]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
fdc: reduce number of pick_geometry arguments
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/pci_bus.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/smbios/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "hw/acpi/acpi.h"
61 #include "hw/acpi/cpu_hotplug.h"
62 #include "hw/boards.h"
63 #include "hw/pci/pci_host.h"
64 #include "acpi-build.h"
65 #include "hw/mem/pc-dimm.h"
66 #include "qapi/visitor.h"
67 #include "qapi-visit.h"
68 #include "qom/cpu.h"
69
70 /* debug PC/ISA interrupts */
71 //#define DEBUG_IRQ
72
73 #ifdef DEBUG_IRQ
74 #define DPRINTF(fmt, ...) \
75 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76 #else
77 #define DPRINTF(fmt, ...)
78 #endif
79
80 #define BIOS_CFG_IOPORT 0x510
81 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
82 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
83 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
84 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
85 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
86
87 #define E820_NR_ENTRIES 16
88
89 struct e820_entry {
90 uint64_t address;
91 uint64_t length;
92 uint32_t type;
93 } QEMU_PACKED __attribute((__aligned__(4)));
94
95 struct e820_table {
96 uint32_t count;
97 struct e820_entry entry[E820_NR_ENTRIES];
98 } QEMU_PACKED __attribute((__aligned__(4)));
99
100 static struct e820_table e820_reserve;
101 static struct e820_entry *e820_table;
102 static unsigned e820_entries;
103 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
104
105 void gsi_handler(void *opaque, int n, int level)
106 {
107 GSIState *s = opaque;
108
109 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
110 if (n < ISA_NUM_IRQS) {
111 qemu_set_irq(s->i8259_irq[n], level);
112 }
113 qemu_set_irq(s->ioapic_irq[n], level);
114 }
115
116 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
117 unsigned size)
118 {
119 }
120
121 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
122 {
123 return 0xffffffffffffffffULL;
124 }
125
126 /* MSDOS compatibility mode FPU exception support */
127 static qemu_irq ferr_irq;
128
129 void pc_register_ferr_irq(qemu_irq irq)
130 {
131 ferr_irq = irq;
132 }
133
134 /* XXX: add IGNNE support */
135 void cpu_set_ferr(CPUX86State *s)
136 {
137 qemu_irq_raise(ferr_irq);
138 }
139
140 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
141 unsigned size)
142 {
143 qemu_irq_lower(ferr_irq);
144 }
145
146 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
147 {
148 return 0xffffffffffffffffULL;
149 }
150
151 /* TSC handling */
152 uint64_t cpu_get_tsc(CPUX86State *env)
153 {
154 return cpu_get_ticks();
155 }
156
157 /* IRQ handling */
158 int cpu_get_pic_interrupt(CPUX86State *env)
159 {
160 X86CPU *cpu = x86_env_get_cpu(env);
161 int intno;
162
163 intno = apic_get_interrupt(cpu->apic_state);
164 if (intno >= 0) {
165 return intno;
166 }
167 /* read the irq from the PIC */
168 if (!apic_accept_pic_intr(cpu->apic_state)) {
169 return -1;
170 }
171
172 intno = pic_read_irq(isa_pic);
173 return intno;
174 }
175
176 static void pic_irq_request(void *opaque, int irq, int level)
177 {
178 CPUState *cs = first_cpu;
179 X86CPU *cpu = X86_CPU(cs);
180
181 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
182 if (cpu->apic_state) {
183 CPU_FOREACH(cs) {
184 cpu = X86_CPU(cs);
185 if (apic_accept_pic_intr(cpu->apic_state)) {
186 apic_deliver_pic_intr(cpu->apic_state, level);
187 }
188 }
189 } else {
190 if (level) {
191 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
192 } else {
193 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
194 }
195 }
196 }
197
198 /* PC cmos mappings */
199
200 #define REG_EQUIPMENT_BYTE 0x14
201
202 static int cmos_get_fd_drive_type(FDriveType fd0)
203 {
204 int val;
205
206 switch (fd0) {
207 case FDRIVE_DRV_144:
208 /* 1.44 Mb 3"5 drive */
209 val = 4;
210 break;
211 case FDRIVE_DRV_288:
212 /* 2.88 Mb 3"5 drive */
213 val = 5;
214 break;
215 case FDRIVE_DRV_120:
216 /* 1.2 Mb 5"5 drive */
217 val = 2;
218 break;
219 case FDRIVE_DRV_NONE:
220 default:
221 val = 0;
222 break;
223 }
224 return val;
225 }
226
227 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
228 int16_t cylinders, int8_t heads, int8_t sectors)
229 {
230 rtc_set_memory(s, type_ofs, 47);
231 rtc_set_memory(s, info_ofs, cylinders);
232 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
233 rtc_set_memory(s, info_ofs + 2, heads);
234 rtc_set_memory(s, info_ofs + 3, 0xff);
235 rtc_set_memory(s, info_ofs + 4, 0xff);
236 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
237 rtc_set_memory(s, info_ofs + 6, cylinders);
238 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
239 rtc_set_memory(s, info_ofs + 8, sectors);
240 }
241
242 /* convert boot_device letter to something recognizable by the bios */
243 static int boot_device2nibble(char boot_device)
244 {
245 switch(boot_device) {
246 case 'a':
247 case 'b':
248 return 0x01; /* floppy boot */
249 case 'c':
250 return 0x02; /* hard drive boot */
251 case 'd':
252 return 0x03; /* CD-ROM boot */
253 case 'n':
254 return 0x04; /* Network boot */
255 }
256 return 0;
257 }
258
259 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
260 {
261 #define PC_MAX_BOOT_DEVICES 3
262 int nbds, bds[3] = { 0, };
263 int i;
264
265 nbds = strlen(boot_device);
266 if (nbds > PC_MAX_BOOT_DEVICES) {
267 error_setg(errp, "Too many boot devices for PC");
268 return;
269 }
270 for (i = 0; i < nbds; i++) {
271 bds[i] = boot_device2nibble(boot_device[i]);
272 if (bds[i] == 0) {
273 error_setg(errp, "Invalid boot device for PC: '%c'",
274 boot_device[i]);
275 return;
276 }
277 }
278 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
279 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
280 }
281
282 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
283 {
284 set_boot_dev(opaque, boot_device, errp);
285 }
286
287 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
288 {
289 int val, nb, i;
290 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
291
292 /* floppy type */
293 if (floppy) {
294 for (i = 0; i < 2; i++) {
295 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
296 }
297 }
298 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
299 cmos_get_fd_drive_type(fd_type[1]);
300 rtc_set_memory(rtc_state, 0x10, val);
301
302 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
303 nb = 0;
304 if (fd_type[0] < FDRIVE_DRV_NONE) {
305 nb++;
306 }
307 if (fd_type[1] < FDRIVE_DRV_NONE) {
308 nb++;
309 }
310 switch (nb) {
311 case 0:
312 break;
313 case 1:
314 val |= 0x01; /* 1 drive, ready for boot */
315 break;
316 case 2:
317 val |= 0x41; /* 2 drives, ready for boot */
318 break;
319 }
320 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
321 }
322
323 typedef struct pc_cmos_init_late_arg {
324 ISADevice *rtc_state;
325 BusState *idebus[2];
326 } pc_cmos_init_late_arg;
327
328 typedef struct check_fdc_state {
329 ISADevice *floppy;
330 bool multiple;
331 } CheckFdcState;
332
333 static int check_fdc(Object *obj, void *opaque)
334 {
335 CheckFdcState *state = opaque;
336 Object *fdc;
337 uint32_t iobase;
338 Error *local_err = NULL;
339
340 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
341 if (!fdc) {
342 return 0;
343 }
344
345 iobase = object_property_get_int(obj, "iobase", &local_err);
346 if (local_err || iobase != 0x3f0) {
347 error_free(local_err);
348 return 0;
349 }
350
351 if (state->floppy) {
352 state->multiple = true;
353 } else {
354 state->floppy = ISA_DEVICE(obj);
355 }
356 return 0;
357 }
358
359 static const char * const fdc_container_path[] = {
360 "/unattached", "/peripheral", "/peripheral-anon"
361 };
362
363 /*
364 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
365 * and ACPI objects.
366 */
367 ISADevice *pc_find_fdc0(void)
368 {
369 int i;
370 Object *container;
371 CheckFdcState state = { 0 };
372
373 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
374 container = container_get(qdev_get_machine(), fdc_container_path[i]);
375 object_child_foreach(container, check_fdc, &state);
376 }
377
378 if (state.multiple) {
379 error_report("warning: multiple floppy disk controllers with "
380 "iobase=0x3f0 have been found");
381 error_printf("the one being picked for CMOS setup might not reflect "
382 "your intent");
383 }
384
385 return state.floppy;
386 }
387
388 static void pc_cmos_init_late(void *opaque)
389 {
390 pc_cmos_init_late_arg *arg = opaque;
391 ISADevice *s = arg->rtc_state;
392 int16_t cylinders;
393 int8_t heads, sectors;
394 int val;
395 int i, trans;
396
397 val = 0;
398 if (ide_get_geometry(arg->idebus[0], 0,
399 &cylinders, &heads, &sectors) >= 0) {
400 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
401 val |= 0xf0;
402 }
403 if (ide_get_geometry(arg->idebus[0], 1,
404 &cylinders, &heads, &sectors) >= 0) {
405 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
406 val |= 0x0f;
407 }
408 rtc_set_memory(s, 0x12, val);
409
410 val = 0;
411 for (i = 0; i < 4; i++) {
412 /* NOTE: ide_get_geometry() returns the physical
413 geometry. It is always such that: 1 <= sects <= 63, 1
414 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
415 geometry can be different if a translation is done. */
416 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
417 &cylinders, &heads, &sectors) >= 0) {
418 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
419 assert((trans & ~3) == 0);
420 val |= trans << (i * 2);
421 }
422 }
423 rtc_set_memory(s, 0x39, val);
424
425 pc_cmos_init_floppy(s, pc_find_fdc0());
426
427 qemu_unregister_reset(pc_cmos_init_late, opaque);
428 }
429
430 void pc_cmos_init(PCMachineState *pcms,
431 BusState *idebus0, BusState *idebus1,
432 ISADevice *s)
433 {
434 int val;
435 static pc_cmos_init_late_arg arg;
436
437 /* various important CMOS locations needed by PC/Bochs bios */
438
439 /* memory size */
440 /* base memory (first MiB) */
441 val = MIN(pcms->below_4g_mem_size / 1024, 640);
442 rtc_set_memory(s, 0x15, val);
443 rtc_set_memory(s, 0x16, val >> 8);
444 /* extended memory (next 64MiB) */
445 if (pcms->below_4g_mem_size > 1024 * 1024) {
446 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
447 } else {
448 val = 0;
449 }
450 if (val > 65535)
451 val = 65535;
452 rtc_set_memory(s, 0x17, val);
453 rtc_set_memory(s, 0x18, val >> 8);
454 rtc_set_memory(s, 0x30, val);
455 rtc_set_memory(s, 0x31, val >> 8);
456 /* memory between 16MiB and 4GiB */
457 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
458 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
459 } else {
460 val = 0;
461 }
462 if (val > 65535)
463 val = 65535;
464 rtc_set_memory(s, 0x34, val);
465 rtc_set_memory(s, 0x35, val >> 8);
466 /* memory above 4GiB */
467 val = pcms->above_4g_mem_size / 65536;
468 rtc_set_memory(s, 0x5b, val);
469 rtc_set_memory(s, 0x5c, val >> 8);
470 rtc_set_memory(s, 0x5d, val >> 16);
471
472 /* set the number of CPU */
473 rtc_set_memory(s, 0x5f, smp_cpus - 1);
474
475 object_property_add_link(OBJECT(pcms), "rtc_state",
476 TYPE_ISA_DEVICE,
477 (Object **)&pcms->rtc,
478 object_property_allow_set_link,
479 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
480 object_property_set_link(OBJECT(pcms), OBJECT(s),
481 "rtc_state", &error_abort);
482
483 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
484
485 val = 0;
486 val |= 0x02; /* FPU is there */
487 val |= 0x04; /* PS/2 mouse installed */
488 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
489
490 /* hard drives and FDC */
491 arg.rtc_state = s;
492 arg.idebus[0] = idebus0;
493 arg.idebus[1] = idebus1;
494 qemu_register_reset(pc_cmos_init_late, &arg);
495 }
496
497 #define TYPE_PORT92 "port92"
498 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
499
500 /* port 92 stuff: could be split off */
501 typedef struct Port92State {
502 ISADevice parent_obj;
503
504 MemoryRegion io;
505 uint8_t outport;
506 qemu_irq *a20_out;
507 } Port92State;
508
509 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
510 unsigned size)
511 {
512 Port92State *s = opaque;
513 int oldval = s->outport;
514
515 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
516 s->outport = val;
517 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
518 if ((val & 1) && !(oldval & 1)) {
519 qemu_system_reset_request();
520 }
521 }
522
523 static uint64_t port92_read(void *opaque, hwaddr addr,
524 unsigned size)
525 {
526 Port92State *s = opaque;
527 uint32_t ret;
528
529 ret = s->outport;
530 DPRINTF("port92: read 0x%02x\n", ret);
531 return ret;
532 }
533
534 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
535 {
536 Port92State *s = PORT92(dev);
537
538 s->a20_out = a20_out;
539 }
540
541 static const VMStateDescription vmstate_port92_isa = {
542 .name = "port92",
543 .version_id = 1,
544 .minimum_version_id = 1,
545 .fields = (VMStateField[]) {
546 VMSTATE_UINT8(outport, Port92State),
547 VMSTATE_END_OF_LIST()
548 }
549 };
550
551 static void port92_reset(DeviceState *d)
552 {
553 Port92State *s = PORT92(d);
554
555 s->outport &= ~1;
556 }
557
558 static const MemoryRegionOps port92_ops = {
559 .read = port92_read,
560 .write = port92_write,
561 .impl = {
562 .min_access_size = 1,
563 .max_access_size = 1,
564 },
565 .endianness = DEVICE_LITTLE_ENDIAN,
566 };
567
568 static void port92_initfn(Object *obj)
569 {
570 Port92State *s = PORT92(obj);
571
572 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
573
574 s->outport = 0;
575 }
576
577 static void port92_realizefn(DeviceState *dev, Error **errp)
578 {
579 ISADevice *isadev = ISA_DEVICE(dev);
580 Port92State *s = PORT92(dev);
581
582 isa_register_ioport(isadev, &s->io, 0x92);
583 }
584
585 static void port92_class_initfn(ObjectClass *klass, void *data)
586 {
587 DeviceClass *dc = DEVICE_CLASS(klass);
588
589 dc->realize = port92_realizefn;
590 dc->reset = port92_reset;
591 dc->vmsd = &vmstate_port92_isa;
592 /*
593 * Reason: unlike ordinary ISA devices, this one needs additional
594 * wiring: its A20 output line needs to be wired up by
595 * port92_init().
596 */
597 dc->cannot_instantiate_with_device_add_yet = true;
598 }
599
600 static const TypeInfo port92_info = {
601 .name = TYPE_PORT92,
602 .parent = TYPE_ISA_DEVICE,
603 .instance_size = sizeof(Port92State),
604 .instance_init = port92_initfn,
605 .class_init = port92_class_initfn,
606 };
607
608 static void port92_register_types(void)
609 {
610 type_register_static(&port92_info);
611 }
612
613 type_init(port92_register_types)
614
615 static void handle_a20_line_change(void *opaque, int irq, int level)
616 {
617 X86CPU *cpu = opaque;
618
619 /* XXX: send to all CPUs ? */
620 /* XXX: add logic to handle multiple A20 line sources */
621 x86_cpu_set_a20(cpu, level);
622 }
623
624 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
625 {
626 int index = le32_to_cpu(e820_reserve.count);
627 struct e820_entry *entry;
628
629 if (type != E820_RAM) {
630 /* old FW_CFG_E820_TABLE entry -- reservations only */
631 if (index >= E820_NR_ENTRIES) {
632 return -EBUSY;
633 }
634 entry = &e820_reserve.entry[index++];
635
636 entry->address = cpu_to_le64(address);
637 entry->length = cpu_to_le64(length);
638 entry->type = cpu_to_le32(type);
639
640 e820_reserve.count = cpu_to_le32(index);
641 }
642
643 /* new "etc/e820" file -- include ram too */
644 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
645 e820_table[e820_entries].address = cpu_to_le64(address);
646 e820_table[e820_entries].length = cpu_to_le64(length);
647 e820_table[e820_entries].type = cpu_to_le32(type);
648 e820_entries++;
649
650 return e820_entries;
651 }
652
653 int e820_get_num_entries(void)
654 {
655 return e820_entries;
656 }
657
658 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
659 {
660 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
661 *address = le64_to_cpu(e820_table[idx].address);
662 *length = le64_to_cpu(e820_table[idx].length);
663 return true;
664 }
665 return false;
666 }
667
668 /* Enables contiguous-apic-ID mode, for compatibility */
669 static bool compat_apic_id_mode;
670
671 void enable_compat_apic_id_mode(void)
672 {
673 compat_apic_id_mode = true;
674 }
675
676 /* Calculates initial APIC ID for a specific CPU index
677 *
678 * Currently we need to be able to calculate the APIC ID from the CPU index
679 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
680 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
681 * all CPUs up to max_cpus.
682 */
683 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
684 {
685 uint32_t correct_id;
686 static bool warned;
687
688 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
689 if (compat_apic_id_mode) {
690 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
691 error_report("APIC IDs set in compatibility mode, "
692 "CPU topology won't match the configuration");
693 warned = true;
694 }
695 return cpu_index;
696 } else {
697 return correct_id;
698 }
699 }
700
701 /* Calculates the limit to CPU APIC ID values
702 *
703 * This function returns the limit for the APIC ID value, so that all
704 * CPU APIC IDs are < pc_apic_id_limit().
705 *
706 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
707 */
708 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
709 {
710 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
711 }
712
713 static void pc_build_smbios(FWCfgState *fw_cfg)
714 {
715 uint8_t *smbios_tables, *smbios_anchor;
716 size_t smbios_tables_len, smbios_anchor_len;
717 struct smbios_phys_mem_area *mem_array;
718 unsigned i, array_count;
719
720 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
721 if (smbios_tables) {
722 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
723 smbios_tables, smbios_tables_len);
724 }
725
726 /* build the array of physical mem area from e820 table */
727 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
728 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
729 uint64_t addr, len;
730
731 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
732 mem_array[array_count].address = addr;
733 mem_array[array_count].length = len;
734 array_count++;
735 }
736 }
737 smbios_get_tables(mem_array, array_count,
738 &smbios_tables, &smbios_tables_len,
739 &smbios_anchor, &smbios_anchor_len);
740 g_free(mem_array);
741
742 if (smbios_anchor) {
743 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
744 smbios_tables, smbios_tables_len);
745 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
746 smbios_anchor, smbios_anchor_len);
747 }
748 }
749
750 static FWCfgState *bochs_bios_init(AddressSpace *as)
751 {
752 FWCfgState *fw_cfg;
753 uint64_t *numa_fw_cfg;
754 int i, j;
755 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
756
757 fw_cfg = fw_cfg_init_io_dma(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 4, as);
758
759 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
760 *
761 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
762 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
763 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
764 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
765 * may see".
766 *
767 * So, this means we must not use max_cpus, here, but the maximum possible
768 * APIC ID value, plus one.
769 *
770 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
771 * the APIC ID, not the "CPU index"
772 */
773 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
774 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
775 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
776 acpi_tables, acpi_tables_len);
777 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
778
779 pc_build_smbios(fw_cfg);
780
781 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
782 &e820_reserve, sizeof(e820_reserve));
783 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
784 sizeof(struct e820_entry) * e820_entries);
785
786 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
787 /* allocate memory for the NUMA channel: one (64bit) word for the number
788 * of nodes, one word for each VCPU->node and one word for each node to
789 * hold the amount of memory.
790 */
791 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
792 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
793 for (i = 0; i < max_cpus; i++) {
794 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
795 assert(apic_id < apic_id_limit);
796 for (j = 0; j < nb_numa_nodes; j++) {
797 if (test_bit(i, numa_info[j].node_cpu)) {
798 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
799 break;
800 }
801 }
802 }
803 for (i = 0; i < nb_numa_nodes; i++) {
804 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
805 }
806 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
807 (1 + apic_id_limit + nb_numa_nodes) *
808 sizeof(*numa_fw_cfg));
809
810 return fw_cfg;
811 }
812
813 static long get_file_size(FILE *f)
814 {
815 long where, size;
816
817 /* XXX: on Unix systems, using fstat() probably makes more sense */
818
819 where = ftell(f);
820 fseek(f, 0, SEEK_END);
821 size = ftell(f);
822 fseek(f, where, SEEK_SET);
823
824 return size;
825 }
826
827 static void load_linux(PCMachineState *pcms,
828 FWCfgState *fw_cfg)
829 {
830 uint16_t protocol;
831 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
832 uint32_t initrd_max;
833 uint8_t header[8192], *setup, *kernel, *initrd_data;
834 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
835 FILE *f;
836 char *vmode;
837 MachineState *machine = MACHINE(pcms);
838 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
839 const char *kernel_filename = machine->kernel_filename;
840 const char *initrd_filename = machine->initrd_filename;
841 const char *kernel_cmdline = machine->kernel_cmdline;
842
843 /* Align to 16 bytes as a paranoia measure */
844 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
845
846 /* load the kernel header */
847 f = fopen(kernel_filename, "rb");
848 if (!f || !(kernel_size = get_file_size(f)) ||
849 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
850 MIN(ARRAY_SIZE(header), kernel_size)) {
851 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
852 kernel_filename, strerror(errno));
853 exit(1);
854 }
855
856 /* kernel protocol version */
857 #if 0
858 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
859 #endif
860 if (ldl_p(header+0x202) == 0x53726448) {
861 protocol = lduw_p(header+0x206);
862 } else {
863 /* This looks like a multiboot kernel. If it is, let's stop
864 treating it like a Linux kernel. */
865 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
866 kernel_cmdline, kernel_size, header)) {
867 return;
868 }
869 protocol = 0;
870 }
871
872 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
873 /* Low kernel */
874 real_addr = 0x90000;
875 cmdline_addr = 0x9a000 - cmdline_size;
876 prot_addr = 0x10000;
877 } else if (protocol < 0x202) {
878 /* High but ancient kernel */
879 real_addr = 0x90000;
880 cmdline_addr = 0x9a000 - cmdline_size;
881 prot_addr = 0x100000;
882 } else {
883 /* High and recent kernel */
884 real_addr = 0x10000;
885 cmdline_addr = 0x20000;
886 prot_addr = 0x100000;
887 }
888
889 #if 0
890 fprintf(stderr,
891 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
892 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
893 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
894 real_addr,
895 cmdline_addr,
896 prot_addr);
897 #endif
898
899 /* highest address for loading the initrd */
900 if (protocol >= 0x203) {
901 initrd_max = ldl_p(header+0x22c);
902 } else {
903 initrd_max = 0x37ffffff;
904 }
905
906 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
907 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
908 }
909
910 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
911 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
912 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
913
914 if (protocol >= 0x202) {
915 stl_p(header+0x228, cmdline_addr);
916 } else {
917 stw_p(header+0x20, 0xA33F);
918 stw_p(header+0x22, cmdline_addr-real_addr);
919 }
920
921 /* handle vga= parameter */
922 vmode = strstr(kernel_cmdline, "vga=");
923 if (vmode) {
924 unsigned int video_mode;
925 /* skip "vga=" */
926 vmode += 4;
927 if (!strncmp(vmode, "normal", 6)) {
928 video_mode = 0xffff;
929 } else if (!strncmp(vmode, "ext", 3)) {
930 video_mode = 0xfffe;
931 } else if (!strncmp(vmode, "ask", 3)) {
932 video_mode = 0xfffd;
933 } else {
934 video_mode = strtol(vmode, NULL, 0);
935 }
936 stw_p(header+0x1fa, video_mode);
937 }
938
939 /* loader type */
940 /* High nybble = B reserved for QEMU; low nybble is revision number.
941 If this code is substantially changed, you may want to consider
942 incrementing the revision. */
943 if (protocol >= 0x200) {
944 header[0x210] = 0xB0;
945 }
946 /* heap */
947 if (protocol >= 0x201) {
948 header[0x211] |= 0x80; /* CAN_USE_HEAP */
949 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
950 }
951
952 /* load initrd */
953 if (initrd_filename) {
954 if (protocol < 0x200) {
955 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
956 exit(1);
957 }
958
959 initrd_size = get_image_size(initrd_filename);
960 if (initrd_size < 0) {
961 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
962 initrd_filename, strerror(errno));
963 exit(1);
964 }
965
966 initrd_addr = (initrd_max-initrd_size) & ~4095;
967
968 initrd_data = g_malloc(initrd_size);
969 load_image(initrd_filename, initrd_data);
970
971 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
972 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
973 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
974
975 stl_p(header+0x218, initrd_addr);
976 stl_p(header+0x21c, initrd_size);
977 }
978
979 /* load kernel and setup */
980 setup_size = header[0x1f1];
981 if (setup_size == 0) {
982 setup_size = 4;
983 }
984 setup_size = (setup_size+1)*512;
985 if (setup_size > kernel_size) {
986 fprintf(stderr, "qemu: invalid kernel header\n");
987 exit(1);
988 }
989 kernel_size -= setup_size;
990
991 setup = g_malloc(setup_size);
992 kernel = g_malloc(kernel_size);
993 fseek(f, 0, SEEK_SET);
994 if (fread(setup, 1, setup_size, f) != setup_size) {
995 fprintf(stderr, "fread() failed\n");
996 exit(1);
997 }
998 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
999 fprintf(stderr, "fread() failed\n");
1000 exit(1);
1001 }
1002 fclose(f);
1003 memcpy(setup, header, MIN(sizeof(header), setup_size));
1004
1005 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1006 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1007 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1008
1009 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1010 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1011 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1012
1013 option_rom[nb_option_roms].name = "linuxboot.bin";
1014 option_rom[nb_option_roms].bootindex = 0;
1015 nb_option_roms++;
1016 }
1017
1018 #define NE2000_NB_MAX 6
1019
1020 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1021 0x280, 0x380 };
1022 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1023
1024 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1025 {
1026 static int nb_ne2k = 0;
1027
1028 if (nb_ne2k == NE2000_NB_MAX)
1029 return;
1030 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1031 ne2000_irq[nb_ne2k], nd);
1032 nb_ne2k++;
1033 }
1034
1035 DeviceState *cpu_get_current_apic(void)
1036 {
1037 if (current_cpu) {
1038 X86CPU *cpu = X86_CPU(current_cpu);
1039 return cpu->apic_state;
1040 } else {
1041 return NULL;
1042 }
1043 }
1044
1045 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1046 {
1047 X86CPU *cpu = opaque;
1048
1049 if (level) {
1050 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1051 }
1052 }
1053
1054 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1055 Error **errp)
1056 {
1057 X86CPU *cpu = NULL;
1058 Error *local_err = NULL;
1059
1060 cpu = cpu_x86_create(cpu_model, &local_err);
1061 if (local_err != NULL) {
1062 goto out;
1063 }
1064
1065 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1066 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1067
1068 out:
1069 if (local_err) {
1070 error_propagate(errp, local_err);
1071 object_unref(OBJECT(cpu));
1072 cpu = NULL;
1073 }
1074 return cpu;
1075 }
1076
1077 void pc_hot_add_cpu(const int64_t id, Error **errp)
1078 {
1079 X86CPU *cpu;
1080 MachineState *machine = MACHINE(qdev_get_machine());
1081 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1082 Error *local_err = NULL;
1083
1084 if (id < 0) {
1085 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1086 return;
1087 }
1088
1089 if (cpu_exists(apic_id)) {
1090 error_setg(errp, "Unable to add CPU: %" PRIi64
1091 ", it already exists", id);
1092 return;
1093 }
1094
1095 if (id >= max_cpus) {
1096 error_setg(errp, "Unable to add CPU: %" PRIi64
1097 ", max allowed: %d", id, max_cpus - 1);
1098 return;
1099 }
1100
1101 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1102 error_setg(errp, "Unable to add CPU: %" PRIi64
1103 ", resulting APIC ID (%" PRIi64 ") is too large",
1104 id, apic_id);
1105 return;
1106 }
1107
1108 cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1109 if (local_err) {
1110 error_propagate(errp, local_err);
1111 return;
1112 }
1113 object_unref(OBJECT(cpu));
1114 }
1115
1116 void pc_cpus_init(PCMachineState *pcms)
1117 {
1118 int i;
1119 X86CPU *cpu = NULL;
1120 MachineState *machine = MACHINE(pcms);
1121 unsigned long apic_id_limit;
1122
1123 /* init CPUs */
1124 if (machine->cpu_model == NULL) {
1125 #ifdef TARGET_X86_64
1126 machine->cpu_model = "qemu64";
1127 #else
1128 machine->cpu_model = "qemu32";
1129 #endif
1130 }
1131
1132 apic_id_limit = pc_apic_id_limit(max_cpus);
1133 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1134 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1135 apic_id_limit - 1);
1136 exit(1);
1137 }
1138
1139 for (i = 0; i < smp_cpus; i++) {
1140 cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1141 &error_fatal);
1142 object_unref(OBJECT(cpu));
1143 }
1144
1145 /* tell smbios about cpuid version and features */
1146 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1147 }
1148
1149 /* pci-info ROM file. Little endian format */
1150 typedef struct PcRomPciInfo {
1151 uint64_t w32_min;
1152 uint64_t w32_max;
1153 uint64_t w64_min;
1154 uint64_t w64_max;
1155 } PcRomPciInfo;
1156
1157 typedef struct PcGuestInfoState {
1158 PcGuestInfo info;
1159 Notifier machine_done;
1160 } PcGuestInfoState;
1161
1162 static
1163 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1164 {
1165 PcGuestInfoState *guest_info_state = container_of(notifier,
1166 PcGuestInfoState,
1167 machine_done);
1168 PCIBus *bus = PC_MACHINE(qdev_get_machine())->bus;
1169
1170 if (bus) {
1171 int extra_hosts = 0;
1172
1173 QLIST_FOREACH(bus, &bus->child, sibling) {
1174 /* look for expander root buses */
1175 if (pci_bus_is_root(bus)) {
1176 extra_hosts++;
1177 }
1178 }
1179 if (extra_hosts && guest_info_state->info.fw_cfg) {
1180 uint64_t *val = g_malloc(sizeof(*val));
1181 *val = cpu_to_le64(extra_hosts);
1182 fw_cfg_add_file(guest_info_state->info.fw_cfg,
1183 "etc/extra-pci-roots", val, sizeof(*val));
1184 }
1185 }
1186
1187 acpi_setup(&guest_info_state->info);
1188 }
1189
1190 PcGuestInfo *pc_guest_info_init(PCMachineState *pcms)
1191 {
1192 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1193 PcGuestInfo *guest_info = &guest_info_state->info;
1194 int i, j;
1195
1196 guest_info->ram_size_below_4g = pcms->below_4g_mem_size;
1197 guest_info->ram_size = pcms->below_4g_mem_size + pcms->above_4g_mem_size;
1198 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1199 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1200 guest_info->numa_nodes = nb_numa_nodes;
1201 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1202 sizeof *guest_info->node_mem);
1203 for (i = 0; i < nb_numa_nodes; i++) {
1204 guest_info->node_mem[i] = numa_info[i].node_mem;
1205 }
1206
1207 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1208 sizeof *guest_info->node_cpu);
1209
1210 for (i = 0; i < max_cpus; i++) {
1211 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1212 assert(apic_id < guest_info->apic_id_limit);
1213 for (j = 0; j < nb_numa_nodes; j++) {
1214 if (test_bit(i, numa_info[j].node_cpu)) {
1215 guest_info->node_cpu[apic_id] = j;
1216 break;
1217 }
1218 }
1219 }
1220
1221 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1222 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1223 return guest_info;
1224 }
1225
1226 /* setup pci memory address space mapping into system address space */
1227 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1228 MemoryRegion *pci_address_space)
1229 {
1230 /* Set to lower priority than RAM */
1231 memory_region_add_subregion_overlap(system_memory, 0x0,
1232 pci_address_space, -1);
1233 }
1234
1235 void pc_acpi_init(const char *default_dsdt)
1236 {
1237 char *filename;
1238
1239 if (acpi_tables != NULL) {
1240 /* manually set via -acpitable, leave it alone */
1241 return;
1242 }
1243
1244 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1245 if (filename == NULL) {
1246 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1247 } else {
1248 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1249 &error_abort);
1250 Error *err = NULL;
1251
1252 qemu_opt_set(opts, "file", filename, &error_abort);
1253
1254 acpi_table_add_builtin(opts, &err);
1255 if (err) {
1256 error_reportf_err(err, "WARNING: failed to load %s: ",
1257 filename);
1258 }
1259 g_free(filename);
1260 }
1261 }
1262
1263 FWCfgState *xen_load_linux(PCMachineState *pcms,
1264 PcGuestInfo *guest_info)
1265 {
1266 int i;
1267 FWCfgState *fw_cfg;
1268
1269 assert(MACHINE(pcms)->kernel_filename != NULL);
1270
1271 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1272 rom_set_fw(fw_cfg);
1273
1274 load_linux(pcms, fw_cfg);
1275 for (i = 0; i < nb_option_roms; i++) {
1276 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1277 !strcmp(option_rom[i].name, "multiboot.bin"));
1278 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1279 }
1280 guest_info->fw_cfg = fw_cfg;
1281 return fw_cfg;
1282 }
1283
1284 FWCfgState *pc_memory_init(PCMachineState *pcms,
1285 MemoryRegion *system_memory,
1286 MemoryRegion *rom_memory,
1287 MemoryRegion **ram_memory,
1288 PcGuestInfo *guest_info)
1289 {
1290 int linux_boot, i;
1291 MemoryRegion *ram, *option_rom_mr;
1292 MemoryRegion *ram_below_4g, *ram_above_4g;
1293 FWCfgState *fw_cfg;
1294 MachineState *machine = MACHINE(pcms);
1295 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1296
1297 assert(machine->ram_size == pcms->below_4g_mem_size +
1298 pcms->above_4g_mem_size);
1299
1300 linux_boot = (machine->kernel_filename != NULL);
1301
1302 /* Allocate RAM. We allocate it as a single memory region and use
1303 * aliases to address portions of it, mostly for backwards compatibility
1304 * with older qemus that used qemu_ram_alloc().
1305 */
1306 ram = g_malloc(sizeof(*ram));
1307 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1308 machine->ram_size);
1309 *ram_memory = ram;
1310 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1311 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1312 0, pcms->below_4g_mem_size);
1313 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1314 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1315 if (pcms->above_4g_mem_size > 0) {
1316 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1317 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1318 pcms->below_4g_mem_size,
1319 pcms->above_4g_mem_size);
1320 memory_region_add_subregion(system_memory, 0x100000000ULL,
1321 ram_above_4g);
1322 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1323 }
1324
1325 if (!guest_info->has_reserved_memory &&
1326 (machine->ram_slots ||
1327 (machine->maxram_size > machine->ram_size))) {
1328 MachineClass *mc = MACHINE_GET_CLASS(machine);
1329
1330 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1331 mc->name);
1332 exit(EXIT_FAILURE);
1333 }
1334
1335 /* initialize hotplug memory address space */
1336 if (guest_info->has_reserved_memory &&
1337 (machine->ram_size < machine->maxram_size)) {
1338 ram_addr_t hotplug_mem_size =
1339 machine->maxram_size - machine->ram_size;
1340
1341 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1342 error_report("unsupported amount of memory slots: %"PRIu64,
1343 machine->ram_slots);
1344 exit(EXIT_FAILURE);
1345 }
1346
1347 if (QEMU_ALIGN_UP(machine->maxram_size,
1348 TARGET_PAGE_SIZE) != machine->maxram_size) {
1349 error_report("maximum memory size must by aligned to multiple of "
1350 "%d bytes", TARGET_PAGE_SIZE);
1351 exit(EXIT_FAILURE);
1352 }
1353
1354 pcms->hotplug_memory.base =
1355 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1356
1357 if (pcmc->enforce_aligned_dimm) {
1358 /* size hotplug region assuming 1G page max alignment per slot */
1359 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1360 }
1361
1362 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1363 hotplug_mem_size) {
1364 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1365 machine->maxram_size);
1366 exit(EXIT_FAILURE);
1367 }
1368
1369 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1370 "hotplug-memory", hotplug_mem_size);
1371 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1372 &pcms->hotplug_memory.mr);
1373 }
1374
1375 /* Initialize PC system firmware */
1376 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1377
1378 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1379 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1380 &error_fatal);
1381 vmstate_register_ram_global(option_rom_mr);
1382 memory_region_add_subregion_overlap(rom_memory,
1383 PC_ROM_MIN_VGA,
1384 option_rom_mr,
1385 1);
1386
1387 fw_cfg = bochs_bios_init(&address_space_memory);
1388
1389 rom_set_fw(fw_cfg);
1390
1391 if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1392 uint64_t *val = g_malloc(sizeof(*val));
1393 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1394 uint64_t res_mem_end = pcms->hotplug_memory.base;
1395
1396 if (!pcmc->broken_reserved_end) {
1397 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1398 }
1399 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1400 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1401 }
1402
1403 if (linux_boot) {
1404 load_linux(pcms, fw_cfg);
1405 }
1406
1407 for (i = 0; i < nb_option_roms; i++) {
1408 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1409 }
1410 guest_info->fw_cfg = fw_cfg;
1411 return fw_cfg;
1412 }
1413
1414 qemu_irq pc_allocate_cpu_irq(void)
1415 {
1416 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1417 }
1418
1419 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1420 {
1421 DeviceState *dev = NULL;
1422
1423 if (pci_bus) {
1424 PCIDevice *pcidev = pci_vga_init(pci_bus);
1425 dev = pcidev ? &pcidev->qdev : NULL;
1426 } else if (isa_bus) {
1427 ISADevice *isadev = isa_vga_init(isa_bus);
1428 dev = isadev ? DEVICE(isadev) : NULL;
1429 }
1430 return dev;
1431 }
1432
1433 static const MemoryRegionOps ioport80_io_ops = {
1434 .write = ioport80_write,
1435 .read = ioport80_read,
1436 .endianness = DEVICE_NATIVE_ENDIAN,
1437 .impl = {
1438 .min_access_size = 1,
1439 .max_access_size = 1,
1440 },
1441 };
1442
1443 static const MemoryRegionOps ioportF0_io_ops = {
1444 .write = ioportF0_write,
1445 .read = ioportF0_read,
1446 .endianness = DEVICE_NATIVE_ENDIAN,
1447 .impl = {
1448 .min_access_size = 1,
1449 .max_access_size = 1,
1450 },
1451 };
1452
1453 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1454 ISADevice **rtc_state,
1455 bool create_fdctrl,
1456 bool no_vmport,
1457 uint32_t hpet_irqs)
1458 {
1459 int i;
1460 DriveInfo *fd[MAX_FD];
1461 DeviceState *hpet = NULL;
1462 int pit_isa_irq = 0;
1463 qemu_irq pit_alt_irq = NULL;
1464 qemu_irq rtc_irq = NULL;
1465 qemu_irq *a20_line;
1466 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1467 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1468 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1469
1470 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1471 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1472
1473 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1474 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1475
1476 /*
1477 * Check if an HPET shall be created.
1478 *
1479 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1480 * when the HPET wants to take over. Thus we have to disable the latter.
1481 */
1482 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1483 /* In order to set property, here not using sysbus_try_create_simple */
1484 hpet = qdev_try_create(NULL, TYPE_HPET);
1485 if (hpet) {
1486 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1487 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1488 * IRQ8 and IRQ2.
1489 */
1490 uint8_t compat = object_property_get_int(OBJECT(hpet),
1491 HPET_INTCAP, NULL);
1492 if (!compat) {
1493 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1494 }
1495 qdev_init_nofail(hpet);
1496 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1497
1498 for (i = 0; i < GSI_NUM_PINS; i++) {
1499 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1500 }
1501 pit_isa_irq = -1;
1502 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1503 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1504 }
1505 }
1506 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1507
1508 qemu_register_boot_set(pc_boot_set, *rtc_state);
1509
1510 if (!xen_enabled()) {
1511 if (kvm_pit_in_kernel()) {
1512 pit = kvm_pit_init(isa_bus, 0x40);
1513 } else {
1514 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1515 }
1516 if (hpet) {
1517 /* connect PIT to output control line of the HPET */
1518 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1519 }
1520 pcspk_init(isa_bus, pit);
1521 }
1522
1523 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1524 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1525
1526 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1527 i8042 = isa_create_simple(isa_bus, "i8042");
1528 i8042_setup_a20_line(i8042, &a20_line[0]);
1529 if (!no_vmport) {
1530 vmport_init(isa_bus);
1531 vmmouse = isa_try_create(isa_bus, "vmmouse");
1532 } else {
1533 vmmouse = NULL;
1534 }
1535 if (vmmouse) {
1536 DeviceState *dev = DEVICE(vmmouse);
1537 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1538 qdev_init_nofail(dev);
1539 }
1540 port92 = isa_create_simple(isa_bus, "port92");
1541 port92_init(port92, &a20_line[1]);
1542
1543 DMA_init(0);
1544
1545 for(i = 0; i < MAX_FD; i++) {
1546 fd[i] = drive_get(IF_FLOPPY, 0, i);
1547 create_fdctrl |= !!fd[i];
1548 }
1549 if (create_fdctrl) {
1550 fdctrl_init_isa(isa_bus, fd);
1551 }
1552 }
1553
1554 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1555 {
1556 int i;
1557
1558 for (i = 0; i < nb_nics; i++) {
1559 NICInfo *nd = &nd_table[i];
1560
1561 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1562 pc_init_ne2k_isa(isa_bus, nd);
1563 } else {
1564 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1565 }
1566 }
1567 }
1568
1569 void pc_pci_device_init(PCIBus *pci_bus)
1570 {
1571 int max_bus;
1572 int bus;
1573
1574 max_bus = drive_get_max_bus(IF_SCSI);
1575 for (bus = 0; bus <= max_bus; bus++) {
1576 pci_create_simple(pci_bus, -1, "lsi53c895a");
1577 }
1578 }
1579
1580 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1581 {
1582 DeviceState *dev;
1583 SysBusDevice *d;
1584 unsigned int i;
1585
1586 if (kvm_ioapic_in_kernel()) {
1587 dev = qdev_create(NULL, "kvm-ioapic");
1588 } else {
1589 dev = qdev_create(NULL, "ioapic");
1590 }
1591 if (parent_name) {
1592 object_property_add_child(object_resolve_path(parent_name, NULL),
1593 "ioapic", OBJECT(dev), NULL);
1594 }
1595 qdev_init_nofail(dev);
1596 d = SYS_BUS_DEVICE(dev);
1597 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1598
1599 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1600 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1601 }
1602 }
1603
1604 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1605 DeviceState *dev, Error **errp)
1606 {
1607 HotplugHandlerClass *hhc;
1608 Error *local_err = NULL;
1609 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1610 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1611 PCDIMMDevice *dimm = PC_DIMM(dev);
1612 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1613 MemoryRegion *mr = ddc->get_memory_region(dimm);
1614 uint64_t align = TARGET_PAGE_SIZE;
1615
1616 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1617 align = memory_region_get_alignment(mr);
1618 }
1619
1620 if (!pcms->acpi_dev) {
1621 error_setg(&local_err,
1622 "memory hotplug is not enabled: missing acpi device");
1623 goto out;
1624 }
1625
1626 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1627 if (local_err) {
1628 goto out;
1629 }
1630
1631 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1632 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1633 out:
1634 error_propagate(errp, local_err);
1635 }
1636
1637 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1638 DeviceState *dev, Error **errp)
1639 {
1640 HotplugHandlerClass *hhc;
1641 Error *local_err = NULL;
1642 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1643
1644 if (!pcms->acpi_dev) {
1645 error_setg(&local_err,
1646 "memory hotplug is not enabled: missing acpi device");
1647 goto out;
1648 }
1649
1650 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1651 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1652
1653 out:
1654 error_propagate(errp, local_err);
1655 }
1656
1657 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1658 DeviceState *dev, Error **errp)
1659 {
1660 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1661 PCDIMMDevice *dimm = PC_DIMM(dev);
1662 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1663 MemoryRegion *mr = ddc->get_memory_region(dimm);
1664 HotplugHandlerClass *hhc;
1665 Error *local_err = NULL;
1666
1667 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1668 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1669
1670 if (local_err) {
1671 goto out;
1672 }
1673
1674 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1675 object_unparent(OBJECT(dev));
1676
1677 out:
1678 error_propagate(errp, local_err);
1679 }
1680
1681 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1682 DeviceState *dev, Error **errp)
1683 {
1684 HotplugHandlerClass *hhc;
1685 Error *local_err = NULL;
1686 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1687
1688 if (!dev->hotplugged) {
1689 goto out;
1690 }
1691
1692 if (!pcms->acpi_dev) {
1693 error_setg(&local_err,
1694 "cpu hotplug is not enabled: missing acpi device");
1695 goto out;
1696 }
1697
1698 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1699 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1700 if (local_err) {
1701 goto out;
1702 }
1703
1704 /* increment the number of CPUs */
1705 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1706 out:
1707 error_propagate(errp, local_err);
1708 }
1709
1710 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1711 DeviceState *dev, Error **errp)
1712 {
1713 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1714 pc_dimm_plug(hotplug_dev, dev, errp);
1715 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1716 pc_cpu_plug(hotplug_dev, dev, errp);
1717 }
1718 }
1719
1720 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1721 DeviceState *dev, Error **errp)
1722 {
1723 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1724 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1725 } else {
1726 error_setg(errp, "acpi: device unplug request for not supported device"
1727 " type: %s", object_get_typename(OBJECT(dev)));
1728 }
1729 }
1730
1731 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1732 DeviceState *dev, Error **errp)
1733 {
1734 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1735 pc_dimm_unplug(hotplug_dev, dev, errp);
1736 } else {
1737 error_setg(errp, "acpi: device unplug for not supported device"
1738 " type: %s", object_get_typename(OBJECT(dev)));
1739 }
1740 }
1741
1742 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1743 DeviceState *dev)
1744 {
1745 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1746
1747 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1748 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1749 return HOTPLUG_HANDLER(machine);
1750 }
1751
1752 return pcmc->get_hotplug_handler ?
1753 pcmc->get_hotplug_handler(machine, dev) : NULL;
1754 }
1755
1756 static void
1757 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1758 const char *name, Error **errp)
1759 {
1760 PCMachineState *pcms = PC_MACHINE(obj);
1761 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1762
1763 visit_type_int(v, &value, name, errp);
1764 }
1765
1766 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1767 void *opaque, const char *name,
1768 Error **errp)
1769 {
1770 PCMachineState *pcms = PC_MACHINE(obj);
1771 uint64_t value = pcms->max_ram_below_4g;
1772
1773 visit_type_size(v, &value, name, errp);
1774 }
1775
1776 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1777 void *opaque, const char *name,
1778 Error **errp)
1779 {
1780 PCMachineState *pcms = PC_MACHINE(obj);
1781 Error *error = NULL;
1782 uint64_t value;
1783
1784 visit_type_size(v, &value, name, &error);
1785 if (error) {
1786 error_propagate(errp, error);
1787 return;
1788 }
1789 if (value > (1ULL << 32)) {
1790 error_setg(&error,
1791 "Machine option 'max-ram-below-4g=%"PRIu64
1792 "' expects size less than or equal to 4G", value);
1793 error_propagate(errp, error);
1794 return;
1795 }
1796
1797 if (value < (1ULL << 20)) {
1798 error_report("Warning: small max_ram_below_4g(%"PRIu64
1799 ") less than 1M. BIOS may not work..",
1800 value);
1801 }
1802
1803 pcms->max_ram_below_4g = value;
1804 }
1805
1806 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1807 const char *name, Error **errp)
1808 {
1809 PCMachineState *pcms = PC_MACHINE(obj);
1810 OnOffAuto vmport = pcms->vmport;
1811
1812 visit_type_OnOffAuto(v, &vmport, name, errp);
1813 }
1814
1815 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1816 const char *name, Error **errp)
1817 {
1818 PCMachineState *pcms = PC_MACHINE(obj);
1819
1820 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1821 }
1822
1823 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1824 {
1825 bool smm_available = false;
1826
1827 if (pcms->smm == ON_OFF_AUTO_OFF) {
1828 return false;
1829 }
1830
1831 if (tcg_enabled() || qtest_enabled()) {
1832 smm_available = true;
1833 } else if (kvm_enabled()) {
1834 smm_available = kvm_has_smm();
1835 }
1836
1837 if (smm_available) {
1838 return true;
1839 }
1840
1841 if (pcms->smm == ON_OFF_AUTO_ON) {
1842 error_report("System Management Mode not supported by this hypervisor.");
1843 exit(1);
1844 }
1845 return false;
1846 }
1847
1848 static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
1849 const char *name, Error **errp)
1850 {
1851 PCMachineState *pcms = PC_MACHINE(obj);
1852 OnOffAuto smm = pcms->smm;
1853
1854 visit_type_OnOffAuto(v, &smm, name, errp);
1855 }
1856
1857 static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
1858 const char *name, Error **errp)
1859 {
1860 PCMachineState *pcms = PC_MACHINE(obj);
1861
1862 visit_type_OnOffAuto(v, &pcms->smm, name, errp);
1863 }
1864
1865 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
1866 {
1867 PCMachineState *pcms = PC_MACHINE(obj);
1868
1869 return pcms->nvdimm;
1870 }
1871
1872 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
1873 {
1874 PCMachineState *pcms = PC_MACHINE(obj);
1875
1876 pcms->nvdimm = value;
1877 }
1878
1879 static void pc_machine_initfn(Object *obj)
1880 {
1881 PCMachineState *pcms = PC_MACHINE(obj);
1882
1883 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1884 pc_machine_get_hotplug_memory_region_size,
1885 NULL, NULL, NULL, &error_abort);
1886
1887 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1888 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1889 pc_machine_get_max_ram_below_4g,
1890 pc_machine_set_max_ram_below_4g,
1891 NULL, NULL, &error_abort);
1892 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1893 "Maximum ram below the 4G boundary (32bit boundary)",
1894 &error_abort);
1895
1896 pcms->smm = ON_OFF_AUTO_AUTO;
1897 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1898 pc_machine_get_smm,
1899 pc_machine_set_smm,
1900 NULL, NULL, &error_abort);
1901 object_property_set_description(obj, PC_MACHINE_SMM,
1902 "Enable SMM (pc & q35)",
1903 &error_abort);
1904
1905 pcms->vmport = ON_OFF_AUTO_AUTO;
1906 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1907 pc_machine_get_vmport,
1908 pc_machine_set_vmport,
1909 NULL, NULL, &error_abort);
1910 object_property_set_description(obj, PC_MACHINE_VMPORT,
1911 "Enable vmport (pc & q35)",
1912 &error_abort);
1913
1914 /* nvdimm is disabled on default. */
1915 pcms->nvdimm = false;
1916 object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
1917 pc_machine_set_nvdimm, &error_abort);
1918 }
1919
1920 static void pc_machine_reset(void)
1921 {
1922 CPUState *cs;
1923 X86CPU *cpu;
1924
1925 qemu_devices_reset();
1926
1927 /* Reset APIC after devices have been reset to cancel
1928 * any changes that qemu_devices_reset() might have done.
1929 */
1930 CPU_FOREACH(cs) {
1931 cpu = X86_CPU(cs);
1932
1933 if (cpu->apic_state) {
1934 device_reset(cpu->apic_state);
1935 }
1936 }
1937 }
1938
1939 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1940 {
1941 X86CPUTopoInfo topo;
1942 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1943 &topo);
1944 return topo.pkg_id;
1945 }
1946
1947 static void pc_machine_class_init(ObjectClass *oc, void *data)
1948 {
1949 MachineClass *mc = MACHINE_CLASS(oc);
1950 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1951 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1952
1953 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1954 pcmc->pci_enabled = true;
1955 pcmc->has_acpi_build = true;
1956 pcmc->rsdp_in_ram = true;
1957 pcmc->smbios_defaults = true;
1958 pcmc->smbios_uuid_encoded = true;
1959 pcmc->gigabyte_align = true;
1960 pcmc->has_reserved_memory = true;
1961 pcmc->kvmclock_enabled = true;
1962 pcmc->enforce_aligned_dimm = true;
1963 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
1964 * to be used at the moment, 32K should be enough for a while. */
1965 pcmc->acpi_data_size = 0x20000 + 0x8000;
1966 pcmc->save_tsc_khz = true;
1967 mc->get_hotplug_handler = pc_get_hotpug_handler;
1968 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1969 mc->default_boot_order = "cad";
1970 mc->hot_add_cpu = pc_hot_add_cpu;
1971 mc->max_cpus = 255;
1972 mc->reset = pc_machine_reset;
1973 hc->plug = pc_machine_device_plug_cb;
1974 hc->unplug_request = pc_machine_device_unplug_request_cb;
1975 hc->unplug = pc_machine_device_unplug_cb;
1976 }
1977
1978 static const TypeInfo pc_machine_info = {
1979 .name = TYPE_PC_MACHINE,
1980 .parent = TYPE_MACHINE,
1981 .abstract = true,
1982 .instance_size = sizeof(PCMachineState),
1983 .instance_init = pc_machine_initfn,
1984 .class_size = sizeof(PCMachineClass),
1985 .class_init = pc_machine_class_init,
1986 .interfaces = (InterfaceInfo[]) {
1987 { TYPE_HOTPLUG_HANDLER },
1988 { }
1989 },
1990 };
1991
1992 static void pc_machine_register_types(void)
1993 {
1994 type_register_static(&pc_machine_info);
1995 }
1996
1997 type_init(pc_machine_register_types)