]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
pc: Make device_del CPU work for x86 CPUs
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71
72 /* debug PC/ISA interrupts */
73 //#define DEBUG_IRQ
74
75 #ifdef DEBUG_IRQ
76 #define DPRINTF(fmt, ...) \
77 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
78 #else
79 #define DPRINTF(fmt, ...)
80 #endif
81
82 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
83 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
84 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
85 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
86 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
87
88 #define E820_NR_ENTRIES 16
89
90 struct e820_entry {
91 uint64_t address;
92 uint64_t length;
93 uint32_t type;
94 } QEMU_PACKED __attribute((__aligned__(4)));
95
96 struct e820_table {
97 uint32_t count;
98 struct e820_entry entry[E820_NR_ENTRIES];
99 } QEMU_PACKED __attribute((__aligned__(4)));
100
101 static struct e820_table e820_reserve;
102 static struct e820_entry *e820_table;
103 static unsigned e820_entries;
104 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
105
106 void gsi_handler(void *opaque, int n, int level)
107 {
108 GSIState *s = opaque;
109
110 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
111 if (n < ISA_NUM_IRQS) {
112 qemu_set_irq(s->i8259_irq[n], level);
113 }
114 qemu_set_irq(s->ioapic_irq[n], level);
115 }
116
117 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
118 unsigned size)
119 {
120 }
121
122 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
123 {
124 return 0xffffffffffffffffULL;
125 }
126
127 /* MSDOS compatibility mode FPU exception support */
128 static qemu_irq ferr_irq;
129
130 void pc_register_ferr_irq(qemu_irq irq)
131 {
132 ferr_irq = irq;
133 }
134
135 /* XXX: add IGNNE support */
136 void cpu_set_ferr(CPUX86State *s)
137 {
138 qemu_irq_raise(ferr_irq);
139 }
140
141 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
142 unsigned size)
143 {
144 qemu_irq_lower(ferr_irq);
145 }
146
147 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
148 {
149 return 0xffffffffffffffffULL;
150 }
151
152 /* TSC handling */
153 uint64_t cpu_get_tsc(CPUX86State *env)
154 {
155 return cpu_get_ticks();
156 }
157
158 /* IRQ handling */
159 int cpu_get_pic_interrupt(CPUX86State *env)
160 {
161 X86CPU *cpu = x86_env_get_cpu(env);
162 int intno;
163
164 intno = apic_get_interrupt(cpu->apic_state);
165 if (intno >= 0) {
166 return intno;
167 }
168 /* read the irq from the PIC */
169 if (!apic_accept_pic_intr(cpu->apic_state)) {
170 return -1;
171 }
172
173 intno = pic_read_irq(isa_pic);
174 return intno;
175 }
176
177 static void pic_irq_request(void *opaque, int irq, int level)
178 {
179 CPUState *cs = first_cpu;
180 X86CPU *cpu = X86_CPU(cs);
181
182 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
183 if (cpu->apic_state) {
184 CPU_FOREACH(cs) {
185 cpu = X86_CPU(cs);
186 if (apic_accept_pic_intr(cpu->apic_state)) {
187 apic_deliver_pic_intr(cpu->apic_state, level);
188 }
189 }
190 } else {
191 if (level) {
192 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
193 } else {
194 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
195 }
196 }
197 }
198
199 /* PC cmos mappings */
200
201 #define REG_EQUIPMENT_BYTE 0x14
202
203 int cmos_get_fd_drive_type(FloppyDriveType fd0)
204 {
205 int val;
206
207 switch (fd0) {
208 case FLOPPY_DRIVE_TYPE_144:
209 /* 1.44 Mb 3"5 drive */
210 val = 4;
211 break;
212 case FLOPPY_DRIVE_TYPE_288:
213 /* 2.88 Mb 3"5 drive */
214 val = 5;
215 break;
216 case FLOPPY_DRIVE_TYPE_120:
217 /* 1.2 Mb 5"5 drive */
218 val = 2;
219 break;
220 case FLOPPY_DRIVE_TYPE_NONE:
221 default:
222 val = 0;
223 break;
224 }
225 return val;
226 }
227
228 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
229 int16_t cylinders, int8_t heads, int8_t sectors)
230 {
231 rtc_set_memory(s, type_ofs, 47);
232 rtc_set_memory(s, info_ofs, cylinders);
233 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
234 rtc_set_memory(s, info_ofs + 2, heads);
235 rtc_set_memory(s, info_ofs + 3, 0xff);
236 rtc_set_memory(s, info_ofs + 4, 0xff);
237 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
238 rtc_set_memory(s, info_ofs + 6, cylinders);
239 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
240 rtc_set_memory(s, info_ofs + 8, sectors);
241 }
242
243 /* convert boot_device letter to something recognizable by the bios */
244 static int boot_device2nibble(char boot_device)
245 {
246 switch(boot_device) {
247 case 'a':
248 case 'b':
249 return 0x01; /* floppy boot */
250 case 'c':
251 return 0x02; /* hard drive boot */
252 case 'd':
253 return 0x03; /* CD-ROM boot */
254 case 'n':
255 return 0x04; /* Network boot */
256 }
257 return 0;
258 }
259
260 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
261 {
262 #define PC_MAX_BOOT_DEVICES 3
263 int nbds, bds[3] = { 0, };
264 int i;
265
266 nbds = strlen(boot_device);
267 if (nbds > PC_MAX_BOOT_DEVICES) {
268 error_setg(errp, "Too many boot devices for PC");
269 return;
270 }
271 for (i = 0; i < nbds; i++) {
272 bds[i] = boot_device2nibble(boot_device[i]);
273 if (bds[i] == 0) {
274 error_setg(errp, "Invalid boot device for PC: '%c'",
275 boot_device[i]);
276 return;
277 }
278 }
279 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
280 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
281 }
282
283 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
284 {
285 set_boot_dev(opaque, boot_device, errp);
286 }
287
288 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
289 {
290 int val, nb, i;
291 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
292 FLOPPY_DRIVE_TYPE_NONE };
293
294 /* floppy type */
295 if (floppy) {
296 for (i = 0; i < 2; i++) {
297 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
298 }
299 }
300 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
301 cmos_get_fd_drive_type(fd_type[1]);
302 rtc_set_memory(rtc_state, 0x10, val);
303
304 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
305 nb = 0;
306 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
307 nb++;
308 }
309 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
310 nb++;
311 }
312 switch (nb) {
313 case 0:
314 break;
315 case 1:
316 val |= 0x01; /* 1 drive, ready for boot */
317 break;
318 case 2:
319 val |= 0x41; /* 2 drives, ready for boot */
320 break;
321 }
322 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
323 }
324
325 typedef struct pc_cmos_init_late_arg {
326 ISADevice *rtc_state;
327 BusState *idebus[2];
328 } pc_cmos_init_late_arg;
329
330 typedef struct check_fdc_state {
331 ISADevice *floppy;
332 bool multiple;
333 } CheckFdcState;
334
335 static int check_fdc(Object *obj, void *opaque)
336 {
337 CheckFdcState *state = opaque;
338 Object *fdc;
339 uint32_t iobase;
340 Error *local_err = NULL;
341
342 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
343 if (!fdc) {
344 return 0;
345 }
346
347 iobase = object_property_get_int(obj, "iobase", &local_err);
348 if (local_err || iobase != 0x3f0) {
349 error_free(local_err);
350 return 0;
351 }
352
353 if (state->floppy) {
354 state->multiple = true;
355 } else {
356 state->floppy = ISA_DEVICE(obj);
357 }
358 return 0;
359 }
360
361 static const char * const fdc_container_path[] = {
362 "/unattached", "/peripheral", "/peripheral-anon"
363 };
364
365 /*
366 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
367 * and ACPI objects.
368 */
369 ISADevice *pc_find_fdc0(void)
370 {
371 int i;
372 Object *container;
373 CheckFdcState state = { 0 };
374
375 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
376 container = container_get(qdev_get_machine(), fdc_container_path[i]);
377 object_child_foreach(container, check_fdc, &state);
378 }
379
380 if (state.multiple) {
381 error_report("warning: multiple floppy disk controllers with "
382 "iobase=0x3f0 have been found");
383 error_printf("the one being picked for CMOS setup might not reflect "
384 "your intent");
385 }
386
387 return state.floppy;
388 }
389
390 static void pc_cmos_init_late(void *opaque)
391 {
392 pc_cmos_init_late_arg *arg = opaque;
393 ISADevice *s = arg->rtc_state;
394 int16_t cylinders;
395 int8_t heads, sectors;
396 int val;
397 int i, trans;
398
399 val = 0;
400 if (ide_get_geometry(arg->idebus[0], 0,
401 &cylinders, &heads, &sectors) >= 0) {
402 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
403 val |= 0xf0;
404 }
405 if (ide_get_geometry(arg->idebus[0], 1,
406 &cylinders, &heads, &sectors) >= 0) {
407 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
408 val |= 0x0f;
409 }
410 rtc_set_memory(s, 0x12, val);
411
412 val = 0;
413 for (i = 0; i < 4; i++) {
414 /* NOTE: ide_get_geometry() returns the physical
415 geometry. It is always such that: 1 <= sects <= 63, 1
416 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
417 geometry can be different if a translation is done. */
418 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
419 &cylinders, &heads, &sectors) >= 0) {
420 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
421 assert((trans & ~3) == 0);
422 val |= trans << (i * 2);
423 }
424 }
425 rtc_set_memory(s, 0x39, val);
426
427 pc_cmos_init_floppy(s, pc_find_fdc0());
428
429 qemu_unregister_reset(pc_cmos_init_late, opaque);
430 }
431
432 void pc_cmos_init(PCMachineState *pcms,
433 BusState *idebus0, BusState *idebus1,
434 ISADevice *s)
435 {
436 int val;
437 static pc_cmos_init_late_arg arg;
438
439 /* various important CMOS locations needed by PC/Bochs bios */
440
441 /* memory size */
442 /* base memory (first MiB) */
443 val = MIN(pcms->below_4g_mem_size / 1024, 640);
444 rtc_set_memory(s, 0x15, val);
445 rtc_set_memory(s, 0x16, val >> 8);
446 /* extended memory (next 64MiB) */
447 if (pcms->below_4g_mem_size > 1024 * 1024) {
448 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
449 } else {
450 val = 0;
451 }
452 if (val > 65535)
453 val = 65535;
454 rtc_set_memory(s, 0x17, val);
455 rtc_set_memory(s, 0x18, val >> 8);
456 rtc_set_memory(s, 0x30, val);
457 rtc_set_memory(s, 0x31, val >> 8);
458 /* memory between 16MiB and 4GiB */
459 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
460 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
461 } else {
462 val = 0;
463 }
464 if (val > 65535)
465 val = 65535;
466 rtc_set_memory(s, 0x34, val);
467 rtc_set_memory(s, 0x35, val >> 8);
468 /* memory above 4GiB */
469 val = pcms->above_4g_mem_size / 65536;
470 rtc_set_memory(s, 0x5b, val);
471 rtc_set_memory(s, 0x5c, val >> 8);
472 rtc_set_memory(s, 0x5d, val >> 16);
473
474 object_property_add_link(OBJECT(pcms), "rtc_state",
475 TYPE_ISA_DEVICE,
476 (Object **)&pcms->rtc,
477 object_property_allow_set_link,
478 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
479 object_property_set_link(OBJECT(pcms), OBJECT(s),
480 "rtc_state", &error_abort);
481
482 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
483
484 val = 0;
485 val |= 0x02; /* FPU is there */
486 val |= 0x04; /* PS/2 mouse installed */
487 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
488
489 /* hard drives and FDC */
490 arg.rtc_state = s;
491 arg.idebus[0] = idebus0;
492 arg.idebus[1] = idebus1;
493 qemu_register_reset(pc_cmos_init_late, &arg);
494 }
495
496 #define TYPE_PORT92 "port92"
497 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
498
499 /* port 92 stuff: could be split off */
500 typedef struct Port92State {
501 ISADevice parent_obj;
502
503 MemoryRegion io;
504 uint8_t outport;
505 qemu_irq a20_out;
506 } Port92State;
507
508 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
509 unsigned size)
510 {
511 Port92State *s = opaque;
512 int oldval = s->outport;
513
514 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
515 s->outport = val;
516 qemu_set_irq(s->a20_out, (val >> 1) & 1);
517 if ((val & 1) && !(oldval & 1)) {
518 qemu_system_reset_request();
519 }
520 }
521
522 static uint64_t port92_read(void *opaque, hwaddr addr,
523 unsigned size)
524 {
525 Port92State *s = opaque;
526 uint32_t ret;
527
528 ret = s->outport;
529 DPRINTF("port92: read 0x%02x\n", ret);
530 return ret;
531 }
532
533 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
534 {
535 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, *a20_out);
536 }
537
538 static const VMStateDescription vmstate_port92_isa = {
539 .name = "port92",
540 .version_id = 1,
541 .minimum_version_id = 1,
542 .fields = (VMStateField[]) {
543 VMSTATE_UINT8(outport, Port92State),
544 VMSTATE_END_OF_LIST()
545 }
546 };
547
548 static void port92_reset(DeviceState *d)
549 {
550 Port92State *s = PORT92(d);
551
552 s->outport &= ~1;
553 }
554
555 static const MemoryRegionOps port92_ops = {
556 .read = port92_read,
557 .write = port92_write,
558 .impl = {
559 .min_access_size = 1,
560 .max_access_size = 1,
561 },
562 .endianness = DEVICE_LITTLE_ENDIAN,
563 };
564
565 static void port92_initfn(Object *obj)
566 {
567 Port92State *s = PORT92(obj);
568
569 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
570
571 s->outport = 0;
572
573 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
574 }
575
576 static void port92_realizefn(DeviceState *dev, Error **errp)
577 {
578 ISADevice *isadev = ISA_DEVICE(dev);
579 Port92State *s = PORT92(dev);
580
581 isa_register_ioport(isadev, &s->io, 0x92);
582 }
583
584 static void port92_class_initfn(ObjectClass *klass, void *data)
585 {
586 DeviceClass *dc = DEVICE_CLASS(klass);
587
588 dc->realize = port92_realizefn;
589 dc->reset = port92_reset;
590 dc->vmsd = &vmstate_port92_isa;
591 /*
592 * Reason: unlike ordinary ISA devices, this one needs additional
593 * wiring: its A20 output line needs to be wired up by
594 * port92_init().
595 */
596 dc->cannot_instantiate_with_device_add_yet = true;
597 }
598
599 static const TypeInfo port92_info = {
600 .name = TYPE_PORT92,
601 .parent = TYPE_ISA_DEVICE,
602 .instance_size = sizeof(Port92State),
603 .instance_init = port92_initfn,
604 .class_init = port92_class_initfn,
605 };
606
607 static void port92_register_types(void)
608 {
609 type_register_static(&port92_info);
610 }
611
612 type_init(port92_register_types)
613
614 static void handle_a20_line_change(void *opaque, int irq, int level)
615 {
616 X86CPU *cpu = opaque;
617
618 /* XXX: send to all CPUs ? */
619 /* XXX: add logic to handle multiple A20 line sources */
620 x86_cpu_set_a20(cpu, level);
621 }
622
623 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
624 {
625 int index = le32_to_cpu(e820_reserve.count);
626 struct e820_entry *entry;
627
628 if (type != E820_RAM) {
629 /* old FW_CFG_E820_TABLE entry -- reservations only */
630 if (index >= E820_NR_ENTRIES) {
631 return -EBUSY;
632 }
633 entry = &e820_reserve.entry[index++];
634
635 entry->address = cpu_to_le64(address);
636 entry->length = cpu_to_le64(length);
637 entry->type = cpu_to_le32(type);
638
639 e820_reserve.count = cpu_to_le32(index);
640 }
641
642 /* new "etc/e820" file -- include ram too */
643 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
644 e820_table[e820_entries].address = cpu_to_le64(address);
645 e820_table[e820_entries].length = cpu_to_le64(length);
646 e820_table[e820_entries].type = cpu_to_le32(type);
647 e820_entries++;
648
649 return e820_entries;
650 }
651
652 int e820_get_num_entries(void)
653 {
654 return e820_entries;
655 }
656
657 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
658 {
659 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
660 *address = le64_to_cpu(e820_table[idx].address);
661 *length = le64_to_cpu(e820_table[idx].length);
662 return true;
663 }
664 return false;
665 }
666
667 /* Enables contiguous-apic-ID mode, for compatibility */
668 static bool compat_apic_id_mode;
669
670 void enable_compat_apic_id_mode(void)
671 {
672 compat_apic_id_mode = true;
673 }
674
675 /* Calculates initial APIC ID for a specific CPU index
676 *
677 * Currently we need to be able to calculate the APIC ID from the CPU index
678 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
679 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
680 * all CPUs up to max_cpus.
681 */
682 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
683 {
684 uint32_t correct_id;
685 static bool warned;
686
687 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
688 if (compat_apic_id_mode) {
689 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
690 error_report("APIC IDs set in compatibility mode, "
691 "CPU topology won't match the configuration");
692 warned = true;
693 }
694 return cpu_index;
695 } else {
696 return correct_id;
697 }
698 }
699
700 static void pc_build_smbios(FWCfgState *fw_cfg)
701 {
702 uint8_t *smbios_tables, *smbios_anchor;
703 size_t smbios_tables_len, smbios_anchor_len;
704 struct smbios_phys_mem_area *mem_array;
705 unsigned i, array_count;
706
707 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
708 if (smbios_tables) {
709 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
710 smbios_tables, smbios_tables_len);
711 }
712
713 /* build the array of physical mem area from e820 table */
714 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
715 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
716 uint64_t addr, len;
717
718 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
719 mem_array[array_count].address = addr;
720 mem_array[array_count].length = len;
721 array_count++;
722 }
723 }
724 smbios_get_tables(mem_array, array_count,
725 &smbios_tables, &smbios_tables_len,
726 &smbios_anchor, &smbios_anchor_len);
727 g_free(mem_array);
728
729 if (smbios_anchor) {
730 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
731 smbios_tables, smbios_tables_len);
732 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
733 smbios_anchor, smbios_anchor_len);
734 }
735 }
736
737 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
738 {
739 FWCfgState *fw_cfg;
740 uint64_t *numa_fw_cfg;
741 int i, j;
742
743 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
744
745 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
746 *
747 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
748 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
749 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
750 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
751 * may see".
752 *
753 * So, this means we must not use max_cpus, here, but the maximum possible
754 * APIC ID value, plus one.
755 *
756 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
757 * the APIC ID, not the "CPU index"
758 */
759 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
760 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
761 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
762 acpi_tables, acpi_tables_len);
763 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
764
765 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
766 &e820_reserve, sizeof(e820_reserve));
767 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
768 sizeof(struct e820_entry) * e820_entries);
769
770 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
771 /* allocate memory for the NUMA channel: one (64bit) word for the number
772 * of nodes, one word for each VCPU->node and one word for each node to
773 * hold the amount of memory.
774 */
775 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
776 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
777 for (i = 0; i < max_cpus; i++) {
778 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
779 assert(apic_id < pcms->apic_id_limit);
780 for (j = 0; j < nb_numa_nodes; j++) {
781 if (test_bit(i, numa_info[j].node_cpu)) {
782 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
783 break;
784 }
785 }
786 }
787 for (i = 0; i < nb_numa_nodes; i++) {
788 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
789 cpu_to_le64(numa_info[i].node_mem);
790 }
791 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
792 (1 + pcms->apic_id_limit + nb_numa_nodes) *
793 sizeof(*numa_fw_cfg));
794
795 return fw_cfg;
796 }
797
798 static long get_file_size(FILE *f)
799 {
800 long where, size;
801
802 /* XXX: on Unix systems, using fstat() probably makes more sense */
803
804 where = ftell(f);
805 fseek(f, 0, SEEK_END);
806 size = ftell(f);
807 fseek(f, where, SEEK_SET);
808
809 return size;
810 }
811
812 /* setup_data types */
813 #define SETUP_NONE 0
814 #define SETUP_E820_EXT 1
815 #define SETUP_DTB 2
816 #define SETUP_PCI 3
817 #define SETUP_EFI 4
818
819 struct setup_data {
820 uint64_t next;
821 uint32_t type;
822 uint32_t len;
823 uint8_t data[0];
824 } __attribute__((packed));
825
826 static void load_linux(PCMachineState *pcms,
827 FWCfgState *fw_cfg)
828 {
829 uint16_t protocol;
830 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
831 int dtb_size, setup_data_offset;
832 uint32_t initrd_max;
833 uint8_t header[8192], *setup, *kernel, *initrd_data;
834 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
835 FILE *f;
836 char *vmode;
837 MachineState *machine = MACHINE(pcms);
838 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
839 struct setup_data *setup_data;
840 const char *kernel_filename = machine->kernel_filename;
841 const char *initrd_filename = machine->initrd_filename;
842 const char *dtb_filename = machine->dtb;
843 const char *kernel_cmdline = machine->kernel_cmdline;
844
845 /* Align to 16 bytes as a paranoia measure */
846 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
847
848 /* load the kernel header */
849 f = fopen(kernel_filename, "rb");
850 if (!f || !(kernel_size = get_file_size(f)) ||
851 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
852 MIN(ARRAY_SIZE(header), kernel_size)) {
853 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
854 kernel_filename, strerror(errno));
855 exit(1);
856 }
857
858 /* kernel protocol version */
859 #if 0
860 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
861 #endif
862 if (ldl_p(header+0x202) == 0x53726448) {
863 protocol = lduw_p(header+0x206);
864 } else {
865 /* This looks like a multiboot kernel. If it is, let's stop
866 treating it like a Linux kernel. */
867 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
868 kernel_cmdline, kernel_size, header)) {
869 return;
870 }
871 protocol = 0;
872 }
873
874 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
875 /* Low kernel */
876 real_addr = 0x90000;
877 cmdline_addr = 0x9a000 - cmdline_size;
878 prot_addr = 0x10000;
879 } else if (protocol < 0x202) {
880 /* High but ancient kernel */
881 real_addr = 0x90000;
882 cmdline_addr = 0x9a000 - cmdline_size;
883 prot_addr = 0x100000;
884 } else {
885 /* High and recent kernel */
886 real_addr = 0x10000;
887 cmdline_addr = 0x20000;
888 prot_addr = 0x100000;
889 }
890
891 #if 0
892 fprintf(stderr,
893 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
894 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
895 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
896 real_addr,
897 cmdline_addr,
898 prot_addr);
899 #endif
900
901 /* highest address for loading the initrd */
902 if (protocol >= 0x203) {
903 initrd_max = ldl_p(header+0x22c);
904 } else {
905 initrd_max = 0x37ffffff;
906 }
907
908 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
909 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
910 }
911
912 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
913 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
914 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
915
916 if (protocol >= 0x202) {
917 stl_p(header+0x228, cmdline_addr);
918 } else {
919 stw_p(header+0x20, 0xA33F);
920 stw_p(header+0x22, cmdline_addr-real_addr);
921 }
922
923 /* handle vga= parameter */
924 vmode = strstr(kernel_cmdline, "vga=");
925 if (vmode) {
926 unsigned int video_mode;
927 /* skip "vga=" */
928 vmode += 4;
929 if (!strncmp(vmode, "normal", 6)) {
930 video_mode = 0xffff;
931 } else if (!strncmp(vmode, "ext", 3)) {
932 video_mode = 0xfffe;
933 } else if (!strncmp(vmode, "ask", 3)) {
934 video_mode = 0xfffd;
935 } else {
936 video_mode = strtol(vmode, NULL, 0);
937 }
938 stw_p(header+0x1fa, video_mode);
939 }
940
941 /* loader type */
942 /* High nybble = B reserved for QEMU; low nybble is revision number.
943 If this code is substantially changed, you may want to consider
944 incrementing the revision. */
945 if (protocol >= 0x200) {
946 header[0x210] = 0xB0;
947 }
948 /* heap */
949 if (protocol >= 0x201) {
950 header[0x211] |= 0x80; /* CAN_USE_HEAP */
951 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
952 }
953
954 /* load initrd */
955 if (initrd_filename) {
956 if (protocol < 0x200) {
957 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
958 exit(1);
959 }
960
961 initrd_size = get_image_size(initrd_filename);
962 if (initrd_size < 0) {
963 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
964 initrd_filename, strerror(errno));
965 exit(1);
966 }
967
968 initrd_addr = (initrd_max-initrd_size) & ~4095;
969
970 initrd_data = g_malloc(initrd_size);
971 load_image(initrd_filename, initrd_data);
972
973 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
974 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
975 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
976
977 stl_p(header+0x218, initrd_addr);
978 stl_p(header+0x21c, initrd_size);
979 }
980
981 /* load kernel and setup */
982 setup_size = header[0x1f1];
983 if (setup_size == 0) {
984 setup_size = 4;
985 }
986 setup_size = (setup_size+1)*512;
987 if (setup_size > kernel_size) {
988 fprintf(stderr, "qemu: invalid kernel header\n");
989 exit(1);
990 }
991 kernel_size -= setup_size;
992
993 setup = g_malloc(setup_size);
994 kernel = g_malloc(kernel_size);
995 fseek(f, 0, SEEK_SET);
996 if (fread(setup, 1, setup_size, f) != setup_size) {
997 fprintf(stderr, "fread() failed\n");
998 exit(1);
999 }
1000 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1001 fprintf(stderr, "fread() failed\n");
1002 exit(1);
1003 }
1004 fclose(f);
1005
1006 /* append dtb to kernel */
1007 if (dtb_filename) {
1008 if (protocol < 0x209) {
1009 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1010 exit(1);
1011 }
1012
1013 dtb_size = get_image_size(dtb_filename);
1014 if (dtb_size <= 0) {
1015 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1016 dtb_filename, strerror(errno));
1017 exit(1);
1018 }
1019
1020 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1021 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1022 kernel = g_realloc(kernel, kernel_size);
1023
1024 stq_p(header+0x250, prot_addr + setup_data_offset);
1025
1026 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1027 setup_data->next = 0;
1028 setup_data->type = cpu_to_le32(SETUP_DTB);
1029 setup_data->len = cpu_to_le32(dtb_size);
1030
1031 load_image_size(dtb_filename, setup_data->data, dtb_size);
1032 }
1033
1034 memcpy(setup, header, MIN(sizeof(header), setup_size));
1035
1036 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1037 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1038 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1039
1040 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1041 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1042 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1043
1044 if (fw_cfg_dma_enabled(fw_cfg)) {
1045 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1046 option_rom[nb_option_roms].bootindex = 0;
1047 } else {
1048 option_rom[nb_option_roms].name = "linuxboot.bin";
1049 option_rom[nb_option_roms].bootindex = 0;
1050 }
1051 nb_option_roms++;
1052 }
1053
1054 #define NE2000_NB_MAX 6
1055
1056 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1057 0x280, 0x380 };
1058 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1059
1060 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1061 {
1062 static int nb_ne2k = 0;
1063
1064 if (nb_ne2k == NE2000_NB_MAX)
1065 return;
1066 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1067 ne2000_irq[nb_ne2k], nd);
1068 nb_ne2k++;
1069 }
1070
1071 DeviceState *cpu_get_current_apic(void)
1072 {
1073 if (current_cpu) {
1074 X86CPU *cpu = X86_CPU(current_cpu);
1075 return cpu->apic_state;
1076 } else {
1077 return NULL;
1078 }
1079 }
1080
1081 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1082 {
1083 X86CPU *cpu = opaque;
1084
1085 if (level) {
1086 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1087 }
1088 }
1089
1090 static int pc_present_cpus_count(PCMachineState *pcms)
1091 {
1092 int i, boot_cpus = 0;
1093 for (i = 0; i < pcms->possible_cpus->len; i++) {
1094 if (pcms->possible_cpus->cpus[i].cpu) {
1095 boot_cpus++;
1096 }
1097 }
1098 return boot_cpus;
1099 }
1100
1101 static X86CPU *pc_new_cpu(const char *typename, int64_t apic_id,
1102 Error **errp)
1103 {
1104 X86CPU *cpu = NULL;
1105 Error *local_err = NULL;
1106
1107 cpu = X86_CPU(object_new(typename));
1108
1109 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1110 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1111
1112 if (local_err) {
1113 error_propagate(errp, local_err);
1114 object_unref(OBJECT(cpu));
1115 cpu = NULL;
1116 }
1117 return cpu;
1118 }
1119
1120 void pc_hot_add_cpu(const int64_t id, Error **errp)
1121 {
1122 X86CPU *cpu;
1123 ObjectClass *oc;
1124 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1125 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1126 Error *local_err = NULL;
1127
1128 if (id < 0) {
1129 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1130 return;
1131 }
1132
1133 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1134 error_setg(errp, "Unable to add CPU: %" PRIi64
1135 ", resulting APIC ID (%" PRIi64 ") is too large",
1136 id, apic_id);
1137 return;
1138 }
1139
1140 assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1141 oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu));
1142 cpu = pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1143 if (local_err) {
1144 error_propagate(errp, local_err);
1145 return;
1146 }
1147 object_unref(OBJECT(cpu));
1148 }
1149
1150 void pc_cpus_init(PCMachineState *pcms)
1151 {
1152 int i;
1153 CPUClass *cc;
1154 ObjectClass *oc;
1155 const char *typename;
1156 gchar **model_pieces;
1157 X86CPU *cpu = NULL;
1158 MachineState *machine = MACHINE(pcms);
1159
1160 /* init CPUs */
1161 if (machine->cpu_model == NULL) {
1162 #ifdef TARGET_X86_64
1163 machine->cpu_model = "qemu64";
1164 #else
1165 machine->cpu_model = "qemu32";
1166 #endif
1167 }
1168
1169 model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1170 if (!model_pieces[0]) {
1171 error_report("Invalid/empty CPU model name");
1172 exit(1);
1173 }
1174
1175 oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1176 if (oc == NULL) {
1177 error_report("Unable to find CPU definition: %s", model_pieces[0]);
1178 exit(1);
1179 }
1180 typename = object_class_get_name(oc);
1181 cc = CPU_CLASS(oc);
1182 cc->parse_features(typename, model_pieces[1], &error_fatal);
1183 g_strfreev(model_pieces);
1184
1185 /* Calculates the limit to CPU APIC ID values
1186 *
1187 * Limit for the APIC ID value, so that all
1188 * CPU APIC IDs are < pcms->apic_id_limit.
1189 *
1190 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1191 */
1192 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1193 if (pcms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1194 error_report("max_cpus is too large. APIC ID of last CPU is %u",
1195 pcms->apic_id_limit - 1);
1196 exit(1);
1197 }
1198
1199 pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1200 sizeof(CPUArchId) * max_cpus);
1201 for (i = 0; i < max_cpus; i++) {
1202 pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1203 pcms->possible_cpus->len++;
1204 if (i < smp_cpus) {
1205 cpu = pc_new_cpu(typename, x86_cpu_apic_id_from_index(i),
1206 &error_fatal);
1207 object_unref(OBJECT(cpu));
1208 }
1209 }
1210
1211 /* tell smbios about cpuid version and features */
1212 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1213 }
1214
1215 static void pc_build_feature_control_file(PCMachineState *pcms)
1216 {
1217 X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
1218 CPUX86State *env = &cpu->env;
1219 uint32_t unused, ecx, edx;
1220 uint64_t feature_control_bits = 0;
1221 uint64_t *val;
1222
1223 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1224 if (ecx & CPUID_EXT_VMX) {
1225 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1226 }
1227
1228 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1229 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1230 (env->mcg_cap & MCG_LMCE_P)) {
1231 feature_control_bits |= FEATURE_CONTROL_LMCE;
1232 }
1233
1234 if (!feature_control_bits) {
1235 return;
1236 }
1237
1238 val = g_malloc(sizeof(*val));
1239 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1240 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1241 }
1242
1243 static
1244 void pc_machine_done(Notifier *notifier, void *data)
1245 {
1246 PCMachineState *pcms = container_of(notifier,
1247 PCMachineState, machine_done);
1248 PCIBus *bus = pcms->bus;
1249
1250 /* set the number of CPUs */
1251 rtc_set_memory(pcms->rtc, 0x5f, pc_present_cpus_count(pcms) - 1);
1252
1253 if (bus) {
1254 int extra_hosts = 0;
1255
1256 QLIST_FOREACH(bus, &bus->child, sibling) {
1257 /* look for expander root buses */
1258 if (pci_bus_is_root(bus)) {
1259 extra_hosts++;
1260 }
1261 }
1262 if (extra_hosts && pcms->fw_cfg) {
1263 uint64_t *val = g_malloc(sizeof(*val));
1264 *val = cpu_to_le64(extra_hosts);
1265 fw_cfg_add_file(pcms->fw_cfg,
1266 "etc/extra-pci-roots", val, sizeof(*val));
1267 }
1268 }
1269
1270 acpi_setup();
1271 if (pcms->fw_cfg) {
1272 pc_build_smbios(pcms->fw_cfg);
1273 pc_build_feature_control_file(pcms);
1274 }
1275 }
1276
1277 void pc_guest_info_init(PCMachineState *pcms)
1278 {
1279 int i;
1280
1281 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1282 pcms->numa_nodes = nb_numa_nodes;
1283 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1284 sizeof *pcms->node_mem);
1285 for (i = 0; i < nb_numa_nodes; i++) {
1286 pcms->node_mem[i] = numa_info[i].node_mem;
1287 }
1288
1289 pcms->machine_done.notify = pc_machine_done;
1290 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1291 }
1292
1293 /* setup pci memory address space mapping into system address space */
1294 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1295 MemoryRegion *pci_address_space)
1296 {
1297 /* Set to lower priority than RAM */
1298 memory_region_add_subregion_overlap(system_memory, 0x0,
1299 pci_address_space, -1);
1300 }
1301
1302 void pc_acpi_init(const char *default_dsdt)
1303 {
1304 char *filename;
1305
1306 if (acpi_tables != NULL) {
1307 /* manually set via -acpitable, leave it alone */
1308 return;
1309 }
1310
1311 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1312 if (filename == NULL) {
1313 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1314 } else {
1315 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1316 &error_abort);
1317 Error *err = NULL;
1318
1319 qemu_opt_set(opts, "file", filename, &error_abort);
1320
1321 acpi_table_add_builtin(opts, &err);
1322 if (err) {
1323 error_reportf_err(err, "WARNING: failed to load %s: ",
1324 filename);
1325 }
1326 g_free(filename);
1327 }
1328 }
1329
1330 void xen_load_linux(PCMachineState *pcms)
1331 {
1332 int i;
1333 FWCfgState *fw_cfg;
1334
1335 assert(MACHINE(pcms)->kernel_filename != NULL);
1336
1337 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1338 rom_set_fw(fw_cfg);
1339
1340 load_linux(pcms, fw_cfg);
1341 for (i = 0; i < nb_option_roms; i++) {
1342 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1343 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1344 !strcmp(option_rom[i].name, "multiboot.bin"));
1345 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1346 }
1347 pcms->fw_cfg = fw_cfg;
1348 }
1349
1350 void pc_memory_init(PCMachineState *pcms,
1351 MemoryRegion *system_memory,
1352 MemoryRegion *rom_memory,
1353 MemoryRegion **ram_memory)
1354 {
1355 int linux_boot, i;
1356 MemoryRegion *ram, *option_rom_mr;
1357 MemoryRegion *ram_below_4g, *ram_above_4g;
1358 FWCfgState *fw_cfg;
1359 MachineState *machine = MACHINE(pcms);
1360 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1361
1362 assert(machine->ram_size == pcms->below_4g_mem_size +
1363 pcms->above_4g_mem_size);
1364
1365 linux_boot = (machine->kernel_filename != NULL);
1366
1367 /* Allocate RAM. We allocate it as a single memory region and use
1368 * aliases to address portions of it, mostly for backwards compatibility
1369 * with older qemus that used qemu_ram_alloc().
1370 */
1371 ram = g_malloc(sizeof(*ram));
1372 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1373 machine->ram_size);
1374 *ram_memory = ram;
1375 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1376 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1377 0, pcms->below_4g_mem_size);
1378 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1379 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1380 if (pcms->above_4g_mem_size > 0) {
1381 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1382 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1383 pcms->below_4g_mem_size,
1384 pcms->above_4g_mem_size);
1385 memory_region_add_subregion(system_memory, 0x100000000ULL,
1386 ram_above_4g);
1387 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1388 }
1389
1390 if (!pcmc->has_reserved_memory &&
1391 (machine->ram_slots ||
1392 (machine->maxram_size > machine->ram_size))) {
1393 MachineClass *mc = MACHINE_GET_CLASS(machine);
1394
1395 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1396 mc->name);
1397 exit(EXIT_FAILURE);
1398 }
1399
1400 /* initialize hotplug memory address space */
1401 if (pcmc->has_reserved_memory &&
1402 (machine->ram_size < machine->maxram_size)) {
1403 ram_addr_t hotplug_mem_size =
1404 machine->maxram_size - machine->ram_size;
1405
1406 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1407 error_report("unsupported amount of memory slots: %"PRIu64,
1408 machine->ram_slots);
1409 exit(EXIT_FAILURE);
1410 }
1411
1412 if (QEMU_ALIGN_UP(machine->maxram_size,
1413 TARGET_PAGE_SIZE) != machine->maxram_size) {
1414 error_report("maximum memory size must by aligned to multiple of "
1415 "%d bytes", TARGET_PAGE_SIZE);
1416 exit(EXIT_FAILURE);
1417 }
1418
1419 pcms->hotplug_memory.base =
1420 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1421
1422 if (pcmc->enforce_aligned_dimm) {
1423 /* size hotplug region assuming 1G page max alignment per slot */
1424 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1425 }
1426
1427 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1428 hotplug_mem_size) {
1429 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1430 machine->maxram_size);
1431 exit(EXIT_FAILURE);
1432 }
1433
1434 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1435 "hotplug-memory", hotplug_mem_size);
1436 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1437 &pcms->hotplug_memory.mr);
1438 }
1439
1440 /* Initialize PC system firmware */
1441 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1442
1443 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1444 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1445 &error_fatal);
1446 vmstate_register_ram_global(option_rom_mr);
1447 memory_region_add_subregion_overlap(rom_memory,
1448 PC_ROM_MIN_VGA,
1449 option_rom_mr,
1450 1);
1451
1452 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1453
1454 rom_set_fw(fw_cfg);
1455
1456 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1457 uint64_t *val = g_malloc(sizeof(*val));
1458 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1459 uint64_t res_mem_end = pcms->hotplug_memory.base;
1460
1461 if (!pcmc->broken_reserved_end) {
1462 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1463 }
1464 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1465 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1466 }
1467
1468 if (linux_boot) {
1469 load_linux(pcms, fw_cfg);
1470 }
1471
1472 for (i = 0; i < nb_option_roms; i++) {
1473 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1474 }
1475 pcms->fw_cfg = fw_cfg;
1476 }
1477
1478 qemu_irq pc_allocate_cpu_irq(void)
1479 {
1480 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1481 }
1482
1483 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1484 {
1485 DeviceState *dev = NULL;
1486
1487 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1488 if (pci_bus) {
1489 PCIDevice *pcidev = pci_vga_init(pci_bus);
1490 dev = pcidev ? &pcidev->qdev : NULL;
1491 } else if (isa_bus) {
1492 ISADevice *isadev = isa_vga_init(isa_bus);
1493 dev = isadev ? DEVICE(isadev) : NULL;
1494 }
1495 rom_reset_order_override();
1496 return dev;
1497 }
1498
1499 static const MemoryRegionOps ioport80_io_ops = {
1500 .write = ioport80_write,
1501 .read = ioport80_read,
1502 .endianness = DEVICE_NATIVE_ENDIAN,
1503 .impl = {
1504 .min_access_size = 1,
1505 .max_access_size = 1,
1506 },
1507 };
1508
1509 static const MemoryRegionOps ioportF0_io_ops = {
1510 .write = ioportF0_write,
1511 .read = ioportF0_read,
1512 .endianness = DEVICE_NATIVE_ENDIAN,
1513 .impl = {
1514 .min_access_size = 1,
1515 .max_access_size = 1,
1516 },
1517 };
1518
1519 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1520 ISADevice **rtc_state,
1521 bool create_fdctrl,
1522 bool no_vmport,
1523 uint32_t hpet_irqs)
1524 {
1525 int i;
1526 DriveInfo *fd[MAX_FD];
1527 DeviceState *hpet = NULL;
1528 int pit_isa_irq = 0;
1529 qemu_irq pit_alt_irq = NULL;
1530 qemu_irq rtc_irq = NULL;
1531 qemu_irq *a20_line;
1532 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1533 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1534 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1535
1536 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1537 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1538
1539 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1540 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1541
1542 /*
1543 * Check if an HPET shall be created.
1544 *
1545 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1546 * when the HPET wants to take over. Thus we have to disable the latter.
1547 */
1548 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1549 /* In order to set property, here not using sysbus_try_create_simple */
1550 hpet = qdev_try_create(NULL, TYPE_HPET);
1551 if (hpet) {
1552 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1553 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1554 * IRQ8 and IRQ2.
1555 */
1556 uint8_t compat = object_property_get_int(OBJECT(hpet),
1557 HPET_INTCAP, NULL);
1558 if (!compat) {
1559 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1560 }
1561 qdev_init_nofail(hpet);
1562 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1563
1564 for (i = 0; i < GSI_NUM_PINS; i++) {
1565 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1566 }
1567 pit_isa_irq = -1;
1568 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1569 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1570 }
1571 }
1572 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1573
1574 qemu_register_boot_set(pc_boot_set, *rtc_state);
1575
1576 if (!xen_enabled()) {
1577 if (kvm_pit_in_kernel()) {
1578 pit = kvm_pit_init(isa_bus, 0x40);
1579 } else {
1580 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1581 }
1582 if (hpet) {
1583 /* connect PIT to output control line of the HPET */
1584 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1585 }
1586 pcspk_init(isa_bus, pit);
1587 }
1588
1589 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1590 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1591
1592 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1593 i8042 = isa_create_simple(isa_bus, "i8042");
1594 i8042_setup_a20_line(i8042, &a20_line[0]);
1595 if (!no_vmport) {
1596 vmport_init(isa_bus);
1597 vmmouse = isa_try_create(isa_bus, "vmmouse");
1598 } else {
1599 vmmouse = NULL;
1600 }
1601 if (vmmouse) {
1602 DeviceState *dev = DEVICE(vmmouse);
1603 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1604 qdev_init_nofail(dev);
1605 }
1606 port92 = isa_create_simple(isa_bus, "port92");
1607 port92_init(port92, &a20_line[1]);
1608
1609 DMA_init(isa_bus, 0);
1610
1611 for(i = 0; i < MAX_FD; i++) {
1612 fd[i] = drive_get(IF_FLOPPY, 0, i);
1613 create_fdctrl |= !!fd[i];
1614 }
1615 if (create_fdctrl) {
1616 fdctrl_init_isa(isa_bus, fd);
1617 }
1618 }
1619
1620 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1621 {
1622 int i;
1623
1624 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1625 for (i = 0; i < nb_nics; i++) {
1626 NICInfo *nd = &nd_table[i];
1627
1628 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1629 pc_init_ne2k_isa(isa_bus, nd);
1630 } else {
1631 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1632 }
1633 }
1634 rom_reset_order_override();
1635 }
1636
1637 void pc_pci_device_init(PCIBus *pci_bus)
1638 {
1639 int max_bus;
1640 int bus;
1641
1642 max_bus = drive_get_max_bus(IF_SCSI);
1643 for (bus = 0; bus <= max_bus; bus++) {
1644 pci_create_simple(pci_bus, -1, "lsi53c895a");
1645 }
1646 }
1647
1648 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1649 {
1650 DeviceState *dev;
1651 SysBusDevice *d;
1652 unsigned int i;
1653
1654 if (kvm_ioapic_in_kernel()) {
1655 dev = qdev_create(NULL, "kvm-ioapic");
1656 } else {
1657 dev = qdev_create(NULL, "ioapic");
1658 }
1659 if (parent_name) {
1660 object_property_add_child(object_resolve_path(parent_name, NULL),
1661 "ioapic", OBJECT(dev), NULL);
1662 }
1663 qdev_init_nofail(dev);
1664 d = SYS_BUS_DEVICE(dev);
1665 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1666
1667 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1668 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1669 }
1670 }
1671
1672 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1673 DeviceState *dev, Error **errp)
1674 {
1675 HotplugHandlerClass *hhc;
1676 Error *local_err = NULL;
1677 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1678 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1679 PCDIMMDevice *dimm = PC_DIMM(dev);
1680 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1681 MemoryRegion *mr = ddc->get_memory_region(dimm);
1682 uint64_t align = TARGET_PAGE_SIZE;
1683
1684 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1685 align = memory_region_get_alignment(mr);
1686 }
1687
1688 if (!pcms->acpi_dev) {
1689 error_setg(&local_err,
1690 "memory hotplug is not enabled: missing acpi device");
1691 goto out;
1692 }
1693
1694 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1695 if (local_err) {
1696 goto out;
1697 }
1698
1699 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1700 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1701 out:
1702 error_propagate(errp, local_err);
1703 }
1704
1705 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1706 DeviceState *dev, Error **errp)
1707 {
1708 HotplugHandlerClass *hhc;
1709 Error *local_err = NULL;
1710 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1711
1712 if (!pcms->acpi_dev) {
1713 error_setg(&local_err,
1714 "memory hotplug is not enabled: missing acpi device");
1715 goto out;
1716 }
1717
1718 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1719 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1720
1721 out:
1722 error_propagate(errp, local_err);
1723 }
1724
1725 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1726 DeviceState *dev, Error **errp)
1727 {
1728 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1729 PCDIMMDevice *dimm = PC_DIMM(dev);
1730 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1731 MemoryRegion *mr = ddc->get_memory_region(dimm);
1732 HotplugHandlerClass *hhc;
1733 Error *local_err = NULL;
1734
1735 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1736 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1737
1738 if (local_err) {
1739 goto out;
1740 }
1741
1742 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1743 object_unparent(OBJECT(dev));
1744
1745 out:
1746 error_propagate(errp, local_err);
1747 }
1748
1749 static int pc_apic_cmp(const void *a, const void *b)
1750 {
1751 CPUArchId *apic_a = (CPUArchId *)a;
1752 CPUArchId *apic_b = (CPUArchId *)b;
1753
1754 return apic_a->arch_id - apic_b->arch_id;
1755 }
1756
1757 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1758 * in pcms->possible_cpus->cpus, if pcms->possible_cpus->cpus has no
1759 * entry correponding to CPU's apic_id returns NULL.
1760 */
1761 static CPUArchId *pc_find_cpu_slot(PCMachineState *pcms, CPUState *cpu,
1762 int *idx)
1763 {
1764 CPUClass *cc = CPU_GET_CLASS(cpu);
1765 CPUArchId apic_id, *found_cpu;
1766
1767 apic_id.arch_id = cc->get_arch_id(CPU(cpu));
1768 found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1769 pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1770 pc_apic_cmp);
1771 if (found_cpu && idx) {
1772 *idx = found_cpu - pcms->possible_cpus->cpus;
1773 }
1774 return found_cpu;
1775 }
1776
1777 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1778 DeviceState *dev, Error **errp)
1779 {
1780 CPUArchId *found_cpu;
1781 HotplugHandlerClass *hhc;
1782 Error *local_err = NULL;
1783 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1784
1785 if (pcms->acpi_dev) {
1786 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1787 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1788 if (local_err) {
1789 goto out;
1790 }
1791 }
1792
1793 if (dev->hotplugged) {
1794 /* increment the number of CPUs */
1795 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1796 }
1797
1798 found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1799 found_cpu->cpu = CPU(dev);
1800 out:
1801 error_propagate(errp, local_err);
1802 }
1803 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1804 DeviceState *dev, Error **errp)
1805 {
1806 int idx = -1;
1807 HotplugHandlerClass *hhc;
1808 Error *local_err = NULL;
1809 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1810
1811 pc_find_cpu_slot(pcms, CPU(dev), &idx);
1812 assert(idx != -1);
1813 if (idx == 0) {
1814 error_setg(&local_err, "Boot CPU is unpluggable");
1815 goto out;
1816 }
1817
1818 if (idx < pcms->possible_cpus->len - 1 &&
1819 pcms->possible_cpus->cpus[idx + 1].cpu != NULL) {
1820 X86CPU *cpu;
1821
1822 for (idx = pcms->possible_cpus->len - 1;
1823 pcms->possible_cpus->cpus[idx].cpu == NULL; idx--) {
1824 ;;
1825 }
1826
1827 cpu = X86_CPU(pcms->possible_cpus->cpus[idx].cpu);
1828 error_setg(&local_err, "CPU [socket-id: %u, core-id: %u,"
1829 " thread-id: %u] should be removed first",
1830 cpu->socket_id, cpu->core_id, cpu->thread_id);
1831 goto out;
1832
1833 }
1834
1835 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1836 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1837
1838 if (local_err) {
1839 goto out;
1840 }
1841
1842 out:
1843 error_propagate(errp, local_err);
1844
1845 }
1846
1847 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1848 DeviceState *dev, Error **errp)
1849 {
1850 CPUArchId *found_cpu;
1851 HotplugHandlerClass *hhc;
1852 Error *local_err = NULL;
1853 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1854
1855 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1856 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1857
1858 if (local_err) {
1859 goto out;
1860 }
1861
1862 found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1863 found_cpu->cpu = NULL;
1864 object_unparent(OBJECT(dev));
1865
1866 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) - 1);
1867 out:
1868 error_propagate(errp, local_err);
1869 }
1870
1871 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1872 DeviceState *dev, Error **errp)
1873 {
1874 int idx;
1875 CPUArchId *cpu_slot;
1876 X86CPUTopoInfo topo;
1877 X86CPU *cpu = X86_CPU(dev);
1878 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1879
1880 /* if APIC ID is not set, set it based on socket/core/thread properties */
1881 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1882 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1883
1884 if (cpu->socket_id < 0) {
1885 error_setg(errp, "CPU socket-id is not set");
1886 return;
1887 } else if (cpu->socket_id > max_socket) {
1888 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1889 cpu->socket_id, max_socket);
1890 return;
1891 }
1892 if (cpu->core_id < 0) {
1893 error_setg(errp, "CPU core-id is not set");
1894 return;
1895 } else if (cpu->core_id > (smp_cores - 1)) {
1896 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1897 cpu->core_id, smp_cores - 1);
1898 return;
1899 }
1900 if (cpu->thread_id < 0) {
1901 error_setg(errp, "CPU thread-id is not set");
1902 return;
1903 } else if (cpu->thread_id > (smp_threads - 1)) {
1904 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1905 cpu->thread_id, smp_threads - 1);
1906 return;
1907 }
1908
1909 topo.pkg_id = cpu->socket_id;
1910 topo.core_id = cpu->core_id;
1911 topo.smt_id = cpu->thread_id;
1912 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1913 }
1914
1915 cpu_slot = pc_find_cpu_slot(pcms, CPU(dev), &idx);
1916 if (!cpu_slot) {
1917 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1918 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1919 " APIC ID %" PRIu32 ", valid index range 0:%d",
1920 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1921 pcms->possible_cpus->len - 1);
1922 return;
1923 }
1924
1925 if (cpu_slot->cpu) {
1926 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1927 idx, cpu->apic_id);
1928 return;
1929 }
1930
1931 if (idx != 0 && pcms->possible_cpus->cpus[idx - 1].cpu == NULL) {
1932 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1933
1934 for (idx = 1; pcms->possible_cpus->cpus[idx].cpu != NULL; idx++) {
1935 ;;
1936 }
1937
1938 x86_topo_ids_from_apicid(pcms->possible_cpus->cpus[idx].arch_id,
1939 smp_cores, smp_threads, &topo);
1940
1941 if (!pcmc->legacy_cpu_hotplug) {
1942 error_setg(errp, "CPU [socket: %u, core: %u, thread: %u] should be"
1943 " added first", topo.pkg_id, topo.core_id, topo.smt_id);
1944 return;
1945 }
1946 }
1947
1948 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1949 * so that query_hotpluggable_cpus would show correct values
1950 */
1951 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1952 * once -smp refactoring is complete and there will be CPU private
1953 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1954 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1955 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1956 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1957 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1958 return;
1959 }
1960 cpu->socket_id = topo.pkg_id;
1961
1962 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1963 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1964 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1965 return;
1966 }
1967 cpu->core_id = topo.core_id;
1968
1969 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1970 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1971 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1972 return;
1973 }
1974 cpu->thread_id = topo.smt_id;
1975 }
1976
1977 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1978 DeviceState *dev, Error **errp)
1979 {
1980 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1981 pc_cpu_pre_plug(hotplug_dev, dev, errp);
1982 }
1983 }
1984
1985 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1986 DeviceState *dev, Error **errp)
1987 {
1988 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1989 pc_dimm_plug(hotplug_dev, dev, errp);
1990 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1991 pc_cpu_plug(hotplug_dev, dev, errp);
1992 }
1993 }
1994
1995 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1996 DeviceState *dev, Error **errp)
1997 {
1998 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1999 pc_dimm_unplug_request(hotplug_dev, dev, errp);
2000 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2001 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2002 } else {
2003 error_setg(errp, "acpi: device unplug request for not supported device"
2004 " type: %s", object_get_typename(OBJECT(dev)));
2005 }
2006 }
2007
2008 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2009 DeviceState *dev, Error **errp)
2010 {
2011 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2012 pc_dimm_unplug(hotplug_dev, dev, errp);
2013 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2014 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2015 } else {
2016 error_setg(errp, "acpi: device unplug for not supported device"
2017 " type: %s", object_get_typename(OBJECT(dev)));
2018 }
2019 }
2020
2021 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2022 DeviceState *dev)
2023 {
2024 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2025
2026 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2027 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2028 return HOTPLUG_HANDLER(machine);
2029 }
2030
2031 return pcmc->get_hotplug_handler ?
2032 pcmc->get_hotplug_handler(machine, dev) : NULL;
2033 }
2034
2035 static void
2036 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2037 const char *name, void *opaque,
2038 Error **errp)
2039 {
2040 PCMachineState *pcms = PC_MACHINE(obj);
2041 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2042
2043 visit_type_int(v, name, &value, errp);
2044 }
2045
2046 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2047 const char *name, void *opaque,
2048 Error **errp)
2049 {
2050 PCMachineState *pcms = PC_MACHINE(obj);
2051 uint64_t value = pcms->max_ram_below_4g;
2052
2053 visit_type_size(v, name, &value, errp);
2054 }
2055
2056 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2057 const char *name, void *opaque,
2058 Error **errp)
2059 {
2060 PCMachineState *pcms = PC_MACHINE(obj);
2061 Error *error = NULL;
2062 uint64_t value;
2063
2064 visit_type_size(v, name, &value, &error);
2065 if (error) {
2066 error_propagate(errp, error);
2067 return;
2068 }
2069 if (value > (1ULL << 32)) {
2070 error_setg(&error,
2071 "Machine option 'max-ram-below-4g=%"PRIu64
2072 "' expects size less than or equal to 4G", value);
2073 error_propagate(errp, error);
2074 return;
2075 }
2076
2077 if (value < (1ULL << 20)) {
2078 error_report("Warning: small max_ram_below_4g(%"PRIu64
2079 ") less than 1M. BIOS may not work..",
2080 value);
2081 }
2082
2083 pcms->max_ram_below_4g = value;
2084 }
2085
2086 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2087 void *opaque, Error **errp)
2088 {
2089 PCMachineState *pcms = PC_MACHINE(obj);
2090 OnOffAuto vmport = pcms->vmport;
2091
2092 visit_type_OnOffAuto(v, name, &vmport, errp);
2093 }
2094
2095 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2096 void *opaque, Error **errp)
2097 {
2098 PCMachineState *pcms = PC_MACHINE(obj);
2099
2100 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2101 }
2102
2103 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2104 {
2105 bool smm_available = false;
2106
2107 if (pcms->smm == ON_OFF_AUTO_OFF) {
2108 return false;
2109 }
2110
2111 if (tcg_enabled() || qtest_enabled()) {
2112 smm_available = true;
2113 } else if (kvm_enabled()) {
2114 smm_available = kvm_has_smm();
2115 }
2116
2117 if (smm_available) {
2118 return true;
2119 }
2120
2121 if (pcms->smm == ON_OFF_AUTO_ON) {
2122 error_report("System Management Mode not supported by this hypervisor.");
2123 exit(1);
2124 }
2125 return false;
2126 }
2127
2128 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2129 void *opaque, Error **errp)
2130 {
2131 PCMachineState *pcms = PC_MACHINE(obj);
2132 OnOffAuto smm = pcms->smm;
2133
2134 visit_type_OnOffAuto(v, name, &smm, errp);
2135 }
2136
2137 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2138 void *opaque, Error **errp)
2139 {
2140 PCMachineState *pcms = PC_MACHINE(obj);
2141
2142 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2143 }
2144
2145 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2146 {
2147 PCMachineState *pcms = PC_MACHINE(obj);
2148
2149 return pcms->acpi_nvdimm_state.is_enabled;
2150 }
2151
2152 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2153 {
2154 PCMachineState *pcms = PC_MACHINE(obj);
2155
2156 pcms->acpi_nvdimm_state.is_enabled = value;
2157 }
2158
2159 static void pc_machine_initfn(Object *obj)
2160 {
2161 PCMachineState *pcms = PC_MACHINE(obj);
2162
2163 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2164 pc_machine_get_hotplug_memory_region_size,
2165 NULL, NULL, NULL, &error_abort);
2166
2167 pcms->max_ram_below_4g = 0; /* use default */
2168 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2169 pc_machine_get_max_ram_below_4g,
2170 pc_machine_set_max_ram_below_4g,
2171 NULL, NULL, &error_abort);
2172 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
2173 "Maximum ram below the 4G boundary (32bit boundary)",
2174 &error_abort);
2175
2176 pcms->smm = ON_OFF_AUTO_AUTO;
2177 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
2178 pc_machine_get_smm,
2179 pc_machine_set_smm,
2180 NULL, NULL, &error_abort);
2181 object_property_set_description(obj, PC_MACHINE_SMM,
2182 "Enable SMM (pc & q35)",
2183 &error_abort);
2184
2185 pcms->vmport = ON_OFF_AUTO_AUTO;
2186 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
2187 pc_machine_get_vmport,
2188 pc_machine_set_vmport,
2189 NULL, NULL, &error_abort);
2190 object_property_set_description(obj, PC_MACHINE_VMPORT,
2191 "Enable vmport (pc & q35)",
2192 &error_abort);
2193
2194 /* nvdimm is disabled on default. */
2195 pcms->acpi_nvdimm_state.is_enabled = false;
2196 object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
2197 pc_machine_set_nvdimm, &error_abort);
2198 }
2199
2200 static void pc_machine_reset(void)
2201 {
2202 CPUState *cs;
2203 X86CPU *cpu;
2204
2205 qemu_devices_reset();
2206
2207 /* Reset APIC after devices have been reset to cancel
2208 * any changes that qemu_devices_reset() might have done.
2209 */
2210 CPU_FOREACH(cs) {
2211 cpu = X86_CPU(cs);
2212
2213 if (cpu->apic_state) {
2214 device_reset(cpu->apic_state);
2215 }
2216 }
2217 }
2218
2219 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2220 {
2221 X86CPUTopoInfo topo;
2222 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2223 &topo);
2224 return topo.pkg_id;
2225 }
2226
2227 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
2228 {
2229 PCMachineState *pcms = PC_MACHINE(machine);
2230 int len = sizeof(CPUArchIdList) +
2231 sizeof(CPUArchId) * (pcms->possible_cpus->len);
2232 CPUArchIdList *list = g_malloc(len);
2233
2234 memcpy(list, pcms->possible_cpus, len);
2235 return list;
2236 }
2237
2238 static HotpluggableCPUList *pc_query_hotpluggable_cpus(MachineState *machine)
2239 {
2240 int i;
2241 CPUState *cpu;
2242 HotpluggableCPUList *head = NULL;
2243 PCMachineState *pcms = PC_MACHINE(machine);
2244 const char *cpu_type;
2245
2246 cpu = pcms->possible_cpus->cpus[0].cpu;
2247 assert(cpu); /* BSP is always present */
2248 cpu_type = object_class_get_name(OBJECT_CLASS(CPU_GET_CLASS(cpu)));
2249
2250 for (i = 0; i < pcms->possible_cpus->len; i++) {
2251 X86CPUTopoInfo topo;
2252 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2253 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2254 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2255 const uint32_t apic_id = pcms->possible_cpus->cpus[i].arch_id;
2256
2257 x86_topo_ids_from_apicid(apic_id, smp_cores, smp_threads, &topo);
2258
2259 cpu_item->type = g_strdup(cpu_type);
2260 cpu_item->vcpus_count = 1;
2261 cpu_props->has_socket_id = true;
2262 cpu_props->socket_id = topo.pkg_id;
2263 cpu_props->has_core_id = true;
2264 cpu_props->core_id = topo.core_id;
2265 cpu_props->has_thread_id = true;
2266 cpu_props->thread_id = topo.smt_id;
2267 cpu_item->props = cpu_props;
2268
2269 cpu = pcms->possible_cpus->cpus[i].cpu;
2270 if (cpu) {
2271 cpu_item->has_qom_path = true;
2272 cpu_item->qom_path = object_get_canonical_path(OBJECT(cpu));
2273 }
2274
2275 list_item->value = cpu_item;
2276 list_item->next = head;
2277 head = list_item;
2278 }
2279 return head;
2280 }
2281
2282 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2283 {
2284 /* cpu index isn't used */
2285 CPUState *cs;
2286
2287 CPU_FOREACH(cs) {
2288 X86CPU *cpu = X86_CPU(cs);
2289
2290 if (!cpu->apic_state) {
2291 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2292 } else {
2293 apic_deliver_nmi(cpu->apic_state);
2294 }
2295 }
2296 }
2297
2298 static void pc_machine_class_init(ObjectClass *oc, void *data)
2299 {
2300 MachineClass *mc = MACHINE_CLASS(oc);
2301 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2302 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2303 NMIClass *nc = NMI_CLASS(oc);
2304
2305 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2306 pcmc->pci_enabled = true;
2307 pcmc->has_acpi_build = true;
2308 pcmc->rsdp_in_ram = true;
2309 pcmc->smbios_defaults = true;
2310 pcmc->smbios_uuid_encoded = true;
2311 pcmc->gigabyte_align = true;
2312 pcmc->has_reserved_memory = true;
2313 pcmc->kvmclock_enabled = true;
2314 pcmc->enforce_aligned_dimm = true;
2315 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2316 * to be used at the moment, 32K should be enough for a while. */
2317 pcmc->acpi_data_size = 0x20000 + 0x8000;
2318 pcmc->save_tsc_khz = true;
2319 mc->get_hotplug_handler = pc_get_hotpug_handler;
2320 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2321 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2322 mc->query_hotpluggable_cpus = pc_query_hotpluggable_cpus;
2323 mc->default_boot_order = "cad";
2324 mc->hot_add_cpu = pc_hot_add_cpu;
2325 mc->max_cpus = 255;
2326 mc->reset = pc_machine_reset;
2327 hc->pre_plug = pc_machine_device_pre_plug_cb;
2328 hc->plug = pc_machine_device_plug_cb;
2329 hc->unplug_request = pc_machine_device_unplug_request_cb;
2330 hc->unplug = pc_machine_device_unplug_cb;
2331 nc->nmi_monitor_handler = x86_nmi;
2332 }
2333
2334 static const TypeInfo pc_machine_info = {
2335 .name = TYPE_PC_MACHINE,
2336 .parent = TYPE_MACHINE,
2337 .abstract = true,
2338 .instance_size = sizeof(PCMachineState),
2339 .instance_init = pc_machine_initfn,
2340 .class_size = sizeof(PCMachineClass),
2341 .class_init = pc_machine_class_init,
2342 .interfaces = (InterfaceInfo[]) {
2343 { TYPE_HOTPLUG_HANDLER },
2344 { TYPE_NMI },
2345 { }
2346 },
2347 };
2348
2349 static void pc_machine_register_types(void)
2350 {
2351 type_register_static(&pc_machine_info);
2352 }
2353
2354 type_init(pc_machine_register_types)