]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
virtio-pci: fix migration for pci bus master
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/acpi/cpu_hotplug.h"
57 #include "hw/cpu/icc_bus.h"
58 #include "hw/boards.h"
59 #include "hw/pci/pci_host.h"
60 #include "acpi-build.h"
61 #include "hw/mem/pc-dimm.h"
62 #include "trace.h"
63 #include "qapi/visitor.h"
64
65 /* debug PC/ISA interrupts */
66 //#define DEBUG_IRQ
67
68 #ifdef DEBUG_IRQ
69 #define DPRINTF(fmt, ...) \
70 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
71 #else
72 #define DPRINTF(fmt, ...)
73 #endif
74
75 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
76 unsigned acpi_data_size = 0x20000;
77 void pc_set_legacy_acpi_data_size(void)
78 {
79 acpi_data_size = 0x10000;
80 }
81
82 #define BIOS_CFG_IOPORT 0x510
83 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
84 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
85 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
86 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
87 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
88
89 #define E820_NR_ENTRIES 16
90
91 struct e820_entry {
92 uint64_t address;
93 uint64_t length;
94 uint32_t type;
95 } QEMU_PACKED __attribute((__aligned__(4)));
96
97 struct e820_table {
98 uint32_t count;
99 struct e820_entry entry[E820_NR_ENTRIES];
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 static struct e820_table e820_reserve;
103 static struct e820_entry *e820_table;
104 static unsigned e820_entries;
105 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
106
107 void gsi_handler(void *opaque, int n, int level)
108 {
109 GSIState *s = opaque;
110
111 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
112 if (n < ISA_NUM_IRQS) {
113 qemu_set_irq(s->i8259_irq[n], level);
114 }
115 qemu_set_irq(s->ioapic_irq[n], level);
116 }
117
118 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
119 unsigned size)
120 {
121 }
122
123 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
124 {
125 return 0xffffffffffffffffULL;
126 }
127
128 /* MSDOS compatibility mode FPU exception support */
129 static qemu_irq ferr_irq;
130
131 void pc_register_ferr_irq(qemu_irq irq)
132 {
133 ferr_irq = irq;
134 }
135
136 /* XXX: add IGNNE support */
137 void cpu_set_ferr(CPUX86State *s)
138 {
139 qemu_irq_raise(ferr_irq);
140 }
141
142 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
143 unsigned size)
144 {
145 qemu_irq_lower(ferr_irq);
146 }
147
148 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
149 {
150 return 0xffffffffffffffffULL;
151 }
152
153 /* TSC handling */
154 uint64_t cpu_get_tsc(CPUX86State *env)
155 {
156 return cpu_get_ticks();
157 }
158
159 /* SMM support */
160
161 static cpu_set_smm_t smm_set;
162 static void *smm_arg;
163
164 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
165 {
166 assert(smm_set == NULL);
167 assert(smm_arg == NULL);
168 smm_set = callback;
169 smm_arg = arg;
170 }
171
172 void cpu_smm_update(CPUX86State *env)
173 {
174 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
175 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
176 }
177 }
178
179
180 /* IRQ handling */
181 int cpu_get_pic_interrupt(CPUX86State *env)
182 {
183 X86CPU *cpu = x86_env_get_cpu(env);
184 int intno;
185
186 intno = apic_get_interrupt(cpu->apic_state);
187 if (intno >= 0) {
188 return intno;
189 }
190 /* read the irq from the PIC */
191 if (!apic_accept_pic_intr(cpu->apic_state)) {
192 return -1;
193 }
194
195 intno = pic_read_irq(isa_pic);
196 return intno;
197 }
198
199 static void pic_irq_request(void *opaque, int irq, int level)
200 {
201 CPUState *cs = first_cpu;
202 X86CPU *cpu = X86_CPU(cs);
203
204 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
205 if (cpu->apic_state) {
206 CPU_FOREACH(cs) {
207 cpu = X86_CPU(cs);
208 if (apic_accept_pic_intr(cpu->apic_state)) {
209 apic_deliver_pic_intr(cpu->apic_state, level);
210 }
211 }
212 } else {
213 if (level) {
214 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
215 } else {
216 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
217 }
218 }
219 }
220
221 /* PC cmos mappings */
222
223 #define REG_EQUIPMENT_BYTE 0x14
224
225 static int cmos_get_fd_drive_type(FDriveType fd0)
226 {
227 int val;
228
229 switch (fd0) {
230 case FDRIVE_DRV_144:
231 /* 1.44 Mb 3"5 drive */
232 val = 4;
233 break;
234 case FDRIVE_DRV_288:
235 /* 2.88 Mb 3"5 drive */
236 val = 5;
237 break;
238 case FDRIVE_DRV_120:
239 /* 1.2 Mb 5"5 drive */
240 val = 2;
241 break;
242 case FDRIVE_DRV_NONE:
243 default:
244 val = 0;
245 break;
246 }
247 return val;
248 }
249
250 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
251 int16_t cylinders, int8_t heads, int8_t sectors)
252 {
253 rtc_set_memory(s, type_ofs, 47);
254 rtc_set_memory(s, info_ofs, cylinders);
255 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
256 rtc_set_memory(s, info_ofs + 2, heads);
257 rtc_set_memory(s, info_ofs + 3, 0xff);
258 rtc_set_memory(s, info_ofs + 4, 0xff);
259 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
260 rtc_set_memory(s, info_ofs + 6, cylinders);
261 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
262 rtc_set_memory(s, info_ofs + 8, sectors);
263 }
264
265 /* convert boot_device letter to something recognizable by the bios */
266 static int boot_device2nibble(char boot_device)
267 {
268 switch(boot_device) {
269 case 'a':
270 case 'b':
271 return 0x01; /* floppy boot */
272 case 'c':
273 return 0x02; /* hard drive boot */
274 case 'd':
275 return 0x03; /* CD-ROM boot */
276 case 'n':
277 return 0x04; /* Network boot */
278 }
279 return 0;
280 }
281
282 static int set_boot_dev(ISADevice *s, const char *boot_device)
283 {
284 #define PC_MAX_BOOT_DEVICES 3
285 int nbds, bds[3] = { 0, };
286 int i;
287
288 nbds = strlen(boot_device);
289 if (nbds > PC_MAX_BOOT_DEVICES) {
290 error_report("Too many boot devices for PC");
291 return(1);
292 }
293 for (i = 0; i < nbds; i++) {
294 bds[i] = boot_device2nibble(boot_device[i]);
295 if (bds[i] == 0) {
296 error_report("Invalid boot device for PC: '%c'",
297 boot_device[i]);
298 return(1);
299 }
300 }
301 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
302 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
303 return(0);
304 }
305
306 static int pc_boot_set(void *opaque, const char *boot_device)
307 {
308 return set_boot_dev(opaque, boot_device);
309 }
310
311 typedef struct pc_cmos_init_late_arg {
312 ISADevice *rtc_state;
313 BusState *idebus[2];
314 } pc_cmos_init_late_arg;
315
316 static void pc_cmos_init_late(void *opaque)
317 {
318 pc_cmos_init_late_arg *arg = opaque;
319 ISADevice *s = arg->rtc_state;
320 int16_t cylinders;
321 int8_t heads, sectors;
322 int val;
323 int i, trans;
324
325 val = 0;
326 if (ide_get_geometry(arg->idebus[0], 0,
327 &cylinders, &heads, &sectors) >= 0) {
328 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
329 val |= 0xf0;
330 }
331 if (ide_get_geometry(arg->idebus[0], 1,
332 &cylinders, &heads, &sectors) >= 0) {
333 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
334 val |= 0x0f;
335 }
336 rtc_set_memory(s, 0x12, val);
337
338 val = 0;
339 for (i = 0; i < 4; i++) {
340 /* NOTE: ide_get_geometry() returns the physical
341 geometry. It is always such that: 1 <= sects <= 63, 1
342 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
343 geometry can be different if a translation is done. */
344 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
345 &cylinders, &heads, &sectors) >= 0) {
346 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
347 assert((trans & ~3) == 0);
348 val |= trans << (i * 2);
349 }
350 }
351 rtc_set_memory(s, 0x39, val);
352
353 qemu_unregister_reset(pc_cmos_init_late, opaque);
354 }
355
356 typedef struct RTCCPUHotplugArg {
357 Notifier cpu_added_notifier;
358 ISADevice *rtc_state;
359 } RTCCPUHotplugArg;
360
361 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
362 {
363 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
364 cpu_added_notifier);
365 ISADevice *s = arg->rtc_state;
366
367 /* increment the number of CPUs */
368 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
369 }
370
371 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
372 const char *boot_device,
373 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
374 ISADevice *s)
375 {
376 int val, nb, i;
377 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
378 static pc_cmos_init_late_arg arg;
379 static RTCCPUHotplugArg cpu_hotplug_cb;
380
381 /* various important CMOS locations needed by PC/Bochs bios */
382
383 /* memory size */
384 /* base memory (first MiB) */
385 val = MIN(ram_size / 1024, 640);
386 rtc_set_memory(s, 0x15, val);
387 rtc_set_memory(s, 0x16, val >> 8);
388 /* extended memory (next 64MiB) */
389 if (ram_size > 1024 * 1024) {
390 val = (ram_size - 1024 * 1024) / 1024;
391 } else {
392 val = 0;
393 }
394 if (val > 65535)
395 val = 65535;
396 rtc_set_memory(s, 0x17, val);
397 rtc_set_memory(s, 0x18, val >> 8);
398 rtc_set_memory(s, 0x30, val);
399 rtc_set_memory(s, 0x31, val >> 8);
400 /* memory between 16MiB and 4GiB */
401 if (ram_size > 16 * 1024 * 1024) {
402 val = (ram_size - 16 * 1024 * 1024) / 65536;
403 } else {
404 val = 0;
405 }
406 if (val > 65535)
407 val = 65535;
408 rtc_set_memory(s, 0x34, val);
409 rtc_set_memory(s, 0x35, val >> 8);
410 /* memory above 4GiB */
411 val = above_4g_mem_size / 65536;
412 rtc_set_memory(s, 0x5b, val);
413 rtc_set_memory(s, 0x5c, val >> 8);
414 rtc_set_memory(s, 0x5d, val >> 16);
415
416 /* set the number of CPU */
417 rtc_set_memory(s, 0x5f, smp_cpus - 1);
418 /* init CPU hotplug notifier */
419 cpu_hotplug_cb.rtc_state = s;
420 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
421 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
422
423 if (set_boot_dev(s, boot_device)) {
424 exit(1);
425 }
426
427 /* floppy type */
428 if (floppy) {
429 for (i = 0; i < 2; i++) {
430 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
431 }
432 }
433 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
434 cmos_get_fd_drive_type(fd_type[1]);
435 rtc_set_memory(s, 0x10, val);
436
437 val = 0;
438 nb = 0;
439 if (fd_type[0] < FDRIVE_DRV_NONE) {
440 nb++;
441 }
442 if (fd_type[1] < FDRIVE_DRV_NONE) {
443 nb++;
444 }
445 switch (nb) {
446 case 0:
447 break;
448 case 1:
449 val |= 0x01; /* 1 drive, ready for boot */
450 break;
451 case 2:
452 val |= 0x41; /* 2 drives, ready for boot */
453 break;
454 }
455 val |= 0x02; /* FPU is there */
456 val |= 0x04; /* PS/2 mouse installed */
457 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
458
459 /* hard drives */
460 arg.rtc_state = s;
461 arg.idebus[0] = idebus0;
462 arg.idebus[1] = idebus1;
463 qemu_register_reset(pc_cmos_init_late, &arg);
464 }
465
466 #define TYPE_PORT92 "port92"
467 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
468
469 /* port 92 stuff: could be split off */
470 typedef struct Port92State {
471 ISADevice parent_obj;
472
473 MemoryRegion io;
474 uint8_t outport;
475 qemu_irq *a20_out;
476 } Port92State;
477
478 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
479 unsigned size)
480 {
481 Port92State *s = opaque;
482 int oldval = s->outport;
483
484 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
485 s->outport = val;
486 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
487 if ((val & 1) && !(oldval & 1)) {
488 qemu_system_reset_request();
489 }
490 }
491
492 static uint64_t port92_read(void *opaque, hwaddr addr,
493 unsigned size)
494 {
495 Port92State *s = opaque;
496 uint32_t ret;
497
498 ret = s->outport;
499 DPRINTF("port92: read 0x%02x\n", ret);
500 return ret;
501 }
502
503 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
504 {
505 Port92State *s = PORT92(dev);
506
507 s->a20_out = a20_out;
508 }
509
510 static const VMStateDescription vmstate_port92_isa = {
511 .name = "port92",
512 .version_id = 1,
513 .minimum_version_id = 1,
514 .fields = (VMStateField[]) {
515 VMSTATE_UINT8(outport, Port92State),
516 VMSTATE_END_OF_LIST()
517 }
518 };
519
520 static void port92_reset(DeviceState *d)
521 {
522 Port92State *s = PORT92(d);
523
524 s->outport &= ~1;
525 }
526
527 static const MemoryRegionOps port92_ops = {
528 .read = port92_read,
529 .write = port92_write,
530 .impl = {
531 .min_access_size = 1,
532 .max_access_size = 1,
533 },
534 .endianness = DEVICE_LITTLE_ENDIAN,
535 };
536
537 static void port92_initfn(Object *obj)
538 {
539 Port92State *s = PORT92(obj);
540
541 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
542
543 s->outport = 0;
544 }
545
546 static void port92_realizefn(DeviceState *dev, Error **errp)
547 {
548 ISADevice *isadev = ISA_DEVICE(dev);
549 Port92State *s = PORT92(dev);
550
551 isa_register_ioport(isadev, &s->io, 0x92);
552 }
553
554 static void port92_class_initfn(ObjectClass *klass, void *data)
555 {
556 DeviceClass *dc = DEVICE_CLASS(klass);
557
558 dc->realize = port92_realizefn;
559 dc->reset = port92_reset;
560 dc->vmsd = &vmstate_port92_isa;
561 /*
562 * Reason: unlike ordinary ISA devices, this one needs additional
563 * wiring: its A20 output line needs to be wired up by
564 * port92_init().
565 */
566 dc->cannot_instantiate_with_device_add_yet = true;
567 }
568
569 static const TypeInfo port92_info = {
570 .name = TYPE_PORT92,
571 .parent = TYPE_ISA_DEVICE,
572 .instance_size = sizeof(Port92State),
573 .instance_init = port92_initfn,
574 .class_init = port92_class_initfn,
575 };
576
577 static void port92_register_types(void)
578 {
579 type_register_static(&port92_info);
580 }
581
582 type_init(port92_register_types)
583
584 static void handle_a20_line_change(void *opaque, int irq, int level)
585 {
586 X86CPU *cpu = opaque;
587
588 /* XXX: send to all CPUs ? */
589 /* XXX: add logic to handle multiple A20 line sources */
590 x86_cpu_set_a20(cpu, level);
591 }
592
593 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
594 {
595 int index = le32_to_cpu(e820_reserve.count);
596 struct e820_entry *entry;
597
598 if (type != E820_RAM) {
599 /* old FW_CFG_E820_TABLE entry -- reservations only */
600 if (index >= E820_NR_ENTRIES) {
601 return -EBUSY;
602 }
603 entry = &e820_reserve.entry[index++];
604
605 entry->address = cpu_to_le64(address);
606 entry->length = cpu_to_le64(length);
607 entry->type = cpu_to_le32(type);
608
609 e820_reserve.count = cpu_to_le32(index);
610 }
611
612 /* new "etc/e820" file -- include ram too */
613 e820_table = g_realloc(e820_table,
614 sizeof(struct e820_entry) * (e820_entries+1));
615 e820_table[e820_entries].address = cpu_to_le64(address);
616 e820_table[e820_entries].length = cpu_to_le64(length);
617 e820_table[e820_entries].type = cpu_to_le32(type);
618 e820_entries++;
619
620 return e820_entries;
621 }
622
623 int e820_get_num_entries(void)
624 {
625 return e820_entries;
626 }
627
628 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
629 {
630 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
631 *address = le64_to_cpu(e820_table[idx].address);
632 *length = le64_to_cpu(e820_table[idx].length);
633 return true;
634 }
635 return false;
636 }
637
638 /* Calculates the limit to CPU APIC ID values
639 *
640 * This function returns the limit for the APIC ID value, so that all
641 * CPU APIC IDs are < pc_apic_id_limit().
642 *
643 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
644 */
645 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
646 {
647 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
648 }
649
650 static FWCfgState *bochs_bios_init(void)
651 {
652 FWCfgState *fw_cfg;
653 uint8_t *smbios_tables, *smbios_anchor;
654 size_t smbios_tables_len, smbios_anchor_len;
655 uint64_t *numa_fw_cfg;
656 int i, j;
657 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
658
659 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
660 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
661 *
662 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
663 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
664 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
665 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
666 * may see".
667 *
668 * So, this means we must not use max_cpus, here, but the maximum possible
669 * APIC ID value, plus one.
670 *
671 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
672 * the APIC ID, not the "CPU index"
673 */
674 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
675 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
676 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
677 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
678 acpi_tables, acpi_tables_len);
679 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
680
681 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
682 if (smbios_tables) {
683 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
684 smbios_tables, smbios_tables_len);
685 }
686
687 smbios_get_tables(&smbios_tables, &smbios_tables_len,
688 &smbios_anchor, &smbios_anchor_len);
689 if (smbios_anchor) {
690 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
691 smbios_tables, smbios_tables_len);
692 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
693 smbios_anchor, smbios_anchor_len);
694 }
695
696 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
697 &e820_reserve, sizeof(e820_reserve));
698 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
699 sizeof(struct e820_entry) * e820_entries);
700
701 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
702 /* allocate memory for the NUMA channel: one (64bit) word for the number
703 * of nodes, one word for each VCPU->node and one word for each node to
704 * hold the amount of memory.
705 */
706 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
707 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
708 for (i = 0; i < max_cpus; i++) {
709 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
710 assert(apic_id < apic_id_limit);
711 for (j = 0; j < nb_numa_nodes; j++) {
712 if (test_bit(i, numa_info[j].node_cpu)) {
713 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
714 break;
715 }
716 }
717 }
718 for (i = 0; i < nb_numa_nodes; i++) {
719 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
720 }
721 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
722 (1 + apic_id_limit + nb_numa_nodes) *
723 sizeof(*numa_fw_cfg));
724
725 return fw_cfg;
726 }
727
728 static long get_file_size(FILE *f)
729 {
730 long where, size;
731
732 /* XXX: on Unix systems, using fstat() probably makes more sense */
733
734 where = ftell(f);
735 fseek(f, 0, SEEK_END);
736 size = ftell(f);
737 fseek(f, where, SEEK_SET);
738
739 return size;
740 }
741
742 static void load_linux(FWCfgState *fw_cfg,
743 const char *kernel_filename,
744 const char *initrd_filename,
745 const char *kernel_cmdline,
746 hwaddr max_ram_size)
747 {
748 uint16_t protocol;
749 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
750 uint32_t initrd_max;
751 uint8_t header[8192], *setup, *kernel, *initrd_data;
752 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
753 FILE *f;
754 char *vmode;
755
756 /* Align to 16 bytes as a paranoia measure */
757 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
758
759 /* load the kernel header */
760 f = fopen(kernel_filename, "rb");
761 if (!f || !(kernel_size = get_file_size(f)) ||
762 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
763 MIN(ARRAY_SIZE(header), kernel_size)) {
764 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
765 kernel_filename, strerror(errno));
766 exit(1);
767 }
768
769 /* kernel protocol version */
770 #if 0
771 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
772 #endif
773 if (ldl_p(header+0x202) == 0x53726448) {
774 protocol = lduw_p(header+0x206);
775 } else {
776 /* This looks like a multiboot kernel. If it is, let's stop
777 treating it like a Linux kernel. */
778 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
779 kernel_cmdline, kernel_size, header)) {
780 return;
781 }
782 protocol = 0;
783 }
784
785 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
786 /* Low kernel */
787 real_addr = 0x90000;
788 cmdline_addr = 0x9a000 - cmdline_size;
789 prot_addr = 0x10000;
790 } else if (protocol < 0x202) {
791 /* High but ancient kernel */
792 real_addr = 0x90000;
793 cmdline_addr = 0x9a000 - cmdline_size;
794 prot_addr = 0x100000;
795 } else {
796 /* High and recent kernel */
797 real_addr = 0x10000;
798 cmdline_addr = 0x20000;
799 prot_addr = 0x100000;
800 }
801
802 #if 0
803 fprintf(stderr,
804 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
805 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
806 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
807 real_addr,
808 cmdline_addr,
809 prot_addr);
810 #endif
811
812 /* highest address for loading the initrd */
813 if (protocol >= 0x203) {
814 initrd_max = ldl_p(header+0x22c);
815 } else {
816 initrd_max = 0x37ffffff;
817 }
818
819 if (initrd_max >= max_ram_size - acpi_data_size) {
820 initrd_max = max_ram_size - acpi_data_size - 1;
821 }
822
823 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
824 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
825 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
826
827 if (protocol >= 0x202) {
828 stl_p(header+0x228, cmdline_addr);
829 } else {
830 stw_p(header+0x20, 0xA33F);
831 stw_p(header+0x22, cmdline_addr-real_addr);
832 }
833
834 /* handle vga= parameter */
835 vmode = strstr(kernel_cmdline, "vga=");
836 if (vmode) {
837 unsigned int video_mode;
838 /* skip "vga=" */
839 vmode += 4;
840 if (!strncmp(vmode, "normal", 6)) {
841 video_mode = 0xffff;
842 } else if (!strncmp(vmode, "ext", 3)) {
843 video_mode = 0xfffe;
844 } else if (!strncmp(vmode, "ask", 3)) {
845 video_mode = 0xfffd;
846 } else {
847 video_mode = strtol(vmode, NULL, 0);
848 }
849 stw_p(header+0x1fa, video_mode);
850 }
851
852 /* loader type */
853 /* High nybble = B reserved for QEMU; low nybble is revision number.
854 If this code is substantially changed, you may want to consider
855 incrementing the revision. */
856 if (protocol >= 0x200) {
857 header[0x210] = 0xB0;
858 }
859 /* heap */
860 if (protocol >= 0x201) {
861 header[0x211] |= 0x80; /* CAN_USE_HEAP */
862 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
863 }
864
865 /* load initrd */
866 if (initrd_filename) {
867 if (protocol < 0x200) {
868 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
869 exit(1);
870 }
871
872 initrd_size = get_image_size(initrd_filename);
873 if (initrd_size < 0) {
874 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
875 initrd_filename, strerror(errno));
876 exit(1);
877 }
878
879 initrd_addr = (initrd_max-initrd_size) & ~4095;
880
881 initrd_data = g_malloc(initrd_size);
882 load_image(initrd_filename, initrd_data);
883
884 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
885 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
886 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
887
888 stl_p(header+0x218, initrd_addr);
889 stl_p(header+0x21c, initrd_size);
890 }
891
892 /* load kernel and setup */
893 setup_size = header[0x1f1];
894 if (setup_size == 0) {
895 setup_size = 4;
896 }
897 setup_size = (setup_size+1)*512;
898 kernel_size -= setup_size;
899
900 setup = g_malloc(setup_size);
901 kernel = g_malloc(kernel_size);
902 fseek(f, 0, SEEK_SET);
903 if (fread(setup, 1, setup_size, f) != setup_size) {
904 fprintf(stderr, "fread() failed\n");
905 exit(1);
906 }
907 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
908 fprintf(stderr, "fread() failed\n");
909 exit(1);
910 }
911 fclose(f);
912 memcpy(setup, header, MIN(sizeof(header), setup_size));
913
914 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
915 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
916 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
917
918 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
919 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
920 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
921
922 option_rom[nb_option_roms].name = "linuxboot.bin";
923 option_rom[nb_option_roms].bootindex = 0;
924 nb_option_roms++;
925 }
926
927 #define NE2000_NB_MAX 6
928
929 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
930 0x280, 0x380 };
931 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
932
933 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
934 {
935 static int nb_ne2k = 0;
936
937 if (nb_ne2k == NE2000_NB_MAX)
938 return;
939 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
940 ne2000_irq[nb_ne2k], nd);
941 nb_ne2k++;
942 }
943
944 DeviceState *cpu_get_current_apic(void)
945 {
946 if (current_cpu) {
947 X86CPU *cpu = X86_CPU(current_cpu);
948 return cpu->apic_state;
949 } else {
950 return NULL;
951 }
952 }
953
954 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
955 {
956 X86CPU *cpu = opaque;
957
958 if (level) {
959 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
960 }
961 }
962
963 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
964 DeviceState *icc_bridge, Error **errp)
965 {
966 X86CPU *cpu;
967 Error *local_err = NULL;
968
969 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
970 if (local_err != NULL) {
971 error_propagate(errp, local_err);
972 return NULL;
973 }
974
975 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
976 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
977
978 if (local_err) {
979 error_propagate(errp, local_err);
980 object_unref(OBJECT(cpu));
981 cpu = NULL;
982 }
983 return cpu;
984 }
985
986 static const char *current_cpu_model;
987
988 void pc_hot_add_cpu(const int64_t id, Error **errp)
989 {
990 DeviceState *icc_bridge;
991 int64_t apic_id = x86_cpu_apic_id_from_index(id);
992
993 if (id < 0) {
994 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
995 return;
996 }
997
998 if (cpu_exists(apic_id)) {
999 error_setg(errp, "Unable to add CPU: %" PRIi64
1000 ", it already exists", id);
1001 return;
1002 }
1003
1004 if (id >= max_cpus) {
1005 error_setg(errp, "Unable to add CPU: %" PRIi64
1006 ", max allowed: %d", id, max_cpus - 1);
1007 return;
1008 }
1009
1010 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1011 error_setg(errp, "Unable to add CPU: %" PRIi64
1012 ", resulting APIC ID (%" PRIi64 ") is too large",
1013 id, apic_id);
1014 return;
1015 }
1016
1017 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1018 TYPE_ICC_BRIDGE, NULL));
1019 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1020 }
1021
1022 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1023 {
1024 int i;
1025 X86CPU *cpu = NULL;
1026 Error *error = NULL;
1027 unsigned long apic_id_limit;
1028
1029 /* init CPUs */
1030 if (cpu_model == NULL) {
1031 #ifdef TARGET_X86_64
1032 cpu_model = "qemu64";
1033 #else
1034 cpu_model = "qemu32";
1035 #endif
1036 }
1037 current_cpu_model = cpu_model;
1038
1039 apic_id_limit = pc_apic_id_limit(max_cpus);
1040 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1041 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1042 apic_id_limit - 1);
1043 exit(1);
1044 }
1045
1046 for (i = 0; i < smp_cpus; i++) {
1047 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1048 icc_bridge, &error);
1049 if (error) {
1050 error_report("%s", error_get_pretty(error));
1051 error_free(error);
1052 exit(1);
1053 }
1054 }
1055
1056 /* map APIC MMIO area if CPU has APIC */
1057 if (cpu && cpu->apic_state) {
1058 /* XXX: what if the base changes? */
1059 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1060 APIC_DEFAULT_ADDRESS, 0x1000);
1061 }
1062
1063 /* tell smbios about cpuid version and features */
1064 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1065 }
1066
1067 /* pci-info ROM file. Little endian format */
1068 typedef struct PcRomPciInfo {
1069 uint64_t w32_min;
1070 uint64_t w32_max;
1071 uint64_t w64_min;
1072 uint64_t w64_max;
1073 } PcRomPciInfo;
1074
1075 typedef struct PcGuestInfoState {
1076 PcGuestInfo info;
1077 Notifier machine_done;
1078 } PcGuestInfoState;
1079
1080 static
1081 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1082 {
1083 PcGuestInfoState *guest_info_state = container_of(notifier,
1084 PcGuestInfoState,
1085 machine_done);
1086 acpi_setup(&guest_info_state->info);
1087 }
1088
1089 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1090 ram_addr_t above_4g_mem_size)
1091 {
1092 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1093 PcGuestInfo *guest_info = &guest_info_state->info;
1094 int i, j;
1095
1096 guest_info->ram_size_below_4g = below_4g_mem_size;
1097 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1098 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1099 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1100 guest_info->numa_nodes = nb_numa_nodes;
1101 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1102 sizeof *guest_info->node_mem);
1103 for (i = 0; i < nb_numa_nodes; i++) {
1104 guest_info->node_mem[i] = numa_info[i].node_mem;
1105 }
1106
1107 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1108 sizeof *guest_info->node_cpu);
1109
1110 for (i = 0; i < max_cpus; i++) {
1111 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1112 assert(apic_id < guest_info->apic_id_limit);
1113 for (j = 0; j < nb_numa_nodes; j++) {
1114 if (test_bit(i, numa_info[j].node_cpu)) {
1115 guest_info->node_cpu[apic_id] = j;
1116 break;
1117 }
1118 }
1119 }
1120
1121 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1122 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1123 return guest_info;
1124 }
1125
1126 /* setup pci memory address space mapping into system address space */
1127 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1128 MemoryRegion *pci_address_space)
1129 {
1130 /* Set to lower priority than RAM */
1131 memory_region_add_subregion_overlap(system_memory, 0x0,
1132 pci_address_space, -1);
1133 }
1134
1135 void pc_acpi_init(const char *default_dsdt)
1136 {
1137 char *filename;
1138
1139 if (acpi_tables != NULL) {
1140 /* manually set via -acpitable, leave it alone */
1141 return;
1142 }
1143
1144 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1145 if (filename == NULL) {
1146 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1147 } else {
1148 char *arg;
1149 QemuOpts *opts;
1150 Error *err = NULL;
1151
1152 arg = g_strdup_printf("file=%s", filename);
1153
1154 /* creates a deep copy of "arg" */
1155 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1156 g_assert(opts != NULL);
1157
1158 acpi_table_add_builtin(opts, &err);
1159 if (err) {
1160 error_report("WARNING: failed to load %s: %s", filename,
1161 error_get_pretty(err));
1162 error_free(err);
1163 }
1164 g_free(arg);
1165 g_free(filename);
1166 }
1167 }
1168
1169 FWCfgState *xen_load_linux(const char *kernel_filename,
1170 const char *kernel_cmdline,
1171 const char *initrd_filename,
1172 ram_addr_t below_4g_mem_size,
1173 PcGuestInfo *guest_info)
1174 {
1175 int i;
1176 FWCfgState *fw_cfg;
1177
1178 assert(kernel_filename != NULL);
1179
1180 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
1181 rom_set_fw(fw_cfg);
1182
1183 load_linux(fw_cfg, kernel_filename, initrd_filename,
1184 kernel_cmdline, below_4g_mem_size);
1185 for (i = 0; i < nb_option_roms; i++) {
1186 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1187 !strcmp(option_rom[i].name, "multiboot.bin"));
1188 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1189 }
1190 guest_info->fw_cfg = fw_cfg;
1191 return fw_cfg;
1192 }
1193
1194 FWCfgState *pc_memory_init(MachineState *machine,
1195 MemoryRegion *system_memory,
1196 ram_addr_t below_4g_mem_size,
1197 ram_addr_t above_4g_mem_size,
1198 MemoryRegion *rom_memory,
1199 MemoryRegion **ram_memory,
1200 PcGuestInfo *guest_info)
1201 {
1202 int linux_boot, i;
1203 MemoryRegion *ram, *option_rom_mr;
1204 MemoryRegion *ram_below_4g, *ram_above_4g;
1205 FWCfgState *fw_cfg;
1206 PCMachineState *pcms = PC_MACHINE(machine);
1207
1208 assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1209
1210 linux_boot = (machine->kernel_filename != NULL);
1211
1212 /* Allocate RAM. We allocate it as a single memory region and use
1213 * aliases to address portions of it, mostly for backwards compatibility
1214 * with older qemus that used qemu_ram_alloc().
1215 */
1216 ram = g_malloc(sizeof(*ram));
1217 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1218 machine->ram_size);
1219 *ram_memory = ram;
1220 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1221 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1222 0, below_4g_mem_size);
1223 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1224 e820_add_entry(0, below_4g_mem_size, E820_RAM);
1225 if (above_4g_mem_size > 0) {
1226 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1227 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1228 below_4g_mem_size, above_4g_mem_size);
1229 memory_region_add_subregion(system_memory, 0x100000000ULL,
1230 ram_above_4g);
1231 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1232 }
1233
1234 if (!guest_info->has_reserved_memory &&
1235 (machine->ram_slots ||
1236 (machine->maxram_size > machine->ram_size))) {
1237 MachineClass *mc = MACHINE_GET_CLASS(machine);
1238
1239 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1240 mc->name);
1241 exit(EXIT_FAILURE);
1242 }
1243
1244 /* initialize hotplug memory address space */
1245 if (guest_info->has_reserved_memory &&
1246 (machine->ram_size < machine->maxram_size)) {
1247 ram_addr_t hotplug_mem_size =
1248 machine->maxram_size - machine->ram_size;
1249
1250 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1251 error_report("unsupported amount of memory slots: %"PRIu64,
1252 machine->ram_slots);
1253 exit(EXIT_FAILURE);
1254 }
1255
1256 pcms->hotplug_memory_base =
1257 ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1258
1259 if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1260 hotplug_mem_size) {
1261 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1262 machine->maxram_size);
1263 exit(EXIT_FAILURE);
1264 }
1265
1266 memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1267 "hotplug-memory", hotplug_mem_size);
1268 memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1269 &pcms->hotplug_memory);
1270 }
1271
1272 /* Initialize PC system firmware */
1273 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1274
1275 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1276 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1277 vmstate_register_ram_global(option_rom_mr);
1278 memory_region_add_subregion_overlap(rom_memory,
1279 PC_ROM_MIN_VGA,
1280 option_rom_mr,
1281 1);
1282
1283 fw_cfg = bochs_bios_init();
1284 rom_set_fw(fw_cfg);
1285
1286 if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1287 uint64_t *val = g_malloc(sizeof(*val));
1288 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1289 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1290 }
1291
1292 if (linux_boot) {
1293 load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1294 machine->kernel_cmdline, below_4g_mem_size);
1295 }
1296
1297 for (i = 0; i < nb_option_roms; i++) {
1298 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1299 }
1300 guest_info->fw_cfg = fw_cfg;
1301 return fw_cfg;
1302 }
1303
1304 qemu_irq *pc_allocate_cpu_irq(void)
1305 {
1306 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1307 }
1308
1309 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1310 {
1311 DeviceState *dev = NULL;
1312
1313 if (pci_bus) {
1314 PCIDevice *pcidev = pci_vga_init(pci_bus);
1315 dev = pcidev ? &pcidev->qdev : NULL;
1316 } else if (isa_bus) {
1317 ISADevice *isadev = isa_vga_init(isa_bus);
1318 dev = isadev ? DEVICE(isadev) : NULL;
1319 }
1320 return dev;
1321 }
1322
1323 static void cpu_request_exit(void *opaque, int irq, int level)
1324 {
1325 CPUState *cpu = current_cpu;
1326
1327 if (cpu && level) {
1328 cpu_exit(cpu);
1329 }
1330 }
1331
1332 static const MemoryRegionOps ioport80_io_ops = {
1333 .write = ioport80_write,
1334 .read = ioport80_read,
1335 .endianness = DEVICE_NATIVE_ENDIAN,
1336 .impl = {
1337 .min_access_size = 1,
1338 .max_access_size = 1,
1339 },
1340 };
1341
1342 static const MemoryRegionOps ioportF0_io_ops = {
1343 .write = ioportF0_write,
1344 .read = ioportF0_read,
1345 .endianness = DEVICE_NATIVE_ENDIAN,
1346 .impl = {
1347 .min_access_size = 1,
1348 .max_access_size = 1,
1349 },
1350 };
1351
1352 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1353 ISADevice **rtc_state,
1354 ISADevice **floppy,
1355 bool no_vmport,
1356 uint32 hpet_irqs)
1357 {
1358 int i;
1359 DriveInfo *fd[MAX_FD];
1360 DeviceState *hpet = NULL;
1361 int pit_isa_irq = 0;
1362 qemu_irq pit_alt_irq = NULL;
1363 qemu_irq rtc_irq = NULL;
1364 qemu_irq *a20_line;
1365 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1366 qemu_irq *cpu_exit_irq;
1367 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1368 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1369
1370 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1371 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1372
1373 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1374 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1375
1376 /*
1377 * Check if an HPET shall be created.
1378 *
1379 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1380 * when the HPET wants to take over. Thus we have to disable the latter.
1381 */
1382 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1383 /* In order to set property, here not using sysbus_try_create_simple */
1384 hpet = qdev_try_create(NULL, TYPE_HPET);
1385 if (hpet) {
1386 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1387 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1388 * IRQ8 and IRQ2.
1389 */
1390 uint8_t compat = object_property_get_int(OBJECT(hpet),
1391 HPET_INTCAP, NULL);
1392 if (!compat) {
1393 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1394 }
1395 qdev_init_nofail(hpet);
1396 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1397
1398 for (i = 0; i < GSI_NUM_PINS; i++) {
1399 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1400 }
1401 pit_isa_irq = -1;
1402 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1403 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1404 }
1405 }
1406 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1407
1408 qemu_register_boot_set(pc_boot_set, *rtc_state);
1409
1410 if (!xen_enabled()) {
1411 if (kvm_irqchip_in_kernel()) {
1412 pit = kvm_pit_init(isa_bus, 0x40);
1413 } else {
1414 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1415 }
1416 if (hpet) {
1417 /* connect PIT to output control line of the HPET */
1418 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1419 }
1420 pcspk_init(isa_bus, pit);
1421 }
1422
1423 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1424 if (serial_hds[i]) {
1425 serial_isa_init(isa_bus, i, serial_hds[i]);
1426 }
1427 }
1428
1429 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1430 if (parallel_hds[i]) {
1431 parallel_init(isa_bus, i, parallel_hds[i]);
1432 }
1433 }
1434
1435 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1436 i8042 = isa_create_simple(isa_bus, "i8042");
1437 i8042_setup_a20_line(i8042, &a20_line[0]);
1438 if (!no_vmport) {
1439 vmport_init(isa_bus);
1440 vmmouse = isa_try_create(isa_bus, "vmmouse");
1441 } else {
1442 vmmouse = NULL;
1443 }
1444 if (vmmouse) {
1445 DeviceState *dev = DEVICE(vmmouse);
1446 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1447 qdev_init_nofail(dev);
1448 }
1449 port92 = isa_create_simple(isa_bus, "port92");
1450 port92_init(port92, &a20_line[1]);
1451
1452 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1453 DMA_init(0, cpu_exit_irq);
1454
1455 for(i = 0; i < MAX_FD; i++) {
1456 fd[i] = drive_get(IF_FLOPPY, 0, i);
1457 }
1458 *floppy = fdctrl_init_isa(isa_bus, fd);
1459 }
1460
1461 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1462 {
1463 int i;
1464
1465 for (i = 0; i < nb_nics; i++) {
1466 NICInfo *nd = &nd_table[i];
1467
1468 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1469 pc_init_ne2k_isa(isa_bus, nd);
1470 } else {
1471 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1472 }
1473 }
1474 }
1475
1476 void pc_pci_device_init(PCIBus *pci_bus)
1477 {
1478 int max_bus;
1479 int bus;
1480
1481 max_bus = drive_get_max_bus(IF_SCSI);
1482 for (bus = 0; bus <= max_bus; bus++) {
1483 pci_create_simple(pci_bus, -1, "lsi53c895a");
1484 }
1485 }
1486
1487 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1488 {
1489 DeviceState *dev;
1490 SysBusDevice *d;
1491 unsigned int i;
1492
1493 if (kvm_irqchip_in_kernel()) {
1494 dev = qdev_create(NULL, "kvm-ioapic");
1495 } else {
1496 dev = qdev_create(NULL, "ioapic");
1497 }
1498 if (parent_name) {
1499 object_property_add_child(object_resolve_path(parent_name, NULL),
1500 "ioapic", OBJECT(dev), NULL);
1501 }
1502 qdev_init_nofail(dev);
1503 d = SYS_BUS_DEVICE(dev);
1504 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1505
1506 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1507 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1508 }
1509 }
1510
1511 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1512 {
1513 MachineClass *mc = MACHINE_CLASS(oc);
1514 QEMUMachine *qm = data;
1515
1516 mc->name = qm->name;
1517 mc->alias = qm->alias;
1518 mc->desc = qm->desc;
1519 mc->init = qm->init;
1520 mc->reset = qm->reset;
1521 mc->hot_add_cpu = qm->hot_add_cpu;
1522 mc->kvm_type = qm->kvm_type;
1523 mc->block_default_type = qm->block_default_type;
1524 mc->max_cpus = qm->max_cpus;
1525 mc->no_serial = qm->no_serial;
1526 mc->no_parallel = qm->no_parallel;
1527 mc->use_virtcon = qm->use_virtcon;
1528 mc->use_sclp = qm->use_sclp;
1529 mc->no_floppy = qm->no_floppy;
1530 mc->no_cdrom = qm->no_cdrom;
1531 mc->no_sdcard = qm->no_sdcard;
1532 mc->is_default = qm->is_default;
1533 mc->default_machine_opts = qm->default_machine_opts;
1534 mc->default_boot_order = qm->default_boot_order;
1535 mc->compat_props = qm->compat_props;
1536 mc->hw_version = qm->hw_version;
1537 }
1538
1539 void qemu_register_pc_machine(QEMUMachine *m)
1540 {
1541 char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1542 TypeInfo ti = {
1543 .name = name,
1544 .parent = TYPE_PC_MACHINE,
1545 .class_init = pc_generic_machine_class_init,
1546 .class_data = (void *)m,
1547 };
1548
1549 type_register(&ti);
1550 g_free(name);
1551 }
1552
1553 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1554 DeviceState *dev, Error **errp)
1555 {
1556 int slot;
1557 HotplugHandlerClass *hhc;
1558 Error *local_err = NULL;
1559 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1560 MachineState *machine = MACHINE(hotplug_dev);
1561 PCDIMMDevice *dimm = PC_DIMM(dev);
1562 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1563 MemoryRegion *mr = ddc->get_memory_region(dimm);
1564 uint64_t addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
1565 &local_err);
1566 if (local_err) {
1567 goto out;
1568 }
1569
1570 addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1571 memory_region_size(&pcms->hotplug_memory),
1572 !addr ? NULL : &addr,
1573 memory_region_size(mr), &local_err);
1574 if (local_err) {
1575 goto out;
1576 }
1577
1578 object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1579 if (local_err) {
1580 goto out;
1581 }
1582 trace_mhp_pc_dimm_assigned_address(addr);
1583
1584 slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1585 if (local_err) {
1586 goto out;
1587 }
1588
1589 slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1590 machine->ram_slots, &local_err);
1591 if (local_err) {
1592 goto out;
1593 }
1594 object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1595 if (local_err) {
1596 goto out;
1597 }
1598 trace_mhp_pc_dimm_assigned_slot(slot);
1599
1600 if (!pcms->acpi_dev) {
1601 error_setg(&local_err,
1602 "memory hotplug is not enabled: missing acpi device");
1603 goto out;
1604 }
1605
1606 memory_region_add_subregion(&pcms->hotplug_memory,
1607 addr - pcms->hotplug_memory_base, mr);
1608 vmstate_register_ram(mr, dev);
1609
1610 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1611 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1612 out:
1613 error_propagate(errp, local_err);
1614 }
1615
1616 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1617 DeviceState *dev, Error **errp)
1618 {
1619 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1620 pc_dimm_plug(hotplug_dev, dev, errp);
1621 }
1622 }
1623
1624 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1625 DeviceState *dev)
1626 {
1627 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1628
1629 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1630 return HOTPLUG_HANDLER(machine);
1631 }
1632
1633 return pcmc->get_hotplug_handler ?
1634 pcmc->get_hotplug_handler(machine, dev) : NULL;
1635 }
1636
1637 static void
1638 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1639 const char *name, Error **errp)
1640 {
1641 PCMachineState *pcms = PC_MACHINE(obj);
1642 int64_t value = memory_region_size(&pcms->hotplug_memory);
1643
1644 visit_type_int(v, &value, name, errp);
1645 }
1646
1647 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1648 void *opaque, const char *name,
1649 Error **errp)
1650 {
1651 PCMachineState *pcms = PC_MACHINE(obj);
1652 uint64_t value = pcms->max_ram_below_4g;
1653
1654 visit_type_size(v, &value, name, errp);
1655 }
1656
1657 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1658 void *opaque, const char *name,
1659 Error **errp)
1660 {
1661 PCMachineState *pcms = PC_MACHINE(obj);
1662 Error *error = NULL;
1663 uint64_t value;
1664
1665 visit_type_size(v, &value, name, &error);
1666 if (error) {
1667 error_propagate(errp, error);
1668 return;
1669 }
1670 if (value > (1ULL << 32)) {
1671 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1672 "Machine option 'max-ram-below-4g=%"PRIu64
1673 "' expects size less than or equal to 4G", value);
1674 error_propagate(errp, error);
1675 return;
1676 }
1677
1678 if (value < (1ULL << 20)) {
1679 error_report("Warning: small max_ram_below_4g(%"PRIu64
1680 ") less than 1M. BIOS may not work..",
1681 value);
1682 }
1683
1684 pcms->max_ram_below_4g = value;
1685 }
1686
1687 static void pc_machine_initfn(Object *obj)
1688 {
1689 PCMachineState *pcms = PC_MACHINE(obj);
1690
1691 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1692 pc_machine_get_hotplug_memory_region_size,
1693 NULL, NULL, NULL, NULL);
1694 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1695 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1696 pc_machine_get_max_ram_below_4g,
1697 pc_machine_set_max_ram_below_4g,
1698 NULL, NULL, NULL);
1699 }
1700
1701 static void pc_machine_class_init(ObjectClass *oc, void *data)
1702 {
1703 MachineClass *mc = MACHINE_CLASS(oc);
1704 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1705 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1706
1707 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1708 mc->get_hotplug_handler = pc_get_hotpug_handler;
1709 hc->plug = pc_machine_device_plug_cb;
1710 }
1711
1712 static const TypeInfo pc_machine_info = {
1713 .name = TYPE_PC_MACHINE,
1714 .parent = TYPE_MACHINE,
1715 .abstract = true,
1716 .instance_size = sizeof(PCMachineState),
1717 .instance_init = pc_machine_initfn,
1718 .class_size = sizeof(PCMachineClass),
1719 .class_init = pc_machine_class_init,
1720 .interfaces = (InterfaceInfo[]) {
1721 { TYPE_HOTPLUG_HANDLER },
1722 { }
1723 },
1724 };
1725
1726 static void pc_machine_register_types(void)
1727 {
1728 type_register_static(&pc_machine_info);
1729 }
1730
1731 type_init(pc_machine_register_types)