]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
compat: replace PC_COMPAT_2_4 & HW_COMPAT_2_4 macros
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...) \
83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93
94 #define E820_NR_ENTRIES 16
95
96 struct e820_entry {
97 uint64_t address;
98 uint64_t length;
99 uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 struct e820_table {
103 uint32_t count;
104 struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111
112 GlobalProperty pc_compat_3_1[] = {
113 {
114 .driver = "intel-iommu",
115 .property = "dma-drain",
116 .value = "off",
117 },
118 };
119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
120
121 GlobalProperty pc_compat_3_0[] = {
122 {
123 .driver = TYPE_X86_CPU,
124 .property = "x-hv-synic-kvm-only",
125 .value = "on",
126 },{
127 .driver = "Skylake-Server" "-" TYPE_X86_CPU,
128 .property = "pku",
129 .value = "off",
130 },{
131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU,
132 .property = "pku",
133 .value = "off",
134 },
135 };
136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
137
138 GlobalProperty pc_compat_2_12[] = {
139 {
140 .driver = TYPE_X86_CPU,
141 .property = "legacy-cache",
142 .value = "on",
143 },{
144 .driver = TYPE_X86_CPU,
145 .property = "topoext",
146 .value = "off",
147 },{
148 .driver = "EPYC-" TYPE_X86_CPU,
149 .property = "xlevel",
150 .value = stringify(0x8000000a),
151 },{
152 .driver = "EPYC-IBPB-" TYPE_X86_CPU,
153 .property = "xlevel",
154 .value = stringify(0x8000000a),
155 },
156 };
157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
158
159 GlobalProperty pc_compat_2_11[] = {
160 {
161 .driver = TYPE_X86_CPU,
162 .property = "x-migrate-smi-count",
163 .value = "off",
164 },{
165 .driver = "Skylake-Server" "-" TYPE_X86_CPU,
166 .property = "clflushopt",
167 .value = "off",
168 },
169 };
170 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
171
172 GlobalProperty pc_compat_2_10[] = {
173 {
174 .driver = TYPE_X86_CPU,
175 .property = "x-hv-max-vps",
176 .value = "0x40",
177 },{
178 .driver = "i440FX-pcihost",
179 .property = "x-pci-hole64-fix",
180 .value = "off",
181 },{
182 .driver = "q35-pcihost",
183 .property = "x-pci-hole64-fix",
184 .value = "off",
185 },
186 };
187 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
188
189 GlobalProperty pc_compat_2_9[] = {
190 {
191 .driver = "mch",
192 .property = "extended-tseg-mbytes",
193 .value = stringify(0),
194 },
195 };
196 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
197
198 GlobalProperty pc_compat_2_8[] = {
199 {
200 .driver = TYPE_X86_CPU,
201 .property = "tcg-cpuid",
202 .value = "off",
203 },
204 {
205 .driver = "kvmclock",
206 .property = "x-mach-use-reliable-get-clock",
207 .value = "off",
208 },
209 {
210 .driver = "ICH9-LPC",
211 .property = "x-smi-broadcast",
212 .value = "off",
213 },
214 {
215 .driver = TYPE_X86_CPU,
216 .property = "vmware-cpuid-freq",
217 .value = "off",
218 },
219 {
220 .driver = "Haswell-" TYPE_X86_CPU,
221 .property = "stepping",
222 .value = "1",
223 },
224 };
225 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
226
227 GlobalProperty pc_compat_2_7[] = {
228 {
229 .driver = TYPE_X86_CPU,
230 .property = "l3-cache",
231 .value = "off",
232 },
233 {
234 .driver = TYPE_X86_CPU,
235 .property = "full-cpuid-auto-level",
236 .value = "off",
237 },
238 {
239 .driver = "Opteron_G3" "-" TYPE_X86_CPU,
240 .property = "family",
241 .value = "15",
242 },
243 {
244 .driver = "Opteron_G3" "-" TYPE_X86_CPU,
245 .property = "model",
246 .value = "6",
247 },
248 {
249 .driver = "Opteron_G3" "-" TYPE_X86_CPU,
250 .property = "stepping",
251 .value = "1",
252 },
253 {
254 .driver = "isa-pcspk",
255 .property = "migrate",
256 .value = "off",
257 },
258 };
259 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
260
261 GlobalProperty pc_compat_2_6[] = {
262 {
263 .driver = TYPE_X86_CPU,
264 .property = "cpuid-0xb",
265 .value = "off",
266 },{
267 .driver = "vmxnet3",
268 .property = "romfile",
269 .value = "",
270 },
271 {
272 .driver = TYPE_X86_CPU,
273 .property = "fill-mtrr-mask",
274 .value = "off",
275 },
276 {
277 .driver = "apic-common",
278 .property = "legacy-instance-id",
279 .value = "on",
280 }
281 };
282 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
283
284 GlobalProperty pc_compat_2_5[] = {};
285 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
286
287 GlobalProperty pc_compat_2_4[] = {
288 PC_CPU_MODEL_IDS("2.4.0")
289 {
290 .driver = "Haswell-" TYPE_X86_CPU,
291 .property = "abm",
292 .value = "off",
293 },
294 {
295 .driver = "Haswell-noTSX-" TYPE_X86_CPU,
296 .property = "abm",
297 .value = "off",
298 },
299 {
300 .driver = "Broadwell-" TYPE_X86_CPU,
301 .property = "abm",
302 .value = "off",
303 },
304 {
305 .driver = "Broadwell-noTSX-" TYPE_X86_CPU,
306 .property = "abm",
307 .value = "off",
308 },
309 {
310 .driver = "host" "-" TYPE_X86_CPU,
311 .property = "host-cache-info",
312 .value = "on",
313 },
314 {
315 .driver = TYPE_X86_CPU,
316 .property = "check",
317 .value = "off",
318 },
319 {
320 .driver = "qemu64" "-" TYPE_X86_CPU,
321 .property = "sse4a",
322 .value = "on",
323 },
324 {
325 .driver = "qemu64" "-" TYPE_X86_CPU,
326 .property = "abm",
327 .value = "on",
328 },
329 {
330 .driver = "qemu64" "-" TYPE_X86_CPU,
331 .property = "popcnt",
332 .value = "on",
333 },
334 {
335 .driver = "qemu32" "-" TYPE_X86_CPU,
336 .property = "popcnt",
337 .value = "on",
338 },{
339 .driver = "Opteron_G2" "-" TYPE_X86_CPU,
340 .property = "rdtscp",
341 .value = "on",
342 },{
343 .driver = "Opteron_G3" "-" TYPE_X86_CPU,
344 .property = "rdtscp",
345 .value = "on",
346 },{
347 .driver = "Opteron_G4" "-" TYPE_X86_CPU,
348 .property = "rdtscp",
349 .value = "on",
350 },{
351 .driver = "Opteron_G5" "-" TYPE_X86_CPU,
352 .property = "rdtscp",
353 .value = "on",
354 }
355 };
356 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
357
358 void gsi_handler(void *opaque, int n, int level)
359 {
360 GSIState *s = opaque;
361
362 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
363 if (n < ISA_NUM_IRQS) {
364 qemu_set_irq(s->i8259_irq[n], level);
365 }
366 qemu_set_irq(s->ioapic_irq[n], level);
367 }
368
369 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
370 unsigned size)
371 {
372 }
373
374 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
375 {
376 return 0xffffffffffffffffULL;
377 }
378
379 /* MSDOS compatibility mode FPU exception support */
380 static qemu_irq ferr_irq;
381
382 void pc_register_ferr_irq(qemu_irq irq)
383 {
384 ferr_irq = irq;
385 }
386
387 /* XXX: add IGNNE support */
388 void cpu_set_ferr(CPUX86State *s)
389 {
390 qemu_irq_raise(ferr_irq);
391 }
392
393 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
394 unsigned size)
395 {
396 qemu_irq_lower(ferr_irq);
397 }
398
399 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
400 {
401 return 0xffffffffffffffffULL;
402 }
403
404 /* TSC handling */
405 uint64_t cpu_get_tsc(CPUX86State *env)
406 {
407 return cpu_get_ticks();
408 }
409
410 /* IRQ handling */
411 int cpu_get_pic_interrupt(CPUX86State *env)
412 {
413 X86CPU *cpu = x86_env_get_cpu(env);
414 int intno;
415
416 if (!kvm_irqchip_in_kernel()) {
417 intno = apic_get_interrupt(cpu->apic_state);
418 if (intno >= 0) {
419 return intno;
420 }
421 /* read the irq from the PIC */
422 if (!apic_accept_pic_intr(cpu->apic_state)) {
423 return -1;
424 }
425 }
426
427 intno = pic_read_irq(isa_pic);
428 return intno;
429 }
430
431 static void pic_irq_request(void *opaque, int irq, int level)
432 {
433 CPUState *cs = first_cpu;
434 X86CPU *cpu = X86_CPU(cs);
435
436 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
437 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
438 CPU_FOREACH(cs) {
439 cpu = X86_CPU(cs);
440 if (apic_accept_pic_intr(cpu->apic_state)) {
441 apic_deliver_pic_intr(cpu->apic_state, level);
442 }
443 }
444 } else {
445 if (level) {
446 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
447 } else {
448 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
449 }
450 }
451 }
452
453 /* PC cmos mappings */
454
455 #define REG_EQUIPMENT_BYTE 0x14
456
457 int cmos_get_fd_drive_type(FloppyDriveType fd0)
458 {
459 int val;
460
461 switch (fd0) {
462 case FLOPPY_DRIVE_TYPE_144:
463 /* 1.44 Mb 3"5 drive */
464 val = 4;
465 break;
466 case FLOPPY_DRIVE_TYPE_288:
467 /* 2.88 Mb 3"5 drive */
468 val = 5;
469 break;
470 case FLOPPY_DRIVE_TYPE_120:
471 /* 1.2 Mb 5"5 drive */
472 val = 2;
473 break;
474 case FLOPPY_DRIVE_TYPE_NONE:
475 default:
476 val = 0;
477 break;
478 }
479 return val;
480 }
481
482 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
483 int16_t cylinders, int8_t heads, int8_t sectors)
484 {
485 rtc_set_memory(s, type_ofs, 47);
486 rtc_set_memory(s, info_ofs, cylinders);
487 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
488 rtc_set_memory(s, info_ofs + 2, heads);
489 rtc_set_memory(s, info_ofs + 3, 0xff);
490 rtc_set_memory(s, info_ofs + 4, 0xff);
491 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
492 rtc_set_memory(s, info_ofs + 6, cylinders);
493 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
494 rtc_set_memory(s, info_ofs + 8, sectors);
495 }
496
497 /* convert boot_device letter to something recognizable by the bios */
498 static int boot_device2nibble(char boot_device)
499 {
500 switch(boot_device) {
501 case 'a':
502 case 'b':
503 return 0x01; /* floppy boot */
504 case 'c':
505 return 0x02; /* hard drive boot */
506 case 'd':
507 return 0x03; /* CD-ROM boot */
508 case 'n':
509 return 0x04; /* Network boot */
510 }
511 return 0;
512 }
513
514 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
515 {
516 #define PC_MAX_BOOT_DEVICES 3
517 int nbds, bds[3] = { 0, };
518 int i;
519
520 nbds = strlen(boot_device);
521 if (nbds > PC_MAX_BOOT_DEVICES) {
522 error_setg(errp, "Too many boot devices for PC");
523 return;
524 }
525 for (i = 0; i < nbds; i++) {
526 bds[i] = boot_device2nibble(boot_device[i]);
527 if (bds[i] == 0) {
528 error_setg(errp, "Invalid boot device for PC: '%c'",
529 boot_device[i]);
530 return;
531 }
532 }
533 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
534 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
535 }
536
537 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
538 {
539 set_boot_dev(opaque, boot_device, errp);
540 }
541
542 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
543 {
544 int val, nb, i;
545 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
546 FLOPPY_DRIVE_TYPE_NONE };
547
548 /* floppy type */
549 if (floppy) {
550 for (i = 0; i < 2; i++) {
551 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
552 }
553 }
554 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
555 cmos_get_fd_drive_type(fd_type[1]);
556 rtc_set_memory(rtc_state, 0x10, val);
557
558 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
559 nb = 0;
560 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
561 nb++;
562 }
563 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
564 nb++;
565 }
566 switch (nb) {
567 case 0:
568 break;
569 case 1:
570 val |= 0x01; /* 1 drive, ready for boot */
571 break;
572 case 2:
573 val |= 0x41; /* 2 drives, ready for boot */
574 break;
575 }
576 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
577 }
578
579 typedef struct pc_cmos_init_late_arg {
580 ISADevice *rtc_state;
581 BusState *idebus[2];
582 } pc_cmos_init_late_arg;
583
584 typedef struct check_fdc_state {
585 ISADevice *floppy;
586 bool multiple;
587 } CheckFdcState;
588
589 static int check_fdc(Object *obj, void *opaque)
590 {
591 CheckFdcState *state = opaque;
592 Object *fdc;
593 uint32_t iobase;
594 Error *local_err = NULL;
595
596 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
597 if (!fdc) {
598 return 0;
599 }
600
601 iobase = object_property_get_uint(obj, "iobase", &local_err);
602 if (local_err || iobase != 0x3f0) {
603 error_free(local_err);
604 return 0;
605 }
606
607 if (state->floppy) {
608 state->multiple = true;
609 } else {
610 state->floppy = ISA_DEVICE(obj);
611 }
612 return 0;
613 }
614
615 static const char * const fdc_container_path[] = {
616 "/unattached", "/peripheral", "/peripheral-anon"
617 };
618
619 /*
620 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
621 * and ACPI objects.
622 */
623 ISADevice *pc_find_fdc0(void)
624 {
625 int i;
626 Object *container;
627 CheckFdcState state = { 0 };
628
629 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
630 container = container_get(qdev_get_machine(), fdc_container_path[i]);
631 object_child_foreach(container, check_fdc, &state);
632 }
633
634 if (state.multiple) {
635 warn_report("multiple floppy disk controllers with "
636 "iobase=0x3f0 have been found");
637 error_printf("the one being picked for CMOS setup might not reflect "
638 "your intent");
639 }
640
641 return state.floppy;
642 }
643
644 static void pc_cmos_init_late(void *opaque)
645 {
646 pc_cmos_init_late_arg *arg = opaque;
647 ISADevice *s = arg->rtc_state;
648 int16_t cylinders;
649 int8_t heads, sectors;
650 int val;
651 int i, trans;
652
653 val = 0;
654 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
655 &cylinders, &heads, &sectors) >= 0) {
656 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
657 val |= 0xf0;
658 }
659 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
660 &cylinders, &heads, &sectors) >= 0) {
661 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
662 val |= 0x0f;
663 }
664 rtc_set_memory(s, 0x12, val);
665
666 val = 0;
667 for (i = 0; i < 4; i++) {
668 /* NOTE: ide_get_geometry() returns the physical
669 geometry. It is always such that: 1 <= sects <= 63, 1
670 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
671 geometry can be different if a translation is done. */
672 if (arg->idebus[i / 2] &&
673 ide_get_geometry(arg->idebus[i / 2], i % 2,
674 &cylinders, &heads, &sectors) >= 0) {
675 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
676 assert((trans & ~3) == 0);
677 val |= trans << (i * 2);
678 }
679 }
680 rtc_set_memory(s, 0x39, val);
681
682 pc_cmos_init_floppy(s, pc_find_fdc0());
683
684 qemu_unregister_reset(pc_cmos_init_late, opaque);
685 }
686
687 void pc_cmos_init(PCMachineState *pcms,
688 BusState *idebus0, BusState *idebus1,
689 ISADevice *s)
690 {
691 int val;
692 static pc_cmos_init_late_arg arg;
693
694 /* various important CMOS locations needed by PC/Bochs bios */
695
696 /* memory size */
697 /* base memory (first MiB) */
698 val = MIN(pcms->below_4g_mem_size / KiB, 640);
699 rtc_set_memory(s, 0x15, val);
700 rtc_set_memory(s, 0x16, val >> 8);
701 /* extended memory (next 64MiB) */
702 if (pcms->below_4g_mem_size > 1 * MiB) {
703 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
704 } else {
705 val = 0;
706 }
707 if (val > 65535)
708 val = 65535;
709 rtc_set_memory(s, 0x17, val);
710 rtc_set_memory(s, 0x18, val >> 8);
711 rtc_set_memory(s, 0x30, val);
712 rtc_set_memory(s, 0x31, val >> 8);
713 /* memory between 16MiB and 4GiB */
714 if (pcms->below_4g_mem_size > 16 * MiB) {
715 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
716 } else {
717 val = 0;
718 }
719 if (val > 65535)
720 val = 65535;
721 rtc_set_memory(s, 0x34, val);
722 rtc_set_memory(s, 0x35, val >> 8);
723 /* memory above 4GiB */
724 val = pcms->above_4g_mem_size / 65536;
725 rtc_set_memory(s, 0x5b, val);
726 rtc_set_memory(s, 0x5c, val >> 8);
727 rtc_set_memory(s, 0x5d, val >> 16);
728
729 object_property_add_link(OBJECT(pcms), "rtc_state",
730 TYPE_ISA_DEVICE,
731 (Object **)&pcms->rtc,
732 object_property_allow_set_link,
733 OBJ_PROP_LINK_STRONG, &error_abort);
734 object_property_set_link(OBJECT(pcms), OBJECT(s),
735 "rtc_state", &error_abort);
736
737 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
738
739 val = 0;
740 val |= 0x02; /* FPU is there */
741 val |= 0x04; /* PS/2 mouse installed */
742 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
743
744 /* hard drives and FDC */
745 arg.rtc_state = s;
746 arg.idebus[0] = idebus0;
747 arg.idebus[1] = idebus1;
748 qemu_register_reset(pc_cmos_init_late, &arg);
749 }
750
751 #define TYPE_PORT92 "port92"
752 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
753
754 /* port 92 stuff: could be split off */
755 typedef struct Port92State {
756 ISADevice parent_obj;
757
758 MemoryRegion io;
759 uint8_t outport;
760 qemu_irq a20_out;
761 } Port92State;
762
763 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
764 unsigned size)
765 {
766 Port92State *s = opaque;
767 int oldval = s->outport;
768
769 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
770 s->outport = val;
771 qemu_set_irq(s->a20_out, (val >> 1) & 1);
772 if ((val & 1) && !(oldval & 1)) {
773 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
774 }
775 }
776
777 static uint64_t port92_read(void *opaque, hwaddr addr,
778 unsigned size)
779 {
780 Port92State *s = opaque;
781 uint32_t ret;
782
783 ret = s->outport;
784 DPRINTF("port92: read 0x%02x\n", ret);
785 return ret;
786 }
787
788 static void port92_init(ISADevice *dev, qemu_irq a20_out)
789 {
790 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
791 }
792
793 static const VMStateDescription vmstate_port92_isa = {
794 .name = "port92",
795 .version_id = 1,
796 .minimum_version_id = 1,
797 .fields = (VMStateField[]) {
798 VMSTATE_UINT8(outport, Port92State),
799 VMSTATE_END_OF_LIST()
800 }
801 };
802
803 static void port92_reset(DeviceState *d)
804 {
805 Port92State *s = PORT92(d);
806
807 s->outport &= ~1;
808 }
809
810 static const MemoryRegionOps port92_ops = {
811 .read = port92_read,
812 .write = port92_write,
813 .impl = {
814 .min_access_size = 1,
815 .max_access_size = 1,
816 },
817 .endianness = DEVICE_LITTLE_ENDIAN,
818 };
819
820 static void port92_initfn(Object *obj)
821 {
822 Port92State *s = PORT92(obj);
823
824 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
825
826 s->outport = 0;
827
828 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
829 }
830
831 static void port92_realizefn(DeviceState *dev, Error **errp)
832 {
833 ISADevice *isadev = ISA_DEVICE(dev);
834 Port92State *s = PORT92(dev);
835
836 isa_register_ioport(isadev, &s->io, 0x92);
837 }
838
839 static void port92_class_initfn(ObjectClass *klass, void *data)
840 {
841 DeviceClass *dc = DEVICE_CLASS(klass);
842
843 dc->realize = port92_realizefn;
844 dc->reset = port92_reset;
845 dc->vmsd = &vmstate_port92_isa;
846 /*
847 * Reason: unlike ordinary ISA devices, this one needs additional
848 * wiring: its A20 output line needs to be wired up by
849 * port92_init().
850 */
851 dc->user_creatable = false;
852 }
853
854 static const TypeInfo port92_info = {
855 .name = TYPE_PORT92,
856 .parent = TYPE_ISA_DEVICE,
857 .instance_size = sizeof(Port92State),
858 .instance_init = port92_initfn,
859 .class_init = port92_class_initfn,
860 };
861
862 static void port92_register_types(void)
863 {
864 type_register_static(&port92_info);
865 }
866
867 type_init(port92_register_types)
868
869 static void handle_a20_line_change(void *opaque, int irq, int level)
870 {
871 X86CPU *cpu = opaque;
872
873 /* XXX: send to all CPUs ? */
874 /* XXX: add logic to handle multiple A20 line sources */
875 x86_cpu_set_a20(cpu, level);
876 }
877
878 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
879 {
880 int index = le32_to_cpu(e820_reserve.count);
881 struct e820_entry *entry;
882
883 if (type != E820_RAM) {
884 /* old FW_CFG_E820_TABLE entry -- reservations only */
885 if (index >= E820_NR_ENTRIES) {
886 return -EBUSY;
887 }
888 entry = &e820_reserve.entry[index++];
889
890 entry->address = cpu_to_le64(address);
891 entry->length = cpu_to_le64(length);
892 entry->type = cpu_to_le32(type);
893
894 e820_reserve.count = cpu_to_le32(index);
895 }
896
897 /* new "etc/e820" file -- include ram too */
898 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
899 e820_table[e820_entries].address = cpu_to_le64(address);
900 e820_table[e820_entries].length = cpu_to_le64(length);
901 e820_table[e820_entries].type = cpu_to_le32(type);
902 e820_entries++;
903
904 return e820_entries;
905 }
906
907 int e820_get_num_entries(void)
908 {
909 return e820_entries;
910 }
911
912 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
913 {
914 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
915 *address = le64_to_cpu(e820_table[idx].address);
916 *length = le64_to_cpu(e820_table[idx].length);
917 return true;
918 }
919 return false;
920 }
921
922 /* Enables contiguous-apic-ID mode, for compatibility */
923 static bool compat_apic_id_mode;
924
925 void enable_compat_apic_id_mode(void)
926 {
927 compat_apic_id_mode = true;
928 }
929
930 /* Calculates initial APIC ID for a specific CPU index
931 *
932 * Currently we need to be able to calculate the APIC ID from the CPU index
933 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
934 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
935 * all CPUs up to max_cpus.
936 */
937 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
938 {
939 uint32_t correct_id;
940 static bool warned;
941
942 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
943 if (compat_apic_id_mode) {
944 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
945 error_report("APIC IDs set in compatibility mode, "
946 "CPU topology won't match the configuration");
947 warned = true;
948 }
949 return cpu_index;
950 } else {
951 return correct_id;
952 }
953 }
954
955 static void pc_build_smbios(PCMachineState *pcms)
956 {
957 uint8_t *smbios_tables, *smbios_anchor;
958 size_t smbios_tables_len, smbios_anchor_len;
959 struct smbios_phys_mem_area *mem_array;
960 unsigned i, array_count;
961 MachineState *ms = MACHINE(pcms);
962 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
963
964 /* tell smbios about cpuid version and features */
965 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
966
967 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
968 if (smbios_tables) {
969 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
970 smbios_tables, smbios_tables_len);
971 }
972
973 /* build the array of physical mem area from e820 table */
974 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
975 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
976 uint64_t addr, len;
977
978 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
979 mem_array[array_count].address = addr;
980 mem_array[array_count].length = len;
981 array_count++;
982 }
983 }
984 smbios_get_tables(mem_array, array_count,
985 &smbios_tables, &smbios_tables_len,
986 &smbios_anchor, &smbios_anchor_len);
987 g_free(mem_array);
988
989 if (smbios_anchor) {
990 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
991 smbios_tables, smbios_tables_len);
992 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
993 smbios_anchor, smbios_anchor_len);
994 }
995 }
996
997 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
998 {
999 FWCfgState *fw_cfg;
1000 uint64_t *numa_fw_cfg;
1001 int i;
1002 const CPUArchIdList *cpus;
1003 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1004
1005 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1006 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1007
1008 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1009 *
1010 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1011 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1012 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1013 * for CPU hotplug also uses APIC ID and not "CPU index".
1014 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1015 * but the "limit to the APIC ID values SeaBIOS may see".
1016 *
1017 * So for compatibility reasons with old BIOSes we are stuck with
1018 * "etc/max-cpus" actually being apic_id_limit
1019 */
1020 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1021 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1022 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1023 acpi_tables, acpi_tables_len);
1024 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1025
1026 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1027 &e820_reserve, sizeof(e820_reserve));
1028 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1029 sizeof(struct e820_entry) * e820_entries);
1030
1031 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1032 /* allocate memory for the NUMA channel: one (64bit) word for the number
1033 * of nodes, one word for each VCPU->node and one word for each node to
1034 * hold the amount of memory.
1035 */
1036 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1037 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1038 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1039 for (i = 0; i < cpus->len; i++) {
1040 unsigned int apic_id = cpus->cpus[i].arch_id;
1041 assert(apic_id < pcms->apic_id_limit);
1042 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1043 }
1044 for (i = 0; i < nb_numa_nodes; i++) {
1045 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1046 cpu_to_le64(numa_info[i].node_mem);
1047 }
1048 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1049 (1 + pcms->apic_id_limit + nb_numa_nodes) *
1050 sizeof(*numa_fw_cfg));
1051
1052 return fw_cfg;
1053 }
1054
1055 static long get_file_size(FILE *f)
1056 {
1057 long where, size;
1058
1059 /* XXX: on Unix systems, using fstat() probably makes more sense */
1060
1061 where = ftell(f);
1062 fseek(f, 0, SEEK_END);
1063 size = ftell(f);
1064 fseek(f, where, SEEK_SET);
1065
1066 return size;
1067 }
1068
1069 /* setup_data types */
1070 #define SETUP_NONE 0
1071 #define SETUP_E820_EXT 1
1072 #define SETUP_DTB 2
1073 #define SETUP_PCI 3
1074 #define SETUP_EFI 4
1075
1076 struct setup_data {
1077 uint64_t next;
1078 uint32_t type;
1079 uint32_t len;
1080 uint8_t data[0];
1081 } __attribute__((packed));
1082
1083 static void load_linux(PCMachineState *pcms,
1084 FWCfgState *fw_cfg)
1085 {
1086 uint16_t protocol;
1087 int setup_size, kernel_size, cmdline_size;
1088 int dtb_size, setup_data_offset;
1089 uint32_t initrd_max;
1090 uint8_t header[8192], *setup, *kernel;
1091 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1092 FILE *f;
1093 char *vmode;
1094 MachineState *machine = MACHINE(pcms);
1095 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1096 struct setup_data *setup_data;
1097 const char *kernel_filename = machine->kernel_filename;
1098 const char *initrd_filename = machine->initrd_filename;
1099 const char *dtb_filename = machine->dtb;
1100 const char *kernel_cmdline = machine->kernel_cmdline;
1101
1102 /* Align to 16 bytes as a paranoia measure */
1103 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1104
1105 /* load the kernel header */
1106 f = fopen(kernel_filename, "rb");
1107 if (!f || !(kernel_size = get_file_size(f)) ||
1108 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1109 MIN(ARRAY_SIZE(header), kernel_size)) {
1110 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1111 kernel_filename, strerror(errno));
1112 exit(1);
1113 }
1114
1115 /* kernel protocol version */
1116 #if 0
1117 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1118 #endif
1119 if (ldl_p(header+0x202) == 0x53726448) {
1120 protocol = lduw_p(header+0x206);
1121 } else {
1122 /* This looks like a multiboot kernel. If it is, let's stop
1123 treating it like a Linux kernel. */
1124 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1125 kernel_cmdline, kernel_size, header)) {
1126 return;
1127 }
1128 protocol = 0;
1129 }
1130
1131 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1132 /* Low kernel */
1133 real_addr = 0x90000;
1134 cmdline_addr = 0x9a000 - cmdline_size;
1135 prot_addr = 0x10000;
1136 } else if (protocol < 0x202) {
1137 /* High but ancient kernel */
1138 real_addr = 0x90000;
1139 cmdline_addr = 0x9a000 - cmdline_size;
1140 prot_addr = 0x100000;
1141 } else {
1142 /* High and recent kernel */
1143 real_addr = 0x10000;
1144 cmdline_addr = 0x20000;
1145 prot_addr = 0x100000;
1146 }
1147
1148 #if 0
1149 fprintf(stderr,
1150 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1151 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1152 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1153 real_addr,
1154 cmdline_addr,
1155 prot_addr);
1156 #endif
1157
1158 /* highest address for loading the initrd */
1159 if (protocol >= 0x203) {
1160 initrd_max = ldl_p(header+0x22c);
1161 } else {
1162 initrd_max = 0x37ffffff;
1163 }
1164
1165 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1166 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1167 }
1168
1169 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1170 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1171 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1172
1173 if (protocol >= 0x202) {
1174 stl_p(header+0x228, cmdline_addr);
1175 } else {
1176 stw_p(header+0x20, 0xA33F);
1177 stw_p(header+0x22, cmdline_addr-real_addr);
1178 }
1179
1180 /* handle vga= parameter */
1181 vmode = strstr(kernel_cmdline, "vga=");
1182 if (vmode) {
1183 unsigned int video_mode;
1184 /* skip "vga=" */
1185 vmode += 4;
1186 if (!strncmp(vmode, "normal", 6)) {
1187 video_mode = 0xffff;
1188 } else if (!strncmp(vmode, "ext", 3)) {
1189 video_mode = 0xfffe;
1190 } else if (!strncmp(vmode, "ask", 3)) {
1191 video_mode = 0xfffd;
1192 } else {
1193 video_mode = strtol(vmode, NULL, 0);
1194 }
1195 stw_p(header+0x1fa, video_mode);
1196 }
1197
1198 /* loader type */
1199 /* High nybble = B reserved for QEMU; low nybble is revision number.
1200 If this code is substantially changed, you may want to consider
1201 incrementing the revision. */
1202 if (protocol >= 0x200) {
1203 header[0x210] = 0xB0;
1204 }
1205 /* heap */
1206 if (protocol >= 0x201) {
1207 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1208 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1209 }
1210
1211 /* load initrd */
1212 if (initrd_filename) {
1213 gsize initrd_size;
1214 gchar *initrd_data;
1215 GError *gerr = NULL;
1216
1217 if (protocol < 0x200) {
1218 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1219 exit(1);
1220 }
1221
1222 if (!g_file_get_contents(initrd_filename, &initrd_data,
1223 &initrd_size, &gerr)) {
1224 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1225 initrd_filename, gerr->message);
1226 exit(1);
1227 }
1228 if (initrd_size >= initrd_max) {
1229 fprintf(stderr, "qemu: initrd is too large, cannot support."
1230 "(max: %"PRIu32", need %"PRId64")\n",
1231 initrd_max, (uint64_t)initrd_size);
1232 exit(1);
1233 }
1234
1235 initrd_addr = (initrd_max-initrd_size) & ~4095;
1236
1237 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1238 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1239 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1240
1241 stl_p(header+0x218, initrd_addr);
1242 stl_p(header+0x21c, initrd_size);
1243 }
1244
1245 /* load kernel and setup */
1246 setup_size = header[0x1f1];
1247 if (setup_size == 0) {
1248 setup_size = 4;
1249 }
1250 setup_size = (setup_size+1)*512;
1251 if (setup_size > kernel_size) {
1252 fprintf(stderr, "qemu: invalid kernel header\n");
1253 exit(1);
1254 }
1255 kernel_size -= setup_size;
1256
1257 setup = g_malloc(setup_size);
1258 kernel = g_malloc(kernel_size);
1259 fseek(f, 0, SEEK_SET);
1260 if (fread(setup, 1, setup_size, f) != setup_size) {
1261 fprintf(stderr, "fread() failed\n");
1262 exit(1);
1263 }
1264 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1265 fprintf(stderr, "fread() failed\n");
1266 exit(1);
1267 }
1268 fclose(f);
1269
1270 /* append dtb to kernel */
1271 if (dtb_filename) {
1272 if (protocol < 0x209) {
1273 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1274 exit(1);
1275 }
1276
1277 dtb_size = get_image_size(dtb_filename);
1278 if (dtb_size <= 0) {
1279 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1280 dtb_filename, strerror(errno));
1281 exit(1);
1282 }
1283
1284 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1285 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1286 kernel = g_realloc(kernel, kernel_size);
1287
1288 stq_p(header+0x250, prot_addr + setup_data_offset);
1289
1290 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1291 setup_data->next = 0;
1292 setup_data->type = cpu_to_le32(SETUP_DTB);
1293 setup_data->len = cpu_to_le32(dtb_size);
1294
1295 load_image_size(dtb_filename, setup_data->data, dtb_size);
1296 }
1297
1298 memcpy(setup, header, MIN(sizeof(header), setup_size));
1299
1300 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1301 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1302 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1303
1304 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1305 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1306 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1307
1308 option_rom[nb_option_roms].bootindex = 0;
1309 option_rom[nb_option_roms].name = "linuxboot.bin";
1310 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1311 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1312 }
1313 nb_option_roms++;
1314 }
1315
1316 #define NE2000_NB_MAX 6
1317
1318 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1319 0x280, 0x380 };
1320 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1321
1322 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1323 {
1324 static int nb_ne2k = 0;
1325
1326 if (nb_ne2k == NE2000_NB_MAX)
1327 return;
1328 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1329 ne2000_irq[nb_ne2k], nd);
1330 nb_ne2k++;
1331 }
1332
1333 DeviceState *cpu_get_current_apic(void)
1334 {
1335 if (current_cpu) {
1336 X86CPU *cpu = X86_CPU(current_cpu);
1337 return cpu->apic_state;
1338 } else {
1339 return NULL;
1340 }
1341 }
1342
1343 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1344 {
1345 X86CPU *cpu = opaque;
1346
1347 if (level) {
1348 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1349 }
1350 }
1351
1352 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1353 {
1354 Object *cpu = NULL;
1355 Error *local_err = NULL;
1356
1357 cpu = object_new(typename);
1358
1359 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1360 object_property_set_bool(cpu, true, "realized", &local_err);
1361
1362 object_unref(cpu);
1363 error_propagate(errp, local_err);
1364 }
1365
1366 void pc_hot_add_cpu(const int64_t id, Error **errp)
1367 {
1368 MachineState *ms = MACHINE(qdev_get_machine());
1369 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1370 Error *local_err = NULL;
1371
1372 if (id < 0) {
1373 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1374 return;
1375 }
1376
1377 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1378 error_setg(errp, "Unable to add CPU: %" PRIi64
1379 ", resulting APIC ID (%" PRIi64 ") is too large",
1380 id, apic_id);
1381 return;
1382 }
1383
1384 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1385 if (local_err) {
1386 error_propagate(errp, local_err);
1387 return;
1388 }
1389 }
1390
1391 void pc_cpus_init(PCMachineState *pcms)
1392 {
1393 int i;
1394 const CPUArchIdList *possible_cpus;
1395 MachineState *ms = MACHINE(pcms);
1396 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1397
1398 /* Calculates the limit to CPU APIC ID values
1399 *
1400 * Limit for the APIC ID value, so that all
1401 * CPU APIC IDs are < pcms->apic_id_limit.
1402 *
1403 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1404 */
1405 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1406 possible_cpus = mc->possible_cpu_arch_ids(ms);
1407 for (i = 0; i < smp_cpus; i++) {
1408 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1409 &error_fatal);
1410 }
1411 }
1412
1413 static void pc_build_feature_control_file(PCMachineState *pcms)
1414 {
1415 MachineState *ms = MACHINE(pcms);
1416 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1417 CPUX86State *env = &cpu->env;
1418 uint32_t unused, ecx, edx;
1419 uint64_t feature_control_bits = 0;
1420 uint64_t *val;
1421
1422 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1423 if (ecx & CPUID_EXT_VMX) {
1424 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1425 }
1426
1427 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1428 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1429 (env->mcg_cap & MCG_LMCE_P)) {
1430 feature_control_bits |= FEATURE_CONTROL_LMCE;
1431 }
1432
1433 if (!feature_control_bits) {
1434 return;
1435 }
1436
1437 val = g_malloc(sizeof(*val));
1438 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1439 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1440 }
1441
1442 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1443 {
1444 if (cpus_count > 0xff) {
1445 /* If the number of CPUs can't be represented in 8 bits, the
1446 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1447 * to make old BIOSes fail more predictably.
1448 */
1449 rtc_set_memory(rtc, 0x5f, 0);
1450 } else {
1451 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1452 }
1453 }
1454
1455 static
1456 void pc_machine_done(Notifier *notifier, void *data)
1457 {
1458 PCMachineState *pcms = container_of(notifier,
1459 PCMachineState, machine_done);
1460 PCIBus *bus = pcms->bus;
1461
1462 /* set the number of CPUs */
1463 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1464
1465 if (bus) {
1466 int extra_hosts = 0;
1467
1468 QLIST_FOREACH(bus, &bus->child, sibling) {
1469 /* look for expander root buses */
1470 if (pci_bus_is_root(bus)) {
1471 extra_hosts++;
1472 }
1473 }
1474 if (extra_hosts && pcms->fw_cfg) {
1475 uint64_t *val = g_malloc(sizeof(*val));
1476 *val = cpu_to_le64(extra_hosts);
1477 fw_cfg_add_file(pcms->fw_cfg,
1478 "etc/extra-pci-roots", val, sizeof(*val));
1479 }
1480 }
1481
1482 acpi_setup();
1483 if (pcms->fw_cfg) {
1484 pc_build_smbios(pcms);
1485 pc_build_feature_control_file(pcms);
1486 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1487 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1488 }
1489
1490 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1491 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1492
1493 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1494 iommu->intr_eim != ON_OFF_AUTO_ON) {
1495 error_report("current -smp configuration requires "
1496 "Extended Interrupt Mode enabled. "
1497 "You can add an IOMMU using: "
1498 "-device intel-iommu,intremap=on,eim=on");
1499 exit(EXIT_FAILURE);
1500 }
1501 }
1502 }
1503
1504 void pc_guest_info_init(PCMachineState *pcms)
1505 {
1506 int i;
1507
1508 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1509 pcms->numa_nodes = nb_numa_nodes;
1510 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1511 sizeof *pcms->node_mem);
1512 for (i = 0; i < nb_numa_nodes; i++) {
1513 pcms->node_mem[i] = numa_info[i].node_mem;
1514 }
1515
1516 pcms->machine_done.notify = pc_machine_done;
1517 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1518 }
1519
1520 /* setup pci memory address space mapping into system address space */
1521 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1522 MemoryRegion *pci_address_space)
1523 {
1524 /* Set to lower priority than RAM */
1525 memory_region_add_subregion_overlap(system_memory, 0x0,
1526 pci_address_space, -1);
1527 }
1528
1529 void pc_acpi_init(const char *default_dsdt)
1530 {
1531 char *filename;
1532
1533 if (acpi_tables != NULL) {
1534 /* manually set via -acpitable, leave it alone */
1535 return;
1536 }
1537
1538 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1539 if (filename == NULL) {
1540 warn_report("failed to find %s", default_dsdt);
1541 } else {
1542 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1543 &error_abort);
1544 Error *err = NULL;
1545
1546 qemu_opt_set(opts, "file", filename, &error_abort);
1547
1548 acpi_table_add_builtin(opts, &err);
1549 if (err) {
1550 warn_reportf_err(err, "failed to load %s: ", filename);
1551 }
1552 g_free(filename);
1553 }
1554 }
1555
1556 void xen_load_linux(PCMachineState *pcms)
1557 {
1558 int i;
1559 FWCfgState *fw_cfg;
1560
1561 assert(MACHINE(pcms)->kernel_filename != NULL);
1562
1563 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1564 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1565 rom_set_fw(fw_cfg);
1566
1567 load_linux(pcms, fw_cfg);
1568 for (i = 0; i < nb_option_roms; i++) {
1569 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1570 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1571 !strcmp(option_rom[i].name, "multiboot.bin"));
1572 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1573 }
1574 pcms->fw_cfg = fw_cfg;
1575 }
1576
1577 void pc_memory_init(PCMachineState *pcms,
1578 MemoryRegion *system_memory,
1579 MemoryRegion *rom_memory,
1580 MemoryRegion **ram_memory)
1581 {
1582 int linux_boot, i;
1583 MemoryRegion *ram, *option_rom_mr;
1584 MemoryRegion *ram_below_4g, *ram_above_4g;
1585 FWCfgState *fw_cfg;
1586 MachineState *machine = MACHINE(pcms);
1587 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1588
1589 assert(machine->ram_size == pcms->below_4g_mem_size +
1590 pcms->above_4g_mem_size);
1591
1592 linux_boot = (machine->kernel_filename != NULL);
1593
1594 /* Allocate RAM. We allocate it as a single memory region and use
1595 * aliases to address portions of it, mostly for backwards compatibility
1596 * with older qemus that used qemu_ram_alloc().
1597 */
1598 ram = g_malloc(sizeof(*ram));
1599 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1600 machine->ram_size);
1601 *ram_memory = ram;
1602 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1603 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1604 0, pcms->below_4g_mem_size);
1605 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1606 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1607 if (pcms->above_4g_mem_size > 0) {
1608 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1609 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1610 pcms->below_4g_mem_size,
1611 pcms->above_4g_mem_size);
1612 memory_region_add_subregion(system_memory, 0x100000000ULL,
1613 ram_above_4g);
1614 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1615 }
1616
1617 if (!pcmc->has_reserved_memory &&
1618 (machine->ram_slots ||
1619 (machine->maxram_size > machine->ram_size))) {
1620 MachineClass *mc = MACHINE_GET_CLASS(machine);
1621
1622 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1623 mc->name);
1624 exit(EXIT_FAILURE);
1625 }
1626
1627 /* always allocate the device memory information */
1628 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1629
1630 /* initialize device memory address space */
1631 if (pcmc->has_reserved_memory &&
1632 (machine->ram_size < machine->maxram_size)) {
1633 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1634
1635 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1636 error_report("unsupported amount of memory slots: %"PRIu64,
1637 machine->ram_slots);
1638 exit(EXIT_FAILURE);
1639 }
1640
1641 if (QEMU_ALIGN_UP(machine->maxram_size,
1642 TARGET_PAGE_SIZE) != machine->maxram_size) {
1643 error_report("maximum memory size must by aligned to multiple of "
1644 "%d bytes", TARGET_PAGE_SIZE);
1645 exit(EXIT_FAILURE);
1646 }
1647
1648 machine->device_memory->base =
1649 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1650
1651 if (pcmc->enforce_aligned_dimm) {
1652 /* size device region assuming 1G page max alignment per slot */
1653 device_mem_size += (1 * GiB) * machine->ram_slots;
1654 }
1655
1656 if ((machine->device_memory->base + device_mem_size) <
1657 device_mem_size) {
1658 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1659 machine->maxram_size);
1660 exit(EXIT_FAILURE);
1661 }
1662
1663 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1664 "device-memory", device_mem_size);
1665 memory_region_add_subregion(system_memory, machine->device_memory->base,
1666 &machine->device_memory->mr);
1667 }
1668
1669 /* Initialize PC system firmware */
1670 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1671
1672 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1673 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1674 &error_fatal);
1675 if (pcmc->pci_enabled) {
1676 memory_region_set_readonly(option_rom_mr, true);
1677 }
1678 memory_region_add_subregion_overlap(rom_memory,
1679 PC_ROM_MIN_VGA,
1680 option_rom_mr,
1681 1);
1682
1683 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1684
1685 rom_set_fw(fw_cfg);
1686
1687 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1688 uint64_t *val = g_malloc(sizeof(*val));
1689 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1690 uint64_t res_mem_end = machine->device_memory->base;
1691
1692 if (!pcmc->broken_reserved_end) {
1693 res_mem_end += memory_region_size(&machine->device_memory->mr);
1694 }
1695 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1696 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1697 }
1698
1699 if (linux_boot) {
1700 load_linux(pcms, fw_cfg);
1701 }
1702
1703 for (i = 0; i < nb_option_roms; i++) {
1704 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1705 }
1706 pcms->fw_cfg = fw_cfg;
1707
1708 /* Init default IOAPIC address space */
1709 pcms->ioapic_as = &address_space_memory;
1710 }
1711
1712 /*
1713 * The 64bit pci hole starts after "above 4G RAM" and
1714 * potentially the space reserved for memory hotplug.
1715 */
1716 uint64_t pc_pci_hole64_start(void)
1717 {
1718 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1719 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1720 MachineState *ms = MACHINE(pcms);
1721 uint64_t hole64_start = 0;
1722
1723 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1724 hole64_start = ms->device_memory->base;
1725 if (!pcmc->broken_reserved_end) {
1726 hole64_start += memory_region_size(&ms->device_memory->mr);
1727 }
1728 } else {
1729 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1730 }
1731
1732 return ROUND_UP(hole64_start, 1 * GiB);
1733 }
1734
1735 qemu_irq pc_allocate_cpu_irq(void)
1736 {
1737 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1738 }
1739
1740 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1741 {
1742 DeviceState *dev = NULL;
1743
1744 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1745 if (pci_bus) {
1746 PCIDevice *pcidev = pci_vga_init(pci_bus);
1747 dev = pcidev ? &pcidev->qdev : NULL;
1748 } else if (isa_bus) {
1749 ISADevice *isadev = isa_vga_init(isa_bus);
1750 dev = isadev ? DEVICE(isadev) : NULL;
1751 }
1752 rom_reset_order_override();
1753 return dev;
1754 }
1755
1756 static const MemoryRegionOps ioport80_io_ops = {
1757 .write = ioport80_write,
1758 .read = ioport80_read,
1759 .endianness = DEVICE_NATIVE_ENDIAN,
1760 .impl = {
1761 .min_access_size = 1,
1762 .max_access_size = 1,
1763 },
1764 };
1765
1766 static const MemoryRegionOps ioportF0_io_ops = {
1767 .write = ioportF0_write,
1768 .read = ioportF0_read,
1769 .endianness = DEVICE_NATIVE_ENDIAN,
1770 .impl = {
1771 .min_access_size = 1,
1772 .max_access_size = 1,
1773 },
1774 };
1775
1776 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1777 {
1778 int i;
1779 DriveInfo *fd[MAX_FD];
1780 qemu_irq *a20_line;
1781 ISADevice *i8042, *port92, *vmmouse;
1782
1783 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1784 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1785
1786 for (i = 0; i < MAX_FD; i++) {
1787 fd[i] = drive_get(IF_FLOPPY, 0, i);
1788 create_fdctrl |= !!fd[i];
1789 }
1790 if (create_fdctrl) {
1791 fdctrl_init_isa(isa_bus, fd);
1792 }
1793
1794 i8042 = isa_create_simple(isa_bus, "i8042");
1795 if (!no_vmport) {
1796 vmport_init(isa_bus);
1797 vmmouse = isa_try_create(isa_bus, "vmmouse");
1798 } else {
1799 vmmouse = NULL;
1800 }
1801 if (vmmouse) {
1802 DeviceState *dev = DEVICE(vmmouse);
1803 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1804 qdev_init_nofail(dev);
1805 }
1806 port92 = isa_create_simple(isa_bus, "port92");
1807
1808 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1809 i8042_setup_a20_line(i8042, a20_line[0]);
1810 port92_init(port92, a20_line[1]);
1811 g_free(a20_line);
1812 }
1813
1814 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1815 ISADevice **rtc_state,
1816 bool create_fdctrl,
1817 bool no_vmport,
1818 bool has_pit,
1819 uint32_t hpet_irqs)
1820 {
1821 int i;
1822 DeviceState *hpet = NULL;
1823 int pit_isa_irq = 0;
1824 qemu_irq pit_alt_irq = NULL;
1825 qemu_irq rtc_irq = NULL;
1826 ISADevice *pit = NULL;
1827 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1828 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1829
1830 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1831 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1832
1833 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1834 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1835
1836 /*
1837 * Check if an HPET shall be created.
1838 *
1839 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1840 * when the HPET wants to take over. Thus we have to disable the latter.
1841 */
1842 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1843 /* In order to set property, here not using sysbus_try_create_simple */
1844 hpet = qdev_try_create(NULL, TYPE_HPET);
1845 if (hpet) {
1846 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1847 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1848 * IRQ8 and IRQ2.
1849 */
1850 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1851 HPET_INTCAP, NULL);
1852 if (!compat) {
1853 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1854 }
1855 qdev_init_nofail(hpet);
1856 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1857
1858 for (i = 0; i < GSI_NUM_PINS; i++) {
1859 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1860 }
1861 pit_isa_irq = -1;
1862 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1863 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1864 }
1865 }
1866 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1867
1868 qemu_register_boot_set(pc_boot_set, *rtc_state);
1869
1870 if (!xen_enabled() && has_pit) {
1871 if (kvm_pit_in_kernel()) {
1872 pit = kvm_pit_init(isa_bus, 0x40);
1873 } else {
1874 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1875 }
1876 if (hpet) {
1877 /* connect PIT to output control line of the HPET */
1878 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1879 }
1880 pcspk_init(isa_bus, pit);
1881 }
1882
1883 i8257_dma_init(isa_bus, 0);
1884
1885 /* Super I/O */
1886 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1887 }
1888
1889 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1890 {
1891 int i;
1892
1893 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1894 for (i = 0; i < nb_nics; i++) {
1895 NICInfo *nd = &nd_table[i];
1896 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1897
1898 if (g_str_equal(model, "ne2k_isa")) {
1899 pc_init_ne2k_isa(isa_bus, nd);
1900 } else {
1901 pci_nic_init_nofail(nd, pci_bus, model, NULL);
1902 }
1903 }
1904 rom_reset_order_override();
1905 }
1906
1907 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1908 {
1909 DeviceState *dev;
1910 SysBusDevice *d;
1911 unsigned int i;
1912
1913 if (kvm_ioapic_in_kernel()) {
1914 dev = qdev_create(NULL, "kvm-ioapic");
1915 } else {
1916 dev = qdev_create(NULL, "ioapic");
1917 }
1918 if (parent_name) {
1919 object_property_add_child(object_resolve_path(parent_name, NULL),
1920 "ioapic", OBJECT(dev), NULL);
1921 }
1922 qdev_init_nofail(dev);
1923 d = SYS_BUS_DEVICE(dev);
1924 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1925
1926 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1927 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1928 }
1929 }
1930
1931 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1932 Error **errp)
1933 {
1934 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1935 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1936 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1937 const uint64_t legacy_align = TARGET_PAGE_SIZE;
1938
1939 /*
1940 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1941 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1942 * addition to cover this case.
1943 */
1944 if (!pcms->acpi_dev || !acpi_enabled) {
1945 error_setg(errp,
1946 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1947 return;
1948 }
1949
1950 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1951 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1952 return;
1953 }
1954
1955 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1956 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1957 }
1958
1959 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1960 DeviceState *dev, Error **errp)
1961 {
1962 HotplugHandlerClass *hhc;
1963 Error *local_err = NULL;
1964 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1965 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1966
1967 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1968 if (local_err) {
1969 goto out;
1970 }
1971
1972 if (is_nvdimm) {
1973 nvdimm_plug(&pcms->acpi_nvdimm_state);
1974 }
1975
1976 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1977 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1978 out:
1979 error_propagate(errp, local_err);
1980 }
1981
1982 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1983 DeviceState *dev, Error **errp)
1984 {
1985 HotplugHandlerClass *hhc;
1986 Error *local_err = NULL;
1987 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1988
1989 /*
1990 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1991 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1992 * addition to cover this case.
1993 */
1994 if (!pcms->acpi_dev || !acpi_enabled) {
1995 error_setg(&local_err,
1996 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1997 goto out;
1998 }
1999
2000 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2001 error_setg(&local_err,
2002 "nvdimm device hot unplug is not supported yet.");
2003 goto out;
2004 }
2005
2006 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2007 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2008
2009 out:
2010 error_propagate(errp, local_err);
2011 }
2012
2013 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2014 DeviceState *dev, Error **errp)
2015 {
2016 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2017 HotplugHandlerClass *hhc;
2018 Error *local_err = NULL;
2019
2020 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2021 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2022
2023 if (local_err) {
2024 goto out;
2025 }
2026
2027 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2028 object_unparent(OBJECT(dev));
2029
2030 out:
2031 error_propagate(errp, local_err);
2032 }
2033
2034 static int pc_apic_cmp(const void *a, const void *b)
2035 {
2036 CPUArchId *apic_a = (CPUArchId *)a;
2037 CPUArchId *apic_b = (CPUArchId *)b;
2038
2039 return apic_a->arch_id - apic_b->arch_id;
2040 }
2041
2042 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2043 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2044 * entry corresponding to CPU's apic_id returns NULL.
2045 */
2046 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2047 {
2048 CPUArchId apic_id, *found_cpu;
2049
2050 apic_id.arch_id = id;
2051 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2052 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2053 pc_apic_cmp);
2054 if (found_cpu && idx) {
2055 *idx = found_cpu - ms->possible_cpus->cpus;
2056 }
2057 return found_cpu;
2058 }
2059
2060 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2061 DeviceState *dev, Error **errp)
2062 {
2063 CPUArchId *found_cpu;
2064 HotplugHandlerClass *hhc;
2065 Error *local_err = NULL;
2066 X86CPU *cpu = X86_CPU(dev);
2067 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2068
2069 if (pcms->acpi_dev) {
2070 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2071 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2072 if (local_err) {
2073 goto out;
2074 }
2075 }
2076
2077 /* increment the number of CPUs */
2078 pcms->boot_cpus++;
2079 if (pcms->rtc) {
2080 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2081 }
2082 if (pcms->fw_cfg) {
2083 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2084 }
2085
2086 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2087 found_cpu->cpu = OBJECT(dev);
2088 out:
2089 error_propagate(errp, local_err);
2090 }
2091 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2092 DeviceState *dev, Error **errp)
2093 {
2094 int idx = -1;
2095 HotplugHandlerClass *hhc;
2096 Error *local_err = NULL;
2097 X86CPU *cpu = X86_CPU(dev);
2098 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2099
2100 if (!pcms->acpi_dev) {
2101 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2102 goto out;
2103 }
2104
2105 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2106 assert(idx != -1);
2107 if (idx == 0) {
2108 error_setg(&local_err, "Boot CPU is unpluggable");
2109 goto out;
2110 }
2111
2112 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2113 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2114
2115 if (local_err) {
2116 goto out;
2117 }
2118
2119 out:
2120 error_propagate(errp, local_err);
2121
2122 }
2123
2124 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2125 DeviceState *dev, Error **errp)
2126 {
2127 CPUArchId *found_cpu;
2128 HotplugHandlerClass *hhc;
2129 Error *local_err = NULL;
2130 X86CPU *cpu = X86_CPU(dev);
2131 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2132
2133 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2134 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2135
2136 if (local_err) {
2137 goto out;
2138 }
2139
2140 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2141 found_cpu->cpu = NULL;
2142 object_unparent(OBJECT(dev));
2143
2144 /* decrement the number of CPUs */
2145 pcms->boot_cpus--;
2146 /* Update the number of CPUs in CMOS */
2147 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2148 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2149 out:
2150 error_propagate(errp, local_err);
2151 }
2152
2153 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2154 DeviceState *dev, Error **errp)
2155 {
2156 int idx;
2157 CPUState *cs;
2158 CPUArchId *cpu_slot;
2159 X86CPUTopoInfo topo;
2160 X86CPU *cpu = X86_CPU(dev);
2161 MachineState *ms = MACHINE(hotplug_dev);
2162 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2163
2164 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2165 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2166 ms->cpu_type);
2167 return;
2168 }
2169
2170 /* if APIC ID is not set, set it based on socket/core/thread properties */
2171 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2172 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2173
2174 if (cpu->socket_id < 0) {
2175 error_setg(errp, "CPU socket-id is not set");
2176 return;
2177 } else if (cpu->socket_id > max_socket) {
2178 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2179 cpu->socket_id, max_socket);
2180 return;
2181 }
2182 if (cpu->core_id < 0) {
2183 error_setg(errp, "CPU core-id is not set");
2184 return;
2185 } else if (cpu->core_id > (smp_cores - 1)) {
2186 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2187 cpu->core_id, smp_cores - 1);
2188 return;
2189 }
2190 if (cpu->thread_id < 0) {
2191 error_setg(errp, "CPU thread-id is not set");
2192 return;
2193 } else if (cpu->thread_id > (smp_threads - 1)) {
2194 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2195 cpu->thread_id, smp_threads - 1);
2196 return;
2197 }
2198
2199 topo.pkg_id = cpu->socket_id;
2200 topo.core_id = cpu->core_id;
2201 topo.smt_id = cpu->thread_id;
2202 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2203 }
2204
2205 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2206 if (!cpu_slot) {
2207 MachineState *ms = MACHINE(pcms);
2208
2209 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2210 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2211 " APIC ID %" PRIu32 ", valid index range 0:%d",
2212 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2213 ms->possible_cpus->len - 1);
2214 return;
2215 }
2216
2217 if (cpu_slot->cpu) {
2218 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2219 idx, cpu->apic_id);
2220 return;
2221 }
2222
2223 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2224 * so that machine_query_hotpluggable_cpus would show correct values
2225 */
2226 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2227 * once -smp refactoring is complete and there will be CPU private
2228 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2229 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2230 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2231 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2232 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2233 return;
2234 }
2235 cpu->socket_id = topo.pkg_id;
2236
2237 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2238 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2239 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2240 return;
2241 }
2242 cpu->core_id = topo.core_id;
2243
2244 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2245 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2246 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2247 return;
2248 }
2249 cpu->thread_id = topo.smt_id;
2250
2251 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2252 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2253 return;
2254 }
2255
2256 cs = CPU(cpu);
2257 cs->cpu_index = idx;
2258
2259 numa_cpu_pre_plug(cpu_slot, dev, errp);
2260 }
2261
2262 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2263 DeviceState *dev, Error **errp)
2264 {
2265 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2266 pc_memory_pre_plug(hotplug_dev, dev, errp);
2267 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2268 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2269 }
2270 }
2271
2272 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2273 DeviceState *dev, Error **errp)
2274 {
2275 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2276 pc_memory_plug(hotplug_dev, dev, errp);
2277 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2278 pc_cpu_plug(hotplug_dev, dev, errp);
2279 }
2280 }
2281
2282 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2283 DeviceState *dev, Error **errp)
2284 {
2285 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2286 pc_memory_unplug_request(hotplug_dev, dev, errp);
2287 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2288 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2289 } else {
2290 error_setg(errp, "acpi: device unplug request for not supported device"
2291 " type: %s", object_get_typename(OBJECT(dev)));
2292 }
2293 }
2294
2295 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2296 DeviceState *dev, Error **errp)
2297 {
2298 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2299 pc_memory_unplug(hotplug_dev, dev, errp);
2300 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2301 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2302 } else {
2303 error_setg(errp, "acpi: device unplug for not supported device"
2304 " type: %s", object_get_typename(OBJECT(dev)));
2305 }
2306 }
2307
2308 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2309 DeviceState *dev)
2310 {
2311 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2312 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2313 return HOTPLUG_HANDLER(machine);
2314 }
2315
2316 return NULL;
2317 }
2318
2319 static void
2320 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2321 const char *name, void *opaque,
2322 Error **errp)
2323 {
2324 MachineState *ms = MACHINE(obj);
2325 int64_t value = memory_region_size(&ms->device_memory->mr);
2326
2327 visit_type_int(v, name, &value, errp);
2328 }
2329
2330 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2331 const char *name, void *opaque,
2332 Error **errp)
2333 {
2334 PCMachineState *pcms = PC_MACHINE(obj);
2335 uint64_t value = pcms->max_ram_below_4g;
2336
2337 visit_type_size(v, name, &value, errp);
2338 }
2339
2340 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2341 const char *name, void *opaque,
2342 Error **errp)
2343 {
2344 PCMachineState *pcms = PC_MACHINE(obj);
2345 Error *error = NULL;
2346 uint64_t value;
2347
2348 visit_type_size(v, name, &value, &error);
2349 if (error) {
2350 error_propagate(errp, error);
2351 return;
2352 }
2353 if (value > 4 * GiB) {
2354 error_setg(&error,
2355 "Machine option 'max-ram-below-4g=%"PRIu64
2356 "' expects size less than or equal to 4G", value);
2357 error_propagate(errp, error);
2358 return;
2359 }
2360
2361 if (value < 1 * MiB) {
2362 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2363 "BIOS may not work with less than 1MiB", value);
2364 }
2365
2366 pcms->max_ram_below_4g = value;
2367 }
2368
2369 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2370 void *opaque, Error **errp)
2371 {
2372 PCMachineState *pcms = PC_MACHINE(obj);
2373 OnOffAuto vmport = pcms->vmport;
2374
2375 visit_type_OnOffAuto(v, name, &vmport, errp);
2376 }
2377
2378 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2379 void *opaque, Error **errp)
2380 {
2381 PCMachineState *pcms = PC_MACHINE(obj);
2382
2383 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2384 }
2385
2386 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2387 {
2388 bool smm_available = false;
2389
2390 if (pcms->smm == ON_OFF_AUTO_OFF) {
2391 return false;
2392 }
2393
2394 if (tcg_enabled() || qtest_enabled()) {
2395 smm_available = true;
2396 } else if (kvm_enabled()) {
2397 smm_available = kvm_has_smm();
2398 }
2399
2400 if (smm_available) {
2401 return true;
2402 }
2403
2404 if (pcms->smm == ON_OFF_AUTO_ON) {
2405 error_report("System Management Mode not supported by this hypervisor.");
2406 exit(1);
2407 }
2408 return false;
2409 }
2410
2411 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2412 void *opaque, Error **errp)
2413 {
2414 PCMachineState *pcms = PC_MACHINE(obj);
2415 OnOffAuto smm = pcms->smm;
2416
2417 visit_type_OnOffAuto(v, name, &smm, errp);
2418 }
2419
2420 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2421 void *opaque, Error **errp)
2422 {
2423 PCMachineState *pcms = PC_MACHINE(obj);
2424
2425 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2426 }
2427
2428 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2429 {
2430 PCMachineState *pcms = PC_MACHINE(obj);
2431
2432 return pcms->acpi_nvdimm_state.is_enabled;
2433 }
2434
2435 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2436 {
2437 PCMachineState *pcms = PC_MACHINE(obj);
2438
2439 pcms->acpi_nvdimm_state.is_enabled = value;
2440 }
2441
2442 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2443 {
2444 PCMachineState *pcms = PC_MACHINE(obj);
2445
2446 return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2447 }
2448
2449 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2450 Error **errp)
2451 {
2452 PCMachineState *pcms = PC_MACHINE(obj);
2453 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2454
2455 if (strcmp(value, "cpu") == 0)
2456 nvdimm_state->persistence = 3;
2457 else if (strcmp(value, "mem-ctrl") == 0)
2458 nvdimm_state->persistence = 2;
2459 else {
2460 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2461 value);
2462 return;
2463 }
2464
2465 g_free(nvdimm_state->persistence_string);
2466 nvdimm_state->persistence_string = g_strdup(value);
2467 }
2468
2469 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2470 {
2471 PCMachineState *pcms = PC_MACHINE(obj);
2472
2473 return pcms->smbus_enabled;
2474 }
2475
2476 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2477 {
2478 PCMachineState *pcms = PC_MACHINE(obj);
2479
2480 pcms->smbus_enabled = value;
2481 }
2482
2483 static bool pc_machine_get_sata(Object *obj, Error **errp)
2484 {
2485 PCMachineState *pcms = PC_MACHINE(obj);
2486
2487 return pcms->sata_enabled;
2488 }
2489
2490 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2491 {
2492 PCMachineState *pcms = PC_MACHINE(obj);
2493
2494 pcms->sata_enabled = value;
2495 }
2496
2497 static bool pc_machine_get_pit(Object *obj, Error **errp)
2498 {
2499 PCMachineState *pcms = PC_MACHINE(obj);
2500
2501 return pcms->pit_enabled;
2502 }
2503
2504 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2505 {
2506 PCMachineState *pcms = PC_MACHINE(obj);
2507
2508 pcms->pit_enabled = value;
2509 }
2510
2511 static void pc_machine_initfn(Object *obj)
2512 {
2513 PCMachineState *pcms = PC_MACHINE(obj);
2514
2515 pcms->max_ram_below_4g = 0; /* use default */
2516 pcms->smm = ON_OFF_AUTO_AUTO;
2517 pcms->vmport = ON_OFF_AUTO_AUTO;
2518 /* nvdimm is disabled on default. */
2519 pcms->acpi_nvdimm_state.is_enabled = false;
2520 /* acpi build is enabled by default if machine supports it */
2521 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2522 pcms->smbus_enabled = true;
2523 pcms->sata_enabled = true;
2524 pcms->pit_enabled = true;
2525 }
2526
2527 static void pc_machine_reset(void)
2528 {
2529 CPUState *cs;
2530 X86CPU *cpu;
2531
2532 qemu_devices_reset();
2533
2534 /* Reset APIC after devices have been reset to cancel
2535 * any changes that qemu_devices_reset() might have done.
2536 */
2537 CPU_FOREACH(cs) {
2538 cpu = X86_CPU(cs);
2539
2540 if (cpu->apic_state) {
2541 device_reset(cpu->apic_state);
2542 }
2543 }
2544 }
2545
2546 static CpuInstanceProperties
2547 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2548 {
2549 MachineClass *mc = MACHINE_GET_CLASS(ms);
2550 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2551
2552 assert(cpu_index < possible_cpus->len);
2553 return possible_cpus->cpus[cpu_index].props;
2554 }
2555
2556 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2557 {
2558 X86CPUTopoInfo topo;
2559
2560 assert(idx < ms->possible_cpus->len);
2561 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2562 smp_cores, smp_threads, &topo);
2563 return topo.pkg_id % nb_numa_nodes;
2564 }
2565
2566 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2567 {
2568 int i;
2569
2570 if (ms->possible_cpus) {
2571 /*
2572 * make sure that max_cpus hasn't changed since the first use, i.e.
2573 * -smp hasn't been parsed after it
2574 */
2575 assert(ms->possible_cpus->len == max_cpus);
2576 return ms->possible_cpus;
2577 }
2578
2579 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2580 sizeof(CPUArchId) * max_cpus);
2581 ms->possible_cpus->len = max_cpus;
2582 for (i = 0; i < ms->possible_cpus->len; i++) {
2583 X86CPUTopoInfo topo;
2584
2585 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2586 ms->possible_cpus->cpus[i].vcpus_count = 1;
2587 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2588 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2589 smp_cores, smp_threads, &topo);
2590 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2591 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2592 ms->possible_cpus->cpus[i].props.has_core_id = true;
2593 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2594 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2595 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2596 }
2597 return ms->possible_cpus;
2598 }
2599
2600 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2601 {
2602 /* cpu index isn't used */
2603 CPUState *cs;
2604
2605 CPU_FOREACH(cs) {
2606 X86CPU *cpu = X86_CPU(cs);
2607
2608 if (!cpu->apic_state) {
2609 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2610 } else {
2611 apic_deliver_nmi(cpu->apic_state);
2612 }
2613 }
2614 }
2615
2616 static void pc_machine_class_init(ObjectClass *oc, void *data)
2617 {
2618 MachineClass *mc = MACHINE_CLASS(oc);
2619 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2620 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2621 NMIClass *nc = NMI_CLASS(oc);
2622
2623 pcmc->pci_enabled = true;
2624 pcmc->has_acpi_build = true;
2625 pcmc->rsdp_in_ram = true;
2626 pcmc->smbios_defaults = true;
2627 pcmc->smbios_uuid_encoded = true;
2628 pcmc->gigabyte_align = true;
2629 pcmc->has_reserved_memory = true;
2630 pcmc->kvmclock_enabled = true;
2631 pcmc->enforce_aligned_dimm = true;
2632 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2633 * to be used at the moment, 32K should be enough for a while. */
2634 pcmc->acpi_data_size = 0x20000 + 0x8000;
2635 pcmc->save_tsc_khz = true;
2636 pcmc->linuxboot_dma_enabled = true;
2637 assert(!mc->get_hotplug_handler);
2638 mc->get_hotplug_handler = pc_get_hotpug_handler;
2639 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2640 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2641 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2642 mc->auto_enable_numa_with_memhp = true;
2643 mc->has_hotpluggable_cpus = true;
2644 mc->default_boot_order = "cad";
2645 mc->hot_add_cpu = pc_hot_add_cpu;
2646 mc->block_default_type = IF_IDE;
2647 mc->max_cpus = 255;
2648 mc->reset = pc_machine_reset;
2649 hc->pre_plug = pc_machine_device_pre_plug_cb;
2650 hc->plug = pc_machine_device_plug_cb;
2651 hc->unplug_request = pc_machine_device_unplug_request_cb;
2652 hc->unplug = pc_machine_device_unplug_cb;
2653 nc->nmi_monitor_handler = x86_nmi;
2654 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2655
2656 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2657 pc_machine_get_device_memory_region_size, NULL,
2658 NULL, NULL, &error_abort);
2659
2660 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2661 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2662 NULL, NULL, &error_abort);
2663
2664 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2665 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2666
2667 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2668 pc_machine_get_smm, pc_machine_set_smm,
2669 NULL, NULL, &error_abort);
2670 object_class_property_set_description(oc, PC_MACHINE_SMM,
2671 "Enable SMM (pc & q35)", &error_abort);
2672
2673 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2674 pc_machine_get_vmport, pc_machine_set_vmport,
2675 NULL, NULL, &error_abort);
2676 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2677 "Enable vmport (pc & q35)", &error_abort);
2678
2679 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2680 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2681
2682 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2683 pc_machine_get_nvdimm_persistence,
2684 pc_machine_set_nvdimm_persistence, &error_abort);
2685
2686 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2687 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2688
2689 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2690 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2691
2692 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2693 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2694 }
2695
2696 static const TypeInfo pc_machine_info = {
2697 .name = TYPE_PC_MACHINE,
2698 .parent = TYPE_MACHINE,
2699 .abstract = true,
2700 .instance_size = sizeof(PCMachineState),
2701 .instance_init = pc_machine_initfn,
2702 .class_size = sizeof(PCMachineClass),
2703 .class_init = pc_machine_class_init,
2704 .interfaces = (InterfaceInfo[]) {
2705 { TYPE_HOTPLUG_HANDLER },
2706 { TYPE_NMI },
2707 { }
2708 },
2709 };
2710
2711 static void pc_machine_register_types(void)
2712 {
2713 type_register_static(&pc_machine_info);
2714 }
2715
2716 type_init(pc_machine_register_types)