]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
machine: Make possible_cpu_arch_ids() return const pointer
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71 #include "hw/i386/intel_iommu.h"
72
73 /* debug PC/ISA interrupts */
74 //#define DEBUG_IRQ
75
76 #ifdef DEBUG_IRQ
77 #define DPRINTF(fmt, ...) \
78 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
79 #else
80 #define DPRINTF(fmt, ...)
81 #endif
82
83 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
84 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
85 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
86 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
87 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
88
89 #define E820_NR_ENTRIES 16
90
91 struct e820_entry {
92 uint64_t address;
93 uint64_t length;
94 uint32_t type;
95 } QEMU_PACKED __attribute((__aligned__(4)));
96
97 struct e820_table {
98 uint32_t count;
99 struct e820_entry entry[E820_NR_ENTRIES];
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 static struct e820_table e820_reserve;
103 static struct e820_entry *e820_table;
104 static unsigned e820_entries;
105 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
106
107 void gsi_handler(void *opaque, int n, int level)
108 {
109 GSIState *s = opaque;
110
111 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
112 if (n < ISA_NUM_IRQS) {
113 qemu_set_irq(s->i8259_irq[n], level);
114 }
115 qemu_set_irq(s->ioapic_irq[n], level);
116 }
117
118 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
119 unsigned size)
120 {
121 }
122
123 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
124 {
125 return 0xffffffffffffffffULL;
126 }
127
128 /* MSDOS compatibility mode FPU exception support */
129 static qemu_irq ferr_irq;
130
131 void pc_register_ferr_irq(qemu_irq irq)
132 {
133 ferr_irq = irq;
134 }
135
136 /* XXX: add IGNNE support */
137 void cpu_set_ferr(CPUX86State *s)
138 {
139 qemu_irq_raise(ferr_irq);
140 }
141
142 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
143 unsigned size)
144 {
145 qemu_irq_lower(ferr_irq);
146 }
147
148 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
149 {
150 return 0xffffffffffffffffULL;
151 }
152
153 /* TSC handling */
154 uint64_t cpu_get_tsc(CPUX86State *env)
155 {
156 return cpu_get_ticks();
157 }
158
159 /* IRQ handling */
160 int cpu_get_pic_interrupt(CPUX86State *env)
161 {
162 X86CPU *cpu = x86_env_get_cpu(env);
163 int intno;
164
165 if (!kvm_irqchip_in_kernel()) {
166 intno = apic_get_interrupt(cpu->apic_state);
167 if (intno >= 0) {
168 return intno;
169 }
170 /* read the irq from the PIC */
171 if (!apic_accept_pic_intr(cpu->apic_state)) {
172 return -1;
173 }
174 }
175
176 intno = pic_read_irq(isa_pic);
177 return intno;
178 }
179
180 static void pic_irq_request(void *opaque, int irq, int level)
181 {
182 CPUState *cs = first_cpu;
183 X86CPU *cpu = X86_CPU(cs);
184
185 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
186 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
187 CPU_FOREACH(cs) {
188 cpu = X86_CPU(cs);
189 if (apic_accept_pic_intr(cpu->apic_state)) {
190 apic_deliver_pic_intr(cpu->apic_state, level);
191 }
192 }
193 } else {
194 if (level) {
195 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
196 } else {
197 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
198 }
199 }
200 }
201
202 /* PC cmos mappings */
203
204 #define REG_EQUIPMENT_BYTE 0x14
205
206 int cmos_get_fd_drive_type(FloppyDriveType fd0)
207 {
208 int val;
209
210 switch (fd0) {
211 case FLOPPY_DRIVE_TYPE_144:
212 /* 1.44 Mb 3"5 drive */
213 val = 4;
214 break;
215 case FLOPPY_DRIVE_TYPE_288:
216 /* 2.88 Mb 3"5 drive */
217 val = 5;
218 break;
219 case FLOPPY_DRIVE_TYPE_120:
220 /* 1.2 Mb 5"5 drive */
221 val = 2;
222 break;
223 case FLOPPY_DRIVE_TYPE_NONE:
224 default:
225 val = 0;
226 break;
227 }
228 return val;
229 }
230
231 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
232 int16_t cylinders, int8_t heads, int8_t sectors)
233 {
234 rtc_set_memory(s, type_ofs, 47);
235 rtc_set_memory(s, info_ofs, cylinders);
236 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
237 rtc_set_memory(s, info_ofs + 2, heads);
238 rtc_set_memory(s, info_ofs + 3, 0xff);
239 rtc_set_memory(s, info_ofs + 4, 0xff);
240 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
241 rtc_set_memory(s, info_ofs + 6, cylinders);
242 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
243 rtc_set_memory(s, info_ofs + 8, sectors);
244 }
245
246 /* convert boot_device letter to something recognizable by the bios */
247 static int boot_device2nibble(char boot_device)
248 {
249 switch(boot_device) {
250 case 'a':
251 case 'b':
252 return 0x01; /* floppy boot */
253 case 'c':
254 return 0x02; /* hard drive boot */
255 case 'd':
256 return 0x03; /* CD-ROM boot */
257 case 'n':
258 return 0x04; /* Network boot */
259 }
260 return 0;
261 }
262
263 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
264 {
265 #define PC_MAX_BOOT_DEVICES 3
266 int nbds, bds[3] = { 0, };
267 int i;
268
269 nbds = strlen(boot_device);
270 if (nbds > PC_MAX_BOOT_DEVICES) {
271 error_setg(errp, "Too many boot devices for PC");
272 return;
273 }
274 for (i = 0; i < nbds; i++) {
275 bds[i] = boot_device2nibble(boot_device[i]);
276 if (bds[i] == 0) {
277 error_setg(errp, "Invalid boot device for PC: '%c'",
278 boot_device[i]);
279 return;
280 }
281 }
282 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
283 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
284 }
285
286 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
287 {
288 set_boot_dev(opaque, boot_device, errp);
289 }
290
291 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
292 {
293 int val, nb, i;
294 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
295 FLOPPY_DRIVE_TYPE_NONE };
296
297 /* floppy type */
298 if (floppy) {
299 for (i = 0; i < 2; i++) {
300 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
301 }
302 }
303 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
304 cmos_get_fd_drive_type(fd_type[1]);
305 rtc_set_memory(rtc_state, 0x10, val);
306
307 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
308 nb = 0;
309 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
310 nb++;
311 }
312 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
313 nb++;
314 }
315 switch (nb) {
316 case 0:
317 break;
318 case 1:
319 val |= 0x01; /* 1 drive, ready for boot */
320 break;
321 case 2:
322 val |= 0x41; /* 2 drives, ready for boot */
323 break;
324 }
325 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
326 }
327
328 typedef struct pc_cmos_init_late_arg {
329 ISADevice *rtc_state;
330 BusState *idebus[2];
331 } pc_cmos_init_late_arg;
332
333 typedef struct check_fdc_state {
334 ISADevice *floppy;
335 bool multiple;
336 } CheckFdcState;
337
338 static int check_fdc(Object *obj, void *opaque)
339 {
340 CheckFdcState *state = opaque;
341 Object *fdc;
342 uint32_t iobase;
343 Error *local_err = NULL;
344
345 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
346 if (!fdc) {
347 return 0;
348 }
349
350 iobase = object_property_get_int(obj, "iobase", &local_err);
351 if (local_err || iobase != 0x3f0) {
352 error_free(local_err);
353 return 0;
354 }
355
356 if (state->floppy) {
357 state->multiple = true;
358 } else {
359 state->floppy = ISA_DEVICE(obj);
360 }
361 return 0;
362 }
363
364 static const char * const fdc_container_path[] = {
365 "/unattached", "/peripheral", "/peripheral-anon"
366 };
367
368 /*
369 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
370 * and ACPI objects.
371 */
372 ISADevice *pc_find_fdc0(void)
373 {
374 int i;
375 Object *container;
376 CheckFdcState state = { 0 };
377
378 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
379 container = container_get(qdev_get_machine(), fdc_container_path[i]);
380 object_child_foreach(container, check_fdc, &state);
381 }
382
383 if (state.multiple) {
384 error_report("warning: multiple floppy disk controllers with "
385 "iobase=0x3f0 have been found");
386 error_printf("the one being picked for CMOS setup might not reflect "
387 "your intent\n");
388 }
389
390 return state.floppy;
391 }
392
393 static void pc_cmos_init_late(void *opaque)
394 {
395 pc_cmos_init_late_arg *arg = opaque;
396 ISADevice *s = arg->rtc_state;
397 int16_t cylinders;
398 int8_t heads, sectors;
399 int val;
400 int i, trans;
401
402 val = 0;
403 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
404 &cylinders, &heads, &sectors) >= 0) {
405 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
406 val |= 0xf0;
407 }
408 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
409 &cylinders, &heads, &sectors) >= 0) {
410 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
411 val |= 0x0f;
412 }
413 rtc_set_memory(s, 0x12, val);
414
415 val = 0;
416 for (i = 0; i < 4; i++) {
417 /* NOTE: ide_get_geometry() returns the physical
418 geometry. It is always such that: 1 <= sects <= 63, 1
419 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
420 geometry can be different if a translation is done. */
421 if (arg->idebus[i / 2] &&
422 ide_get_geometry(arg->idebus[i / 2], i % 2,
423 &cylinders, &heads, &sectors) >= 0) {
424 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
425 assert((trans & ~3) == 0);
426 val |= trans << (i * 2);
427 }
428 }
429 rtc_set_memory(s, 0x39, val);
430
431 pc_cmos_init_floppy(s, pc_find_fdc0());
432
433 qemu_unregister_reset(pc_cmos_init_late, opaque);
434 }
435
436 void pc_cmos_init(PCMachineState *pcms,
437 BusState *idebus0, BusState *idebus1,
438 ISADevice *s)
439 {
440 int val;
441 static pc_cmos_init_late_arg arg;
442
443 /* various important CMOS locations needed by PC/Bochs bios */
444
445 /* memory size */
446 /* base memory (first MiB) */
447 val = MIN(pcms->below_4g_mem_size / 1024, 640);
448 rtc_set_memory(s, 0x15, val);
449 rtc_set_memory(s, 0x16, val >> 8);
450 /* extended memory (next 64MiB) */
451 if (pcms->below_4g_mem_size > 1024 * 1024) {
452 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
453 } else {
454 val = 0;
455 }
456 if (val > 65535)
457 val = 65535;
458 rtc_set_memory(s, 0x17, val);
459 rtc_set_memory(s, 0x18, val >> 8);
460 rtc_set_memory(s, 0x30, val);
461 rtc_set_memory(s, 0x31, val >> 8);
462 /* memory between 16MiB and 4GiB */
463 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
464 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
465 } else {
466 val = 0;
467 }
468 if (val > 65535)
469 val = 65535;
470 rtc_set_memory(s, 0x34, val);
471 rtc_set_memory(s, 0x35, val >> 8);
472 /* memory above 4GiB */
473 val = pcms->above_4g_mem_size / 65536;
474 rtc_set_memory(s, 0x5b, val);
475 rtc_set_memory(s, 0x5c, val >> 8);
476 rtc_set_memory(s, 0x5d, val >> 16);
477
478 object_property_add_link(OBJECT(pcms), "rtc_state",
479 TYPE_ISA_DEVICE,
480 (Object **)&pcms->rtc,
481 object_property_allow_set_link,
482 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
483 object_property_set_link(OBJECT(pcms), OBJECT(s),
484 "rtc_state", &error_abort);
485
486 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
487
488 val = 0;
489 val |= 0x02; /* FPU is there */
490 val |= 0x04; /* PS/2 mouse installed */
491 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
492
493 /* hard drives and FDC */
494 arg.rtc_state = s;
495 arg.idebus[0] = idebus0;
496 arg.idebus[1] = idebus1;
497 qemu_register_reset(pc_cmos_init_late, &arg);
498 }
499
500 #define TYPE_PORT92 "port92"
501 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
502
503 /* port 92 stuff: could be split off */
504 typedef struct Port92State {
505 ISADevice parent_obj;
506
507 MemoryRegion io;
508 uint8_t outport;
509 qemu_irq a20_out;
510 } Port92State;
511
512 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
513 unsigned size)
514 {
515 Port92State *s = opaque;
516 int oldval = s->outport;
517
518 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
519 s->outport = val;
520 qemu_set_irq(s->a20_out, (val >> 1) & 1);
521 if ((val & 1) && !(oldval & 1)) {
522 qemu_system_reset_request();
523 }
524 }
525
526 static uint64_t port92_read(void *opaque, hwaddr addr,
527 unsigned size)
528 {
529 Port92State *s = opaque;
530 uint32_t ret;
531
532 ret = s->outport;
533 DPRINTF("port92: read 0x%02x\n", ret);
534 return ret;
535 }
536
537 static void port92_init(ISADevice *dev, qemu_irq a20_out)
538 {
539 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
540 }
541
542 static const VMStateDescription vmstate_port92_isa = {
543 .name = "port92",
544 .version_id = 1,
545 .minimum_version_id = 1,
546 .fields = (VMStateField[]) {
547 VMSTATE_UINT8(outport, Port92State),
548 VMSTATE_END_OF_LIST()
549 }
550 };
551
552 static void port92_reset(DeviceState *d)
553 {
554 Port92State *s = PORT92(d);
555
556 s->outport &= ~1;
557 }
558
559 static const MemoryRegionOps port92_ops = {
560 .read = port92_read,
561 .write = port92_write,
562 .impl = {
563 .min_access_size = 1,
564 .max_access_size = 1,
565 },
566 .endianness = DEVICE_LITTLE_ENDIAN,
567 };
568
569 static void port92_initfn(Object *obj)
570 {
571 Port92State *s = PORT92(obj);
572
573 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
574
575 s->outport = 0;
576
577 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
578 }
579
580 static void port92_realizefn(DeviceState *dev, Error **errp)
581 {
582 ISADevice *isadev = ISA_DEVICE(dev);
583 Port92State *s = PORT92(dev);
584
585 isa_register_ioport(isadev, &s->io, 0x92);
586 }
587
588 static void port92_class_initfn(ObjectClass *klass, void *data)
589 {
590 DeviceClass *dc = DEVICE_CLASS(klass);
591
592 dc->realize = port92_realizefn;
593 dc->reset = port92_reset;
594 dc->vmsd = &vmstate_port92_isa;
595 /*
596 * Reason: unlike ordinary ISA devices, this one needs additional
597 * wiring: its A20 output line needs to be wired up by
598 * port92_init().
599 */
600 dc->cannot_instantiate_with_device_add_yet = true;
601 }
602
603 static const TypeInfo port92_info = {
604 .name = TYPE_PORT92,
605 .parent = TYPE_ISA_DEVICE,
606 .instance_size = sizeof(Port92State),
607 .instance_init = port92_initfn,
608 .class_init = port92_class_initfn,
609 };
610
611 static void port92_register_types(void)
612 {
613 type_register_static(&port92_info);
614 }
615
616 type_init(port92_register_types)
617
618 static void handle_a20_line_change(void *opaque, int irq, int level)
619 {
620 X86CPU *cpu = opaque;
621
622 /* XXX: send to all CPUs ? */
623 /* XXX: add logic to handle multiple A20 line sources */
624 x86_cpu_set_a20(cpu, level);
625 }
626
627 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
628 {
629 int index = le32_to_cpu(e820_reserve.count);
630 struct e820_entry *entry;
631
632 if (type != E820_RAM) {
633 /* old FW_CFG_E820_TABLE entry -- reservations only */
634 if (index >= E820_NR_ENTRIES) {
635 return -EBUSY;
636 }
637 entry = &e820_reserve.entry[index++];
638
639 entry->address = cpu_to_le64(address);
640 entry->length = cpu_to_le64(length);
641 entry->type = cpu_to_le32(type);
642
643 e820_reserve.count = cpu_to_le32(index);
644 }
645
646 /* new "etc/e820" file -- include ram too */
647 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
648 e820_table[e820_entries].address = cpu_to_le64(address);
649 e820_table[e820_entries].length = cpu_to_le64(length);
650 e820_table[e820_entries].type = cpu_to_le32(type);
651 e820_entries++;
652
653 return e820_entries;
654 }
655
656 int e820_get_num_entries(void)
657 {
658 return e820_entries;
659 }
660
661 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
662 {
663 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
664 *address = le64_to_cpu(e820_table[idx].address);
665 *length = le64_to_cpu(e820_table[idx].length);
666 return true;
667 }
668 return false;
669 }
670
671 /* Enables contiguous-apic-ID mode, for compatibility */
672 static bool compat_apic_id_mode;
673
674 void enable_compat_apic_id_mode(void)
675 {
676 compat_apic_id_mode = true;
677 }
678
679 /* Calculates initial APIC ID for a specific CPU index
680 *
681 * Currently we need to be able to calculate the APIC ID from the CPU index
682 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
683 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
684 * all CPUs up to max_cpus.
685 */
686 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
687 {
688 uint32_t correct_id;
689 static bool warned;
690
691 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
692 if (compat_apic_id_mode) {
693 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
694 error_report("APIC IDs set in compatibility mode, "
695 "CPU topology won't match the configuration");
696 warned = true;
697 }
698 return cpu_index;
699 } else {
700 return correct_id;
701 }
702 }
703
704 static void pc_build_smbios(PCMachineState *pcms)
705 {
706 uint8_t *smbios_tables, *smbios_anchor;
707 size_t smbios_tables_len, smbios_anchor_len;
708 struct smbios_phys_mem_area *mem_array;
709 unsigned i, array_count;
710 X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
711
712 /* tell smbios about cpuid version and features */
713 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
714
715 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
716 if (smbios_tables) {
717 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
718 smbios_tables, smbios_tables_len);
719 }
720
721 /* build the array of physical mem area from e820 table */
722 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
723 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
724 uint64_t addr, len;
725
726 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
727 mem_array[array_count].address = addr;
728 mem_array[array_count].length = len;
729 array_count++;
730 }
731 }
732 smbios_get_tables(mem_array, array_count,
733 &smbios_tables, &smbios_tables_len,
734 &smbios_anchor, &smbios_anchor_len);
735 g_free(mem_array);
736
737 if (smbios_anchor) {
738 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
739 smbios_tables, smbios_tables_len);
740 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
741 smbios_anchor, smbios_anchor_len);
742 }
743 }
744
745 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
746 {
747 FWCfgState *fw_cfg;
748 uint64_t *numa_fw_cfg;
749 int i, j;
750
751 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
752 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
753
754 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
755 *
756 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
757 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
758 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
759 * for CPU hotplug also uses APIC ID and not "CPU index".
760 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
761 * but the "limit to the APIC ID values SeaBIOS may see".
762 *
763 * So for compatibility reasons with old BIOSes we are stuck with
764 * "etc/max-cpus" actually being apic_id_limit
765 */
766 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
767 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
768 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
769 acpi_tables, acpi_tables_len);
770 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
771
772 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
773 &e820_reserve, sizeof(e820_reserve));
774 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
775 sizeof(struct e820_entry) * e820_entries);
776
777 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
778 /* allocate memory for the NUMA channel: one (64bit) word for the number
779 * of nodes, one word for each VCPU->node and one word for each node to
780 * hold the amount of memory.
781 */
782 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
783 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
784 for (i = 0; i < max_cpus; i++) {
785 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
786 assert(apic_id < pcms->apic_id_limit);
787 j = numa_get_node_for_cpu(i);
788 if (j < nb_numa_nodes) {
789 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
790 }
791 }
792 for (i = 0; i < nb_numa_nodes; i++) {
793 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
794 cpu_to_le64(numa_info[i].node_mem);
795 }
796 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
797 (1 + pcms->apic_id_limit + nb_numa_nodes) *
798 sizeof(*numa_fw_cfg));
799
800 return fw_cfg;
801 }
802
803 static long get_file_size(FILE *f)
804 {
805 long where, size;
806
807 /* XXX: on Unix systems, using fstat() probably makes more sense */
808
809 where = ftell(f);
810 fseek(f, 0, SEEK_END);
811 size = ftell(f);
812 fseek(f, where, SEEK_SET);
813
814 return size;
815 }
816
817 /* setup_data types */
818 #define SETUP_NONE 0
819 #define SETUP_E820_EXT 1
820 #define SETUP_DTB 2
821 #define SETUP_PCI 3
822 #define SETUP_EFI 4
823
824 struct setup_data {
825 uint64_t next;
826 uint32_t type;
827 uint32_t len;
828 uint8_t data[0];
829 } __attribute__((packed));
830
831 static void load_linux(PCMachineState *pcms,
832 FWCfgState *fw_cfg)
833 {
834 uint16_t protocol;
835 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
836 int dtb_size, setup_data_offset;
837 uint32_t initrd_max;
838 uint8_t header[8192], *setup, *kernel, *initrd_data;
839 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
840 FILE *f;
841 char *vmode;
842 MachineState *machine = MACHINE(pcms);
843 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
844 struct setup_data *setup_data;
845 const char *kernel_filename = machine->kernel_filename;
846 const char *initrd_filename = machine->initrd_filename;
847 const char *dtb_filename = machine->dtb;
848 const char *kernel_cmdline = machine->kernel_cmdline;
849
850 /* Align to 16 bytes as a paranoia measure */
851 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
852
853 /* load the kernel header */
854 f = fopen(kernel_filename, "rb");
855 if (!f || !(kernel_size = get_file_size(f)) ||
856 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
857 MIN(ARRAY_SIZE(header), kernel_size)) {
858 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
859 kernel_filename, strerror(errno));
860 exit(1);
861 }
862
863 /* kernel protocol version */
864 #if 0
865 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
866 #endif
867 if (ldl_p(header+0x202) == 0x53726448) {
868 protocol = lduw_p(header+0x206);
869 } else {
870 /* This looks like a multiboot kernel. If it is, let's stop
871 treating it like a Linux kernel. */
872 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
873 kernel_cmdline, kernel_size, header)) {
874 return;
875 }
876 protocol = 0;
877 }
878
879 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
880 /* Low kernel */
881 real_addr = 0x90000;
882 cmdline_addr = 0x9a000 - cmdline_size;
883 prot_addr = 0x10000;
884 } else if (protocol < 0x202) {
885 /* High but ancient kernel */
886 real_addr = 0x90000;
887 cmdline_addr = 0x9a000 - cmdline_size;
888 prot_addr = 0x100000;
889 } else {
890 /* High and recent kernel */
891 real_addr = 0x10000;
892 cmdline_addr = 0x20000;
893 prot_addr = 0x100000;
894 }
895
896 #if 0
897 fprintf(stderr,
898 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
899 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
900 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
901 real_addr,
902 cmdline_addr,
903 prot_addr);
904 #endif
905
906 /* highest address for loading the initrd */
907 if (protocol >= 0x203) {
908 initrd_max = ldl_p(header+0x22c);
909 } else {
910 initrd_max = 0x37ffffff;
911 }
912
913 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
914 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
915 }
916
917 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
918 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
919 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
920
921 if (protocol >= 0x202) {
922 stl_p(header+0x228, cmdline_addr);
923 } else {
924 stw_p(header+0x20, 0xA33F);
925 stw_p(header+0x22, cmdline_addr-real_addr);
926 }
927
928 /* handle vga= parameter */
929 vmode = strstr(kernel_cmdline, "vga=");
930 if (vmode) {
931 unsigned int video_mode;
932 /* skip "vga=" */
933 vmode += 4;
934 if (!strncmp(vmode, "normal", 6)) {
935 video_mode = 0xffff;
936 } else if (!strncmp(vmode, "ext", 3)) {
937 video_mode = 0xfffe;
938 } else if (!strncmp(vmode, "ask", 3)) {
939 video_mode = 0xfffd;
940 } else {
941 video_mode = strtol(vmode, NULL, 0);
942 }
943 stw_p(header+0x1fa, video_mode);
944 }
945
946 /* loader type */
947 /* High nybble = B reserved for QEMU; low nybble is revision number.
948 If this code is substantially changed, you may want to consider
949 incrementing the revision. */
950 if (protocol >= 0x200) {
951 header[0x210] = 0xB0;
952 }
953 /* heap */
954 if (protocol >= 0x201) {
955 header[0x211] |= 0x80; /* CAN_USE_HEAP */
956 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
957 }
958
959 /* load initrd */
960 if (initrd_filename) {
961 if (protocol < 0x200) {
962 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
963 exit(1);
964 }
965
966 initrd_size = get_image_size(initrd_filename);
967 if (initrd_size < 0) {
968 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
969 initrd_filename, strerror(errno));
970 exit(1);
971 }
972
973 initrd_addr = (initrd_max-initrd_size) & ~4095;
974
975 initrd_data = g_malloc(initrd_size);
976 load_image(initrd_filename, initrd_data);
977
978 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
979 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
980 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
981
982 stl_p(header+0x218, initrd_addr);
983 stl_p(header+0x21c, initrd_size);
984 }
985
986 /* load kernel and setup */
987 setup_size = header[0x1f1];
988 if (setup_size == 0) {
989 setup_size = 4;
990 }
991 setup_size = (setup_size+1)*512;
992 if (setup_size > kernel_size) {
993 fprintf(stderr, "qemu: invalid kernel header\n");
994 exit(1);
995 }
996 kernel_size -= setup_size;
997
998 setup = g_malloc(setup_size);
999 kernel = g_malloc(kernel_size);
1000 fseek(f, 0, SEEK_SET);
1001 if (fread(setup, 1, setup_size, f) != setup_size) {
1002 fprintf(stderr, "fread() failed\n");
1003 exit(1);
1004 }
1005 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1006 fprintf(stderr, "fread() failed\n");
1007 exit(1);
1008 }
1009 fclose(f);
1010
1011 /* append dtb to kernel */
1012 if (dtb_filename) {
1013 if (protocol < 0x209) {
1014 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1015 exit(1);
1016 }
1017
1018 dtb_size = get_image_size(dtb_filename);
1019 if (dtb_size <= 0) {
1020 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1021 dtb_filename, strerror(errno));
1022 exit(1);
1023 }
1024
1025 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1026 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1027 kernel = g_realloc(kernel, kernel_size);
1028
1029 stq_p(header+0x250, prot_addr + setup_data_offset);
1030
1031 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1032 setup_data->next = 0;
1033 setup_data->type = cpu_to_le32(SETUP_DTB);
1034 setup_data->len = cpu_to_le32(dtb_size);
1035
1036 load_image_size(dtb_filename, setup_data->data, dtb_size);
1037 }
1038
1039 memcpy(setup, header, MIN(sizeof(header), setup_size));
1040
1041 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1042 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1043 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1044
1045 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1046 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1047 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1048
1049 if (fw_cfg_dma_enabled(fw_cfg)) {
1050 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1051 option_rom[nb_option_roms].bootindex = 0;
1052 } else {
1053 option_rom[nb_option_roms].name = "linuxboot.bin";
1054 option_rom[nb_option_roms].bootindex = 0;
1055 }
1056 nb_option_roms++;
1057 }
1058
1059 #define NE2000_NB_MAX 6
1060
1061 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1062 0x280, 0x380 };
1063 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1064
1065 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1066 {
1067 static int nb_ne2k = 0;
1068
1069 if (nb_ne2k == NE2000_NB_MAX)
1070 return;
1071 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1072 ne2000_irq[nb_ne2k], nd);
1073 nb_ne2k++;
1074 }
1075
1076 DeviceState *cpu_get_current_apic(void)
1077 {
1078 if (current_cpu) {
1079 X86CPU *cpu = X86_CPU(current_cpu);
1080 return cpu->apic_state;
1081 } else {
1082 return NULL;
1083 }
1084 }
1085
1086 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1087 {
1088 X86CPU *cpu = opaque;
1089
1090 if (level) {
1091 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1092 }
1093 }
1094
1095 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1096 {
1097 Object *cpu = NULL;
1098 Error *local_err = NULL;
1099
1100 cpu = object_new(typename);
1101
1102 object_property_set_int(cpu, apic_id, "apic-id", &local_err);
1103 object_property_set_bool(cpu, true, "realized", &local_err);
1104
1105 object_unref(cpu);
1106 if (local_err) {
1107 error_propagate(errp, local_err);
1108 }
1109 }
1110
1111 void pc_hot_add_cpu(const int64_t id, Error **errp)
1112 {
1113 ObjectClass *oc;
1114 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1115 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1116 Error *local_err = NULL;
1117
1118 if (id < 0) {
1119 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1120 return;
1121 }
1122
1123 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1124 error_setg(errp, "Unable to add CPU: %" PRIi64
1125 ", resulting APIC ID (%" PRIi64 ") is too large",
1126 id, apic_id);
1127 return;
1128 }
1129
1130 assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1131 oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu));
1132 pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1133 if (local_err) {
1134 error_propagate(errp, local_err);
1135 return;
1136 }
1137 }
1138
1139 void pc_cpus_init(PCMachineState *pcms)
1140 {
1141 int i;
1142 CPUClass *cc;
1143 ObjectClass *oc;
1144 const char *typename;
1145 gchar **model_pieces;
1146 MachineState *machine = MACHINE(pcms);
1147
1148 /* init CPUs */
1149 if (machine->cpu_model == NULL) {
1150 #ifdef TARGET_X86_64
1151 machine->cpu_model = "qemu64";
1152 #else
1153 machine->cpu_model = "qemu32";
1154 #endif
1155 }
1156
1157 model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1158 if (!model_pieces[0]) {
1159 error_report("Invalid/empty CPU model name");
1160 exit(1);
1161 }
1162
1163 oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1164 if (oc == NULL) {
1165 error_report("Unable to find CPU definition: %s", model_pieces[0]);
1166 exit(1);
1167 }
1168 typename = object_class_get_name(oc);
1169 cc = CPU_CLASS(oc);
1170 cc->parse_features(typename, model_pieces[1], &error_fatal);
1171 g_strfreev(model_pieces);
1172
1173 /* Calculates the limit to CPU APIC ID values
1174 *
1175 * Limit for the APIC ID value, so that all
1176 * CPU APIC IDs are < pcms->apic_id_limit.
1177 *
1178 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1179 */
1180 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1181 pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1182 sizeof(CPUArchId) * max_cpus);
1183 for (i = 0; i < max_cpus; i++) {
1184 pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1185 pcms->possible_cpus->len++;
1186 if (i < smp_cpus) {
1187 pc_new_cpu(typename, x86_cpu_apic_id_from_index(i), &error_fatal);
1188 }
1189 }
1190 }
1191
1192 static void pc_build_feature_control_file(PCMachineState *pcms)
1193 {
1194 X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
1195 CPUX86State *env = &cpu->env;
1196 uint32_t unused, ecx, edx;
1197 uint64_t feature_control_bits = 0;
1198 uint64_t *val;
1199
1200 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1201 if (ecx & CPUID_EXT_VMX) {
1202 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1203 }
1204
1205 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1206 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1207 (env->mcg_cap & MCG_LMCE_P)) {
1208 feature_control_bits |= FEATURE_CONTROL_LMCE;
1209 }
1210
1211 if (!feature_control_bits) {
1212 return;
1213 }
1214
1215 val = g_malloc(sizeof(*val));
1216 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1217 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1218 }
1219
1220 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1221 {
1222 if (cpus_count > 0xff) {
1223 /* If the number of CPUs can't be represented in 8 bits, the
1224 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1225 * to make old BIOSes fail more predictably.
1226 */
1227 rtc_set_memory(rtc, 0x5f, 0);
1228 } else {
1229 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1230 }
1231 }
1232
1233 static
1234 void pc_machine_done(Notifier *notifier, void *data)
1235 {
1236 PCMachineState *pcms = container_of(notifier,
1237 PCMachineState, machine_done);
1238 PCIBus *bus = pcms->bus;
1239
1240 /* set the number of CPUs */
1241 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1242
1243 if (bus) {
1244 int extra_hosts = 0;
1245
1246 QLIST_FOREACH(bus, &bus->child, sibling) {
1247 /* look for expander root buses */
1248 if (pci_bus_is_root(bus)) {
1249 extra_hosts++;
1250 }
1251 }
1252 if (extra_hosts && pcms->fw_cfg) {
1253 uint64_t *val = g_malloc(sizeof(*val));
1254 *val = cpu_to_le64(extra_hosts);
1255 fw_cfg_add_file(pcms->fw_cfg,
1256 "etc/extra-pci-roots", val, sizeof(*val));
1257 }
1258 }
1259
1260 acpi_setup();
1261 if (pcms->fw_cfg) {
1262 pc_build_smbios(pcms);
1263 pc_build_feature_control_file(pcms);
1264 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1265 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1266 }
1267
1268 if (pcms->apic_id_limit > 255) {
1269 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1270
1271 if (!iommu || !iommu->x86_iommu.intr_supported ||
1272 iommu->intr_eim != ON_OFF_AUTO_ON) {
1273 error_report("current -smp configuration requires "
1274 "Extended Interrupt Mode enabled. "
1275 "You can add an IOMMU using: "
1276 "-device intel-iommu,intremap=on,eim=on");
1277 exit(EXIT_FAILURE);
1278 }
1279 }
1280 }
1281
1282 void pc_guest_info_init(PCMachineState *pcms)
1283 {
1284 int i;
1285
1286 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1287 pcms->numa_nodes = nb_numa_nodes;
1288 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1289 sizeof *pcms->node_mem);
1290 for (i = 0; i < nb_numa_nodes; i++) {
1291 pcms->node_mem[i] = numa_info[i].node_mem;
1292 }
1293
1294 pcms->machine_done.notify = pc_machine_done;
1295 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1296 }
1297
1298 /* setup pci memory address space mapping into system address space */
1299 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1300 MemoryRegion *pci_address_space)
1301 {
1302 /* Set to lower priority than RAM */
1303 memory_region_add_subregion_overlap(system_memory, 0x0,
1304 pci_address_space, -1);
1305 }
1306
1307 void pc_acpi_init(const char *default_dsdt)
1308 {
1309 char *filename;
1310
1311 if (acpi_tables != NULL) {
1312 /* manually set via -acpitable, leave it alone */
1313 return;
1314 }
1315
1316 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1317 if (filename == NULL) {
1318 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1319 } else {
1320 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1321 &error_abort);
1322 Error *err = NULL;
1323
1324 qemu_opt_set(opts, "file", filename, &error_abort);
1325
1326 acpi_table_add_builtin(opts, &err);
1327 if (err) {
1328 error_reportf_err(err, "WARNING: failed to load %s: ",
1329 filename);
1330 }
1331 g_free(filename);
1332 }
1333 }
1334
1335 void xen_load_linux(PCMachineState *pcms)
1336 {
1337 int i;
1338 FWCfgState *fw_cfg;
1339
1340 assert(MACHINE(pcms)->kernel_filename != NULL);
1341
1342 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1343 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1344 rom_set_fw(fw_cfg);
1345
1346 load_linux(pcms, fw_cfg);
1347 for (i = 0; i < nb_option_roms; i++) {
1348 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1349 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1350 !strcmp(option_rom[i].name, "multiboot.bin"));
1351 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1352 }
1353 pcms->fw_cfg = fw_cfg;
1354 }
1355
1356 void pc_memory_init(PCMachineState *pcms,
1357 MemoryRegion *system_memory,
1358 MemoryRegion *rom_memory,
1359 MemoryRegion **ram_memory)
1360 {
1361 int linux_boot, i;
1362 MemoryRegion *ram, *option_rom_mr;
1363 MemoryRegion *ram_below_4g, *ram_above_4g;
1364 FWCfgState *fw_cfg;
1365 MachineState *machine = MACHINE(pcms);
1366 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1367
1368 assert(machine->ram_size == pcms->below_4g_mem_size +
1369 pcms->above_4g_mem_size);
1370
1371 linux_boot = (machine->kernel_filename != NULL);
1372
1373 /* Allocate RAM. We allocate it as a single memory region and use
1374 * aliases to address portions of it, mostly for backwards compatibility
1375 * with older qemus that used qemu_ram_alloc().
1376 */
1377 ram = g_malloc(sizeof(*ram));
1378 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1379 machine->ram_size);
1380 *ram_memory = ram;
1381 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1382 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1383 0, pcms->below_4g_mem_size);
1384 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1385 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1386 if (pcms->above_4g_mem_size > 0) {
1387 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1388 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1389 pcms->below_4g_mem_size,
1390 pcms->above_4g_mem_size);
1391 memory_region_add_subregion(system_memory, 0x100000000ULL,
1392 ram_above_4g);
1393 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1394 }
1395
1396 if (!pcmc->has_reserved_memory &&
1397 (machine->ram_slots ||
1398 (machine->maxram_size > machine->ram_size))) {
1399 MachineClass *mc = MACHINE_GET_CLASS(machine);
1400
1401 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1402 mc->name);
1403 exit(EXIT_FAILURE);
1404 }
1405
1406 /* initialize hotplug memory address space */
1407 if (pcmc->has_reserved_memory &&
1408 (machine->ram_size < machine->maxram_size)) {
1409 ram_addr_t hotplug_mem_size =
1410 machine->maxram_size - machine->ram_size;
1411
1412 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1413 error_report("unsupported amount of memory slots: %"PRIu64,
1414 machine->ram_slots);
1415 exit(EXIT_FAILURE);
1416 }
1417
1418 if (QEMU_ALIGN_UP(machine->maxram_size,
1419 TARGET_PAGE_SIZE) != machine->maxram_size) {
1420 error_report("maximum memory size must by aligned to multiple of "
1421 "%d bytes", TARGET_PAGE_SIZE);
1422 exit(EXIT_FAILURE);
1423 }
1424
1425 pcms->hotplug_memory.base =
1426 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1427
1428 if (pcmc->enforce_aligned_dimm) {
1429 /* size hotplug region assuming 1G page max alignment per slot */
1430 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1431 }
1432
1433 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1434 hotplug_mem_size) {
1435 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1436 machine->maxram_size);
1437 exit(EXIT_FAILURE);
1438 }
1439
1440 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1441 "hotplug-memory", hotplug_mem_size);
1442 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1443 &pcms->hotplug_memory.mr);
1444 }
1445
1446 /* Initialize PC system firmware */
1447 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1448
1449 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1450 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1451 &error_fatal);
1452 vmstate_register_ram_global(option_rom_mr);
1453 memory_region_add_subregion_overlap(rom_memory,
1454 PC_ROM_MIN_VGA,
1455 option_rom_mr,
1456 1);
1457
1458 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1459
1460 rom_set_fw(fw_cfg);
1461
1462 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1463 uint64_t *val = g_malloc(sizeof(*val));
1464 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1465 uint64_t res_mem_end = pcms->hotplug_memory.base;
1466
1467 if (!pcmc->broken_reserved_end) {
1468 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1469 }
1470 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1471 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1472 }
1473
1474 if (linux_boot) {
1475 load_linux(pcms, fw_cfg);
1476 }
1477
1478 for (i = 0; i < nb_option_roms; i++) {
1479 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1480 }
1481 pcms->fw_cfg = fw_cfg;
1482
1483 /* Init default IOAPIC address space */
1484 pcms->ioapic_as = &address_space_memory;
1485 }
1486
1487 qemu_irq pc_allocate_cpu_irq(void)
1488 {
1489 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1490 }
1491
1492 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1493 {
1494 DeviceState *dev = NULL;
1495
1496 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1497 if (pci_bus) {
1498 PCIDevice *pcidev = pci_vga_init(pci_bus);
1499 dev = pcidev ? &pcidev->qdev : NULL;
1500 } else if (isa_bus) {
1501 ISADevice *isadev = isa_vga_init(isa_bus);
1502 dev = isadev ? DEVICE(isadev) : NULL;
1503 }
1504 rom_reset_order_override();
1505 return dev;
1506 }
1507
1508 static const MemoryRegionOps ioport80_io_ops = {
1509 .write = ioport80_write,
1510 .read = ioport80_read,
1511 .endianness = DEVICE_NATIVE_ENDIAN,
1512 .impl = {
1513 .min_access_size = 1,
1514 .max_access_size = 1,
1515 },
1516 };
1517
1518 static const MemoryRegionOps ioportF0_io_ops = {
1519 .write = ioportF0_write,
1520 .read = ioportF0_read,
1521 .endianness = DEVICE_NATIVE_ENDIAN,
1522 .impl = {
1523 .min_access_size = 1,
1524 .max_access_size = 1,
1525 },
1526 };
1527
1528 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1529 ISADevice **rtc_state,
1530 bool create_fdctrl,
1531 bool no_vmport,
1532 bool has_pit,
1533 uint32_t hpet_irqs)
1534 {
1535 int i;
1536 DriveInfo *fd[MAX_FD];
1537 DeviceState *hpet = NULL;
1538 int pit_isa_irq = 0;
1539 qemu_irq pit_alt_irq = NULL;
1540 qemu_irq rtc_irq = NULL;
1541 qemu_irq *a20_line;
1542 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1543 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1544 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1545
1546 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1547 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1548
1549 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1550 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1551
1552 /*
1553 * Check if an HPET shall be created.
1554 *
1555 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1556 * when the HPET wants to take over. Thus we have to disable the latter.
1557 */
1558 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1559 /* In order to set property, here not using sysbus_try_create_simple */
1560 hpet = qdev_try_create(NULL, TYPE_HPET);
1561 if (hpet) {
1562 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1563 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1564 * IRQ8 and IRQ2.
1565 */
1566 uint8_t compat = object_property_get_int(OBJECT(hpet),
1567 HPET_INTCAP, NULL);
1568 if (!compat) {
1569 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1570 }
1571 qdev_init_nofail(hpet);
1572 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1573
1574 for (i = 0; i < GSI_NUM_PINS; i++) {
1575 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1576 }
1577 pit_isa_irq = -1;
1578 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1579 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1580 }
1581 }
1582 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1583
1584 qemu_register_boot_set(pc_boot_set, *rtc_state);
1585
1586 if (!xen_enabled() && has_pit) {
1587 if (kvm_pit_in_kernel()) {
1588 pit = kvm_pit_init(isa_bus, 0x40);
1589 } else {
1590 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1591 }
1592 if (hpet) {
1593 /* connect PIT to output control line of the HPET */
1594 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1595 }
1596 pcspk_init(isa_bus, pit);
1597 }
1598
1599 serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1600 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1601
1602 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1603 i8042 = isa_create_simple(isa_bus, "i8042");
1604 i8042_setup_a20_line(i8042, a20_line[0]);
1605 if (!no_vmport) {
1606 vmport_init(isa_bus);
1607 vmmouse = isa_try_create(isa_bus, "vmmouse");
1608 } else {
1609 vmmouse = NULL;
1610 }
1611 if (vmmouse) {
1612 DeviceState *dev = DEVICE(vmmouse);
1613 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1614 qdev_init_nofail(dev);
1615 }
1616 port92 = isa_create_simple(isa_bus, "port92");
1617 port92_init(port92, a20_line[1]);
1618 g_free(a20_line);
1619
1620 DMA_init(isa_bus, 0);
1621
1622 for(i = 0; i < MAX_FD; i++) {
1623 fd[i] = drive_get(IF_FLOPPY, 0, i);
1624 create_fdctrl |= !!fd[i];
1625 }
1626 if (create_fdctrl) {
1627 fdctrl_init_isa(isa_bus, fd);
1628 }
1629 }
1630
1631 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1632 {
1633 int i;
1634
1635 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1636 for (i = 0; i < nb_nics; i++) {
1637 NICInfo *nd = &nd_table[i];
1638
1639 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1640 pc_init_ne2k_isa(isa_bus, nd);
1641 } else {
1642 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1643 }
1644 }
1645 rom_reset_order_override();
1646 }
1647
1648 void pc_pci_device_init(PCIBus *pci_bus)
1649 {
1650 int max_bus;
1651 int bus;
1652
1653 max_bus = drive_get_max_bus(IF_SCSI);
1654 for (bus = 0; bus <= max_bus; bus++) {
1655 pci_create_simple(pci_bus, -1, "lsi53c895a");
1656 }
1657 }
1658
1659 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1660 {
1661 DeviceState *dev;
1662 SysBusDevice *d;
1663 unsigned int i;
1664
1665 if (kvm_ioapic_in_kernel()) {
1666 dev = qdev_create(NULL, "kvm-ioapic");
1667 } else {
1668 dev = qdev_create(NULL, "ioapic");
1669 }
1670 if (parent_name) {
1671 object_property_add_child(object_resolve_path(parent_name, NULL),
1672 "ioapic", OBJECT(dev), NULL);
1673 }
1674 qdev_init_nofail(dev);
1675 d = SYS_BUS_DEVICE(dev);
1676 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1677
1678 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1679 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1680 }
1681 }
1682
1683 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1684 DeviceState *dev, Error **errp)
1685 {
1686 HotplugHandlerClass *hhc;
1687 Error *local_err = NULL;
1688 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1689 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1690 PCDIMMDevice *dimm = PC_DIMM(dev);
1691 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1692 MemoryRegion *mr = ddc->get_memory_region(dimm);
1693 uint64_t align = TARGET_PAGE_SIZE;
1694
1695 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1696 align = memory_region_get_alignment(mr);
1697 }
1698
1699 if (!pcms->acpi_dev) {
1700 error_setg(&local_err,
1701 "memory hotplug is not enabled: missing acpi device");
1702 goto out;
1703 }
1704
1705 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1706 if (local_err) {
1707 goto out;
1708 }
1709
1710 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1711 nvdimm_plug(&pcms->acpi_nvdimm_state);
1712 }
1713
1714 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1715 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1716 out:
1717 error_propagate(errp, local_err);
1718 }
1719
1720 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1721 DeviceState *dev, Error **errp)
1722 {
1723 HotplugHandlerClass *hhc;
1724 Error *local_err = NULL;
1725 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1726
1727 if (!pcms->acpi_dev) {
1728 error_setg(&local_err,
1729 "memory hotplug is not enabled: missing acpi device");
1730 goto out;
1731 }
1732
1733 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1734 error_setg(&local_err,
1735 "nvdimm device hot unplug is not supported yet.");
1736 goto out;
1737 }
1738
1739 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1740 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1741
1742 out:
1743 error_propagate(errp, local_err);
1744 }
1745
1746 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1747 DeviceState *dev, Error **errp)
1748 {
1749 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1750 PCDIMMDevice *dimm = PC_DIMM(dev);
1751 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1752 MemoryRegion *mr = ddc->get_memory_region(dimm);
1753 HotplugHandlerClass *hhc;
1754 Error *local_err = NULL;
1755
1756 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1757 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1758
1759 if (local_err) {
1760 goto out;
1761 }
1762
1763 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1764 object_unparent(OBJECT(dev));
1765
1766 out:
1767 error_propagate(errp, local_err);
1768 }
1769
1770 static int pc_apic_cmp(const void *a, const void *b)
1771 {
1772 CPUArchId *apic_a = (CPUArchId *)a;
1773 CPUArchId *apic_b = (CPUArchId *)b;
1774
1775 return apic_a->arch_id - apic_b->arch_id;
1776 }
1777
1778 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1779 * in pcms->possible_cpus->cpus, if pcms->possible_cpus->cpus has no
1780 * entry correponding to CPU's apic_id returns NULL.
1781 */
1782 static CPUArchId *pc_find_cpu_slot(PCMachineState *pcms, CPUState *cpu,
1783 int *idx)
1784 {
1785 CPUClass *cc = CPU_GET_CLASS(cpu);
1786 CPUArchId apic_id, *found_cpu;
1787
1788 apic_id.arch_id = cc->get_arch_id(CPU(cpu));
1789 found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1790 pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1791 pc_apic_cmp);
1792 if (found_cpu && idx) {
1793 *idx = found_cpu - pcms->possible_cpus->cpus;
1794 }
1795 return found_cpu;
1796 }
1797
1798 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1799 DeviceState *dev, Error **errp)
1800 {
1801 CPUArchId *found_cpu;
1802 HotplugHandlerClass *hhc;
1803 Error *local_err = NULL;
1804 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1805
1806 if (pcms->acpi_dev) {
1807 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1808 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1809 if (local_err) {
1810 goto out;
1811 }
1812 }
1813
1814 /* increment the number of CPUs */
1815 pcms->boot_cpus++;
1816 if (pcms->rtc) {
1817 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1818 }
1819 if (pcms->fw_cfg) {
1820 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1821 }
1822
1823 found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1824 found_cpu->cpu = CPU(dev);
1825 out:
1826 error_propagate(errp, local_err);
1827 }
1828 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1829 DeviceState *dev, Error **errp)
1830 {
1831 int idx = -1;
1832 HotplugHandlerClass *hhc;
1833 Error *local_err = NULL;
1834 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1835
1836 pc_find_cpu_slot(pcms, CPU(dev), &idx);
1837 assert(idx != -1);
1838 if (idx == 0) {
1839 error_setg(&local_err, "Boot CPU is unpluggable");
1840 goto out;
1841 }
1842
1843 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1844 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1845
1846 if (local_err) {
1847 goto out;
1848 }
1849
1850 out:
1851 error_propagate(errp, local_err);
1852
1853 }
1854
1855 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1856 DeviceState *dev, Error **errp)
1857 {
1858 CPUArchId *found_cpu;
1859 HotplugHandlerClass *hhc;
1860 Error *local_err = NULL;
1861 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1862
1863 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1864 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1865
1866 if (local_err) {
1867 goto out;
1868 }
1869
1870 found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1871 found_cpu->cpu = NULL;
1872 object_unparent(OBJECT(dev));
1873
1874 /* decrement the number of CPUs */
1875 pcms->boot_cpus--;
1876 /* Update the number of CPUs in CMOS */
1877 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1878 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1879 out:
1880 error_propagate(errp, local_err);
1881 }
1882
1883 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1884 DeviceState *dev, Error **errp)
1885 {
1886 int idx;
1887 CPUState *cs;
1888 CPUArchId *cpu_slot;
1889 X86CPUTopoInfo topo;
1890 X86CPU *cpu = X86_CPU(dev);
1891 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1892
1893 /* if APIC ID is not set, set it based on socket/core/thread properties */
1894 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1895 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1896
1897 if (cpu->socket_id < 0) {
1898 error_setg(errp, "CPU socket-id is not set");
1899 return;
1900 } else if (cpu->socket_id > max_socket) {
1901 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1902 cpu->socket_id, max_socket);
1903 return;
1904 }
1905 if (cpu->core_id < 0) {
1906 error_setg(errp, "CPU core-id is not set");
1907 return;
1908 } else if (cpu->core_id > (smp_cores - 1)) {
1909 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1910 cpu->core_id, smp_cores - 1);
1911 return;
1912 }
1913 if (cpu->thread_id < 0) {
1914 error_setg(errp, "CPU thread-id is not set");
1915 return;
1916 } else if (cpu->thread_id > (smp_threads - 1)) {
1917 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1918 cpu->thread_id, smp_threads - 1);
1919 return;
1920 }
1921
1922 topo.pkg_id = cpu->socket_id;
1923 topo.core_id = cpu->core_id;
1924 topo.smt_id = cpu->thread_id;
1925 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1926 }
1927
1928 cpu_slot = pc_find_cpu_slot(pcms, CPU(dev), &idx);
1929 if (!cpu_slot) {
1930 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1931 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1932 " APIC ID %" PRIu32 ", valid index range 0:%d",
1933 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1934 pcms->possible_cpus->len - 1);
1935 return;
1936 }
1937
1938 if (cpu_slot->cpu) {
1939 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1940 idx, cpu->apic_id);
1941 return;
1942 }
1943
1944 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1945 * so that query_hotpluggable_cpus would show correct values
1946 */
1947 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1948 * once -smp refactoring is complete and there will be CPU private
1949 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1950 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1951 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1952 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1953 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1954 return;
1955 }
1956 cpu->socket_id = topo.pkg_id;
1957
1958 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1959 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1960 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1961 return;
1962 }
1963 cpu->core_id = topo.core_id;
1964
1965 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1966 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1967 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1968 return;
1969 }
1970 cpu->thread_id = topo.smt_id;
1971
1972 cs = CPU(cpu);
1973 cs->cpu_index = idx;
1974 }
1975
1976 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1977 DeviceState *dev, Error **errp)
1978 {
1979 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1980 pc_cpu_pre_plug(hotplug_dev, dev, errp);
1981 }
1982 }
1983
1984 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1985 DeviceState *dev, Error **errp)
1986 {
1987 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1988 pc_dimm_plug(hotplug_dev, dev, errp);
1989 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1990 pc_cpu_plug(hotplug_dev, dev, errp);
1991 }
1992 }
1993
1994 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1995 DeviceState *dev, Error **errp)
1996 {
1997 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1998 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1999 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2000 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2001 } else {
2002 error_setg(errp, "acpi: device unplug request for not supported device"
2003 " type: %s", object_get_typename(OBJECT(dev)));
2004 }
2005 }
2006
2007 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2008 DeviceState *dev, Error **errp)
2009 {
2010 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2011 pc_dimm_unplug(hotplug_dev, dev, errp);
2012 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2013 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2014 } else {
2015 error_setg(errp, "acpi: device unplug for not supported device"
2016 " type: %s", object_get_typename(OBJECT(dev)));
2017 }
2018 }
2019
2020 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2021 DeviceState *dev)
2022 {
2023 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2024
2025 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2026 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2027 return HOTPLUG_HANDLER(machine);
2028 }
2029
2030 return pcmc->get_hotplug_handler ?
2031 pcmc->get_hotplug_handler(machine, dev) : NULL;
2032 }
2033
2034 static void
2035 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2036 const char *name, void *opaque,
2037 Error **errp)
2038 {
2039 PCMachineState *pcms = PC_MACHINE(obj);
2040 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2041
2042 visit_type_int(v, name, &value, errp);
2043 }
2044
2045 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2046 const char *name, void *opaque,
2047 Error **errp)
2048 {
2049 PCMachineState *pcms = PC_MACHINE(obj);
2050 uint64_t value = pcms->max_ram_below_4g;
2051
2052 visit_type_size(v, name, &value, errp);
2053 }
2054
2055 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2056 const char *name, void *opaque,
2057 Error **errp)
2058 {
2059 PCMachineState *pcms = PC_MACHINE(obj);
2060 Error *error = NULL;
2061 uint64_t value;
2062
2063 visit_type_size(v, name, &value, &error);
2064 if (error) {
2065 error_propagate(errp, error);
2066 return;
2067 }
2068 if (value > (1ULL << 32)) {
2069 error_setg(&error,
2070 "Machine option 'max-ram-below-4g=%"PRIu64
2071 "' expects size less than or equal to 4G", value);
2072 error_propagate(errp, error);
2073 return;
2074 }
2075
2076 if (value < (1ULL << 20)) {
2077 error_report("Warning: small max_ram_below_4g(%"PRIu64
2078 ") less than 1M. BIOS may not work..",
2079 value);
2080 }
2081
2082 pcms->max_ram_below_4g = value;
2083 }
2084
2085 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2086 void *opaque, Error **errp)
2087 {
2088 PCMachineState *pcms = PC_MACHINE(obj);
2089 OnOffAuto vmport = pcms->vmport;
2090
2091 visit_type_OnOffAuto(v, name, &vmport, errp);
2092 }
2093
2094 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2095 void *opaque, Error **errp)
2096 {
2097 PCMachineState *pcms = PC_MACHINE(obj);
2098
2099 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2100 }
2101
2102 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2103 {
2104 bool smm_available = false;
2105
2106 if (pcms->smm == ON_OFF_AUTO_OFF) {
2107 return false;
2108 }
2109
2110 if (tcg_enabled() || qtest_enabled()) {
2111 smm_available = true;
2112 } else if (kvm_enabled()) {
2113 smm_available = kvm_has_smm();
2114 }
2115
2116 if (smm_available) {
2117 return true;
2118 }
2119
2120 if (pcms->smm == ON_OFF_AUTO_ON) {
2121 error_report("System Management Mode not supported by this hypervisor.");
2122 exit(1);
2123 }
2124 return false;
2125 }
2126
2127 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2128 void *opaque, Error **errp)
2129 {
2130 PCMachineState *pcms = PC_MACHINE(obj);
2131 OnOffAuto smm = pcms->smm;
2132
2133 visit_type_OnOffAuto(v, name, &smm, errp);
2134 }
2135
2136 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2137 void *opaque, Error **errp)
2138 {
2139 PCMachineState *pcms = PC_MACHINE(obj);
2140
2141 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2142 }
2143
2144 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2145 {
2146 PCMachineState *pcms = PC_MACHINE(obj);
2147
2148 return pcms->acpi_nvdimm_state.is_enabled;
2149 }
2150
2151 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2152 {
2153 PCMachineState *pcms = PC_MACHINE(obj);
2154
2155 pcms->acpi_nvdimm_state.is_enabled = value;
2156 }
2157
2158 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2159 {
2160 PCMachineState *pcms = PC_MACHINE(obj);
2161
2162 return pcms->smbus;
2163 }
2164
2165 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2166 {
2167 PCMachineState *pcms = PC_MACHINE(obj);
2168
2169 pcms->smbus = value;
2170 }
2171
2172 static bool pc_machine_get_sata(Object *obj, Error **errp)
2173 {
2174 PCMachineState *pcms = PC_MACHINE(obj);
2175
2176 return pcms->sata;
2177 }
2178
2179 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2180 {
2181 PCMachineState *pcms = PC_MACHINE(obj);
2182
2183 pcms->sata = value;
2184 }
2185
2186 static bool pc_machine_get_pit(Object *obj, Error **errp)
2187 {
2188 PCMachineState *pcms = PC_MACHINE(obj);
2189
2190 return pcms->pit;
2191 }
2192
2193 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2194 {
2195 PCMachineState *pcms = PC_MACHINE(obj);
2196
2197 pcms->pit = value;
2198 }
2199
2200 static void pc_machine_initfn(Object *obj)
2201 {
2202 PCMachineState *pcms = PC_MACHINE(obj);
2203
2204 pcms->max_ram_below_4g = 0; /* use default */
2205 pcms->smm = ON_OFF_AUTO_AUTO;
2206 pcms->vmport = ON_OFF_AUTO_AUTO;
2207 /* nvdimm is disabled on default. */
2208 pcms->acpi_nvdimm_state.is_enabled = false;
2209 /* acpi build is enabled by default if machine supports it */
2210 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2211 pcms->smbus = true;
2212 pcms->sata = true;
2213 pcms->pit = true;
2214 }
2215
2216 static void pc_machine_reset(void)
2217 {
2218 CPUState *cs;
2219 X86CPU *cpu;
2220
2221 qemu_devices_reset();
2222
2223 /* Reset APIC after devices have been reset to cancel
2224 * any changes that qemu_devices_reset() might have done.
2225 */
2226 CPU_FOREACH(cs) {
2227 cpu = X86_CPU(cs);
2228
2229 if (cpu->apic_state) {
2230 device_reset(cpu->apic_state);
2231 }
2232 }
2233 }
2234
2235 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2236 {
2237 X86CPUTopoInfo topo;
2238 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2239 &topo);
2240 return topo.pkg_id;
2241 }
2242
2243 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
2244 {
2245 PCMachineState *pcms = PC_MACHINE(machine);
2246 assert(pcms->possible_cpus);
2247 return pcms->possible_cpus;
2248 }
2249
2250 static HotpluggableCPUList *pc_query_hotpluggable_cpus(MachineState *machine)
2251 {
2252 int i;
2253 CPUState *cpu;
2254 HotpluggableCPUList *head = NULL;
2255 PCMachineState *pcms = PC_MACHINE(machine);
2256 const char *cpu_type;
2257
2258 cpu = pcms->possible_cpus->cpus[0].cpu;
2259 assert(cpu); /* BSP is always present */
2260 cpu_type = object_class_get_name(OBJECT_CLASS(CPU_GET_CLASS(cpu)));
2261
2262 for (i = 0; i < pcms->possible_cpus->len; i++) {
2263 X86CPUTopoInfo topo;
2264 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2265 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2266 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2267 const uint32_t apic_id = pcms->possible_cpus->cpus[i].arch_id;
2268
2269 x86_topo_ids_from_apicid(apic_id, smp_cores, smp_threads, &topo);
2270
2271 cpu_item->type = g_strdup(cpu_type);
2272 cpu_item->vcpus_count = 1;
2273 cpu_props->has_socket_id = true;
2274 cpu_props->socket_id = topo.pkg_id;
2275 cpu_props->has_core_id = true;
2276 cpu_props->core_id = topo.core_id;
2277 cpu_props->has_thread_id = true;
2278 cpu_props->thread_id = topo.smt_id;
2279 cpu_item->props = cpu_props;
2280
2281 cpu = pcms->possible_cpus->cpus[i].cpu;
2282 if (cpu) {
2283 cpu_item->has_qom_path = true;
2284 cpu_item->qom_path = object_get_canonical_path(OBJECT(cpu));
2285 }
2286
2287 list_item->value = cpu_item;
2288 list_item->next = head;
2289 head = list_item;
2290 }
2291 return head;
2292 }
2293
2294 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2295 {
2296 /* cpu index isn't used */
2297 CPUState *cs;
2298
2299 CPU_FOREACH(cs) {
2300 X86CPU *cpu = X86_CPU(cs);
2301
2302 if (!cpu->apic_state) {
2303 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2304 } else {
2305 apic_deliver_nmi(cpu->apic_state);
2306 }
2307 }
2308 }
2309
2310 static void pc_machine_class_init(ObjectClass *oc, void *data)
2311 {
2312 MachineClass *mc = MACHINE_CLASS(oc);
2313 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2314 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2315 NMIClass *nc = NMI_CLASS(oc);
2316
2317 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2318 pcmc->pci_enabled = true;
2319 pcmc->has_acpi_build = true;
2320 pcmc->rsdp_in_ram = true;
2321 pcmc->smbios_defaults = true;
2322 pcmc->smbios_uuid_encoded = true;
2323 pcmc->gigabyte_align = true;
2324 pcmc->has_reserved_memory = true;
2325 pcmc->kvmclock_enabled = true;
2326 pcmc->enforce_aligned_dimm = true;
2327 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2328 * to be used at the moment, 32K should be enough for a while. */
2329 pcmc->acpi_data_size = 0x20000 + 0x8000;
2330 pcmc->save_tsc_khz = true;
2331 mc->get_hotplug_handler = pc_get_hotpug_handler;
2332 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2333 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2334 mc->query_hotpluggable_cpus = pc_query_hotpluggable_cpus;
2335 mc->default_boot_order = "cad";
2336 mc->hot_add_cpu = pc_hot_add_cpu;
2337 mc->max_cpus = 255;
2338 mc->reset = pc_machine_reset;
2339 hc->pre_plug = pc_machine_device_pre_plug_cb;
2340 hc->plug = pc_machine_device_plug_cb;
2341 hc->unplug_request = pc_machine_device_unplug_request_cb;
2342 hc->unplug = pc_machine_device_unplug_cb;
2343 nc->nmi_monitor_handler = x86_nmi;
2344
2345 object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2346 pc_machine_get_hotplug_memory_region_size, NULL,
2347 NULL, NULL, &error_abort);
2348
2349 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2350 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2351 NULL, NULL, &error_abort);
2352
2353 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2354 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2355
2356 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2357 pc_machine_get_smm, pc_machine_set_smm,
2358 NULL, NULL, &error_abort);
2359 object_class_property_set_description(oc, PC_MACHINE_SMM,
2360 "Enable SMM (pc & q35)", &error_abort);
2361
2362 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2363 pc_machine_get_vmport, pc_machine_set_vmport,
2364 NULL, NULL, &error_abort);
2365 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2366 "Enable vmport (pc & q35)", &error_abort);
2367
2368 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2369 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2370
2371 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2372 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2373
2374 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2375 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2376
2377 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2378 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2379 }
2380
2381 static const TypeInfo pc_machine_info = {
2382 .name = TYPE_PC_MACHINE,
2383 .parent = TYPE_MACHINE,
2384 .abstract = true,
2385 .instance_size = sizeof(PCMachineState),
2386 .instance_init = pc_machine_initfn,
2387 .class_size = sizeof(PCMachineClass),
2388 .class_init = pc_machine_class_init,
2389 .interfaces = (InterfaceInfo[]) {
2390 { TYPE_HOTPLUG_HANDLER },
2391 { TYPE_NMI },
2392 { }
2393 },
2394 };
2395
2396 static void pc_machine_register_types(void)
2397 {
2398 type_register_static(&pc_machine_info);
2399 }
2400
2401 type_init(pc_machine_register_types)