]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
Merge remote-tracking branch 'remotes/afaerber/tags/qom-cpu-for-peter' into staging
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "monitor/monitor.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/i386/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "kvm_i386.h"
49 #include "hw/xen/xen.h"
50 #include "sysemu/block-backend.h"
51 #include "hw/block/block.h"
52 #include "ui/qemu-spice.h"
53 #include "exec/memory.h"
54 #include "exec/address-spaces.h"
55 #include "sysemu/arch_init.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/config-file.h"
58 #include "hw/acpi/acpi.h"
59 #include "hw/acpi/cpu_hotplug.h"
60 #include "hw/cpu/icc_bus.h"
61 #include "hw/boards.h"
62 #include "hw/pci/pci_host.h"
63 #include "acpi-build.h"
64 #include "hw/mem/pc-dimm.h"
65 #include "trace.h"
66 #include "qapi/visitor.h"
67 #include "qapi-visit.h"
68
69 /* debug PC/ISA interrupts */
70 //#define DEBUG_IRQ
71
72 #ifdef DEBUG_IRQ
73 #define DPRINTF(fmt, ...) \
74 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
75 #else
76 #define DPRINTF(fmt, ...)
77 #endif
78
79 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
80 * (128K) and other BIOS datastructures (less than 4K reported to be used at
81 * the moment, 32K should be enough for a while). */
82 static unsigned acpi_data_size = 0x20000 + 0x8000;
83 void pc_set_legacy_acpi_data_size(void)
84 {
85 acpi_data_size = 0x10000;
86 }
87
88 #define BIOS_CFG_IOPORT 0x510
89 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
90 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
91 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
92 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
93 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
94
95 #define E820_NR_ENTRIES 16
96
97 struct e820_entry {
98 uint64_t address;
99 uint64_t length;
100 uint32_t type;
101 } QEMU_PACKED __attribute((__aligned__(4)));
102
103 struct e820_table {
104 uint32_t count;
105 struct e820_entry entry[E820_NR_ENTRIES];
106 } QEMU_PACKED __attribute((__aligned__(4)));
107
108 static struct e820_table e820_reserve;
109 static struct e820_entry *e820_table;
110 static unsigned e820_entries;
111 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
112
113 void gsi_handler(void *opaque, int n, int level)
114 {
115 GSIState *s = opaque;
116
117 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
118 if (n < ISA_NUM_IRQS) {
119 qemu_set_irq(s->i8259_irq[n], level);
120 }
121 qemu_set_irq(s->ioapic_irq[n], level);
122 }
123
124 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
125 unsigned size)
126 {
127 }
128
129 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
130 {
131 return 0xffffffffffffffffULL;
132 }
133
134 /* MSDOS compatibility mode FPU exception support */
135 static qemu_irq ferr_irq;
136
137 void pc_register_ferr_irq(qemu_irq irq)
138 {
139 ferr_irq = irq;
140 }
141
142 /* XXX: add IGNNE support */
143 void cpu_set_ferr(CPUX86State *s)
144 {
145 qemu_irq_raise(ferr_irq);
146 }
147
148 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
149 unsigned size)
150 {
151 qemu_irq_lower(ferr_irq);
152 }
153
154 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
155 {
156 return 0xffffffffffffffffULL;
157 }
158
159 /* TSC handling */
160 uint64_t cpu_get_tsc(CPUX86State *env)
161 {
162 return cpu_get_ticks();
163 }
164
165 /* SMM support */
166
167 static cpu_set_smm_t smm_set;
168 static void *smm_arg;
169
170 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
171 {
172 assert(smm_set == NULL);
173 assert(smm_arg == NULL);
174 smm_set = callback;
175 smm_arg = arg;
176 }
177
178 void cpu_smm_update(CPUX86State *env)
179 {
180 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
181 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
182 }
183 }
184
185
186 /* IRQ handling */
187 int cpu_get_pic_interrupt(CPUX86State *env)
188 {
189 X86CPU *cpu = x86_env_get_cpu(env);
190 int intno;
191
192 intno = apic_get_interrupt(cpu->apic_state);
193 if (intno >= 0) {
194 return intno;
195 }
196 /* read the irq from the PIC */
197 if (!apic_accept_pic_intr(cpu->apic_state)) {
198 return -1;
199 }
200
201 intno = pic_read_irq(isa_pic);
202 return intno;
203 }
204
205 static void pic_irq_request(void *opaque, int irq, int level)
206 {
207 CPUState *cs = first_cpu;
208 X86CPU *cpu = X86_CPU(cs);
209
210 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
211 if (cpu->apic_state) {
212 CPU_FOREACH(cs) {
213 cpu = X86_CPU(cs);
214 if (apic_accept_pic_intr(cpu->apic_state)) {
215 apic_deliver_pic_intr(cpu->apic_state, level);
216 }
217 }
218 } else {
219 if (level) {
220 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
221 } else {
222 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
223 }
224 }
225 }
226
227 /* PC cmos mappings */
228
229 #define REG_EQUIPMENT_BYTE 0x14
230
231 static int cmos_get_fd_drive_type(FDriveType fd0)
232 {
233 int val;
234
235 switch (fd0) {
236 case FDRIVE_DRV_144:
237 /* 1.44 Mb 3"5 drive */
238 val = 4;
239 break;
240 case FDRIVE_DRV_288:
241 /* 2.88 Mb 3"5 drive */
242 val = 5;
243 break;
244 case FDRIVE_DRV_120:
245 /* 1.2 Mb 5"5 drive */
246 val = 2;
247 break;
248 case FDRIVE_DRV_NONE:
249 default:
250 val = 0;
251 break;
252 }
253 return val;
254 }
255
256 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
257 int16_t cylinders, int8_t heads, int8_t sectors)
258 {
259 rtc_set_memory(s, type_ofs, 47);
260 rtc_set_memory(s, info_ofs, cylinders);
261 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
262 rtc_set_memory(s, info_ofs + 2, heads);
263 rtc_set_memory(s, info_ofs + 3, 0xff);
264 rtc_set_memory(s, info_ofs + 4, 0xff);
265 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
266 rtc_set_memory(s, info_ofs + 6, cylinders);
267 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
268 rtc_set_memory(s, info_ofs + 8, sectors);
269 }
270
271 /* convert boot_device letter to something recognizable by the bios */
272 static int boot_device2nibble(char boot_device)
273 {
274 switch(boot_device) {
275 case 'a':
276 case 'b':
277 return 0x01; /* floppy boot */
278 case 'c':
279 return 0x02; /* hard drive boot */
280 case 'd':
281 return 0x03; /* CD-ROM boot */
282 case 'n':
283 return 0x04; /* Network boot */
284 }
285 return 0;
286 }
287
288 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
289 {
290 #define PC_MAX_BOOT_DEVICES 3
291 int nbds, bds[3] = { 0, };
292 int i;
293
294 nbds = strlen(boot_device);
295 if (nbds > PC_MAX_BOOT_DEVICES) {
296 error_setg(errp, "Too many boot devices for PC");
297 return;
298 }
299 for (i = 0; i < nbds; i++) {
300 bds[i] = boot_device2nibble(boot_device[i]);
301 if (bds[i] == 0) {
302 error_setg(errp, "Invalid boot device for PC: '%c'",
303 boot_device[i]);
304 return;
305 }
306 }
307 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
308 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
309 }
310
311 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
312 {
313 set_boot_dev(opaque, boot_device, errp);
314 }
315
316 typedef struct pc_cmos_init_late_arg {
317 ISADevice *rtc_state;
318 BusState *idebus[2];
319 } pc_cmos_init_late_arg;
320
321 static void pc_cmos_init_late(void *opaque)
322 {
323 pc_cmos_init_late_arg *arg = opaque;
324 ISADevice *s = arg->rtc_state;
325 int16_t cylinders;
326 int8_t heads, sectors;
327 int val;
328 int i, trans;
329
330 val = 0;
331 if (ide_get_geometry(arg->idebus[0], 0,
332 &cylinders, &heads, &sectors) >= 0) {
333 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
334 val |= 0xf0;
335 }
336 if (ide_get_geometry(arg->idebus[0], 1,
337 &cylinders, &heads, &sectors) >= 0) {
338 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
339 val |= 0x0f;
340 }
341 rtc_set_memory(s, 0x12, val);
342
343 val = 0;
344 for (i = 0; i < 4; i++) {
345 /* NOTE: ide_get_geometry() returns the physical
346 geometry. It is always such that: 1 <= sects <= 63, 1
347 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
348 geometry can be different if a translation is done. */
349 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
350 &cylinders, &heads, &sectors) >= 0) {
351 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
352 assert((trans & ~3) == 0);
353 val |= trans << (i * 2);
354 }
355 }
356 rtc_set_memory(s, 0x39, val);
357
358 qemu_unregister_reset(pc_cmos_init_late, opaque);
359 }
360
361 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
362 const char *boot_device, MachineState *machine,
363 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
364 ISADevice *s)
365 {
366 int val, nb, i;
367 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
368 static pc_cmos_init_late_arg arg;
369 PCMachineState *pc_machine = PC_MACHINE(machine);
370 Error *local_err = NULL;
371
372 /* various important CMOS locations needed by PC/Bochs bios */
373
374 /* memory size */
375 /* base memory (first MiB) */
376 val = MIN(ram_size / 1024, 640);
377 rtc_set_memory(s, 0x15, val);
378 rtc_set_memory(s, 0x16, val >> 8);
379 /* extended memory (next 64MiB) */
380 if (ram_size > 1024 * 1024) {
381 val = (ram_size - 1024 * 1024) / 1024;
382 } else {
383 val = 0;
384 }
385 if (val > 65535)
386 val = 65535;
387 rtc_set_memory(s, 0x17, val);
388 rtc_set_memory(s, 0x18, val >> 8);
389 rtc_set_memory(s, 0x30, val);
390 rtc_set_memory(s, 0x31, val >> 8);
391 /* memory between 16MiB and 4GiB */
392 if (ram_size > 16 * 1024 * 1024) {
393 val = (ram_size - 16 * 1024 * 1024) / 65536;
394 } else {
395 val = 0;
396 }
397 if (val > 65535)
398 val = 65535;
399 rtc_set_memory(s, 0x34, val);
400 rtc_set_memory(s, 0x35, val >> 8);
401 /* memory above 4GiB */
402 val = above_4g_mem_size / 65536;
403 rtc_set_memory(s, 0x5b, val);
404 rtc_set_memory(s, 0x5c, val >> 8);
405 rtc_set_memory(s, 0x5d, val >> 16);
406
407 /* set the number of CPU */
408 rtc_set_memory(s, 0x5f, smp_cpus - 1);
409
410 object_property_add_link(OBJECT(machine), "rtc_state",
411 TYPE_ISA_DEVICE,
412 (Object **)&pc_machine->rtc,
413 object_property_allow_set_link,
414 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
415 object_property_set_link(OBJECT(machine), OBJECT(s),
416 "rtc_state", &error_abort);
417
418 set_boot_dev(s, boot_device, &local_err);
419 if (local_err) {
420 error_report_err(local_err);
421 exit(1);
422 }
423
424 /* floppy type */
425 if (floppy) {
426 for (i = 0; i < 2; i++) {
427 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
428 }
429 }
430 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
431 cmos_get_fd_drive_type(fd_type[1]);
432 rtc_set_memory(s, 0x10, val);
433
434 val = 0;
435 nb = 0;
436 if (fd_type[0] < FDRIVE_DRV_NONE) {
437 nb++;
438 }
439 if (fd_type[1] < FDRIVE_DRV_NONE) {
440 nb++;
441 }
442 switch (nb) {
443 case 0:
444 break;
445 case 1:
446 val |= 0x01; /* 1 drive, ready for boot */
447 break;
448 case 2:
449 val |= 0x41; /* 2 drives, ready for boot */
450 break;
451 }
452 val |= 0x02; /* FPU is there */
453 val |= 0x04; /* PS/2 mouse installed */
454 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
455
456 /* hard drives */
457 arg.rtc_state = s;
458 arg.idebus[0] = idebus0;
459 arg.idebus[1] = idebus1;
460 qemu_register_reset(pc_cmos_init_late, &arg);
461 }
462
463 #define TYPE_PORT92 "port92"
464 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
465
466 /* port 92 stuff: could be split off */
467 typedef struct Port92State {
468 ISADevice parent_obj;
469
470 MemoryRegion io;
471 uint8_t outport;
472 qemu_irq *a20_out;
473 } Port92State;
474
475 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
476 unsigned size)
477 {
478 Port92State *s = opaque;
479 int oldval = s->outport;
480
481 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
482 s->outport = val;
483 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
484 if ((val & 1) && !(oldval & 1)) {
485 qemu_system_reset_request();
486 }
487 }
488
489 static uint64_t port92_read(void *opaque, hwaddr addr,
490 unsigned size)
491 {
492 Port92State *s = opaque;
493 uint32_t ret;
494
495 ret = s->outport;
496 DPRINTF("port92: read 0x%02x\n", ret);
497 return ret;
498 }
499
500 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
501 {
502 Port92State *s = PORT92(dev);
503
504 s->a20_out = a20_out;
505 }
506
507 static const VMStateDescription vmstate_port92_isa = {
508 .name = "port92",
509 .version_id = 1,
510 .minimum_version_id = 1,
511 .fields = (VMStateField[]) {
512 VMSTATE_UINT8(outport, Port92State),
513 VMSTATE_END_OF_LIST()
514 }
515 };
516
517 static void port92_reset(DeviceState *d)
518 {
519 Port92State *s = PORT92(d);
520
521 s->outport &= ~1;
522 }
523
524 static const MemoryRegionOps port92_ops = {
525 .read = port92_read,
526 .write = port92_write,
527 .impl = {
528 .min_access_size = 1,
529 .max_access_size = 1,
530 },
531 .endianness = DEVICE_LITTLE_ENDIAN,
532 };
533
534 static void port92_initfn(Object *obj)
535 {
536 Port92State *s = PORT92(obj);
537
538 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
539
540 s->outport = 0;
541 }
542
543 static void port92_realizefn(DeviceState *dev, Error **errp)
544 {
545 ISADevice *isadev = ISA_DEVICE(dev);
546 Port92State *s = PORT92(dev);
547
548 isa_register_ioport(isadev, &s->io, 0x92);
549 }
550
551 static void port92_class_initfn(ObjectClass *klass, void *data)
552 {
553 DeviceClass *dc = DEVICE_CLASS(klass);
554
555 dc->realize = port92_realizefn;
556 dc->reset = port92_reset;
557 dc->vmsd = &vmstate_port92_isa;
558 /*
559 * Reason: unlike ordinary ISA devices, this one needs additional
560 * wiring: its A20 output line needs to be wired up by
561 * port92_init().
562 */
563 dc->cannot_instantiate_with_device_add_yet = true;
564 }
565
566 static const TypeInfo port92_info = {
567 .name = TYPE_PORT92,
568 .parent = TYPE_ISA_DEVICE,
569 .instance_size = sizeof(Port92State),
570 .instance_init = port92_initfn,
571 .class_init = port92_class_initfn,
572 };
573
574 static void port92_register_types(void)
575 {
576 type_register_static(&port92_info);
577 }
578
579 type_init(port92_register_types)
580
581 static void handle_a20_line_change(void *opaque, int irq, int level)
582 {
583 X86CPU *cpu = opaque;
584
585 /* XXX: send to all CPUs ? */
586 /* XXX: add logic to handle multiple A20 line sources */
587 x86_cpu_set_a20(cpu, level);
588 }
589
590 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
591 {
592 int index = le32_to_cpu(e820_reserve.count);
593 struct e820_entry *entry;
594
595 if (type != E820_RAM) {
596 /* old FW_CFG_E820_TABLE entry -- reservations only */
597 if (index >= E820_NR_ENTRIES) {
598 return -EBUSY;
599 }
600 entry = &e820_reserve.entry[index++];
601
602 entry->address = cpu_to_le64(address);
603 entry->length = cpu_to_le64(length);
604 entry->type = cpu_to_le32(type);
605
606 e820_reserve.count = cpu_to_le32(index);
607 }
608
609 /* new "etc/e820" file -- include ram too */
610 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
611 e820_table[e820_entries].address = cpu_to_le64(address);
612 e820_table[e820_entries].length = cpu_to_le64(length);
613 e820_table[e820_entries].type = cpu_to_le32(type);
614 e820_entries++;
615
616 return e820_entries;
617 }
618
619 int e820_get_num_entries(void)
620 {
621 return e820_entries;
622 }
623
624 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
625 {
626 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
627 *address = le64_to_cpu(e820_table[idx].address);
628 *length = le64_to_cpu(e820_table[idx].length);
629 return true;
630 }
631 return false;
632 }
633
634 /* Enables contiguous-apic-ID mode, for compatibility */
635 static bool compat_apic_id_mode;
636
637 void enable_compat_apic_id_mode(void)
638 {
639 compat_apic_id_mode = true;
640 }
641
642 /* Calculates initial APIC ID for a specific CPU index
643 *
644 * Currently we need to be able to calculate the APIC ID from the CPU index
645 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
646 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
647 * all CPUs up to max_cpus.
648 */
649 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
650 {
651 uint32_t correct_id;
652 static bool warned;
653
654 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
655 if (compat_apic_id_mode) {
656 if (cpu_index != correct_id && !warned) {
657 error_report("APIC IDs set in compatibility mode, "
658 "CPU topology won't match the configuration");
659 warned = true;
660 }
661 return cpu_index;
662 } else {
663 return correct_id;
664 }
665 }
666
667 /* Calculates the limit to CPU APIC ID values
668 *
669 * This function returns the limit for the APIC ID value, so that all
670 * CPU APIC IDs are < pc_apic_id_limit().
671 *
672 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
673 */
674 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
675 {
676 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
677 }
678
679 static FWCfgState *bochs_bios_init(void)
680 {
681 FWCfgState *fw_cfg;
682 uint8_t *smbios_tables, *smbios_anchor;
683 size_t smbios_tables_len, smbios_anchor_len;
684 uint64_t *numa_fw_cfg;
685 int i, j;
686 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
687
688 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
689 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
690 *
691 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
692 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
693 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
694 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
695 * may see".
696 *
697 * So, this means we must not use max_cpus, here, but the maximum possible
698 * APIC ID value, plus one.
699 *
700 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
701 * the APIC ID, not the "CPU index"
702 */
703 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
704 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
705 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
706 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
707 acpi_tables, acpi_tables_len);
708 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
709
710 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
711 if (smbios_tables) {
712 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
713 smbios_tables, smbios_tables_len);
714 }
715
716 smbios_get_tables(&smbios_tables, &smbios_tables_len,
717 &smbios_anchor, &smbios_anchor_len);
718 if (smbios_anchor) {
719 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
720 smbios_tables, smbios_tables_len);
721 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
722 smbios_anchor, smbios_anchor_len);
723 }
724
725 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
726 &e820_reserve, sizeof(e820_reserve));
727 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
728 sizeof(struct e820_entry) * e820_entries);
729
730 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
731 /* allocate memory for the NUMA channel: one (64bit) word for the number
732 * of nodes, one word for each VCPU->node and one word for each node to
733 * hold the amount of memory.
734 */
735 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
736 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
737 for (i = 0; i < max_cpus; i++) {
738 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
739 assert(apic_id < apic_id_limit);
740 for (j = 0; j < nb_numa_nodes; j++) {
741 if (test_bit(i, numa_info[j].node_cpu)) {
742 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
743 break;
744 }
745 }
746 }
747 for (i = 0; i < nb_numa_nodes; i++) {
748 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
749 }
750 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
751 (1 + apic_id_limit + nb_numa_nodes) *
752 sizeof(*numa_fw_cfg));
753
754 return fw_cfg;
755 }
756
757 static long get_file_size(FILE *f)
758 {
759 long where, size;
760
761 /* XXX: on Unix systems, using fstat() probably makes more sense */
762
763 where = ftell(f);
764 fseek(f, 0, SEEK_END);
765 size = ftell(f);
766 fseek(f, where, SEEK_SET);
767
768 return size;
769 }
770
771 static void load_linux(FWCfgState *fw_cfg,
772 const char *kernel_filename,
773 const char *initrd_filename,
774 const char *kernel_cmdline,
775 hwaddr max_ram_size)
776 {
777 uint16_t protocol;
778 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
779 uint32_t initrd_max;
780 uint8_t header[8192], *setup, *kernel, *initrd_data;
781 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
782 FILE *f;
783 char *vmode;
784
785 /* Align to 16 bytes as a paranoia measure */
786 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
787
788 /* load the kernel header */
789 f = fopen(kernel_filename, "rb");
790 if (!f || !(kernel_size = get_file_size(f)) ||
791 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
792 MIN(ARRAY_SIZE(header), kernel_size)) {
793 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
794 kernel_filename, strerror(errno));
795 exit(1);
796 }
797
798 /* kernel protocol version */
799 #if 0
800 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
801 #endif
802 if (ldl_p(header+0x202) == 0x53726448) {
803 protocol = lduw_p(header+0x206);
804 } else {
805 /* This looks like a multiboot kernel. If it is, let's stop
806 treating it like a Linux kernel. */
807 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
808 kernel_cmdline, kernel_size, header)) {
809 return;
810 }
811 protocol = 0;
812 }
813
814 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
815 /* Low kernel */
816 real_addr = 0x90000;
817 cmdline_addr = 0x9a000 - cmdline_size;
818 prot_addr = 0x10000;
819 } else if (protocol < 0x202) {
820 /* High but ancient kernel */
821 real_addr = 0x90000;
822 cmdline_addr = 0x9a000 - cmdline_size;
823 prot_addr = 0x100000;
824 } else {
825 /* High and recent kernel */
826 real_addr = 0x10000;
827 cmdline_addr = 0x20000;
828 prot_addr = 0x100000;
829 }
830
831 #if 0
832 fprintf(stderr,
833 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
834 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
835 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
836 real_addr,
837 cmdline_addr,
838 prot_addr);
839 #endif
840
841 /* highest address for loading the initrd */
842 if (protocol >= 0x203) {
843 initrd_max = ldl_p(header+0x22c);
844 } else {
845 initrd_max = 0x37ffffff;
846 }
847
848 if (initrd_max >= max_ram_size - acpi_data_size) {
849 initrd_max = max_ram_size - acpi_data_size - 1;
850 }
851
852 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
853 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
854 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
855
856 if (protocol >= 0x202) {
857 stl_p(header+0x228, cmdline_addr);
858 } else {
859 stw_p(header+0x20, 0xA33F);
860 stw_p(header+0x22, cmdline_addr-real_addr);
861 }
862
863 /* handle vga= parameter */
864 vmode = strstr(kernel_cmdline, "vga=");
865 if (vmode) {
866 unsigned int video_mode;
867 /* skip "vga=" */
868 vmode += 4;
869 if (!strncmp(vmode, "normal", 6)) {
870 video_mode = 0xffff;
871 } else if (!strncmp(vmode, "ext", 3)) {
872 video_mode = 0xfffe;
873 } else if (!strncmp(vmode, "ask", 3)) {
874 video_mode = 0xfffd;
875 } else {
876 video_mode = strtol(vmode, NULL, 0);
877 }
878 stw_p(header+0x1fa, video_mode);
879 }
880
881 /* loader type */
882 /* High nybble = B reserved for QEMU; low nybble is revision number.
883 If this code is substantially changed, you may want to consider
884 incrementing the revision. */
885 if (protocol >= 0x200) {
886 header[0x210] = 0xB0;
887 }
888 /* heap */
889 if (protocol >= 0x201) {
890 header[0x211] |= 0x80; /* CAN_USE_HEAP */
891 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
892 }
893
894 /* load initrd */
895 if (initrd_filename) {
896 if (protocol < 0x200) {
897 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
898 exit(1);
899 }
900
901 initrd_size = get_image_size(initrd_filename);
902 if (initrd_size < 0) {
903 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
904 initrd_filename, strerror(errno));
905 exit(1);
906 }
907
908 initrd_addr = (initrd_max-initrd_size) & ~4095;
909
910 initrd_data = g_malloc(initrd_size);
911 load_image(initrd_filename, initrd_data);
912
913 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
914 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
915 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
916
917 stl_p(header+0x218, initrd_addr);
918 stl_p(header+0x21c, initrd_size);
919 }
920
921 /* load kernel and setup */
922 setup_size = header[0x1f1];
923 if (setup_size == 0) {
924 setup_size = 4;
925 }
926 setup_size = (setup_size+1)*512;
927 kernel_size -= setup_size;
928
929 setup = g_malloc(setup_size);
930 kernel = g_malloc(kernel_size);
931 fseek(f, 0, SEEK_SET);
932 if (fread(setup, 1, setup_size, f) != setup_size) {
933 fprintf(stderr, "fread() failed\n");
934 exit(1);
935 }
936 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
937 fprintf(stderr, "fread() failed\n");
938 exit(1);
939 }
940 fclose(f);
941 memcpy(setup, header, MIN(sizeof(header), setup_size));
942
943 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
944 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
945 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
946
947 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
948 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
949 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
950
951 option_rom[nb_option_roms].name = "linuxboot.bin";
952 option_rom[nb_option_roms].bootindex = 0;
953 nb_option_roms++;
954 }
955
956 #define NE2000_NB_MAX 6
957
958 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
959 0x280, 0x380 };
960 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
961
962 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
963 {
964 static int nb_ne2k = 0;
965
966 if (nb_ne2k == NE2000_NB_MAX)
967 return;
968 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
969 ne2000_irq[nb_ne2k], nd);
970 nb_ne2k++;
971 }
972
973 DeviceState *cpu_get_current_apic(void)
974 {
975 if (current_cpu) {
976 X86CPU *cpu = X86_CPU(current_cpu);
977 return cpu->apic_state;
978 } else {
979 return NULL;
980 }
981 }
982
983 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
984 {
985 X86CPU *cpu = opaque;
986
987 if (level) {
988 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
989 }
990 }
991
992 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
993 DeviceState *icc_bridge, Error **errp)
994 {
995 X86CPU *cpu;
996 Error *local_err = NULL;
997
998 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
999 if (local_err != NULL) {
1000 error_propagate(errp, local_err);
1001 return NULL;
1002 }
1003
1004 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1005 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1006
1007 if (local_err) {
1008 error_propagate(errp, local_err);
1009 object_unref(OBJECT(cpu));
1010 cpu = NULL;
1011 }
1012 return cpu;
1013 }
1014
1015 static const char *current_cpu_model;
1016
1017 void pc_hot_add_cpu(const int64_t id, Error **errp)
1018 {
1019 DeviceState *icc_bridge;
1020 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1021
1022 if (id < 0) {
1023 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1024 return;
1025 }
1026
1027 if (cpu_exists(apic_id)) {
1028 error_setg(errp, "Unable to add CPU: %" PRIi64
1029 ", it already exists", id);
1030 return;
1031 }
1032
1033 if (id >= max_cpus) {
1034 error_setg(errp, "Unable to add CPU: %" PRIi64
1035 ", max allowed: %d", id, max_cpus - 1);
1036 return;
1037 }
1038
1039 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1040 error_setg(errp, "Unable to add CPU: %" PRIi64
1041 ", resulting APIC ID (%" PRIi64 ") is too large",
1042 id, apic_id);
1043 return;
1044 }
1045
1046 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1047 TYPE_ICC_BRIDGE, NULL));
1048 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1049 }
1050
1051 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1052 {
1053 int i;
1054 X86CPU *cpu = NULL;
1055 Error *error = NULL;
1056 unsigned long apic_id_limit;
1057
1058 /* init CPUs */
1059 if (cpu_model == NULL) {
1060 #ifdef TARGET_X86_64
1061 cpu_model = "qemu64";
1062 #else
1063 cpu_model = "qemu32";
1064 #endif
1065 }
1066 current_cpu_model = cpu_model;
1067
1068 apic_id_limit = pc_apic_id_limit(max_cpus);
1069 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1070 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1071 apic_id_limit - 1);
1072 exit(1);
1073 }
1074
1075 for (i = 0; i < smp_cpus; i++) {
1076 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1077 icc_bridge, &error);
1078 if (error) {
1079 error_report_err(error);
1080 exit(1);
1081 }
1082 }
1083
1084 /* map APIC MMIO area if CPU has APIC */
1085 if (cpu && cpu->apic_state) {
1086 /* XXX: what if the base changes? */
1087 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1088 APIC_DEFAULT_ADDRESS, 0x1000);
1089 }
1090
1091 /* tell smbios about cpuid version and features */
1092 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1093 }
1094
1095 /* pci-info ROM file. Little endian format */
1096 typedef struct PcRomPciInfo {
1097 uint64_t w32_min;
1098 uint64_t w32_max;
1099 uint64_t w64_min;
1100 uint64_t w64_max;
1101 } PcRomPciInfo;
1102
1103 typedef struct PcGuestInfoState {
1104 PcGuestInfo info;
1105 Notifier machine_done;
1106 } PcGuestInfoState;
1107
1108 static
1109 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1110 {
1111 PcGuestInfoState *guest_info_state = container_of(notifier,
1112 PcGuestInfoState,
1113 machine_done);
1114 acpi_setup(&guest_info_state->info);
1115 }
1116
1117 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1118 ram_addr_t above_4g_mem_size)
1119 {
1120 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1121 PcGuestInfo *guest_info = &guest_info_state->info;
1122 int i, j;
1123
1124 guest_info->ram_size_below_4g = below_4g_mem_size;
1125 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1126 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1127 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1128 guest_info->numa_nodes = nb_numa_nodes;
1129 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1130 sizeof *guest_info->node_mem);
1131 for (i = 0; i < nb_numa_nodes; i++) {
1132 guest_info->node_mem[i] = numa_info[i].node_mem;
1133 }
1134
1135 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1136 sizeof *guest_info->node_cpu);
1137
1138 for (i = 0; i < max_cpus; i++) {
1139 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1140 assert(apic_id < guest_info->apic_id_limit);
1141 for (j = 0; j < nb_numa_nodes; j++) {
1142 if (test_bit(i, numa_info[j].node_cpu)) {
1143 guest_info->node_cpu[apic_id] = j;
1144 break;
1145 }
1146 }
1147 }
1148
1149 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1150 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1151 return guest_info;
1152 }
1153
1154 /* setup pci memory address space mapping into system address space */
1155 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1156 MemoryRegion *pci_address_space)
1157 {
1158 /* Set to lower priority than RAM */
1159 memory_region_add_subregion_overlap(system_memory, 0x0,
1160 pci_address_space, -1);
1161 }
1162
1163 void pc_acpi_init(const char *default_dsdt)
1164 {
1165 char *filename;
1166
1167 if (acpi_tables != NULL) {
1168 /* manually set via -acpitable, leave it alone */
1169 return;
1170 }
1171
1172 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1173 if (filename == NULL) {
1174 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1175 } else {
1176 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1177 &error_abort);
1178 Error *err = NULL;
1179
1180 qemu_opt_set(opts, "file", filename, &error_abort);
1181
1182 acpi_table_add_builtin(opts, &err);
1183 if (err) {
1184 error_report("WARNING: failed to load %s: %s", filename,
1185 error_get_pretty(err));
1186 error_free(err);
1187 }
1188 g_free(filename);
1189 }
1190 }
1191
1192 FWCfgState *xen_load_linux(const char *kernel_filename,
1193 const char *kernel_cmdline,
1194 const char *initrd_filename,
1195 ram_addr_t below_4g_mem_size,
1196 PcGuestInfo *guest_info)
1197 {
1198 int i;
1199 FWCfgState *fw_cfg;
1200
1201 assert(kernel_filename != NULL);
1202
1203 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1204 rom_set_fw(fw_cfg);
1205
1206 load_linux(fw_cfg, kernel_filename, initrd_filename,
1207 kernel_cmdline, below_4g_mem_size);
1208 for (i = 0; i < nb_option_roms; i++) {
1209 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1210 !strcmp(option_rom[i].name, "multiboot.bin"));
1211 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1212 }
1213 guest_info->fw_cfg = fw_cfg;
1214 return fw_cfg;
1215 }
1216
1217 FWCfgState *pc_memory_init(MachineState *machine,
1218 MemoryRegion *system_memory,
1219 ram_addr_t below_4g_mem_size,
1220 ram_addr_t above_4g_mem_size,
1221 MemoryRegion *rom_memory,
1222 MemoryRegion **ram_memory,
1223 PcGuestInfo *guest_info)
1224 {
1225 int linux_boot, i;
1226 MemoryRegion *ram, *option_rom_mr;
1227 MemoryRegion *ram_below_4g, *ram_above_4g;
1228 FWCfgState *fw_cfg;
1229 PCMachineState *pcms = PC_MACHINE(machine);
1230
1231 assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1232
1233 linux_boot = (machine->kernel_filename != NULL);
1234
1235 /* Allocate RAM. We allocate it as a single memory region and use
1236 * aliases to address portions of it, mostly for backwards compatibility
1237 * with older qemus that used qemu_ram_alloc().
1238 */
1239 ram = g_malloc(sizeof(*ram));
1240 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1241 machine->ram_size);
1242 *ram_memory = ram;
1243 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1244 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1245 0, below_4g_mem_size);
1246 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1247 e820_add_entry(0, below_4g_mem_size, E820_RAM);
1248 if (above_4g_mem_size > 0) {
1249 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1250 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1251 below_4g_mem_size, above_4g_mem_size);
1252 memory_region_add_subregion(system_memory, 0x100000000ULL,
1253 ram_above_4g);
1254 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1255 }
1256
1257 if (!guest_info->has_reserved_memory &&
1258 (machine->ram_slots ||
1259 (machine->maxram_size > machine->ram_size))) {
1260 MachineClass *mc = MACHINE_GET_CLASS(machine);
1261
1262 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1263 mc->name);
1264 exit(EXIT_FAILURE);
1265 }
1266
1267 /* initialize hotplug memory address space */
1268 if (guest_info->has_reserved_memory &&
1269 (machine->ram_size < machine->maxram_size)) {
1270 ram_addr_t hotplug_mem_size =
1271 machine->maxram_size - machine->ram_size;
1272
1273 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1274 error_report("unsupported amount of memory slots: %"PRIu64,
1275 machine->ram_slots);
1276 exit(EXIT_FAILURE);
1277 }
1278
1279 if (QEMU_ALIGN_UP(machine->maxram_size,
1280 TARGET_PAGE_SIZE) != machine->maxram_size) {
1281 error_report("maximum memory size must by aligned to multiple of "
1282 "%d bytes", TARGET_PAGE_SIZE);
1283 exit(EXIT_FAILURE);
1284 }
1285
1286 pcms->hotplug_memory_base =
1287 ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1288
1289 if (pcms->enforce_aligned_dimm) {
1290 /* size hotplug region assuming 1G page max alignment per slot */
1291 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1292 }
1293
1294 if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1295 hotplug_mem_size) {
1296 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1297 machine->maxram_size);
1298 exit(EXIT_FAILURE);
1299 }
1300
1301 memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1302 "hotplug-memory", hotplug_mem_size);
1303 memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1304 &pcms->hotplug_memory);
1305 }
1306
1307 /* Initialize PC system firmware */
1308 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1309
1310 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1311 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1312 &error_abort);
1313 vmstate_register_ram_global(option_rom_mr);
1314 memory_region_add_subregion_overlap(rom_memory,
1315 PC_ROM_MIN_VGA,
1316 option_rom_mr,
1317 1);
1318
1319 fw_cfg = bochs_bios_init();
1320 rom_set_fw(fw_cfg);
1321
1322 if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1323 uint64_t *val = g_malloc(sizeof(*val));
1324 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1325 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1326 }
1327
1328 if (linux_boot) {
1329 load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1330 machine->kernel_cmdline, below_4g_mem_size);
1331 }
1332
1333 for (i = 0; i < nb_option_roms; i++) {
1334 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1335 }
1336 guest_info->fw_cfg = fw_cfg;
1337 return fw_cfg;
1338 }
1339
1340 qemu_irq *pc_allocate_cpu_irq(void)
1341 {
1342 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1343 }
1344
1345 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1346 {
1347 DeviceState *dev = NULL;
1348
1349 if (pci_bus) {
1350 PCIDevice *pcidev = pci_vga_init(pci_bus);
1351 dev = pcidev ? &pcidev->qdev : NULL;
1352 } else if (isa_bus) {
1353 ISADevice *isadev = isa_vga_init(isa_bus);
1354 dev = isadev ? DEVICE(isadev) : NULL;
1355 }
1356 return dev;
1357 }
1358
1359 static void cpu_request_exit(void *opaque, int irq, int level)
1360 {
1361 CPUState *cpu = current_cpu;
1362
1363 if (cpu && level) {
1364 cpu_exit(cpu);
1365 }
1366 }
1367
1368 static const MemoryRegionOps ioport80_io_ops = {
1369 .write = ioport80_write,
1370 .read = ioport80_read,
1371 .endianness = DEVICE_NATIVE_ENDIAN,
1372 .impl = {
1373 .min_access_size = 1,
1374 .max_access_size = 1,
1375 },
1376 };
1377
1378 static const MemoryRegionOps ioportF0_io_ops = {
1379 .write = ioportF0_write,
1380 .read = ioportF0_read,
1381 .endianness = DEVICE_NATIVE_ENDIAN,
1382 .impl = {
1383 .min_access_size = 1,
1384 .max_access_size = 1,
1385 },
1386 };
1387
1388 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1389 ISADevice **rtc_state,
1390 ISADevice **floppy,
1391 bool no_vmport,
1392 uint32 hpet_irqs)
1393 {
1394 int i;
1395 DriveInfo *fd[MAX_FD];
1396 DeviceState *hpet = NULL;
1397 int pit_isa_irq = 0;
1398 qemu_irq pit_alt_irq = NULL;
1399 qemu_irq rtc_irq = NULL;
1400 qemu_irq *a20_line;
1401 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1402 qemu_irq *cpu_exit_irq;
1403 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1404 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1405
1406 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1407 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1408
1409 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1410 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1411
1412 /*
1413 * Check if an HPET shall be created.
1414 *
1415 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1416 * when the HPET wants to take over. Thus we have to disable the latter.
1417 */
1418 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1419 /* In order to set property, here not using sysbus_try_create_simple */
1420 hpet = qdev_try_create(NULL, TYPE_HPET);
1421 if (hpet) {
1422 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1423 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1424 * IRQ8 and IRQ2.
1425 */
1426 uint8_t compat = object_property_get_int(OBJECT(hpet),
1427 HPET_INTCAP, NULL);
1428 if (!compat) {
1429 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1430 }
1431 qdev_init_nofail(hpet);
1432 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1433
1434 for (i = 0; i < GSI_NUM_PINS; i++) {
1435 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1436 }
1437 pit_isa_irq = -1;
1438 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1439 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1440 }
1441 }
1442 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1443
1444 qemu_register_boot_set(pc_boot_set, *rtc_state);
1445
1446 if (!xen_enabled()) {
1447 if (kvm_irqchip_in_kernel()) {
1448 pit = kvm_pit_init(isa_bus, 0x40);
1449 } else {
1450 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1451 }
1452 if (hpet) {
1453 /* connect PIT to output control line of the HPET */
1454 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1455 }
1456 pcspk_init(isa_bus, pit);
1457 }
1458
1459 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1460 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1461
1462 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1463 i8042 = isa_create_simple(isa_bus, "i8042");
1464 i8042_setup_a20_line(i8042, &a20_line[0]);
1465 if (!no_vmport) {
1466 vmport_init(isa_bus);
1467 vmmouse = isa_try_create(isa_bus, "vmmouse");
1468 } else {
1469 vmmouse = NULL;
1470 }
1471 if (vmmouse) {
1472 DeviceState *dev = DEVICE(vmmouse);
1473 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1474 qdev_init_nofail(dev);
1475 }
1476 port92 = isa_create_simple(isa_bus, "port92");
1477 port92_init(port92, &a20_line[1]);
1478
1479 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1480 DMA_init(0, cpu_exit_irq);
1481
1482 for(i = 0; i < MAX_FD; i++) {
1483 fd[i] = drive_get(IF_FLOPPY, 0, i);
1484 }
1485 *floppy = fdctrl_init_isa(isa_bus, fd);
1486 }
1487
1488 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1489 {
1490 int i;
1491
1492 for (i = 0; i < nb_nics; i++) {
1493 NICInfo *nd = &nd_table[i];
1494
1495 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1496 pc_init_ne2k_isa(isa_bus, nd);
1497 } else {
1498 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1499 }
1500 }
1501 }
1502
1503 void pc_pci_device_init(PCIBus *pci_bus)
1504 {
1505 int max_bus;
1506 int bus;
1507
1508 max_bus = drive_get_max_bus(IF_SCSI);
1509 for (bus = 0; bus <= max_bus; bus++) {
1510 pci_create_simple(pci_bus, -1, "lsi53c895a");
1511 }
1512 }
1513
1514 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1515 {
1516 DeviceState *dev;
1517 SysBusDevice *d;
1518 unsigned int i;
1519
1520 if (kvm_irqchip_in_kernel()) {
1521 dev = qdev_create(NULL, "kvm-ioapic");
1522 } else {
1523 dev = qdev_create(NULL, "ioapic");
1524 }
1525 if (parent_name) {
1526 object_property_add_child(object_resolve_path(parent_name, NULL),
1527 "ioapic", OBJECT(dev), NULL);
1528 }
1529 qdev_init_nofail(dev);
1530 d = SYS_BUS_DEVICE(dev);
1531 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1532
1533 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1534 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1535 }
1536 }
1537
1538 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1539 {
1540 MachineClass *mc = MACHINE_CLASS(oc);
1541 QEMUMachine *qm = data;
1542
1543 mc->family = qm->family;
1544 mc->name = qm->name;
1545 mc->alias = qm->alias;
1546 mc->desc = qm->desc;
1547 mc->init = qm->init;
1548 mc->reset = qm->reset;
1549 mc->hot_add_cpu = qm->hot_add_cpu;
1550 mc->kvm_type = qm->kvm_type;
1551 mc->block_default_type = qm->block_default_type;
1552 mc->units_per_default_bus = qm->units_per_default_bus;
1553 mc->max_cpus = qm->max_cpus;
1554 mc->no_serial = qm->no_serial;
1555 mc->no_parallel = qm->no_parallel;
1556 mc->use_virtcon = qm->use_virtcon;
1557 mc->use_sclp = qm->use_sclp;
1558 mc->no_floppy = qm->no_floppy;
1559 mc->no_cdrom = qm->no_cdrom;
1560 mc->no_sdcard = qm->no_sdcard;
1561 mc->is_default = qm->is_default;
1562 mc->default_machine_opts = qm->default_machine_opts;
1563 mc->default_boot_order = qm->default_boot_order;
1564 mc->default_display = qm->default_display;
1565 mc->compat_props = qm->compat_props;
1566 mc->hw_version = qm->hw_version;
1567 }
1568
1569 void qemu_register_pc_machine(QEMUMachine *m)
1570 {
1571 char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1572 TypeInfo ti = {
1573 .name = name,
1574 .parent = TYPE_PC_MACHINE,
1575 .class_init = pc_generic_machine_class_init,
1576 .class_data = (void *)m,
1577 };
1578
1579 type_register(&ti);
1580 g_free(name);
1581 }
1582
1583 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1584 DeviceState *dev, Error **errp)
1585 {
1586 int slot;
1587 HotplugHandlerClass *hhc;
1588 Error *local_err = NULL;
1589 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1590 MachineState *machine = MACHINE(hotplug_dev);
1591 PCDIMMDevice *dimm = PC_DIMM(dev);
1592 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1593 MemoryRegion *mr = ddc->get_memory_region(dimm);
1594 uint64_t existing_dimms_capacity = 0;
1595 uint64_t align = TARGET_PAGE_SIZE;
1596 uint64_t addr;
1597
1598 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
1599 if (local_err) {
1600 goto out;
1601 }
1602
1603 if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1604 align = memory_region_get_alignment(mr);
1605 }
1606
1607 addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1608 memory_region_size(&pcms->hotplug_memory),
1609 !addr ? NULL : &addr, align,
1610 memory_region_size(mr), &local_err);
1611 if (local_err) {
1612 goto out;
1613 }
1614
1615 existing_dimms_capacity = pc_existing_dimms_capacity(&local_err);
1616 if (local_err) {
1617 goto out;
1618 }
1619
1620 if (existing_dimms_capacity + memory_region_size(mr) >
1621 machine->maxram_size - machine->ram_size) {
1622 error_setg(&local_err, "not enough space, currently 0x%" PRIx64
1623 " in use of total hot pluggable 0x" RAM_ADDR_FMT,
1624 existing_dimms_capacity,
1625 machine->maxram_size - machine->ram_size);
1626 goto out;
1627 }
1628
1629 object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1630 if (local_err) {
1631 goto out;
1632 }
1633 trace_mhp_pc_dimm_assigned_address(addr);
1634
1635 slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1636 if (local_err) {
1637 goto out;
1638 }
1639
1640 slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1641 machine->ram_slots, &local_err);
1642 if (local_err) {
1643 goto out;
1644 }
1645 object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1646 if (local_err) {
1647 goto out;
1648 }
1649 trace_mhp_pc_dimm_assigned_slot(slot);
1650
1651 if (!pcms->acpi_dev) {
1652 error_setg(&local_err,
1653 "memory hotplug is not enabled: missing acpi device");
1654 goto out;
1655 }
1656
1657 if (kvm_enabled() && !kvm_has_free_slot(machine)) {
1658 error_setg(&local_err, "hypervisor has no free memory slots left");
1659 goto out;
1660 }
1661
1662 memory_region_add_subregion(&pcms->hotplug_memory,
1663 addr - pcms->hotplug_memory_base, mr);
1664 vmstate_register_ram(mr, dev);
1665
1666 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1667 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1668 out:
1669 error_propagate(errp, local_err);
1670 }
1671
1672 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1673 DeviceState *dev, Error **errp)
1674 {
1675 HotplugHandlerClass *hhc;
1676 Error *local_err = NULL;
1677 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1678
1679 if (!dev->hotplugged) {
1680 goto out;
1681 }
1682
1683 if (!pcms->acpi_dev) {
1684 error_setg(&local_err,
1685 "cpu hotplug is not enabled: missing acpi device");
1686 goto out;
1687 }
1688
1689 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1690 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1691 if (local_err) {
1692 goto out;
1693 }
1694
1695 /* increment the number of CPUs */
1696 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1697 out:
1698 error_propagate(errp, local_err);
1699 }
1700
1701 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1702 DeviceState *dev, Error **errp)
1703 {
1704 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1705 pc_dimm_plug(hotplug_dev, dev, errp);
1706 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1707 pc_cpu_plug(hotplug_dev, dev, errp);
1708 }
1709 }
1710
1711 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1712 DeviceState *dev, Error **errp)
1713 {
1714 error_setg(errp, "acpi: device unplug request for not supported device"
1715 " type: %s", object_get_typename(OBJECT(dev)));
1716 }
1717
1718 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1719 DeviceState *dev, Error **errp)
1720 {
1721 error_setg(errp, "acpi: device unplug for not supported device"
1722 " type: %s", object_get_typename(OBJECT(dev)));
1723 }
1724
1725 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1726 DeviceState *dev)
1727 {
1728 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1729
1730 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1731 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1732 return HOTPLUG_HANDLER(machine);
1733 }
1734
1735 return pcmc->get_hotplug_handler ?
1736 pcmc->get_hotplug_handler(machine, dev) : NULL;
1737 }
1738
1739 static void
1740 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1741 const char *name, Error **errp)
1742 {
1743 PCMachineState *pcms = PC_MACHINE(obj);
1744 int64_t value = memory_region_size(&pcms->hotplug_memory);
1745
1746 visit_type_int(v, &value, name, errp);
1747 }
1748
1749 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1750 void *opaque, const char *name,
1751 Error **errp)
1752 {
1753 PCMachineState *pcms = PC_MACHINE(obj);
1754 uint64_t value = pcms->max_ram_below_4g;
1755
1756 visit_type_size(v, &value, name, errp);
1757 }
1758
1759 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1760 void *opaque, const char *name,
1761 Error **errp)
1762 {
1763 PCMachineState *pcms = PC_MACHINE(obj);
1764 Error *error = NULL;
1765 uint64_t value;
1766
1767 visit_type_size(v, &value, name, &error);
1768 if (error) {
1769 error_propagate(errp, error);
1770 return;
1771 }
1772 if (value > (1ULL << 32)) {
1773 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1774 "Machine option 'max-ram-below-4g=%"PRIu64
1775 "' expects size less than or equal to 4G", value);
1776 error_propagate(errp, error);
1777 return;
1778 }
1779
1780 if (value < (1ULL << 20)) {
1781 error_report("Warning: small max_ram_below_4g(%"PRIu64
1782 ") less than 1M. BIOS may not work..",
1783 value);
1784 }
1785
1786 pcms->max_ram_below_4g = value;
1787 }
1788
1789 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1790 const char *name, Error **errp)
1791 {
1792 PCMachineState *pcms = PC_MACHINE(obj);
1793 OnOffAuto vmport = pcms->vmport;
1794
1795 visit_type_OnOffAuto(v, &vmport, name, errp);
1796 }
1797
1798 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1799 const char *name, Error **errp)
1800 {
1801 PCMachineState *pcms = PC_MACHINE(obj);
1802
1803 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1804 }
1805
1806 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1807 {
1808 PCMachineState *pcms = PC_MACHINE(obj);
1809
1810 return pcms->enforce_aligned_dimm;
1811 }
1812
1813 static void pc_machine_initfn(Object *obj)
1814 {
1815 PCMachineState *pcms = PC_MACHINE(obj);
1816
1817 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1818 pc_machine_get_hotplug_memory_region_size,
1819 NULL, NULL, NULL, NULL);
1820
1821 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1822 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1823 pc_machine_get_max_ram_below_4g,
1824 pc_machine_set_max_ram_below_4g,
1825 NULL, NULL, NULL);
1826 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1827 "Maximum ram below the 4G boundary (32bit boundary)",
1828 NULL);
1829
1830 pcms->vmport = ON_OFF_AUTO_AUTO;
1831 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1832 pc_machine_get_vmport,
1833 pc_machine_set_vmport,
1834 NULL, NULL, NULL);
1835 object_property_set_description(obj, PC_MACHINE_VMPORT,
1836 "Enable vmport (pc & q35)",
1837 NULL);
1838
1839 pcms->enforce_aligned_dimm = true;
1840 object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1841 pc_machine_get_aligned_dimm,
1842 NULL, NULL);
1843 }
1844
1845 static void pc_machine_class_init(ObjectClass *oc, void *data)
1846 {
1847 MachineClass *mc = MACHINE_CLASS(oc);
1848 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1849 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1850
1851 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1852 mc->get_hotplug_handler = pc_get_hotpug_handler;
1853 hc->plug = pc_machine_device_plug_cb;
1854 hc->unplug_request = pc_machine_device_unplug_request_cb;
1855 hc->unplug = pc_machine_device_unplug_cb;
1856 }
1857
1858 static const TypeInfo pc_machine_info = {
1859 .name = TYPE_PC_MACHINE,
1860 .parent = TYPE_MACHINE,
1861 .abstract = true,
1862 .instance_size = sizeof(PCMachineState),
1863 .instance_init = pc_machine_initfn,
1864 .class_size = sizeof(PCMachineClass),
1865 .class_init = pc_machine_class_init,
1866 .interfaces = (InterfaceInfo[]) {
1867 { TYPE_HOTPLUG_HANDLER },
1868 { }
1869 },
1870 };
1871
1872 static void pc_machine_register_types(void)
1873 {
1874 type_register_static(&pc_machine_info);
1875 }
1876
1877 type_init(pc_machine_register_types)