.h"
40 #include "hw/timer/hpet.h"
41 #include "hw/firmware/smbios.h"
42 #include "hw/loader.h"
43 #include "elf.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
49 #include "hw/audio/pcspk.h"
50 #include "hw/pci/msi.h"
51 #include "hw/sysbus.h"
52 #include "sysemu/sysemu.h"
53 #include "sysemu/numa.h"
54 #include "sysemu/kvm.h"
55 #include "sysemu/qtest.h"
56 #include "kvm_i386.h"
57 #include "hw/xen/xen.h"
58 #include "hw/xen/start_info.h"
59 #include "ui/qemu-spice.h"
60 #include "exec/memory.h"
61 #include "exec/address-spaces.h"
62 #include "sysemu/arch_init.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/config-file.h"
65 #include "qemu/error-report.h"
66 #include "qemu/option.h"
67 #include "hw/acpi/acpi.h"
68 #include "hw/acpi/cpu_hotplug.h"
69 #include "hw/boards.h"
70 #include "acpi-build.h"
71 #include "hw/mem/pc-dimm.h"
72 #include "qapi/error.h"
73 #include "qapi/qapi-visit-common.h"
74 #include "qapi/visitor.h"
75 #include "qom/cpu.h"
76 #include "hw/nmi.h"
77 #include "hw/usb.h"
78 #include "hw/i386/intel_iommu.h"
79 #include "hw/net/ne2000-isa.h"
80 #include "standard-headers/asm-x86/bootparam.h"
81
82 /* debug PC/ISA interrupts */
83 //#define DEBUG_IRQ
84
85 #ifdef DEBUG_IRQ
86 #define DPRINTF(fmt, ...) \
87 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
88 #else
89 #define DPRINTF(fmt, ...)
90 #endif
91
92 #define E820_NR_ENTRIES 16
93
94 struct e820_entry {
95 uint64_t address;
96 uint64_t length;
97 uint32_t type;
98 } QEMU_PACKED __attribute((__aligned__(4)));
99
100 struct e820_table {
101 uint32_t count;
102 struct e820_entry entry[E820_NR_ENTRIES];
103 } QEMU_PACKED __attribute((__aligned__(4)));
104
105 static struct e820_table e820_reserve;
106 static struct e820_entry *e820_table;
107 static unsigned e820_entries;
108 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
109
110 /* Physical Address of PVH entry point read from kernel ELF NOTE */
111 static size_t pvh_start_addr;
112
113 GlobalProperty pc_compat_4_0_1[] = {};
114 const size_t pc_compat_4_0_1_len = G_N_ELEMENTS(pc_compat_4_0_1);
115
116 GlobalProperty pc_compat_4_0[] = {};
117 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
118
119 GlobalProperty pc_compat_3_1[] = {
120 { "intel-iommu", "dma-drain", "off" },
121 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
122 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
123 { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
124 { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
125 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
126 { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
127 { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
128 { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
129 { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
130 { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
131 { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
132 { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
133 { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
134 { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
135 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
136 { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
137 { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
138 { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
139 { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
140 { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
141 };
142 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
143
144 GlobalProperty pc_compat_3_0[] = {
145 { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
146 { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
147 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
148 };
149 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
150
151 GlobalProperty pc_compat_2_12[] = {
152 { TYPE_X86_CPU, "legacy-cache", "on" },
153 { TYPE_X86_CPU, "topoext", "off" },
154 { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
155 { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
156 };
157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
158
159 GlobalProperty pc_compat_2_11[] = {
160 { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
161 { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
162 };
163 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
164
165 GlobalProperty pc_compat_2_10[] = {
166 { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
167 { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
168 { "q35-pcihost", "x-pci-hole64-fix", "off" },
169 };
170 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
171
172 GlobalProperty pc_compat_2_9[] = {
173 { "mch", "extended-tseg-mbytes", "0" },
174 };
175 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
176
177 GlobalProperty pc_compat_2_8[] = {
178 { TYPE_X86_CPU, "tcg-cpuid", "off" },
179 { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
180 { "ICH9-LPC", "x-smi-broadcast", "off" },
181 { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
182 { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
183 };
184 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
185
186 GlobalProperty pc_compat_2_7[] = {
187 { TYPE_X86_CPU, "l3-cache", "off" },
188 { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
189 { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
190 { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
191 { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
192 { "isa-pcspk", "migrate", "off" },
193 };
194 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
195
196 GlobalProperty pc_compat_2_6[] = {
197 { TYPE_X86_CPU, "cpuid-0xb", "off" },
198 { "vmxnet3", "romfile", "" },
199 { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
200 { "apic-common", "legacy-instance-id", "on", }
201 };
202 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
203
204 GlobalProperty pc_compat_2_5[] = {};
205 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
206
207 GlobalProperty pc_compat_2_4[] = {
208 PC_CPU_MODEL_IDS("2.4.0")
209 { "Haswell-" TYPE_X86_CPU, "abm", "off" },
210 { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
211 { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
212 { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
213 { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
214 { TYPE_X86_CPU, "check", "off" },
215 { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
216 { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
217 { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
218 { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
219 { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
220 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
221 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
222 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
223 };
224 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
225
226 GlobalProperty pc_compat_2_3[] = {
227 PC_CPU_MODEL_IDS("2.3.0")
228 { TYPE_X86_CPU, "arat", "off" },
229 { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
230 { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
231 { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
232 { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
233 { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
234 { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
235 { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
236 { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
237 { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
238 { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
239 { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240 { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241 { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242 { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243 { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244 { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245 { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246 { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247 { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
248 };
249 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
250
251 GlobalProperty pc_compat_2_2[] = {
252 PC_CPU_MODEL_IDS("2.2.0")
253 { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
254 { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
255 { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
256 { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
257 { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
258 { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
259 { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
260 { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
261 { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
262 { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
263 { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
264 { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
265 { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
266 { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
267 { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
268 { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
269 { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
270 { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
271 };
272 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
273
274 GlobalProperty pc_compat_2_1[] = {
275 PC_CPU_MODEL_IDS("2.1.0")
276 { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
277 { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
278 };
279 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
280
281 GlobalProperty pc_compat_2_0[] = {
282 PC_CPU_MODEL_IDS("2.0.0")
283 { "virtio-scsi-pci", "any_layout", "off" },
284 { "PIIX4_PM", "memory-hotplug-support", "off" },
285 { "apic", "version", "0x11" },
286 { "nec-usb-xhci", "superspeed-ports-first", "off" },
287 { "nec-usb-xhci", "force-pcie-endcap", "on" },
288 { "pci-serial", "prog_if", "0" },
289 { "pci-serial-2x", "prog_if", "0" },
290 { "pci-serial-4x", "prog_if", "0" },
291 { "virtio-net-pci", "guest_announce", "off" },
292 { "ICH9-LPC", "memory-hotplug-support", "off" },
293 { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
294 { "ioh3420", COMPAT_PROP_PCP, "off" },
295 };
296 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
297
298 GlobalProperty pc_compat_1_7[] = {
299 PC_CPU_MODEL_IDS("1.7.0")
300 { TYPE_USB_DEVICE, "msos-desc", "no" },
301 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
302 { "hpet", HPET_INTCAP, "4" },
303 };
304 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
305
306 GlobalProperty pc_compat_1_6[] = {
307 PC_CPU_MODEL_IDS("1.6.0")
308 { "e1000", "mitigation", "off" },
309 { "qemu64-" TYPE_X86_CPU, "model", "2" },
310 { "qemu32-" TYPE_X86_CPU, "model", "3" },
311 { "i440FX-pcihost", "short_root_bus", "1" },
312 { "q35-pcihost", "short_root_bus", "1" },
313 };
314 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
315
316 GlobalProperty pc_compat_1_5[] = {
317 PC_CPU_MODEL_IDS("1.5.0")
318 { "Conroe-" TYPE_X86_CPU, "model", "2" },
319 { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
320 { "Penryn-" TYPE_X86_CPU, "model", "2" },
321 { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
322 { "Nehalem-" TYPE_X86_CPU, "model", "2" },
323 { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
324 { "virtio-net-pci", "any_layout", "off" },
325 { TYPE_X86_CPU, "pmu", "on" },
326 { "i440FX-pcihost", "short_root_bus", "0" },
327 { "q35-pcihost", "short_root_bus", "0" },
328 };
329 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
330
331 GlobalProperty pc_compat_1_4[] = {
332 PC_CPU_MODEL_IDS("1.4.0")
333 { "scsi-hd", "discard_granularity", "0" },
334 { "scsi-cd", "discard_granularity", "0" },
335 { "scsi-disk", "discard_granularity", "0" },
336 { "ide-hd", "discard_granularity", "0" },
337 { "ide-cd", "discard_granularity", "0" },
338 { "ide-drive", "discard_granularity", "0" },
339 { "virtio-blk-pci", "discard_granularity", "0" },
340 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
341 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
342 { "virtio-net-pci", "ctrl_guest_offloads", "off" },
343 { "e1000", "romfile", "pxe-e1000.rom" },
344 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
345 { "pcnet", "romfile", "pxe-pcnet.rom" },
346 { "rtl8139", "romfile", "pxe-rtl8139.rom" },
347 { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
348 { "486-" TYPE_X86_CPU, "model", "0" },
349 { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
350 { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
351 };
352 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
353
354 void gsi_handler(void *opaque, int n, int level)
355 {
356 GSIState *s = opaque;
357
358 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
359 if (n < ISA_NUM_IRQS) {
360 qemu_set_irq(s->i8259_irq[n], level);
361 }
362 qemu_set_irq(s->ioapic_irq[n], level);
363 }
364
365 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
366 unsigned size)
367 {
368 }
369
370 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
371 {
372 return 0xffffffffffffffffULL;
373 }
374
375 /* MSDOS compatibility mode FPU exception support */
376 static qemu_irq ferr_irq;
377
378 void pc_register_ferr_irq(qemu_irq irq)
379 {
380 ferr_irq = irq;
381 }
382
383 /* XXX: add IGNNE support */
384 void cpu_set_ferr(CPUX86State *s)
385 {
386 qemu_irq_raise(ferr_irq);
387 }
388
389 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
390 unsigned size)
391 {
392 qemu_irq_lower(ferr_irq);
393 }
394
395 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
396 {
397 return 0xffffffffffffffffULL;
398 }
399
400 /* TSC handling */
401 uint64_t cpu_get_tsc(CPUX86State *env)
402 {
403 return cpu_get_ticks();
404 }
405
406 /* IRQ handling */
407 int cpu_get_pic_interrupt(CPUX86State *env)
408 {
409 X86CPU *cpu = x86_env_get_cpu(env);
410 int intno;
411
412 if (!kvm_irqchip_in_kernel()) {
413 intno = apic_get_interrupt(cpu->apic_state);
414 if (intno >= 0) {
415 return intno;
416 }
417 /* read the irq from the PIC */
418 if (!apic_accept_pic_intr(cpu->apic_state)) {
419 return -1;
420 }
421 }
422
423 intno = pic_read_irq(isa_pic);
424 return intno;
425 }
426
427 static void pic_irq_request(void *opaque, int irq, int level)
428 {
429 CPUState *cs = first_cpu;
430 X86CPU *cpu = X86_CPU(cs);
431
432 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
433 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
434 CPU_FOREACH(cs) {
435 cpu = X86_CPU(cs);
436 if (apic_accept_pic_intr(cpu->apic_state)) {
437 apic_deliver_pic_intr(cpu->apic_state, level);
438 }
439 }
440 } else {
441 if (level) {
442 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
443 } else {
444 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
445 }
446 }
447 }
448
449 /* PC cmos mappings */
450
451 #define REG_EQUIPMENT_BYTE 0x14
452
453 int cmos_get_fd_drive_type(FloppyDriveType fd0)
454 {
455 int val;
456
457 switch (fd0) {
458 case FLOPPY_DRIVE_TYPE_144:
459 /* 1.44 Mb 3"5 drive */
460 val = 4;
461 break;
462 case FLOPPY_DRIVE_TYPE_288:
463 /* 2.88 Mb 3"5 drive */
464 val = 5;
465 break;
466 case FLOPPY_DRIVE_TYPE_120:
467 /* 1.2 Mb 5"5 drive */
468 val = 2;
469 break;
470 case FLOPPY_DRIVE_TYPE_NONE:
471 default:
472 val = 0;
473 break;
474 }
475 return val;
476 }
477
478 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
479 int16_t cylinders, int8_t heads, int8_t sectors)
480 {
481 rtc_set_memory(s, type_ofs, 47);
482 rtc_set_memory(s, info_ofs, cylinders);
483 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
484 rtc_set_memory(s, info_ofs + 2, heads);
485 rtc_set_memory(s, info_ofs + 3, 0xff);
486 rtc_set_memory(s, info_ofs + 4, 0xff);
487 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
488 rtc_set_memory(s, info_ofs + 6, cylinders);
489 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
490 rtc_set_memory(s, info_ofs + 8, sectors);
491 }
492
493 /* convert boot_device letter to something recognizable by the bios */
494 static int boot_device2nibble(char boot_device)
495 {
496 switch(boot_device) {
497 case 'a':
498 case 'b':
499 return 0x01; /* floppy boot */
500 case 'c':
501 return 0x02; /* hard drive boot */
502 case 'd':
503 return 0x03; /* CD-ROM boot */
504 case 'n':
505 return 0x04; /* Network boot */
506 }
507 return 0;
508 }
509
510 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
511 {
512 #define PC_MAX_BOOT_DEVICES 3
513 int nbds, bds[3] = { 0, };
514 int i;
515
516 nbds = strlen(boot_device);
517 if (nbds > PC_MAX_BOOT_DEVICES) {
518 error_setg(errp, "Too many boot devices for PC");
519 return;
520 }
521 for (i = 0; i < nbds; i++) {
522 bds[i] = boot_device2nibble(boot_device[i]);
523 if (bds[i] == 0) {
524 error_setg(errp, "Invalid boot device for PC: '%c'",
525 boot_device[i]);
526 return;
527 }
528 }
529 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
530 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
531 }
532
533 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
534 {
535 set_boot_dev(opaque, boot_device, errp);
536 }
537
538 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
539 {
540 int val, nb, i;
541 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
542 FLOPPY_DRIVE_TYPE_NONE };
543
544 /* floppy type */
545 if (floppy) {
546 for (i = 0; i < 2; i++) {
547 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
548 }
549 }
550 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
551 cmos_get_fd_drive_type(fd_type[1]);
552 rtc_set_memory(rtc_state, 0x10, val);
553
554 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
555 nb = 0;
556 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
557 nb++;
558 }
559 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
560 nb++;
561 }
562 switch (nb) {
563 case 0:
564 break;
565 case 1:
566 val |= 0x01; /* 1 drive, ready for boot */
567 break;
568 case 2:
569 val |= 0x41; /* 2 drives, ready for boot */
570 break;
571 }
572 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
573 }
574
575 typedef struct pc_cmos_init_late_arg {
576 ISADevice *rtc_state;
577 BusState *idebus[2];
578 } pc_cmos_init_late_arg;
579
580 typedef struct check_fdc_state {
581 ISADevice *floppy;
582 bool multiple;
583 } CheckFdcState;
584
585 static int check_fdc(Object *obj, void *opaque)
586 {
587 CheckFdcState *state = opaque;
588 Object *fdc;
589 uint32_t iobase;
590 Error *local_err = NULL;
591
592 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
593 if (!fdc) {
594 return 0;
595 }
596
597 iobase = object_property_get_uint(obj, "iobase", &local_err);
598 if (local_err || iobase != 0x3f0) {
599 error_free(local_err);
600 return 0;
601 }
602
603 if (state->floppy) {
604 state->multiple = true;
605 } else {
606 state->floppy = ISA_DEVICE(obj);
607 }
608 return 0;
609 }
610
611 static const char * const fdc_container_path[] = {
612 "/unattached", "/peripheral", "/peripheral-anon"
613 };
614
615 /*
616 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
617 * and ACPI objects.
618 */
619 ISADevice *pc_find_fdc0(void)
620 {
621 int i;
622 Object *container;
623 CheckFdcState state = { 0 };
624
625 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
626 container = container_get(qdev_get_machine(), fdc_container_path[i]);
627 object_child_foreach(container, check_fdc, &state);
628 }
629
630 if (state.multiple) {
631 warn_report("multiple floppy disk controllers with "
632 "iobase=0x3f0 have been found");
633 error_printf("the one being picked for CMOS setup might not reflect "
634 "your intent");
635 }
636
637 return state.floppy;
638 }
639
640 static void pc_cmos_init_late(void *opaque)
641 {
642 pc_cmos_init_late_arg *arg = opaque;
643 ISADevice *s = arg->rtc_state;
644 int16_t cylinders;
645 int8_t heads, sectors;
646 int val;
647 int i, trans;
648
649 val = 0;
650 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
651 &cylinders, &heads, &sectors) >= 0) {
652 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
653 val |= 0xf0;
654 }
655 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
656 &cylinders, &heads, &sectors) >= 0) {
657 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
658 val |= 0x0f;
659 }
660 rtc_set_memory(s, 0x12, val);
661
662 val = 0;
663 for (i = 0; i < 4; i++) {
664 /* NOTE: ide_get_geometry() returns the physical
665 geometry. It is always such that: 1 <= sects <= 63, 1
666 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
667 geometry can be different if a translation is done. */
668 if (arg->idebus[i / 2] &&
669 ide_get_geometry(arg->idebus[i / 2], i % 2,
670 &cylinders, &heads, &sectors) >= 0) {
671 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
672 assert((trans & ~3) == 0);
673 val |= trans << (i * 2);
674 }
675 }
676 rtc_set_memory(s, 0x39, val);
677
678 pc_cmos_init_floppy(s, pc_find_fdc0());
679
680 qemu_unregister_reset(pc_cmos_init_late, opaque);
681 }
682
683 void pc_cmos_init(PCMachineState *pcms,
684 BusState *idebus0, BusState *idebus1,
685 ISADevice *s)
686 {
687 int val;
688 static pc_cmos_init_late_arg arg;
689
690 /* various important CMOS locations needed by PC/Bochs bios */
691
692 /* memory size */
693 /* base memory (first MiB) */
694 val = MIN(pcms->below_4g_mem_size / KiB, 640);
695 rtc_set_memory(s, 0x15, val);
696 rtc_set_memory(s, 0x16, val >> 8);
697 /* extended memory (next 64MiB) */
698 if (pcms->below_4g_mem_size > 1 * MiB) {
699 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
700 } else {
701 val = 0;
702 }
703 if (val > 65535)
704 val = 65535;
705 rtc_set_memory(s, 0x17, val);
706 rtc_set_memory(s, 0x18, val >> 8);
707 rtc_set_memory(s, 0x30, val);
708 rtc_set_memory(s, 0x31, val >> 8);
709 /* memory between 16MiB and 4GiB */
710 if (pcms->below_4g_mem_size > 16 * MiB) {
711 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
712 } else {
713 val = 0;
714 }
715 if (val > 65535)
716 val = 65535;
717 rtc_set_memory(s, 0x34, val);
718 rtc_set_memory(s, 0x35, val >> 8);
719 /* memory above 4GiB */
720 val = pcms->above_4g_mem_size / 65536;
721 rtc_set_memory(s, 0x5b, val);
722 rtc_set_memory(s, 0x5c, val >> 8);
723 rtc_set_memory(s, 0x5d, val >> 16);
724
725 object_property_add_link(OBJECT(pcms), "rtc_state",
726 TYPE_ISA_DEVICE,
727 (Object **)&pcms->rtc,
728 object_property_allow_set_link,
729 OBJ_PROP_LINK_STRONG, &error_abort);
730 object_property_set_link(OBJECT(pcms), OBJECT(s),
731 "rtc_state", &error_abort);
732
733 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
734
735 val = 0;
736 val |= 0x02; /* FPU is there */
737 val |= 0x04; /* PS/2 mouse installed */
738 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
739
740 /* hard drives and FDC */
741 arg.rtc_state = s;
742 arg.idebus[0] = idebus0;
743 arg.idebus[1] = idebus1;
744 qemu_register_reset(pc_cmos_init_late, &arg);
745 }
746
747 #define TYPE_PORT92 "port92"
748 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
749
750 /* port 92 stuff: could be split off */
751 typedef struct Port92State {
752 ISADevice parent_obj;
753
754 MemoryRegion io;
755 uint8_t outport;
756 qemu_irq a20_out;
757 } Port92State;
758
759 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
760 unsigned size)
761 {
762 Port92State *s = opaque;
763 int oldval = s->outport;
764
765 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
766 s->outport = val;
767 qemu_set_irq(s->a20_out, (val >> 1) & 1);
768 if ((val & 1) && !(oldval & 1)) {
769 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
770 }
771 }
772
773 static uint64_t port92_read(void *opaque, hwaddr addr,
774 unsigned size)
775 {
776 Port92State *s = opaque;
777 uint32_t ret;
778
779 ret = s->outport;
780 DPRINTF("port92: read 0x%02x\n", ret);
781 return ret;
782 }
783
784 static void port92_init(ISADevice *dev, qemu_irq a20_out)
785 {
786 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
787 }
788
789 static const VMStateDescription vmstate_port92_isa = {
790 .name = "port92",
791 .version_id = 1,
792 .minimum_version_id = 1,
793 .fields = (VMStateField[]) {
794 VMSTATE_UINT8(outport, Port92State),
795 VMSTATE_END_OF_LIST()
796 }
797 };
798
799 static void port92_reset(DeviceState *d)
800 {
801 Port92State *s = PORT92(d);
802
803 s->outport &= ~1;
804 }
805
806 static const MemoryRegionOps port92_ops = {
807 .read = port92_read,
808 .write = port92_write,
809 .impl = {
810 .min_access_size = 1,
811 .max_access_size = 1,
812 },
813 .endianness = DEVICE_LITTLE_ENDIAN,
814 };
815
816 static void port92_initfn(Object *obj)
817 {
818 Port92State *s = PORT92(obj);
819
820 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
821
822 s->outport = 0;
823
824 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
825 }
826
827 static void port92_realizefn(DeviceState *dev, Error **errp)
828 {
829 ISADevice *isadev = ISA_DEVICE(dev);
830 Port92State *s = PORT92(dev);
831
832 isa_register_ioport(isadev, &s->io, 0x92);
833 }
834
835 static void port92_class_initfn(ObjectClass *klass, void *data)
836 {
837 DeviceClass *dc = DEVICE_CLASS(klass);
838
839 dc->realize = port92_realizefn;
840 dc->reset = port92_reset;
841 dc->vmsd = &vmstate_port92_isa;
842 /*
843 * Reason: unlike ordinary ISA devices, this one needs additional
844 * wiring: its A20 output line needs to be wired up by
845 * port92_init().
846 */
847 dc->user_creatable = false;
848 }
849
850 static const TypeInfo port92_info = {
851 .name = TYPE_PORT92,
852 .parent = TYPE_ISA_DEVICE,
853 .instance_size = sizeof(Port92State),
854 .instance_init = port92_initfn,
855 .class_init = port92_class_initfn,
856 };
857
858 static void port92_register_types(void)
859 {
860 type_register_static(&port92_info);
861 }
862
863 type_init(port92_register_types)
864
865 static void handle_a20_line_change(void *opaque, int irq, int level)
866 {
867 X86CPU *cpu = opaque;
868
869 /* XXX: send to all CPUs ? */
870 /* XXX: add logic to handle multiple A20 line sources */
871 x86_cpu_set_a20(cpu, level);
872 }
873
874 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
875 {
876 int index = le32_to_cpu(e820_reserve.count);
877 struct e820_entry *entry;
878
879 if (type != E820_RAM) {
880 /* old FW_CFG_E820_TABLE entry -- reservations only */
881 if (index >= E820_NR_ENTRIES) {
882 return -EBUSY;
883 }
884 entry = &e820_reserve.entry[index++];
885
886 entry->address = cpu_to_le64(address);
887 entry->length = cpu_to_le64(length);
888 entry->type = cpu_to_le32(type);
889
890 e820_reserve.count = cpu_to_le32(index);
891 }
892
893 /* new "etc/e820" file -- include ram too */
894 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
895 e820_table[e820_entries].address = cpu_to_le64(address);
896 e820_table[e820_entries].length = cpu_to_le64(length);
897 e820_table[e820_entries].type = cpu_to_le32(type);
898 e820_entries++;
899
900 return e820_entries;
901 }
902
903 int e820_get_num_entries(void)
904 {
905 return e820_entries;
906 }
907
908 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
909 {
910 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
911 *address = le64_to_cpu(e820_table[idx].address);
912 *length = le64_to_cpu(e820_table[idx].length);
913 return true;
914 }
915 return false;
916 }
917
918 /* Enables contiguous-apic-ID mode, for compatibility */
919 static bool compat_apic_id_mode;
920
921 void enable_compat_apic_id_mode(void)
922 {
923 compat_apic_id_mode = true;
924 }
925
926 /* Calculates initial APIC ID for a specific CPU index
927 *
928 * Currently we need to be able to calculate the APIC ID from the CPU index
929 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
930 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
931 * all CPUs up to max_cpus.
932 */
933 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
934 {
935 uint32_t correct_id;
936 static bool warned;
937
938 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
939 if (compat_apic_id_mode) {
940 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
941 error_report("APIC IDs set in compatibility mode, "
942 "CPU topology won't match the configuration");
943 warned = true;
944 }
945 return cpu_index;
946 } else {
947 return correct_id;
948 }
949 }
950
951 static void pc_build_smbios(PCMachineState *pcms)
952 {
953 uint8_t *smbios_tables, *smbios_anchor;
954 size_t smbios_tables_len, smbios_anchor_len;
955 struct smbios_phys_mem_area *mem_array;
956 unsigned i, array_count;
957 MachineState *ms = MACHINE(pcms);
958 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
959
960 /* tell smbios about cpuid version and features */
961 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
962
963 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
964 if (smbios_tables) {
965 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
966 smbios_tables, smbios_tables_len);
967 }
968
969 /* build the array of physical mem area from e820 table */
970 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
971 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
972 uint64_t addr, len;
973
974 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
975 mem_array[array_count].address = addr;
976 mem_array[array_count].length = len;
977 array_count++;
978 }
979 }
980 smbios_get_tables(mem_array, array_count,
981 &smbios_tables, &smbios_tables_len,
982 &smbios_anchor, &smbios_anchor_len);
983 g_free(mem_array);
984
985 if (smbios_anchor) {
986 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
987 smbios_tables, smbios_tables_len);
988 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
989 smbios_anchor, smbios_anchor_len);
990 }
991 }
992
993 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
994 {
995 FWCfgState *fw_cfg;
996 uint64_t *numa_fw_cfg;
997 int i;
998 const CPUArchIdList *cpus;
999 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1000
1001 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1002 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1003
1004 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1005 *
1006 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1007 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1008 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1009 * for CPU hotplug also uses APIC ID and not "CPU index".
1010 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1011 * but the "limit to the APIC ID values SeaBIOS may see".
1012 *
1013 * So for compatibility reasons with old BIOSes we are stuck with
1014 * "etc/max-cpus" actually being apic_id_limit
1015 */
1016 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1017 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1018 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1019 acpi_tables, acpi_tables_len);
1020 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1021
1022 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1023 &e820_reserve, sizeof(e820_reserve));
1024 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1025 sizeof(struct e820_entry) * e820_entries);
1026
1027 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1028 /* allocate memory for the NUMA channel: one (64bit) word for the number
1029 * of nodes, one word for each VCPU->node and one word for each node to
1030 * hold the amount of memory.
1031 */
1032 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1033 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1034 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1035 for (i = 0; i < cpus->len; i++) {
1036 unsigned int apic_id = cpus->cpus[i].arch_id;
1037 assert(apic_id < pcms->apic_id_limit);
1038 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1039 }
1040 for (i = 0; i < nb_numa_nodes; i++) {
1041 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1042 cpu_to_le64(numa_info[i].node_mem);
1043 }
1044 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1045 (1 + pcms->apic_id_limit + nb_numa_nodes) *
1046 sizeof(*numa_fw_cfg));
1047
1048 return fw_cfg;
1049 }
1050
1051 static long get_file_size(FILE *f)
1052 {
1053 long where, size;
1054
1055 /* XXX: on Unix systems, using fstat() probably makes more sense */
1056
1057 where = ftell(f);
1058 fseek(f, 0, SEEK_END);
1059 size = ftell(f);
1060 fseek(f, where, SEEK_SET);
1061
1062 return size;
1063 }
1064
1065 struct setup_data {
1066 uint64_t next;
1067 uint32_t type;
1068 uint32_t len;
1069 uint8_t data[0];
1070 } __attribute__((packed));
1071
1072
1073 /*
1074 * The entry point into the kernel for PVH boot is different from
1075 * the native entry point. The PVH entry is defined by the x86/HVM
1076 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1077 *
1078 * This function is passed to load_elf() when it is called from
1079 * load_elfboot() which then additionally checks for an ELF Note of
1080 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1081 * parse the PVH entry address from the ELF Note.
1082 *
1083 * Due to trickery in elf_opts.h, load_elf() is actually available as
1084 * load_elf32() or load_elf64() and this routine needs to be able
1085 * to deal with being called as 32 or 64 bit.
1086 *
1087 * The address of the PVH entry point is saved to the 'pvh_start_addr'
1088 * global variable. (although the entry point is 32-bit, the kernel
1089 * binary can be either 32-bit or 64-bit).
1090 */
1091 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1092 {
1093 size_t *elf_note_data_addr;
1094
1095 /* Check if ELF Note header passed in is valid */
1096 if (arg1 == NULL) {
1097 return 0;
1098 }
1099
1100 if (is64) {
1101 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1102 uint64_t nhdr_size64 = sizeof(struct elf64_note);
1103 uint64_t phdr_align = *(uint64_t *)arg2;
1104 uint64_t nhdr_namesz = nhdr64->n_namesz;
1105
1106 elf_note_data_addr =
1107 ((void *)nhdr64) + nhdr_size64 +
1108 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1109 } else {
1110 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1111 uint32_t nhdr_size32 = sizeof(struct elf32_note);
1112 uint32_t phdr_align = *(uint32_t *)arg2;
1113 uint32_t nhdr_namesz = nhdr32->n_namesz;
1114
1115 elf_note_data_addr =
1116 ((void *)nhdr32) + nhdr_size32 +
1117 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1118 }
1119
1120 pvh_start_addr = *elf_note_data_addr;
1121
1122 return pvh_start_addr;
1123 }
1124
1125 static bool load_elfboot(const char *kernel_filename,
1126 int kernel_file_size,
1127 uint8_t *header,
1128 size_t pvh_xen_start_addr,
1129 FWCfgState *fw_cfg)
1130 {
1131 uint32_t flags = 0;
1132 uint32_t mh_load_addr = 0;
1133 uint32_t elf_kernel_size = 0;
1134 uint64_t elf_entry;
1135 uint64_t elf_low, elf_high;
1136 int kernel_size;
1137
1138 if (ldl_p(header) != 0x464c457f) {
1139 return false; /* no elfboot */
1140 }
1141
1142 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1143 flags = elf_is64 ?
1144 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1145
1146 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1147 error_report("elfboot unsupported flags = %x", flags);
1148 exit(1);
1149 }
1150
1151 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1152 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1153 NULL, &elf_note_type, &elf_entry,
1154 &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1155 0, 0);
1156
1157 if (kernel_size < 0) {
1158 error_report("Error while loading elf kernel");
1159 exit(1);
1160 }
1161 mh_load_addr = elf_low;
1162 elf_kernel_size = elf_high - elf_low;
1163
1164 if (pvh_start_addr == 0) {
1165 error_report("Error loading uncompressed kernel without PVH ELF Note");
1166 exit(1);
1167 }
1168 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1169 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1170 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1171
1172 return true;
1173 }
1174
1175 static void load_linux(PCMachineState *pcms,
1176 FWCfgState *fw_cfg)
1177 {
1178 uint16_t protocol;
1179 int setup_size, kernel_size, cmdline_size;
1180 int dtb_size, setup_data_offset;
1181 uint32_t initrd_max;
1182 uint8_t header[8192], *setup, *kernel;
1183 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1184 FILE *f;
1185 char *vmode;
1186 MachineState *machine = MACHINE(pcms);
1187 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1188 struct setup_data *setup_data;
1189 const char *kernel_filename = machine->kernel_filename;
1190 const char *initrd_filename = machine->initrd_filename;
1191 const char *dtb_filename = machine->dtb;
1192 const char *kernel_cmdline = machine->kernel_cmdline;
1193
1194 /* Align to 16 bytes as a paranoia measure */
1195 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1196
1197 /* load the kernel header */
1198 f = fopen(kernel_filename, "rb");
1199 if (!f || !(kernel_size = get_file_size(f)) ||
1200 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1201 MIN(ARRAY_SIZE(header), kernel_size)) {
1202 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1203 kernel_filename, strerror(errno));
1204 exit(1);
1205 }
1206
1207 /* kernel protocol version */
1208 #if 0
1209 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1210 #endif
1211 if (ldl_p(header+0x202) == 0x53726448) {
1212 protocol = lduw_p(header+0x206);
1213 } else {
1214 /*
1215 * This could be a multiboot kernel. If it is, let's stop treating it
1216 * like a Linux kernel.
1217 * Note: some multiboot images could be in the ELF format (the same of
1218 * PVH), so we try multiboot first since we check the multiboot magic
1219 * header before to load it.
1220 */
1221 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1222 kernel_cmdline, kernel_size, header)) {
1223 return;
1224 }
1225 /*
1226 * Check if the file is an uncompressed kernel file (ELF) and load it,
1227 * saving the PVH entry point used by the x86/HVM direct boot ABI.
1228 * If load_elfboot() is successful, populate the fw_cfg info.
1229 */
1230 if (pcmc->pvh_enabled &&
1231 load_elfboot(kernel_filename, kernel_size,
1232 header, pvh_start_addr, fw_cfg)) {
1233 fclose(f);
1234
1235 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1236 strlen(kernel_cmdline) + 1);
1237 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1238
1239 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1240 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1241 header, sizeof(header));
1242
1243 /* load initrd */
1244 if (initrd_filename) {
1245 gsize initrd_size;
1246 gchar *initrd_data;
1247 GError *gerr = NULL;
1248
1249 if (!g_file_get_contents(initrd_filename, &initrd_data,
1250 &initrd_size, &gerr)) {
1251 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1252 initrd_filename, gerr->message);
1253 exit(1);
1254 }
1255
1256 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1257 if (initrd_size >= initrd_max) {
1258 fprintf(stderr, "qemu: initrd is too large, cannot support."
1259 "(max: %"PRIu32", need %"PRId64")\n",
1260 initrd_max, (uint64_t)initrd_size);
1261 exit(1);
1262 }
1263
1264 initrd_addr = (initrd_max - initrd_size) & ~4095;
1265
1266 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1267 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1268 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1269 initrd_size);
1270 }
1271
1272 option_rom[nb_option_roms].bootindex = 0;
1273 option_rom[nb_option_roms].name = "pvh.bin";
1274 nb_option_roms++;
1275
1276 return;
1277 }
1278 protocol = 0;
1279 }
1280
1281 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1282 /* Low kernel */
1283 real_addr = 0x90000;
1284 cmdline_addr = 0x9a000 - cmdline_size;
1285 prot_addr = 0x10000;
1286 } else if (protocol < 0x202) {
1287 /* High but ancient kernel */
1288 real_addr = 0x90000;
1289 cmdline_addr = 0x9a000 - cmdline_size;
1290 prot_addr = 0x100000;
1291 } else {
1292 /* High and recent kernel */
1293 real_addr = 0x10000;
1294 cmdline_addr = 0x20000;
1295 prot_addr = 0x100000;
1296 }
1297
1298 #if 0
1299 fprintf(stderr,
1300 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1301 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1302 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1303 real_addr,
1304 cmdline_addr,
1305 prot_addr);
1306 #endif
1307
1308 /* highest address for loading the initrd */
1309 if (protocol >= 0x20c &&
1310 lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1311 /*
1312 * Linux has supported initrd up to 4 GB for a very long time (2007,
1313 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1314 * though it only sets initrd_max to 2 GB to "work around bootloader
1315 * bugs". Luckily, QEMU firmware(which does something like bootloader)
1316 * has supported this.
1317 *
1318 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1319 * be loaded into any address.
1320 *
1321 * In addition, initrd_max is uint32_t simply because QEMU doesn't
1322 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1323 * field).
1324 *
1325 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1326 */
1327 initrd_max = UINT32_MAX;
1328 } else if (protocol >= 0x203) {
1329 initrd_max = ldl_p(header+0x22c);
1330 } else {
1331 initrd_max = 0x37ffffff;
1332 }
1333
1334 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1335 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1336 }
1337
1338 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1339 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1340 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1341
1342 if (protocol >= 0x202) {
1343 stl_p(header+0x228, cmdline_addr);
1344 } else {
1345 stw_p(header+0x20, 0xA33F);
1346 stw_p(header+0x22, cmdline_addr-real_addr);
1347 }
1348
1349 /* handle vga= parameter */
1350 vmode = strstr(kernel_cmdline, "vga=");
1351 if (vmode) {
1352 unsigned int video_mode;
1353 /* skip "vga=" */
1354 vmode += 4;
1355 if (!strncmp(vmode, "normal", 6)) {
1356 video_mode = 0xffff;
1357 } else if (!strncmp(vmode, "ext", 3)) {
1358 video_mode = 0xfffe;
1359 } else if (!strncmp(vmode, "ask", 3)) {
1360 video_mode = 0xfffd;
1361 } else {
1362 video_mode = strtol(vmode, NULL, 0);
1363 }
1364 stw_p(header+0x1fa, video_mode);
1365 }
1366
1367 /* loader type */
1368 /* High nybble = B reserved for QEMU; low nybble is revision number.
1369 If this code is substantially changed, you may want to consider
1370 incrementing the revision. */
1371 if (protocol >= 0x200) {
1372 header[0x210] = 0xB0;
1373 }
1374 /* heap */
1375 if (protocol >= 0x201) {
1376 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1377 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1378 }
1379
1380 /* load initrd */
1381 if (initrd_filename) {
1382 gsize initrd_size;
1383 gchar *initrd_data;
1384 GError *gerr = NULL;
1385
1386 if (protocol < 0x200) {
1387 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1388 exit(1);
1389 }
1390
1391 if (!g_file_get_contents(initrd_filename, &initrd_data,
1392 &initrd_size, &gerr)) {
1393 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1394 initrd_filename, gerr->message);
1395 exit(1);
1396 }
1397 if (initrd_size >= initrd_max) {
1398 fprintf(stderr, "qemu: initrd is too large, cannot support."
1399 "(max: %"PRIu32", need %"PRId64")\n",
1400 initrd_max, (uint64_t)initrd_size);
1401 exit(1);
1402 }
1403
1404 initrd_addr = (initrd_max-initrd_size) & ~4095;
1405
1406 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1407 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1408 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1409
1410 stl_p(header+0x218, initrd_addr);
1411 stl_p(header+0x21c, initrd_size);
1412 }
1413
1414 /* load kernel and setup */
1415 setup_size = header[0x1f1];
1416 if (setup_size == 0) {
1417 setup_size = 4;
1418 }
1419 setup_size = (setup_size+1)*512;
1420 if (setup_size > kernel_size) {
1421 fprintf(stderr, "qemu: invalid kernel header\n");
1422 exit(1);
1423 }
1424 kernel_size -= setup_size;
1425
1426 setup = g_malloc(setup_size);
1427 kernel = g_malloc(kernel_size);
1428 fseek(f, 0, SEEK_SET);
1429 if (fread(setup, 1, setup_size, f) != setup_size) {
1430 fprintf(stderr, "fread() failed\n");
1431 exit(1);
1432 }
1433 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1434 fprintf(stderr, "fread() failed\n");
1435 exit(1);
1436 }
1437 fclose(f);
1438
1439 /* append dtb to kernel */
1440 if (dtb_filename) {
1441 if (protocol < 0x209) {
1442 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1443 exit(1);
1444 }
1445
1446 dtb_size = get_image_size(dtb_filename);
1447 if (dtb_size <= 0) {
1448 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1449 dtb_filename, strerror(errno));
1450 exit(1);
1451 }
1452
1453 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1454 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1455 kernel = g_realloc(kernel, kernel_size);
1456
1457 stq_p(header+0x250, prot_addr + setup_data_offset);
1458
1459 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1460 setup_data->next = 0;
1461 setup_data->type = cpu_to_le32(SETUP_DTB);
1462 setup_data->len = cpu_to_le32(dtb_size);
1463
1464 load_image_size(dtb_filename, setup_data->data, dtb_size);
1465 }
1466
1467 memcpy(setup, header, MIN(sizeof(header), setup_size));
1468
1469 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1470 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1471 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1472
1473 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1474 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1475 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1476
1477 option_rom[nb_option_roms].bootindex = 0;
1478 option_rom[nb_option_roms].name = "linuxboot.bin";
1479 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1480 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1481 }
1482 nb_option_roms++;
1483 }
1484
1485 #define NE2000_NB_MAX 6
1486
1487 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1488 0x280, 0x380 };
1489 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1490
1491 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1492 {
1493 static int nb_ne2k = 0;
1494
1495 if (nb_ne2k == NE2000_NB_MAX)
1496 return;
1497 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1498 ne2000_irq[nb_ne2k], nd);
1499 nb_ne2k++;
1500 }
1501
1502 DeviceState *cpu_get_current_apic(void)
1503 {
1504 if (current_cpu) {
1505 X86CPU *cpu = X86_CPU(current_cpu);
1506 return cpu->apic_state;
1507 } else {
1508 return NULL;
1509 }
1510 }
1511
1512 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1513 {
1514 X86CPU *cpu = opaque;
1515
1516 if (level) {
1517 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1518 }
1519 }
1520
1521 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1522 {
1523 Object *cpu = NULL;
1524 Error *local_err = NULL;
1525
1526 cpu = object_new(typename);
1527
1528 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1529 object_property_set_bool(cpu, true, "realized", &local_err);
1530
1531 object_unref(cpu);
1532 error_propagate(errp, local_err);
1533 }
1534
1535 void pc_hot_add_cpu(const int64_t id, Error **errp)
1536 {
1537 MachineState *ms = MACHINE(qdev_get_machine());
1538 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1539 Error *local_err = NULL;
1540
1541 if (id < 0) {
1542 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1543 return;
1544 }
1545
1546 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1547 error_setg(errp, "Unable to add CPU: %" PRIi64
1548 ", resulting APIC ID (%" PRIi64 ") is too large",
1549 id, apic_id);
1550 return;
1551 }
1552
1553 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1554 if (local_err) {
1555 error_propagate(errp, local_err);
1556 return;
1557 }
1558 }
1559
1560 void pc_cpus_init(PCMachineState *pcms)
1561 {
1562 int i;
1563 const CPUArchIdList *possible_cpus;
1564 MachineState *ms = MACHINE(pcms);
1565 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1566
1567 /* Calculates the limit to CPU APIC ID values
1568 *
1569 * Limit for the APIC ID value, so that all
1570 * CPU APIC IDs are < pcms->apic_id_limit.
1571 *
1572 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1573 */
1574 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1575 possible_cpus = mc->possible_cpu_arch_ids(ms);
1576 for (i = 0; i < smp_cpus; i++) {
1577 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1578 &error_fatal);
1579 }
1580 }
1581
1582 static void pc_build_feature_control_file(PCMachineState *pcms)
1583 {
1584 MachineState *ms = MACHINE(pcms);
1585 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1586 CPUX86State *env = &cpu->env;
1587 uint32_t unused, ecx, edx;
1588 uint64_t feature_control_bits = 0;
1589 uint64_t *val;
1590
1591 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1592 if (ecx & CPUID_EXT_VMX) {
1593 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1594 }
1595
1596 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1597 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1598 (env->mcg_cap & MCG_LMCE_P)) {
1599 feature_control_bits |= FEATURE_CONTROL_LMCE;
1600 }
1601
1602 if (!feature_control_bits) {
1603 return;
1604 }
1605
1606 val = g_malloc(sizeof(*val));
1607 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1608 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1609 }
1610
1611 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1612 {
1613 if (cpus_count > 0xff) {
1614 /* If the number of CPUs can't be represented in 8 bits, the
1615 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1616 * to make old BIOSes fail more predictably.
1617 */
1618 rtc_set_memory(rtc, 0x5f, 0);
1619 } else {
1620 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1621 }
1622 }
1623
1624 static
1625 void pc_machine_done(Notifier *notifier, void *data)
1626 {
1627 PCMachineState *pcms = container_of(notifier,
1628 PCMachineState, machine_done);
1629 PCIBus *bus = pcms->bus;
1630
1631 /* set the number of CPUs */
1632 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1633
1634 if (bus) {
1635 int extra_hosts = 0;
1636
1637 QLIST_FOREACH(bus, &bus->child, sibling) {
1638 /* look for expander root buses */
1639 if (pci_bus_is_root(bus)) {
1640 extra_hosts++;
1641 }
1642 }
1643 if (extra_hosts && pcms->fw_cfg) {
1644 uint64_t *val = g_malloc(sizeof(*val));
1645 *val = cpu_to_le64(extra_hosts);
1646 fw_cfg_add_file(pcms->fw_cfg,
1647 "etc/extra-pci-roots", val, sizeof(*val));
1648 }
1649 }
1650
1651 acpi_setup();
1652 if (pcms->fw_cfg) {
1653 pc_build_smbios(pcms);
1654 pc_build_feature_control_file(pcms);
1655 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1656 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1657 }
1658
1659 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1660 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1661
1662 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1663 iommu->intr_eim != ON_OFF_AUTO_ON) {
1664 error_report("current -smp configuration requires "
1665 "Extended Interrupt Mode enabled. "
1666 "You can add an IOMMU using: "
1667 "-device intel-iommu,intremap=on,eim=on");
1668 exit(EXIT_FAILURE);
1669 }
1670 }
1671 }
1672
1673 void pc_guest_info_init(PCMachineState *pcms)
1674 {
1675 int i;
1676
1677 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1678 pcms->numa_nodes = nb_numa_nodes;
1679 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1680 sizeof *pcms->node_mem);
1681 for (i = 0; i < nb_numa_nodes; i++) {
1682 pcms->node_mem[i] = numa_info[i].node_mem;
1683 }
1684
1685 pcms->machine_done.notify = pc_machine_done;
1686 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1687 }
1688
1689 /* setup pci memory address space mapping into system address space */
1690 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1691 MemoryRegion *pci_address_space)
1692 {
1693 /* Set to lower priority than RAM */
1694 memory_region_add_subregion_overlap(system_memory, 0x0,
1695 pci_address_space, -1);
1696 }
1697
1698 void xen_load_linux(PCMachineState *pcms)
1699 {
1700 int i;
1701 FWCfgState *fw_cfg;
1702
1703 assert(MACHINE(pcms)->kernel_filename != NULL);
1704
1705 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1706 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1707 rom_set_fw(fw_cfg);
1708
1709 load_linux(pcms, fw_cfg);
1710 for (i = 0; i < nb_option_roms; i++) {
1711 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1712 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1713 !strcmp(option_rom[i].name, "pvh.bin") ||
1714 !strcmp(option_rom[i].name, "multiboot.bin"));
1715 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1716 }
1717 pcms->fw_cfg = fw_cfg;
1718 }
1719
1720 void pc_memory_init(PCMachineState *pcms,
1721 MemoryRegion *system_memory,
1722 MemoryRegion *rom_memory,
1723 MemoryRegion **ram_memory)
1724 {
1725 int linux_boot, i;
1726 MemoryRegion *ram, *option_rom_mr;
1727 MemoryRegion *ram_below_4g, *ram_above_4g;
1728 FWCfgState *fw_cfg;
1729 MachineState *machine = MACHINE(pcms);
1730 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1731
1732 assert(machine->ram_size == pcms->below_4g_mem_size +
1733 pcms->above_4g_mem_size);
1734
1735 linux_boot = (machine->kernel_filename != NULL);
1736
1737 /* Allocate RAM. We allocate it as a single memory region and use
1738 * aliases to address portions of it, mostly for backwards compatibility
1739 * with older qemus that used qemu_ram_alloc().
1740 */
1741 ram = g_malloc(sizeof(*ram));
1742 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1743 machine->ram_size);
1744 *ram_memory = ram;
1745 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1746 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1747 0, pcms->below_4g_mem_size);
1748 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1749 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1750 if (pcms->above_4g_mem_size > 0) {
1751 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1752 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1753 pcms->below_4g_mem_size,
1754 pcms->above_4g_mem_size);
1755 memory_region_add_subregion(system_memory, 0x100000000ULL,
1756 ram_above_4g);
1757 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1758 }
1759
1760 if (!pcmc->has_reserved_memory &&
1761 (machine->ram_slots ||
1762 (machine->maxram_size > machine->ram_size))) {
1763 MachineClass *mc = MACHINE_GET_CLASS(machine);
1764
1765 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1766 mc->name);
1767 exit(EXIT_FAILURE);
1768 }
1769
1770 /* always allocate the device memory information */
1771 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1772
1773 /* initialize device memory address space */
1774 if (pcmc->has_reserved_memory &&
1775 (machine->ram_size < machine->maxram_size)) {
1776 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1777
1778 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1779 error_report("unsupported amount of memory slots: %"PRIu64,
1780 machine->ram_slots);
1781 exit(EXIT_FAILURE);
1782 }
1783
1784 if (QEMU_ALIGN_UP(machine->maxram_size,
1785 TARGET_PAGE_SIZE) != machine->maxram_size) {
1786 error_report("maximum memory size must by aligned to multiple of "
1787 "%d bytes", TARGET_PAGE_SIZE);
1788 exit(EXIT_FAILURE);
1789 }
1790
1791 machine->device_memory->base =
1792 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1793
1794 if (pcmc->enforce_aligned_dimm) {
1795 /* size device region assuming 1G page max alignment per slot */
1796 device_mem_size += (1 * GiB) * machine->ram_slots;
1797 }
1798
1799 if ((machine->device_memory->base + device_mem_size) <
1800 device_mem_size) {
1801 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1802 machine->maxram_size);
1803 exit(EXIT_FAILURE);
1804 }
1805
1806 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1807 "device-memory", device_mem_size);
1808 memory_region_add_subregion(system_memory, machine->device_memory->base,
1809 &machine->device_memory->mr);
1810 }
1811
1812 /* Initialize PC system firmware */
1813 pc_system_firmware_init(pcms, rom_memory);
1814
1815 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1816 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1817 &error_fatal);
1818 if (pcmc->pci_enabled) {
1819 memory_region_set_readonly(option_rom_mr, true);
1820 }
1821 memory_region_add_subregion_overlap(rom_memory,
1822 PC_ROM_MIN_VGA,
1823 option_rom_mr,
1824 1);
1825
1826 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1827
1828 rom_set_fw(fw_cfg);
1829
1830 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1831 uint64_t *val = g_malloc(sizeof(*val));
1832 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1833 uint64_t res_mem_end = machine->device_memory->base;
1834
1835 if (!pcmc->broken_reserved_end) {
1836 res_mem_end += memory_region_size(&machine->device_memory->mr);
1837 }
1838 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1839 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1840 }
1841
1842 if (linux_boot) {
1843 load_linux(pcms, fw_cfg);
1844 }
1845
1846 for (i = 0; i < nb_option_roms; i++) {
1847 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1848 }
1849 pcms->fw_cfg = fw_cfg;
1850
1851 /* Init default IOAPIC address space */
1852 pcms->ioapic_as = &address_space_memory;
1853 }
1854
1855 /*
1856 * The 64bit pci hole starts after "above 4G RAM" and
1857 * potentially the space reserved for memory hotplug.
1858 */
1859 uint64_t pc_pci_hole64_start(void)
1860 {
1861 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1862 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1863 MachineState *ms = MACHINE(pcms);
1864 uint64_t hole64_start = 0;
1865
1866 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1867 hole64_start = ms->device_memory->base;
1868 if (!pcmc->broken_reserved_end) {
1869 hole64_start += memory_region_size(&ms->device_memory->mr);
1870 }
1871 } else {
1872 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1873 }
1874
1875 return ROUND_UP(hole64_start, 1 * GiB);
1876 }
1877
1878 qemu_irq pc_allocate_cpu_irq(void)
1879 {
1880 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1881 }
1882
1883 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1884 {
1885 DeviceState *dev = NULL;
1886
1887 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1888 if (pci_bus) {
1889 PCIDevice *pcidev = pci_vga_init(pci_bus);
1890 dev = pcidev ? &pcidev->qdev : NULL;
1891 } else if (isa_bus) {
1892 ISADevice *isadev = isa_vga_init(isa_bus);
1893 dev = isadev ? DEVICE(isadev) : NULL;
1894 }
1895 rom_reset_order_override();
1896 return dev;
1897 }
1898
1899 static const MemoryRegionOps ioport80_io_ops = {
1900 .write = ioport80_write,
1901 .read = ioport80_read,
1902 .endianness = DEVICE_NATIVE_ENDIAN,
1903 .impl = {
1904 .min_access_size = 1,
1905 .max_access_size = 1,
1906 },
1907 };
1908
1909 static const MemoryRegionOps ioportF0_io_ops = {
1910 .write = ioportF0_write,
1911 .read = ioportF0_read,
1912 .endianness = DEVICE_NATIVE_ENDIAN,
1913 .impl = {
1914 .min_access_size = 1,
1915 .max_access_size = 1,
1916 },
1917 };
1918
1919 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1920 {
1921 int i;
1922 DriveInfo *fd[MAX_FD];
1923 qemu_irq *a20_line;
1924 ISADevice *i8042, *port92, *vmmouse;
1925
1926 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1927 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1928
1929 for (i = 0; i < MAX_FD; i++) {
1930 fd[i] = drive_get(IF_FLOPPY, 0, i);
1931 create_fdctrl |= !!fd[i];
1932 }
1933 if (create_fdctrl) {
1934 fdctrl_init_isa(isa_bus, fd);
1935 }
1936
1937 i8042 = isa_create_simple(isa_bus, "i8042");
1938 if (!no_vmport) {
1939 vmport_init(isa_bus);
1940 vmmouse = isa_try_create(isa_bus, "vmmouse");
1941 } else {
1942 vmmouse = NULL;
1943 }
1944 if (vmmouse) {
1945 DeviceState *dev = DEVICE(vmmouse);
1946 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1947 qdev_init_nofail(dev);
1948 }
1949 port92 = isa_create_simple(isa_bus, "port92");
1950
1951 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1952 i8042_setup_a20_line(i8042, a20_line[0]);
1953 port92_init(port92, a20_line[1]);
1954 g_free(a20_line);
1955 }
1956
1957 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1958 ISADevice **rtc_state,
1959 bool create_fdctrl,
1960 bool no_vmport,
1961 bool has_pit,
1962 uint32_t hpet_irqs)
1963 {
1964 int i;
1965 DeviceState *hpet = NULL;
1966 int pit_isa_irq = 0;
1967 qemu_irq pit_alt_irq = NULL;
1968 qemu_irq rtc_irq = NULL;
1969 ISADevice *pit = NULL;
1970 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1971 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1972
1973 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1974 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1975
1976 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1977 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1978
1979 /*
1980 * Check if an HPET shall be created.
1981 *
1982 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1983 * when the HPET wants to take over. Thus we have to disable the latter.
1984 */
1985 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1986 /* In order to set property, here not using sysbus_try_create_simple */
1987 hpet = qdev_try_create(NULL, TYPE_HPET);
1988 if (hpet) {
1989 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1990 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1991 * IRQ8 and IRQ2.
1992 */
1993 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1994 HPET_INTCAP, NULL);
1995 if (!compat) {
1996 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1997 }
1998 qdev_init_nofail(hpet);
1999 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2000
2001 for (i = 0; i < GSI_NUM_PINS; i++) {
2002 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2003 }
2004 pit_isa_irq = -1;
2005 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2006 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2007 }
2008 }
2009 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2010
2011 qemu_register_boot_set(pc_boot_set, *rtc_state);
2012
2013 if (!xen_enabled() && has_pit) {
2014 if (kvm_pit_in_kernel()) {
2015 pit = kvm_pit_init(isa_bus, 0x40);
2016 } else {
2017 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2018 }
2019 if (hpet) {
2020 /* connect PIT to output control line of the HPET */
2021 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2022 }
2023 pcspk_init(isa_bus, pit);
2024 }
2025
2026 i8257_dma_init(isa_bus, 0);
2027
2028 /* Super I/O */
2029 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2030 }
2031
2032 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2033 {
2034 int i;
2035
2036 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2037 for (i = 0; i < nb_nics; i++) {
2038 NICInfo *nd = &nd_table[i];
2039 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2040
2041 if (g_str_equal(model, "ne2k_isa")) {
2042 pc_init_ne2k_isa(isa_bus, nd);
2043 } else {
2044 pci_nic_init_nofail(nd, pci_bus, model, NULL);
2045 }
2046 }
2047 rom_reset_order_override();
2048 }
2049
2050 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2051 {
2052 DeviceState *dev;
2053 SysBusDevice *d;
2054 unsigned int i;
2055
2056 if (kvm_ioapic_in_kernel()) {
2057 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2058 } else {
2059 dev = qdev_create(NULL, TYPE_IOAPIC);
2060 }
2061 if (parent_name) {
2062 object_property_add_child(object_resolve_path(parent_name, NULL),
2063 "ioapic", OBJECT(dev), NULL);
2064 }
2065 qdev_init_nofail(dev);
2066 d = SYS_BUS_DEVICE(dev);
2067 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2068
2069 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2070 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2071 }
2072 }
2073
2074 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2075 Error **errp)
2076 {
2077 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2078 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2079 const MachineState *ms = MACHINE(hotplug_dev);
2080 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2081 const uint64_t legacy_align = TARGET_PAGE_SIZE;
2082 Error *local_err = NULL;
2083
2084 /*
2085 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2086 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2087 * addition to cover this case.
2088 */
2089 if (!pcms->acpi_dev || !acpi_enabled) {
2090 error_setg(errp,
2091 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2092 return;
2093 }
2094
2095 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2096 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2097 return;
2098 }
2099
2100 hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2101 if (local_err) {
2102 error_propagate(errp, local_err);
2103 return;
2104 }
2105
2106 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2107 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2108 }
2109
2110 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2111 DeviceState *dev, Error **errp)
2112 {
2113 Error *local_err = NULL;
2114 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2115 MachineState *ms = MACHINE(hotplug_dev);
2116 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2117
2118 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2119 if (local_err) {
2120 goto out;
2121 }
2122
2123 if (is_nvdimm) {
2124 nvdimm_plug(ms->nvdimms_state);
2125 }
2126
2127 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2128 out:
2129 error_propagate(errp, local_err);
2130 }
2131
2132 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2133 DeviceState *dev, Error **errp)
2134 {
2135 Error *local_err = NULL;
2136 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2137
2138 /*
2139 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2140 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2141 * addition to cover this case.
2142 */
2143 if (!pcms->acpi_dev || !acpi_enabled) {
2144 error_setg(&local_err,
2145 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2146 goto out;
2147 }
2148
2149 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2150 error_setg(&local_err,
2151 "nvdimm device hot unplug is not supported yet.");
2152 goto out;
2153 }
2154
2155 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2156 &local_err);
2157 out:
2158 error_propagate(errp, local_err);
2159 }
2160
2161 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2162 DeviceState *dev, Error **errp)
2163 {
2164 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2165 Error *local_err = NULL;
2166
2167 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2168 if (local_err) {
2169 goto out;
2170 }
2171
2172 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2173 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2174 out:
2175 error_propagate(errp, local_err);
2176 }
2177
2178 static int pc_apic_cmp(const void *a, const void *b)
2179 {
2180 CPUArchId *apic_a = (CPUArchId *)a;
2181 CPUArchId *apic_b = (CPUArchId *)b;
2182
2183 return apic_a->arch_id - apic_b->arch_id;
2184 }
2185
2186 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2187 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2188 * entry corresponding to CPU's apic_id returns NULL.
2189 */
2190 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2191 {
2192 CPUArchId apic_id, *found_cpu;
2193
2194 apic_id.arch_id = id;
2195 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2196 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2197 pc_apic_cmp);
2198 if (found_cpu && idx) {
2199 *idx = found_cpu - ms->possible_cpus->cpus;
2200 }
2201 return found_cpu;
2202 }
2203
2204 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2205 DeviceState *dev, Error **errp)
2206 {
2207 CPUArchId *found_cpu;
2208 Error *local_err = NULL;
2209 X86CPU *cpu = X86_CPU(dev);
2210 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2211
2212 if (pcms->acpi_dev) {
2213 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2214 if (local_err) {
2215 goto out;
2216 }
2217 }
2218
2219 /* increment the number of CPUs */
2220 pcms->boot_cpus++;
2221 if (pcms->rtc) {
2222 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2223 }
2224 if (pcms->fw_cfg) {
2225 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2226 }
2227
2228 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2229 found_cpu->cpu = OBJECT(dev);
2230 out:
2231 error_propagate(errp, local_err);
2232 }
2233 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2234 DeviceState *dev, Error **errp)
2235 {
2236 int idx = -1;
2237 Error *local_err = NULL;
2238 X86CPU *cpu = X86_CPU(dev);
2239 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2240
2241 if (!pcms->acpi_dev) {
2242 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2243 goto out;
2244 }
2245
2246 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2247 assert(idx != -1);
2248 if (idx == 0) {
2249 error_setg(&local_err, "Boot CPU is unpluggable");
2250 goto out;
2251 }
2252
2253 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2254 &local_err);
2255 if (local_err) {
2256 goto out;
2257 }
2258
2259 out:
2260 error_propagate(errp, local_err);
2261
2262 }
2263
2264 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2265 DeviceState *dev, Error **errp)
2266 {
2267 CPUArchId *found_cpu;
2268 Error *local_err = NULL;
2269 X86CPU *cpu = X86_CPU(dev);
2270 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2271
2272 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2273 if (local_err) {
2274 goto out;
2275 }
2276
2277 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2278 found_cpu->cpu = NULL;
2279 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2280
2281 /* decrement the number of CPUs */
2282 pcms->boot_cpus--;
2283 /* Update the number of CPUs in CMOS */
2284 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2285 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2286 out:
2287 error_propagate(errp, local_err);
2288 }
2289
2290 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2291 DeviceState *dev, Error **errp)
2292 {
2293 int idx;
2294 CPUState *cs;
2295 CPUArchId *cpu_slot;
2296 X86CPUTopoInfo topo;
2297 X86CPU *cpu = X86_CPU(dev);
2298 MachineState *ms = MACHINE(hotplug_dev);
2299 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2300
2301 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2302 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2303 ms->cpu_type);
2304 return;
2305 }
2306
2307 /* if APIC ID is not set, set it based on socket/core/thread properties */
2308 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2309 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2310
2311 if (cpu->socket_id < 0) {
2312 error_setg(errp, "CPU socket-id is not set");
2313 return;
2314 } else if (cpu->socket_id > max_socket) {
2315 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2316 cpu->socket_id, max_socket);
2317 return;
2318 }
2319 if (cpu->core_id < 0) {
2320 error_setg(errp, "CPU core-id is not set");
2321 return;
2322 } else if (cpu->core_id > (smp_cores - 1)) {
2323 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2324 cpu->core_id, smp_cores - 1);
2325 return;
2326 }
2327 if (cpu->thread_id < 0) {
2328 error_setg(errp, "CPU thread-id is not set");
2329 return;
2330 } else if (cpu->thread_id > (smp_threads - 1)) {
2331 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2332 cpu->thread_id, smp_threads - 1);
2333 return;
2334 }
2335
2336 topo.pkg_id = cpu->socket_id;
2337 topo.core_id = cpu->core_id;
2338 topo.smt_id = cpu->thread_id;
2339 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2340 }
2341
2342 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2343 if (!cpu_slot) {
2344 MachineState *ms = MACHINE(pcms);
2345
2346 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2347 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2348 " APIC ID %" PRIu32 ", valid index range 0:%d",
2349 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2350 ms->possible_cpus->len - 1);
2351 return;
2352 }
2353
2354 if (cpu_slot->cpu) {
2355 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2356 idx, cpu->apic_id);
2357 return;
2358 }
2359
2360 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2361 * so that machine_query_hotpluggable_cpus would show correct values
2362 */
2363 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2364 * once -smp refactoring is complete and there will be CPU private
2365 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2366 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2367 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2368 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2369 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2370 return;
2371 }
2372 cpu->socket_id = topo.pkg_id;
2373
2374 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2375 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2376 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2377 return;
2378 }
2379 cpu->core_id = topo.core_id;
2380
2381 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2382 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2383 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2384 return;
2385 }
2386 cpu->thread_id = topo.smt_id;
2387
2388 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2389 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2390 return;
2391 }
2392
2393 cs = CPU(cpu);
2394 cs->cpu_index = idx;
2395
2396 numa_cpu_pre_plug(cpu_slot, dev, errp);
2397 }
2398
2399 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2400 DeviceState *dev, Error **errp)
2401 {
2402 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2403 pc_memory_pre_plug(hotplug_dev, dev, errp);
2404 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2405 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2406 }
2407 }
2408
2409 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2410 DeviceState *dev, Error **errp)
2411 {
2412 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2413 pc_memory_plug(hotplug_dev, dev, errp);
2414 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2415 pc_cpu_plug(hotplug_dev, dev, errp);
2416 }
2417 }
2418
2419 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2420 DeviceState *dev, Error **errp)
2421 {
2422 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2423 pc_memory_unplug_request(hotplug_dev, dev, errp);
2424 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2425 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2426 } else {
2427 error_setg(errp, "acpi: device unplug request for not supported device"
2428 " type: %s", object_get_typename(OBJECT(dev)));
2429 }
2430 }
2431
2432 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2433 DeviceState *dev, Error **errp)
2434 {
2435 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2436 pc_memory_unplug(hotplug_dev, dev, errp);
2437 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2438 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2439 } else {
2440 error_setg(errp, "acpi: device unplug for not supported device"
2441 " type: %s", object_get_typename(OBJECT(dev)));
2442 }
2443 }
2444
2445 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2446 DeviceState *dev)
2447 {
2448 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2449 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2450 return HOTPLUG_HANDLER(machine);
2451 }
2452
2453 return NULL;
2454 }
2455
2456 static void
2457 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2458 const char *name, void *opaque,
2459 Error **errp)
2460 {
2461 MachineState *ms = MACHINE(obj);
2462 int64_t value = memory_region_size(&ms->device_memory->mr);
2463
2464 visit_type_int(v, name, &value, errp);
2465 }
2466
2467 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2468 const char *name, void *opaque,
2469 Error **errp)
2470 {
2471 PCMachineState *pcms = PC_MACHINE(obj);
2472 uint64_t value = pcms->max_ram_below_4g;
2473
2474 visit_type_size(v, name, &value, errp);
2475 }
2476
2477 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2478 const char *name, void *opaque,
2479 Error **errp)
2480 {
2481 PCMachineState *pcms = PC_MACHINE(obj);
2482 Error *error = NULL;
2483 uint64_t value;
2484
2485 visit_type_size(v, name, &value, &error);
2486 if (error) {
2487 error_propagate(errp, error);
2488 return;
2489 }
2490 if (value > 4 * GiB) {
2491 error_setg(&error,
2492 "Machine option 'max-ram-below-4g=%"PRIu64
2493 "' expects size less than or equal to 4G", value);
2494 error_propagate(errp, error);
2495 return;
2496 }
2497
2498 if (value < 1 * MiB) {
2499 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2500 "BIOS may not work with less than 1MiB", value);
2501 }
2502
2503 pcms->max_ram_below_4g = value;
2504 }
2505
2506 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2507 void *opaque, Error **errp)
2508 {
2509 PCMachineState *pcms = PC_MACHINE(obj);
2510 OnOffAuto vmport = pcms->vmport;
2511
2512 visit_type_OnOffAuto(v, name, &vmport, errp);
2513 }
2514
2515 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2516 void *opaque, Error **errp)
2517 {
2518 PCMachineState *pcms = PC_MACHINE(obj);
2519
2520 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2521 }
2522
2523 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2524 {
2525 bool smm_available = false;
2526
2527 if (pcms->smm == ON_OFF_AUTO_OFF) {
2528 return false;
2529 }
2530
2531 if (tcg_enabled() || qtest_enabled()) {
2532 smm_available = true;
2533 } else if (kvm_enabled()) {
2534 smm_available = kvm_has_smm();
2535 }
2536
2537 if (smm_available) {
2538 return true;
2539 }
2540
2541 if (pcms->smm == ON_OFF_AUTO_ON) {
2542 error_report("System Management Mode not supported by this hypervisor.");
2543 exit(1);
2544 }
2545 return false;
2546 }
2547
2548 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2549 void *opaque, Error **errp)
2550 {
2551 PCMachineState *pcms = PC_MACHINE(obj);
2552 OnOffAuto smm = pcms->smm;
2553
2554 visit_type_OnOffAuto(v, name, &smm, errp);
2555 }
2556
2557 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2558 void *opaque, Error **errp)
2559 {
2560 PCMachineState *pcms = PC_MACHINE(obj);
2561
2562 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2563 }
2564
2565 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2566 {
2567 PCMachineState *pcms = PC_MACHINE(obj);
2568
2569 return pcms->smbus_enabled;
2570 }
2571
2572 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2573 {
2574 PCMachineState *pcms = PC_MACHINE(obj);
2575
2576 pcms->smbus_enabled = value;
2577 }
2578
2579 static bool pc_machine_get_sata(Object *obj, Error **errp)
2580 {
2581 PCMachineState *pcms = PC_MACHINE(obj);
2582
2583 return pcms->sata_enabled;
2584 }
2585
2586 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2587 {
2588 PCMachineState *pcms = PC_MACHINE(obj);
2589
2590 pcms->sata_enabled = value;
2591 }
2592
2593 static bool pc_machine_get_pit(Object *obj, Error **errp)
2594 {
2595 PCMachineState *pcms = PC_MACHINE(obj);
2596
2597 return pcms->pit_enabled;
2598 }
2599
2600 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2601 {
2602 PCMachineState *pcms = PC_MACHINE(obj);
2603
2604 pcms->pit_enabled = value;
2605 }
2606
2607 static void pc_machine_initfn(Object *obj)
2608 {
2609 PCMachineState *pcms = PC_MACHINE(obj);
2610
2611 pcms->max_ram_below_4g = 0; /* use default */
2612 pcms->smm = ON_OFF_AUTO_AUTO;
2613 pcms->vmport = ON_OFF_AUTO_AUTO;
2614 /* acpi build is enabled by default if machine supports it */
2615 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2616 pcms->smbus_enabled = true;
2617 pcms->sata_enabled = true;
2618 pcms->pit_enabled = true;
2619
2620 pc_system_flash_create(pcms);
2621 }
2622
2623 static void pc_machine_reset(void)
2624 {
2625 CPUState *cs;
2626 X86CPU *cpu;
2627
2628 qemu_devices_reset();
2629
2630 /* Reset APIC after devices have been reset to cancel
2631 * any changes that qemu_devices_reset() might have done.
2632 */
2633 CPU_FOREACH(cs) {
2634 cpu = X86_CPU(cs);
2635
2636 if (cpu->apic_state) {
2637 device_reset(cpu->apic_state);
2638 }
2639 }
2640 }
2641
2642 static CpuInstanceProperties
2643 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2644 {
2645 MachineClass *mc = MACHINE_GET_CLASS(ms);
2646 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2647
2648 assert(cpu_index < possible_cpus->len);
2649 return possible_cpus->cpus[cpu_index].props;
2650 }
2651
2652 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2653 {
2654 X86CPUTopoInfo topo;
2655
2656 assert(idx < ms->possible_cpus->len);
2657 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2658 smp_cores, smp_threads, &topo);
2659 return topo.pkg_id % nb_numa_nodes;
2660 }
2661
2662 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2663 {
2664 int i;
2665
2666 if (ms->possible_cpus) {
2667 /*
2668 * make sure that max_cpus hasn't changed since the first use, i.e.
2669 * -smp hasn't been parsed after it
2670 */
2671 assert(ms->possible_cpus->len == max_cpus);
2672 return ms->possible_cpus;
2673 }
2674
2675 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2676 sizeof(CPUArchId) * max_cpus);
2677 ms->possible_cpus->len = max_cpus;
2678 for (i = 0; i < ms->possible_cpus->len; i++) {
2679 X86CPUTopoInfo topo;
2680
2681 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2682 ms->possible_cpus->cpus[i].vcpus_count = 1;
2683 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2684 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2685 smp_cores, smp_threads, &topo);
2686 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2687 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2688 ms->possible_cpus->cpus[i].props.has_core_id = true;
2689 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2690 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2691 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2692 }
2693 return ms->possible_cpus;
2694 }
2695
2696 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2697 {
2698 /* cpu index isn't used */
2699 CPUState *cs;
2700
2701 CPU_FOREACH(cs) {
2702 X86CPU *cpu = X86_CPU(cs);
2703
2704 if (!cpu->apic_state) {
2705 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2706 } else {
2707 apic_deliver_nmi(cpu->apic_state);
2708 }
2709 }
2710 }
2711
2712 static void pc_machine_class_init(ObjectClass *oc, void *data)
2713 {
2714 MachineClass *mc = MACHINE_CLASS(oc);
2715 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2716 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2717 NMIClass *nc = NMI_CLASS(oc);
2718
2719 pcmc->pci_enabled = true;
2720 pcmc->has_acpi_build = true;
2721 pcmc->rsdp_in_ram = true;
2722 pcmc->smbios_defaults = true;
2723 pcmc->smbios_uuid_encoded = true;
2724 pcmc->gigabyte_align = true;
2725 pcmc->has_reserved_memory = true;
2726 pcmc->kvmclock_enabled = true;
2727 pcmc->enforce_aligned_dimm = true;
2728 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2729 * to be used at the moment, 32K should be enough for a while. */
2730 pcmc->acpi_data_size = 0x20000 + 0x8000;
2731 pcmc->save_tsc_khz = true;
2732 pcmc->linuxboot_dma_enabled = true;
2733 pcmc->pvh_enabled = true;
2734 assert(!mc->get_hotplug_handler);
2735 mc->get_hotplug_handler = pc_get_hotplug_handler;
2736 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2737 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2738 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2739 mc->auto_enable_numa_with_memhp = true;
2740 mc->has_hotpluggable_cpus = true;
2741 mc->default_boot_order = "cad";
2742 mc->hot_add_cpu = pc_hot_add_cpu;
2743 mc->block_default_type = IF_IDE;
2744 mc->max_cpus = 255;
2745 mc->reset = pc_machine_reset;
2746 hc->pre_plug = pc_machine_device_pre_plug_cb;
2747 hc->plug = pc_machine_device_plug_cb;
2748 hc->unplug_request = pc_machine_device_unplug_request_cb;
2749 hc->unplug = pc_machine_device_unplug_cb;
2750 nc->nmi_monitor_handler = x86_nmi;
2751 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2752 mc->nvdimm_supported = true;
2753
2754 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2755 pc_machine_get_device_memory_region_size, NULL,
2756 NULL, NULL, &error_abort);
2757
2758 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2759 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2760 NULL, NULL, &error_abort);
2761
2762 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2763 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2764
2765 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2766 pc_machine_get_smm, pc_machine_set_smm,
2767 NULL, NULL, &error_abort);
2768 object_class_property_set_description(oc, PC_MACHINE_SMM,
2769 "Enable SMM (pc & q35)", &error_abort);
2770
2771 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2772 pc_machine_get_vmport, pc_machine_set_vmport,
2773 NULL, NULL, &error_abort);
2774 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2775 "Enable vmport (pc & q35)", &error_abort);
2776
2777 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2778 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2779
2780 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2781 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2782
2783 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2784 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2785 }
2786
2787 static const TypeInfo pc_machine_info = {
2788 .name = TYPE_PC_MACHINE,
2789 .parent = TYPE_MACHINE,
2790 .abstract = true,
2791 .instance_size = sizeof(PCMachineState),
2792 .instance_init = pc_machine_initfn,
2793 .class_size = sizeof(PCMachineClass),
2794 .class_init = pc_machine_class_init,
2795 .interfaces = (InterfaceInfo[]) {
2796 { TYPE_HOTPLUG_HANDLER },
2797 { TYPE_NMI },
2798 { }
2799 },
2800 };
2801
2802 static void pc_machine_register_types(void)
2803 {
2804 type_register_static(&pc_machine_info);
2805 }
2806
2807 type_init(pc_machine_register_types)