]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
pvh: Boot uncompressed kernel using direct boot ABI
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "hw/xen/start_info.h"
58 #include "ui/qemu-spice.h"
59 #include "exec/memory.h"
60 #include "exec/address-spaces.h"
61 #include "sysemu/arch_init.h"
62 #include "qemu/bitmap.h"
63 #include "qemu/config-file.h"
64 #include "qemu/error-report.h"
65 #include "qemu/option.h"
66 #include "hw/acpi/acpi.h"
67 #include "hw/acpi/cpu_hotplug.h"
68 #include "hw/boards.h"
69 #include "acpi-build.h"
70 #include "hw/mem/pc-dimm.h"
71 #include "qapi/error.h"
72 #include "qapi/qapi-visit-common.h"
73 #include "qapi/visitor.h"
74 #include "qom/cpu.h"
75 #include "hw/nmi.h"
76 #include "hw/usb.h"
77 #include "hw/i386/intel_iommu.h"
78 #include "hw/net/ne2000-isa.h"
79
80 /* debug PC/ISA interrupts */
81 //#define DEBUG_IRQ
82
83 #ifdef DEBUG_IRQ
84 #define DPRINTF(fmt, ...) \
85 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
86 #else
87 #define DPRINTF(fmt, ...)
88 #endif
89
90 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
91 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
92 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
93 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
94 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
95
96 #define E820_NR_ENTRIES 16
97
98 struct e820_entry {
99 uint64_t address;
100 uint64_t length;
101 uint32_t type;
102 } QEMU_PACKED __attribute((__aligned__(4)));
103
104 struct e820_table {
105 uint32_t count;
106 struct e820_entry entry[E820_NR_ENTRIES];
107 } QEMU_PACKED __attribute((__aligned__(4)));
108
109 static struct e820_table e820_reserve;
110 static struct e820_entry *e820_table;
111 static unsigned e820_entries;
112 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
113
114 /* Physical Address of PVH entry point read from kernel ELF NOTE */
115 static size_t pvh_start_addr;
116
117 GlobalProperty pc_compat_3_1[] = {
118 { "intel-iommu", "dma-drain", "off" },
119 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
120 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
121 { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
122 { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
123 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
124 { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
125 { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
126 { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
127 { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
128 { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
129 { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
130 { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
131 { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
132 { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
133 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
134 { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
135 { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
136 { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
137 { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
138 };
139 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
140
141 GlobalProperty pc_compat_3_0[] = {
142 { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
143 { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
144 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
145 };
146 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
147
148 GlobalProperty pc_compat_2_12[] = {
149 { TYPE_X86_CPU, "legacy-cache", "on" },
150 { TYPE_X86_CPU, "topoext", "off" },
151 { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
152 { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
153 };
154 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
155
156 GlobalProperty pc_compat_2_11[] = {
157 { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
158 { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
159 };
160 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
161
162 GlobalProperty pc_compat_2_10[] = {
163 { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
164 { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
165 { "q35-pcihost", "x-pci-hole64-fix", "off" },
166 };
167 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
168
169 GlobalProperty pc_compat_2_9[] = {
170 { "mch", "extended-tseg-mbytes", "0" },
171 };
172 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
173
174 GlobalProperty pc_compat_2_8[] = {
175 { TYPE_X86_CPU, "tcg-cpuid", "off" },
176 { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
177 { "ICH9-LPC", "x-smi-broadcast", "off" },
178 { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
179 { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
180 };
181 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
182
183 GlobalProperty pc_compat_2_7[] = {
184 { TYPE_X86_CPU, "l3-cache", "off" },
185 { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
186 { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
187 { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
188 { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
189 { "isa-pcspk", "migrate", "off" },
190 };
191 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
192
193 GlobalProperty pc_compat_2_6[] = {
194 { TYPE_X86_CPU, "cpuid-0xb", "off" },
195 { "vmxnet3", "romfile", "" },
196 { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
197 { "apic-common", "legacy-instance-id", "on", }
198 };
199 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
200
201 GlobalProperty pc_compat_2_5[] = {};
202 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
203
204 GlobalProperty pc_compat_2_4[] = {
205 PC_CPU_MODEL_IDS("2.4.0")
206 { "Haswell-" TYPE_X86_CPU, "abm", "off" },
207 { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
208 { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
209 { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
210 { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
211 { TYPE_X86_CPU, "check", "off" },
212 { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
213 { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
214 { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
215 { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
216 { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
217 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
218 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
219 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
220 };
221 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
222
223 GlobalProperty pc_compat_2_3[] = {
224 PC_CPU_MODEL_IDS("2.3.0")
225 { TYPE_X86_CPU, "arat", "off" },
226 { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
227 { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
228 { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
229 { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
230 { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
231 { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
232 { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
233 { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
234 { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
235 { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
236 { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
237 { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
238 { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
239 { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240 { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241 { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242 { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243 { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244 { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
245 };
246 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
247
248 GlobalProperty pc_compat_2_2[] = {
249 PC_CPU_MODEL_IDS("2.2.0")
250 { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
251 { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
252 { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
253 { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
254 { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
255 { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
256 { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
257 { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
258 { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
259 { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
260 { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
261 { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
262 { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
263 { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
264 { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
265 { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
266 { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
267 { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
268 };
269 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
270
271 GlobalProperty pc_compat_2_1[] = {
272 PC_CPU_MODEL_IDS("2.1.0")
273 { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
274 { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
275 };
276 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
277
278 GlobalProperty pc_compat_2_0[] = {
279 PC_CPU_MODEL_IDS("2.0.0")
280 { "virtio-scsi-pci", "any_layout", "off" },
281 { "PIIX4_PM", "memory-hotplug-support", "off" },
282 { "apic", "version", "0x11" },
283 { "nec-usb-xhci", "superspeed-ports-first", "off" },
284 { "nec-usb-xhci", "force-pcie-endcap", "on" },
285 { "pci-serial", "prog_if", "0" },
286 { "pci-serial-2x", "prog_if", "0" },
287 { "pci-serial-4x", "prog_if", "0" },
288 { "virtio-net-pci", "guest_announce", "off" },
289 { "ICH9-LPC", "memory-hotplug-support", "off" },
290 { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
291 { "ioh3420", COMPAT_PROP_PCP, "off" },
292 };
293 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
294
295 GlobalProperty pc_compat_1_7[] = {
296 PC_CPU_MODEL_IDS("1.7.0")
297 { TYPE_USB_DEVICE, "msos-desc", "no" },
298 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
299 { "hpet", HPET_INTCAP, "4" },
300 };
301 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
302
303 GlobalProperty pc_compat_1_6[] = {
304 PC_CPU_MODEL_IDS("1.6.0")
305 { "e1000", "mitigation", "off" },
306 { "qemu64-" TYPE_X86_CPU, "model", "2" },
307 { "qemu32-" TYPE_X86_CPU, "model", "3" },
308 { "i440FX-pcihost", "short_root_bus", "1" },
309 { "q35-pcihost", "short_root_bus", "1" },
310 };
311 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
312
313 GlobalProperty pc_compat_1_5[] = {
314 PC_CPU_MODEL_IDS("1.5.0")
315 { "Conroe-" TYPE_X86_CPU, "model", "2" },
316 { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
317 { "Penryn-" TYPE_X86_CPU, "model", "2" },
318 { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
319 { "Nehalem-" TYPE_X86_CPU, "model", "2" },
320 { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
321 { "virtio-net-pci", "any_layout", "off" },
322 { TYPE_X86_CPU, "pmu", "on" },
323 { "i440FX-pcihost", "short_root_bus", "0" },
324 { "q35-pcihost", "short_root_bus", "0" },
325 };
326 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
327
328 GlobalProperty pc_compat_1_4[] = {
329 PC_CPU_MODEL_IDS("1.4.0")
330 { "scsi-hd", "discard_granularity", "0" },
331 { "scsi-cd", "discard_granularity", "0" },
332 { "scsi-disk", "discard_granularity", "0" },
333 { "ide-hd", "discard_granularity", "0" },
334 { "ide-cd", "discard_granularity", "0" },
335 { "ide-drive", "discard_granularity", "0" },
336 { "virtio-blk-pci", "discard_granularity", "0" },
337 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
338 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
339 { "virtio-net-pci", "ctrl_guest_offloads", "off" },
340 { "e1000", "romfile", "pxe-e1000.rom" },
341 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
342 { "pcnet", "romfile", "pxe-pcnet.rom" },
343 { "rtl8139", "romfile", "pxe-rtl8139.rom" },
344 { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
345 { "486-" TYPE_X86_CPU, "model", "0" },
346 { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
347 { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
348 };
349 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
350
351 void gsi_handler(void *opaque, int n, int level)
352 {
353 GSIState *s = opaque;
354
355 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
356 if (n < ISA_NUM_IRQS) {
357 qemu_set_irq(s->i8259_irq[n], level);
358 }
359 qemu_set_irq(s->ioapic_irq[n], level);
360 }
361
362 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
363 unsigned size)
364 {
365 }
366
367 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
368 {
369 return 0xffffffffffffffffULL;
370 }
371
372 /* MSDOS compatibility mode FPU exception support */
373 static qemu_irq ferr_irq;
374
375 void pc_register_ferr_irq(qemu_irq irq)
376 {
377 ferr_irq = irq;
378 }
379
380 /* XXX: add IGNNE support */
381 void cpu_set_ferr(CPUX86State *s)
382 {
383 qemu_irq_raise(ferr_irq);
384 }
385
386 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
387 unsigned size)
388 {
389 qemu_irq_lower(ferr_irq);
390 }
391
392 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
393 {
394 return 0xffffffffffffffffULL;
395 }
396
397 /* TSC handling */
398 uint64_t cpu_get_tsc(CPUX86State *env)
399 {
400 return cpu_get_ticks();
401 }
402
403 /* IRQ handling */
404 int cpu_get_pic_interrupt(CPUX86State *env)
405 {
406 X86CPU *cpu = x86_env_get_cpu(env);
407 int intno;
408
409 if (!kvm_irqchip_in_kernel()) {
410 intno = apic_get_interrupt(cpu->apic_state);
411 if (intno >= 0) {
412 return intno;
413 }
414 /* read the irq from the PIC */
415 if (!apic_accept_pic_intr(cpu->apic_state)) {
416 return -1;
417 }
418 }
419
420 intno = pic_read_irq(isa_pic);
421 return intno;
422 }
423
424 static void pic_irq_request(void *opaque, int irq, int level)
425 {
426 CPUState *cs = first_cpu;
427 X86CPU *cpu = X86_CPU(cs);
428
429 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
430 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
431 CPU_FOREACH(cs) {
432 cpu = X86_CPU(cs);
433 if (apic_accept_pic_intr(cpu->apic_state)) {
434 apic_deliver_pic_intr(cpu->apic_state, level);
435 }
436 }
437 } else {
438 if (level) {
439 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
440 } else {
441 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
442 }
443 }
444 }
445
446 /* PC cmos mappings */
447
448 #define REG_EQUIPMENT_BYTE 0x14
449
450 int cmos_get_fd_drive_type(FloppyDriveType fd0)
451 {
452 int val;
453
454 switch (fd0) {
455 case FLOPPY_DRIVE_TYPE_144:
456 /* 1.44 Mb 3"5 drive */
457 val = 4;
458 break;
459 case FLOPPY_DRIVE_TYPE_288:
460 /* 2.88 Mb 3"5 drive */
461 val = 5;
462 break;
463 case FLOPPY_DRIVE_TYPE_120:
464 /* 1.2 Mb 5"5 drive */
465 val = 2;
466 break;
467 case FLOPPY_DRIVE_TYPE_NONE:
468 default:
469 val = 0;
470 break;
471 }
472 return val;
473 }
474
475 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
476 int16_t cylinders, int8_t heads, int8_t sectors)
477 {
478 rtc_set_memory(s, type_ofs, 47);
479 rtc_set_memory(s, info_ofs, cylinders);
480 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
481 rtc_set_memory(s, info_ofs + 2, heads);
482 rtc_set_memory(s, info_ofs + 3, 0xff);
483 rtc_set_memory(s, info_ofs + 4, 0xff);
484 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
485 rtc_set_memory(s, info_ofs + 6, cylinders);
486 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
487 rtc_set_memory(s, info_ofs + 8, sectors);
488 }
489
490 /* convert boot_device letter to something recognizable by the bios */
491 static int boot_device2nibble(char boot_device)
492 {
493 switch(boot_device) {
494 case 'a':
495 case 'b':
496 return 0x01; /* floppy boot */
497 case 'c':
498 return 0x02; /* hard drive boot */
499 case 'd':
500 return 0x03; /* CD-ROM boot */
501 case 'n':
502 return 0x04; /* Network boot */
503 }
504 return 0;
505 }
506
507 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
508 {
509 #define PC_MAX_BOOT_DEVICES 3
510 int nbds, bds[3] = { 0, };
511 int i;
512
513 nbds = strlen(boot_device);
514 if (nbds > PC_MAX_BOOT_DEVICES) {
515 error_setg(errp, "Too many boot devices for PC");
516 return;
517 }
518 for (i = 0; i < nbds; i++) {
519 bds[i] = boot_device2nibble(boot_device[i]);
520 if (bds[i] == 0) {
521 error_setg(errp, "Invalid boot device for PC: '%c'",
522 boot_device[i]);
523 return;
524 }
525 }
526 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
527 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
528 }
529
530 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
531 {
532 set_boot_dev(opaque, boot_device, errp);
533 }
534
535 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
536 {
537 int val, nb, i;
538 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
539 FLOPPY_DRIVE_TYPE_NONE };
540
541 /* floppy type */
542 if (floppy) {
543 for (i = 0; i < 2; i++) {
544 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
545 }
546 }
547 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
548 cmos_get_fd_drive_type(fd_type[1]);
549 rtc_set_memory(rtc_state, 0x10, val);
550
551 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
552 nb = 0;
553 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
554 nb++;
555 }
556 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
557 nb++;
558 }
559 switch (nb) {
560 case 0:
561 break;
562 case 1:
563 val |= 0x01; /* 1 drive, ready for boot */
564 break;
565 case 2:
566 val |= 0x41; /* 2 drives, ready for boot */
567 break;
568 }
569 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
570 }
571
572 typedef struct pc_cmos_init_late_arg {
573 ISADevice *rtc_state;
574 BusState *idebus[2];
575 } pc_cmos_init_late_arg;
576
577 typedef struct check_fdc_state {
578 ISADevice *floppy;
579 bool multiple;
580 } CheckFdcState;
581
582 static int check_fdc(Object *obj, void *opaque)
583 {
584 CheckFdcState *state = opaque;
585 Object *fdc;
586 uint32_t iobase;
587 Error *local_err = NULL;
588
589 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
590 if (!fdc) {
591 return 0;
592 }
593
594 iobase = object_property_get_uint(obj, "iobase", &local_err);
595 if (local_err || iobase != 0x3f0) {
596 error_free(local_err);
597 return 0;
598 }
599
600 if (state->floppy) {
601 state->multiple = true;
602 } else {
603 state->floppy = ISA_DEVICE(obj);
604 }
605 return 0;
606 }
607
608 static const char * const fdc_container_path[] = {
609 "/unattached", "/peripheral", "/peripheral-anon"
610 };
611
612 /*
613 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
614 * and ACPI objects.
615 */
616 ISADevice *pc_find_fdc0(void)
617 {
618 int i;
619 Object *container;
620 CheckFdcState state = { 0 };
621
622 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
623 container = container_get(qdev_get_machine(), fdc_container_path[i]);
624 object_child_foreach(container, check_fdc, &state);
625 }
626
627 if (state.multiple) {
628 warn_report("multiple floppy disk controllers with "
629 "iobase=0x3f0 have been found");
630 error_printf("the one being picked for CMOS setup might not reflect "
631 "your intent");
632 }
633
634 return state.floppy;
635 }
636
637 static void pc_cmos_init_late(void *opaque)
638 {
639 pc_cmos_init_late_arg *arg = opaque;
640 ISADevice *s = arg->rtc_state;
641 int16_t cylinders;
642 int8_t heads, sectors;
643 int val;
644 int i, trans;
645
646 val = 0;
647 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
648 &cylinders, &heads, &sectors) >= 0) {
649 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
650 val |= 0xf0;
651 }
652 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
653 &cylinders, &heads, &sectors) >= 0) {
654 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
655 val |= 0x0f;
656 }
657 rtc_set_memory(s, 0x12, val);
658
659 val = 0;
660 for (i = 0; i < 4; i++) {
661 /* NOTE: ide_get_geometry() returns the physical
662 geometry. It is always such that: 1 <= sects <= 63, 1
663 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
664 geometry can be different if a translation is done. */
665 if (arg->idebus[i / 2] &&
666 ide_get_geometry(arg->idebus[i / 2], i % 2,
667 &cylinders, &heads, &sectors) >= 0) {
668 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
669 assert((trans & ~3) == 0);
670 val |= trans << (i * 2);
671 }
672 }
673 rtc_set_memory(s, 0x39, val);
674
675 pc_cmos_init_floppy(s, pc_find_fdc0());
676
677 qemu_unregister_reset(pc_cmos_init_late, opaque);
678 }
679
680 void pc_cmos_init(PCMachineState *pcms,
681 BusState *idebus0, BusState *idebus1,
682 ISADevice *s)
683 {
684 int val;
685 static pc_cmos_init_late_arg arg;
686
687 /* various important CMOS locations needed by PC/Bochs bios */
688
689 /* memory size */
690 /* base memory (first MiB) */
691 val = MIN(pcms->below_4g_mem_size / KiB, 640);
692 rtc_set_memory(s, 0x15, val);
693 rtc_set_memory(s, 0x16, val >> 8);
694 /* extended memory (next 64MiB) */
695 if (pcms->below_4g_mem_size > 1 * MiB) {
696 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
697 } else {
698 val = 0;
699 }
700 if (val > 65535)
701 val = 65535;
702 rtc_set_memory(s, 0x17, val);
703 rtc_set_memory(s, 0x18, val >> 8);
704 rtc_set_memory(s, 0x30, val);
705 rtc_set_memory(s, 0x31, val >> 8);
706 /* memory between 16MiB and 4GiB */
707 if (pcms->below_4g_mem_size > 16 * MiB) {
708 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
709 } else {
710 val = 0;
711 }
712 if (val > 65535)
713 val = 65535;
714 rtc_set_memory(s, 0x34, val);
715 rtc_set_memory(s, 0x35, val >> 8);
716 /* memory above 4GiB */
717 val = pcms->above_4g_mem_size / 65536;
718 rtc_set_memory(s, 0x5b, val);
719 rtc_set_memory(s, 0x5c, val >> 8);
720 rtc_set_memory(s, 0x5d, val >> 16);
721
722 object_property_add_link(OBJECT(pcms), "rtc_state",
723 TYPE_ISA_DEVICE,
724 (Object **)&pcms->rtc,
725 object_property_allow_set_link,
726 OBJ_PROP_LINK_STRONG, &error_abort);
727 object_property_set_link(OBJECT(pcms), OBJECT(s),
728 "rtc_state", &error_abort);
729
730 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
731
732 val = 0;
733 val |= 0x02; /* FPU is there */
734 val |= 0x04; /* PS/2 mouse installed */
735 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
736
737 /* hard drives and FDC */
738 arg.rtc_state = s;
739 arg.idebus[0] = idebus0;
740 arg.idebus[1] = idebus1;
741 qemu_register_reset(pc_cmos_init_late, &arg);
742 }
743
744 #define TYPE_PORT92 "port92"
745 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
746
747 /* port 92 stuff: could be split off */
748 typedef struct Port92State {
749 ISADevice parent_obj;
750
751 MemoryRegion io;
752 uint8_t outport;
753 qemu_irq a20_out;
754 } Port92State;
755
756 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
757 unsigned size)
758 {
759 Port92State *s = opaque;
760 int oldval = s->outport;
761
762 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
763 s->outport = val;
764 qemu_set_irq(s->a20_out, (val >> 1) & 1);
765 if ((val & 1) && !(oldval & 1)) {
766 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
767 }
768 }
769
770 static uint64_t port92_read(void *opaque, hwaddr addr,
771 unsigned size)
772 {
773 Port92State *s = opaque;
774 uint32_t ret;
775
776 ret = s->outport;
777 DPRINTF("port92: read 0x%02x\n", ret);
778 return ret;
779 }
780
781 static void port92_init(ISADevice *dev, qemu_irq a20_out)
782 {
783 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
784 }
785
786 static const VMStateDescription vmstate_port92_isa = {
787 .name = "port92",
788 .version_id = 1,
789 .minimum_version_id = 1,
790 .fields = (VMStateField[]) {
791 VMSTATE_UINT8(outport, Port92State),
792 VMSTATE_END_OF_LIST()
793 }
794 };
795
796 static void port92_reset(DeviceState *d)
797 {
798 Port92State *s = PORT92(d);
799
800 s->outport &= ~1;
801 }
802
803 static const MemoryRegionOps port92_ops = {
804 .read = port92_read,
805 .write = port92_write,
806 .impl = {
807 .min_access_size = 1,
808 .max_access_size = 1,
809 },
810 .endianness = DEVICE_LITTLE_ENDIAN,
811 };
812
813 static void port92_initfn(Object *obj)
814 {
815 Port92State *s = PORT92(obj);
816
817 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
818
819 s->outport = 0;
820
821 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
822 }
823
824 static void port92_realizefn(DeviceState *dev, Error **errp)
825 {
826 ISADevice *isadev = ISA_DEVICE(dev);
827 Port92State *s = PORT92(dev);
828
829 isa_register_ioport(isadev, &s->io, 0x92);
830 }
831
832 static void port92_class_initfn(ObjectClass *klass, void *data)
833 {
834 DeviceClass *dc = DEVICE_CLASS(klass);
835
836 dc->realize = port92_realizefn;
837 dc->reset = port92_reset;
838 dc->vmsd = &vmstate_port92_isa;
839 /*
840 * Reason: unlike ordinary ISA devices, this one needs additional
841 * wiring: its A20 output line needs to be wired up by
842 * port92_init().
843 */
844 dc->user_creatable = false;
845 }
846
847 static const TypeInfo port92_info = {
848 .name = TYPE_PORT92,
849 .parent = TYPE_ISA_DEVICE,
850 .instance_size = sizeof(Port92State),
851 .instance_init = port92_initfn,
852 .class_init = port92_class_initfn,
853 };
854
855 static void port92_register_types(void)
856 {
857 type_register_static(&port92_info);
858 }
859
860 type_init(port92_register_types)
861
862 static void handle_a20_line_change(void *opaque, int irq, int level)
863 {
864 X86CPU *cpu = opaque;
865
866 /* XXX: send to all CPUs ? */
867 /* XXX: add logic to handle multiple A20 line sources */
868 x86_cpu_set_a20(cpu, level);
869 }
870
871 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
872 {
873 int index = le32_to_cpu(e820_reserve.count);
874 struct e820_entry *entry;
875
876 if (type != E820_RAM) {
877 /* old FW_CFG_E820_TABLE entry -- reservations only */
878 if (index >= E820_NR_ENTRIES) {
879 return -EBUSY;
880 }
881 entry = &e820_reserve.entry[index++];
882
883 entry->address = cpu_to_le64(address);
884 entry->length = cpu_to_le64(length);
885 entry->type = cpu_to_le32(type);
886
887 e820_reserve.count = cpu_to_le32(index);
888 }
889
890 /* new "etc/e820" file -- include ram too */
891 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
892 e820_table[e820_entries].address = cpu_to_le64(address);
893 e820_table[e820_entries].length = cpu_to_le64(length);
894 e820_table[e820_entries].type = cpu_to_le32(type);
895 e820_entries++;
896
897 return e820_entries;
898 }
899
900 int e820_get_num_entries(void)
901 {
902 return e820_entries;
903 }
904
905 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
906 {
907 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
908 *address = le64_to_cpu(e820_table[idx].address);
909 *length = le64_to_cpu(e820_table[idx].length);
910 return true;
911 }
912 return false;
913 }
914
915 /* Enables contiguous-apic-ID mode, for compatibility */
916 static bool compat_apic_id_mode;
917
918 void enable_compat_apic_id_mode(void)
919 {
920 compat_apic_id_mode = true;
921 }
922
923 /* Calculates initial APIC ID for a specific CPU index
924 *
925 * Currently we need to be able to calculate the APIC ID from the CPU index
926 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
927 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
928 * all CPUs up to max_cpus.
929 */
930 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
931 {
932 uint32_t correct_id;
933 static bool warned;
934
935 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
936 if (compat_apic_id_mode) {
937 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
938 error_report("APIC IDs set in compatibility mode, "
939 "CPU topology won't match the configuration");
940 warned = true;
941 }
942 return cpu_index;
943 } else {
944 return correct_id;
945 }
946 }
947
948 static void pc_build_smbios(PCMachineState *pcms)
949 {
950 uint8_t *smbios_tables, *smbios_anchor;
951 size_t smbios_tables_len, smbios_anchor_len;
952 struct smbios_phys_mem_area *mem_array;
953 unsigned i, array_count;
954 MachineState *ms = MACHINE(pcms);
955 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
956
957 /* tell smbios about cpuid version and features */
958 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
959
960 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
961 if (smbios_tables) {
962 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
963 smbios_tables, smbios_tables_len);
964 }
965
966 /* build the array of physical mem area from e820 table */
967 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
968 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
969 uint64_t addr, len;
970
971 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
972 mem_array[array_count].address = addr;
973 mem_array[array_count].length = len;
974 array_count++;
975 }
976 }
977 smbios_get_tables(mem_array, array_count,
978 &smbios_tables, &smbios_tables_len,
979 &smbios_anchor, &smbios_anchor_len);
980 g_free(mem_array);
981
982 if (smbios_anchor) {
983 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
984 smbios_tables, smbios_tables_len);
985 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
986 smbios_anchor, smbios_anchor_len);
987 }
988 }
989
990 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
991 {
992 FWCfgState *fw_cfg;
993 uint64_t *numa_fw_cfg;
994 int i;
995 const CPUArchIdList *cpus;
996 MachineClass *mc = MACHINE_GET_CLASS(pcms);
997
998 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
999 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1000
1001 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1002 *
1003 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1004 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1005 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1006 * for CPU hotplug also uses APIC ID and not "CPU index".
1007 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1008 * but the "limit to the APIC ID values SeaBIOS may see".
1009 *
1010 * So for compatibility reasons with old BIOSes we are stuck with
1011 * "etc/max-cpus" actually being apic_id_limit
1012 */
1013 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1014 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1015 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1016 acpi_tables, acpi_tables_len);
1017 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1018
1019 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1020 &e820_reserve, sizeof(e820_reserve));
1021 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1022 sizeof(struct e820_entry) * e820_entries);
1023
1024 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1025 /* allocate memory for the NUMA channel: one (64bit) word for the number
1026 * of nodes, one word for each VCPU->node and one word for each node to
1027 * hold the amount of memory.
1028 */
1029 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1030 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1031 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1032 for (i = 0; i < cpus->len; i++) {
1033 unsigned int apic_id = cpus->cpus[i].arch_id;
1034 assert(apic_id < pcms->apic_id_limit);
1035 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1036 }
1037 for (i = 0; i < nb_numa_nodes; i++) {
1038 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1039 cpu_to_le64(numa_info[i].node_mem);
1040 }
1041 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1042 (1 + pcms->apic_id_limit + nb_numa_nodes) *
1043 sizeof(*numa_fw_cfg));
1044
1045 return fw_cfg;
1046 }
1047
1048 static long get_file_size(FILE *f)
1049 {
1050 long where, size;
1051
1052 /* XXX: on Unix systems, using fstat() probably makes more sense */
1053
1054 where = ftell(f);
1055 fseek(f, 0, SEEK_END);
1056 size = ftell(f);
1057 fseek(f, where, SEEK_SET);
1058
1059 return size;
1060 }
1061
1062 /* setup_data types */
1063 #define SETUP_NONE 0
1064 #define SETUP_E820_EXT 1
1065 #define SETUP_DTB 2
1066 #define SETUP_PCI 3
1067 #define SETUP_EFI 4
1068
1069 struct setup_data {
1070 uint64_t next;
1071 uint32_t type;
1072 uint32_t len;
1073 uint8_t data[0];
1074 } __attribute__((packed));
1075
1076
1077 /*
1078 * The entry point into the kernel for PVH boot is different from
1079 * the native entry point. The PVH entry is defined by the x86/HVM
1080 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1081 *
1082 * This function is passed to load_elf() when it is called from
1083 * load_elfboot() which then additionally checks for an ELF Note of
1084 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1085 * parse the PVH entry address from the ELF Note.
1086 *
1087 * Due to trickery in elf_opts.h, load_elf() is actually available as
1088 * load_elf32() or load_elf64() and this routine needs to be able
1089 * to deal with being called as 32 or 64 bit.
1090 *
1091 * The address of the PVH entry point is saved to the 'pvh_start_addr'
1092 * global variable. (although the entry point is 32-bit, the kernel
1093 * binary can be either 32-bit or 64-bit).
1094 */
1095 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1096 {
1097 size_t *elf_note_data_addr;
1098
1099 /* Check if ELF Note header passed in is valid */
1100 if (arg1 == NULL) {
1101 return 0;
1102 }
1103
1104 if (is64) {
1105 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1106 uint64_t nhdr_size64 = sizeof(struct elf64_note);
1107 uint64_t phdr_align = *(uint64_t *)arg2;
1108 uint64_t nhdr_namesz = nhdr64->n_namesz;
1109
1110 elf_note_data_addr =
1111 ((void *)nhdr64) + nhdr_size64 +
1112 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1113 } else {
1114 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1115 uint32_t nhdr_size32 = sizeof(struct elf32_note);
1116 uint32_t phdr_align = *(uint32_t *)arg2;
1117 uint32_t nhdr_namesz = nhdr32->n_namesz;
1118
1119 elf_note_data_addr =
1120 ((void *)nhdr32) + nhdr_size32 +
1121 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1122 }
1123
1124 pvh_start_addr = *elf_note_data_addr;
1125
1126 return pvh_start_addr;
1127 }
1128
1129 static bool load_elfboot(const char *kernel_filename,
1130 int kernel_file_size,
1131 uint8_t *header,
1132 size_t pvh_xen_start_addr,
1133 FWCfgState *fw_cfg)
1134 {
1135 uint32_t flags = 0;
1136 uint32_t mh_load_addr = 0;
1137 uint32_t elf_kernel_size = 0;
1138 uint64_t elf_entry;
1139 uint64_t elf_low, elf_high;
1140 int kernel_size;
1141
1142 if (ldl_p(header) != 0x464c457f) {
1143 return false; /* no elfboot */
1144 }
1145
1146 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1147 flags = elf_is64 ?
1148 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1149
1150 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1151 error_report("elfboot unsupported flags = %x", flags);
1152 exit(1);
1153 }
1154
1155 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1156 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1157 NULL, &elf_note_type, &elf_entry,
1158 &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1159 0, 0);
1160
1161 if (kernel_size < 0) {
1162 error_report("Error while loading elf kernel");
1163 exit(1);
1164 }
1165 mh_load_addr = elf_low;
1166 elf_kernel_size = elf_high - elf_low;
1167
1168 if (pvh_start_addr == 0) {
1169 error_report("Error loading uncompressed kernel without PVH ELF Note");
1170 exit(1);
1171 }
1172 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1173 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1174 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1175
1176 return true;
1177 }
1178
1179 static void load_linux(PCMachineState *pcms,
1180 FWCfgState *fw_cfg)
1181 {
1182 uint16_t protocol;
1183 int setup_size, kernel_size, cmdline_size;
1184 int dtb_size, setup_data_offset;
1185 uint32_t initrd_max;
1186 uint8_t header[8192], *setup, *kernel;
1187 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1188 FILE *f;
1189 char *vmode;
1190 MachineState *machine = MACHINE(pcms);
1191 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1192 struct setup_data *setup_data;
1193 const char *kernel_filename = machine->kernel_filename;
1194 const char *initrd_filename = machine->initrd_filename;
1195 const char *dtb_filename = machine->dtb;
1196 const char *kernel_cmdline = machine->kernel_cmdline;
1197
1198 /* Align to 16 bytes as a paranoia measure */
1199 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1200
1201 /* load the kernel header */
1202 f = fopen(kernel_filename, "rb");
1203 if (!f || !(kernel_size = get_file_size(f)) ||
1204 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1205 MIN(ARRAY_SIZE(header), kernel_size)) {
1206 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1207 kernel_filename, strerror(errno));
1208 exit(1);
1209 }
1210
1211 /* kernel protocol version */
1212 #if 0
1213 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1214 #endif
1215 if (ldl_p(header+0x202) == 0x53726448) {
1216 protocol = lduw_p(header+0x206);
1217 } else {
1218 /*
1219 * Check if the file is an uncompressed kernel file (ELF) and load it,
1220 * saving the PVH entry point used by the x86/HVM direct boot ABI.
1221 * If load_elfboot() is successful, populate the fw_cfg info.
1222 */
1223 if (load_elfboot(kernel_filename, kernel_size,
1224 header, pvh_start_addr, fw_cfg)) {
1225 struct hvm_modlist_entry ramdisk_mod = { 0 };
1226
1227 fclose(f);
1228
1229 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1230 strlen(kernel_cmdline) + 1);
1231 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1232
1233 assert(machine->device_memory != NULL);
1234 ramdisk_mod.paddr = machine->device_memory->base;
1235 ramdisk_mod.size =
1236 memory_region_size(&machine->device_memory->mr);
1237
1238 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, &ramdisk_mod,
1239 sizeof(ramdisk_mod));
1240 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1241 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1242 header, sizeof(header));
1243
1244 return;
1245 }
1246 /* This looks like a multiboot kernel. If it is, let's stop
1247 treating it like a Linux kernel. */
1248 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1249 kernel_cmdline, kernel_size, header)) {
1250 return;
1251 }
1252 protocol = 0;
1253 }
1254
1255 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1256 /* Low kernel */
1257 real_addr = 0x90000;
1258 cmdline_addr = 0x9a000 - cmdline_size;
1259 prot_addr = 0x10000;
1260 } else if (protocol < 0x202) {
1261 /* High but ancient kernel */
1262 real_addr = 0x90000;
1263 cmdline_addr = 0x9a000 - cmdline_size;
1264 prot_addr = 0x100000;
1265 } else {
1266 /* High and recent kernel */
1267 real_addr = 0x10000;
1268 cmdline_addr = 0x20000;
1269 prot_addr = 0x100000;
1270 }
1271
1272 #if 0
1273 fprintf(stderr,
1274 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1275 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1276 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1277 real_addr,
1278 cmdline_addr,
1279 prot_addr);
1280 #endif
1281
1282 /* highest address for loading the initrd */
1283 if (protocol >= 0x203) {
1284 initrd_max = ldl_p(header+0x22c);
1285 } else {
1286 initrd_max = 0x37ffffff;
1287 }
1288
1289 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1290 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1291 }
1292
1293 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1294 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1295 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1296
1297 if (protocol >= 0x202) {
1298 stl_p(header+0x228, cmdline_addr);
1299 } else {
1300 stw_p(header+0x20, 0xA33F);
1301 stw_p(header+0x22, cmdline_addr-real_addr);
1302 }
1303
1304 /* handle vga= parameter */
1305 vmode = strstr(kernel_cmdline, "vga=");
1306 if (vmode) {
1307 unsigned int video_mode;
1308 /* skip "vga=" */
1309 vmode += 4;
1310 if (!strncmp(vmode, "normal", 6)) {
1311 video_mode = 0xffff;
1312 } else if (!strncmp(vmode, "ext", 3)) {
1313 video_mode = 0xfffe;
1314 } else if (!strncmp(vmode, "ask", 3)) {
1315 video_mode = 0xfffd;
1316 } else {
1317 video_mode = strtol(vmode, NULL, 0);
1318 }
1319 stw_p(header+0x1fa, video_mode);
1320 }
1321
1322 /* loader type */
1323 /* High nybble = B reserved for QEMU; low nybble is revision number.
1324 If this code is substantially changed, you may want to consider
1325 incrementing the revision. */
1326 if (protocol >= 0x200) {
1327 header[0x210] = 0xB0;
1328 }
1329 /* heap */
1330 if (protocol >= 0x201) {
1331 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1332 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1333 }
1334
1335 /* load initrd */
1336 if (initrd_filename) {
1337 gsize initrd_size;
1338 gchar *initrd_data;
1339 GError *gerr = NULL;
1340
1341 if (protocol < 0x200) {
1342 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1343 exit(1);
1344 }
1345
1346 if (!g_file_get_contents(initrd_filename, &initrd_data,
1347 &initrd_size, &gerr)) {
1348 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1349 initrd_filename, gerr->message);
1350 exit(1);
1351 }
1352 if (initrd_size >= initrd_max) {
1353 fprintf(stderr, "qemu: initrd is too large, cannot support."
1354 "(max: %"PRIu32", need %"PRId64")\n",
1355 initrd_max, (uint64_t)initrd_size);
1356 exit(1);
1357 }
1358
1359 initrd_addr = (initrd_max-initrd_size) & ~4095;
1360
1361 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1362 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1363 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1364
1365 stl_p(header+0x218, initrd_addr);
1366 stl_p(header+0x21c, initrd_size);
1367 }
1368
1369 /* load kernel and setup */
1370 setup_size = header[0x1f1];
1371 if (setup_size == 0) {
1372 setup_size = 4;
1373 }
1374 setup_size = (setup_size+1)*512;
1375 if (setup_size > kernel_size) {
1376 fprintf(stderr, "qemu: invalid kernel header\n");
1377 exit(1);
1378 }
1379 kernel_size -= setup_size;
1380
1381 setup = g_malloc(setup_size);
1382 kernel = g_malloc(kernel_size);
1383 fseek(f, 0, SEEK_SET);
1384 if (fread(setup, 1, setup_size, f) != setup_size) {
1385 fprintf(stderr, "fread() failed\n");
1386 exit(1);
1387 }
1388 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1389 fprintf(stderr, "fread() failed\n");
1390 exit(1);
1391 }
1392 fclose(f);
1393
1394 /* append dtb to kernel */
1395 if (dtb_filename) {
1396 if (protocol < 0x209) {
1397 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1398 exit(1);
1399 }
1400
1401 dtb_size = get_image_size(dtb_filename);
1402 if (dtb_size <= 0) {
1403 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1404 dtb_filename, strerror(errno));
1405 exit(1);
1406 }
1407
1408 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1409 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1410 kernel = g_realloc(kernel, kernel_size);
1411
1412 stq_p(header+0x250, prot_addr + setup_data_offset);
1413
1414 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1415 setup_data->next = 0;
1416 setup_data->type = cpu_to_le32(SETUP_DTB);
1417 setup_data->len = cpu_to_le32(dtb_size);
1418
1419 load_image_size(dtb_filename, setup_data->data, dtb_size);
1420 }
1421
1422 memcpy(setup, header, MIN(sizeof(header), setup_size));
1423
1424 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1425 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1426 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1427
1428 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1429 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1430 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1431
1432 option_rom[nb_option_roms].bootindex = 0;
1433 option_rom[nb_option_roms].name = "linuxboot.bin";
1434 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1435 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1436 }
1437 nb_option_roms++;
1438 }
1439
1440 #define NE2000_NB_MAX 6
1441
1442 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1443 0x280, 0x380 };
1444 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1445
1446 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1447 {
1448 static int nb_ne2k = 0;
1449
1450 if (nb_ne2k == NE2000_NB_MAX)
1451 return;
1452 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1453 ne2000_irq[nb_ne2k], nd);
1454 nb_ne2k++;
1455 }
1456
1457 DeviceState *cpu_get_current_apic(void)
1458 {
1459 if (current_cpu) {
1460 X86CPU *cpu = X86_CPU(current_cpu);
1461 return cpu->apic_state;
1462 } else {
1463 return NULL;
1464 }
1465 }
1466
1467 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1468 {
1469 X86CPU *cpu = opaque;
1470
1471 if (level) {
1472 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1473 }
1474 }
1475
1476 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1477 {
1478 Object *cpu = NULL;
1479 Error *local_err = NULL;
1480
1481 cpu = object_new(typename);
1482
1483 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1484 object_property_set_bool(cpu, true, "realized", &local_err);
1485
1486 object_unref(cpu);
1487 error_propagate(errp, local_err);
1488 }
1489
1490 void pc_hot_add_cpu(const int64_t id, Error **errp)
1491 {
1492 MachineState *ms = MACHINE(qdev_get_machine());
1493 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1494 Error *local_err = NULL;
1495
1496 if (id < 0) {
1497 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1498 return;
1499 }
1500
1501 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1502 error_setg(errp, "Unable to add CPU: %" PRIi64
1503 ", resulting APIC ID (%" PRIi64 ") is too large",
1504 id, apic_id);
1505 return;
1506 }
1507
1508 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1509 if (local_err) {
1510 error_propagate(errp, local_err);
1511 return;
1512 }
1513 }
1514
1515 void pc_cpus_init(PCMachineState *pcms)
1516 {
1517 int i;
1518 const CPUArchIdList *possible_cpus;
1519 MachineState *ms = MACHINE(pcms);
1520 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1521
1522 /* Calculates the limit to CPU APIC ID values
1523 *
1524 * Limit for the APIC ID value, so that all
1525 * CPU APIC IDs are < pcms->apic_id_limit.
1526 *
1527 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1528 */
1529 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1530 possible_cpus = mc->possible_cpu_arch_ids(ms);
1531 for (i = 0; i < smp_cpus; i++) {
1532 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1533 &error_fatal);
1534 }
1535 }
1536
1537 static void pc_build_feature_control_file(PCMachineState *pcms)
1538 {
1539 MachineState *ms = MACHINE(pcms);
1540 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1541 CPUX86State *env = &cpu->env;
1542 uint32_t unused, ecx, edx;
1543 uint64_t feature_control_bits = 0;
1544 uint64_t *val;
1545
1546 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1547 if (ecx & CPUID_EXT_VMX) {
1548 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1549 }
1550
1551 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1552 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1553 (env->mcg_cap & MCG_LMCE_P)) {
1554 feature_control_bits |= FEATURE_CONTROL_LMCE;
1555 }
1556
1557 if (!feature_control_bits) {
1558 return;
1559 }
1560
1561 val = g_malloc(sizeof(*val));
1562 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1563 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1564 }
1565
1566 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1567 {
1568 if (cpus_count > 0xff) {
1569 /* If the number of CPUs can't be represented in 8 bits, the
1570 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1571 * to make old BIOSes fail more predictably.
1572 */
1573 rtc_set_memory(rtc, 0x5f, 0);
1574 } else {
1575 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1576 }
1577 }
1578
1579 static
1580 void pc_machine_done(Notifier *notifier, void *data)
1581 {
1582 PCMachineState *pcms = container_of(notifier,
1583 PCMachineState, machine_done);
1584 PCIBus *bus = pcms->bus;
1585
1586 /* set the number of CPUs */
1587 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1588
1589 if (bus) {
1590 int extra_hosts = 0;
1591
1592 QLIST_FOREACH(bus, &bus->child, sibling) {
1593 /* look for expander root buses */
1594 if (pci_bus_is_root(bus)) {
1595 extra_hosts++;
1596 }
1597 }
1598 if (extra_hosts && pcms->fw_cfg) {
1599 uint64_t *val = g_malloc(sizeof(*val));
1600 *val = cpu_to_le64(extra_hosts);
1601 fw_cfg_add_file(pcms->fw_cfg,
1602 "etc/extra-pci-roots", val, sizeof(*val));
1603 }
1604 }
1605
1606 acpi_setup();
1607 if (pcms->fw_cfg) {
1608 pc_build_smbios(pcms);
1609 pc_build_feature_control_file(pcms);
1610 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1611 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1612 }
1613
1614 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1615 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1616
1617 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1618 iommu->intr_eim != ON_OFF_AUTO_ON) {
1619 error_report("current -smp configuration requires "
1620 "Extended Interrupt Mode enabled. "
1621 "You can add an IOMMU using: "
1622 "-device intel-iommu,intremap=on,eim=on");
1623 exit(EXIT_FAILURE);
1624 }
1625 }
1626 }
1627
1628 void pc_guest_info_init(PCMachineState *pcms)
1629 {
1630 int i;
1631
1632 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1633 pcms->numa_nodes = nb_numa_nodes;
1634 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1635 sizeof *pcms->node_mem);
1636 for (i = 0; i < nb_numa_nodes; i++) {
1637 pcms->node_mem[i] = numa_info[i].node_mem;
1638 }
1639
1640 pcms->machine_done.notify = pc_machine_done;
1641 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1642 }
1643
1644 /* setup pci memory address space mapping into system address space */
1645 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1646 MemoryRegion *pci_address_space)
1647 {
1648 /* Set to lower priority than RAM */
1649 memory_region_add_subregion_overlap(system_memory, 0x0,
1650 pci_address_space, -1);
1651 }
1652
1653 void pc_acpi_init(const char *default_dsdt)
1654 {
1655 char *filename;
1656
1657 if (acpi_tables != NULL) {
1658 /* manually set via -acpitable, leave it alone */
1659 return;
1660 }
1661
1662 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1663 if (filename == NULL) {
1664 warn_report("failed to find %s", default_dsdt);
1665 } else {
1666 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1667 &error_abort);
1668 Error *err = NULL;
1669
1670 qemu_opt_set(opts, "file", filename, &error_abort);
1671
1672 acpi_table_add_builtin(opts, &err);
1673 if (err) {
1674 warn_reportf_err(err, "failed to load %s: ", filename);
1675 }
1676 g_free(filename);
1677 }
1678 }
1679
1680 void xen_load_linux(PCMachineState *pcms)
1681 {
1682 int i;
1683 FWCfgState *fw_cfg;
1684
1685 assert(MACHINE(pcms)->kernel_filename != NULL);
1686
1687 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1688 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1689 rom_set_fw(fw_cfg);
1690
1691 load_linux(pcms, fw_cfg);
1692 for (i = 0; i < nb_option_roms; i++) {
1693 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1694 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1695 !strcmp(option_rom[i].name, "multiboot.bin"));
1696 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1697 }
1698 pcms->fw_cfg = fw_cfg;
1699 }
1700
1701 void pc_memory_init(PCMachineState *pcms,
1702 MemoryRegion *system_memory,
1703 MemoryRegion *rom_memory,
1704 MemoryRegion **ram_memory)
1705 {
1706 int linux_boot, i;
1707 MemoryRegion *ram, *option_rom_mr;
1708 MemoryRegion *ram_below_4g, *ram_above_4g;
1709 FWCfgState *fw_cfg;
1710 MachineState *machine = MACHINE(pcms);
1711 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1712
1713 assert(machine->ram_size == pcms->below_4g_mem_size +
1714 pcms->above_4g_mem_size);
1715
1716 linux_boot = (machine->kernel_filename != NULL);
1717
1718 /* Allocate RAM. We allocate it as a single memory region and use
1719 * aliases to address portions of it, mostly for backwards compatibility
1720 * with older qemus that used qemu_ram_alloc().
1721 */
1722 ram = g_malloc(sizeof(*ram));
1723 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1724 machine->ram_size);
1725 *ram_memory = ram;
1726 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1727 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1728 0, pcms->below_4g_mem_size);
1729 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1730 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1731 if (pcms->above_4g_mem_size > 0) {
1732 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1733 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1734 pcms->below_4g_mem_size,
1735 pcms->above_4g_mem_size);
1736 memory_region_add_subregion(system_memory, 0x100000000ULL,
1737 ram_above_4g);
1738 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1739 }
1740
1741 if (!pcmc->has_reserved_memory &&
1742 (machine->ram_slots ||
1743 (machine->maxram_size > machine->ram_size))) {
1744 MachineClass *mc = MACHINE_GET_CLASS(machine);
1745
1746 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1747 mc->name);
1748 exit(EXIT_FAILURE);
1749 }
1750
1751 /* always allocate the device memory information */
1752 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1753
1754 /* initialize device memory address space */
1755 if (pcmc->has_reserved_memory &&
1756 (machine->ram_size < machine->maxram_size)) {
1757 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1758
1759 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1760 error_report("unsupported amount of memory slots: %"PRIu64,
1761 machine->ram_slots);
1762 exit(EXIT_FAILURE);
1763 }
1764
1765 if (QEMU_ALIGN_UP(machine->maxram_size,
1766 TARGET_PAGE_SIZE) != machine->maxram_size) {
1767 error_report("maximum memory size must by aligned to multiple of "
1768 "%d bytes", TARGET_PAGE_SIZE);
1769 exit(EXIT_FAILURE);
1770 }
1771
1772 machine->device_memory->base =
1773 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1774
1775 if (pcmc->enforce_aligned_dimm) {
1776 /* size device region assuming 1G page max alignment per slot */
1777 device_mem_size += (1 * GiB) * machine->ram_slots;
1778 }
1779
1780 if ((machine->device_memory->base + device_mem_size) <
1781 device_mem_size) {
1782 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1783 machine->maxram_size);
1784 exit(EXIT_FAILURE);
1785 }
1786
1787 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1788 "device-memory", device_mem_size);
1789 memory_region_add_subregion(system_memory, machine->device_memory->base,
1790 &machine->device_memory->mr);
1791 }
1792
1793 /* Initialize PC system firmware */
1794 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1795
1796 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1797 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1798 &error_fatal);
1799 if (pcmc->pci_enabled) {
1800 memory_region_set_readonly(option_rom_mr, true);
1801 }
1802 memory_region_add_subregion_overlap(rom_memory,
1803 PC_ROM_MIN_VGA,
1804 option_rom_mr,
1805 1);
1806
1807 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1808
1809 rom_set_fw(fw_cfg);
1810
1811 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1812 uint64_t *val = g_malloc(sizeof(*val));
1813 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1814 uint64_t res_mem_end = machine->device_memory->base;
1815
1816 if (!pcmc->broken_reserved_end) {
1817 res_mem_end += memory_region_size(&machine->device_memory->mr);
1818 }
1819 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1820 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1821 }
1822
1823 if (linux_boot) {
1824 load_linux(pcms, fw_cfg);
1825 }
1826
1827 for (i = 0; i < nb_option_roms; i++) {
1828 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1829 }
1830 pcms->fw_cfg = fw_cfg;
1831
1832 /* Init default IOAPIC address space */
1833 pcms->ioapic_as = &address_space_memory;
1834 }
1835
1836 /*
1837 * The 64bit pci hole starts after "above 4G RAM" and
1838 * potentially the space reserved for memory hotplug.
1839 */
1840 uint64_t pc_pci_hole64_start(void)
1841 {
1842 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1843 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1844 MachineState *ms = MACHINE(pcms);
1845 uint64_t hole64_start = 0;
1846
1847 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1848 hole64_start = ms->device_memory->base;
1849 if (!pcmc->broken_reserved_end) {
1850 hole64_start += memory_region_size(&ms->device_memory->mr);
1851 }
1852 } else {
1853 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1854 }
1855
1856 return ROUND_UP(hole64_start, 1 * GiB);
1857 }
1858
1859 qemu_irq pc_allocate_cpu_irq(void)
1860 {
1861 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1862 }
1863
1864 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1865 {
1866 DeviceState *dev = NULL;
1867
1868 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1869 if (pci_bus) {
1870 PCIDevice *pcidev = pci_vga_init(pci_bus);
1871 dev = pcidev ? &pcidev->qdev : NULL;
1872 } else if (isa_bus) {
1873 ISADevice *isadev = isa_vga_init(isa_bus);
1874 dev = isadev ? DEVICE(isadev) : NULL;
1875 }
1876 rom_reset_order_override();
1877 return dev;
1878 }
1879
1880 static const MemoryRegionOps ioport80_io_ops = {
1881 .write = ioport80_write,
1882 .read = ioport80_read,
1883 .endianness = DEVICE_NATIVE_ENDIAN,
1884 .impl = {
1885 .min_access_size = 1,
1886 .max_access_size = 1,
1887 },
1888 };
1889
1890 static const MemoryRegionOps ioportF0_io_ops = {
1891 .write = ioportF0_write,
1892 .read = ioportF0_read,
1893 .endianness = DEVICE_NATIVE_ENDIAN,
1894 .impl = {
1895 .min_access_size = 1,
1896 .max_access_size = 1,
1897 },
1898 };
1899
1900 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1901 {
1902 int i;
1903 DriveInfo *fd[MAX_FD];
1904 qemu_irq *a20_line;
1905 ISADevice *i8042, *port92, *vmmouse;
1906
1907 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1908 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1909
1910 for (i = 0; i < MAX_FD; i++) {
1911 fd[i] = drive_get(IF_FLOPPY, 0, i);
1912 create_fdctrl |= !!fd[i];
1913 }
1914 if (create_fdctrl) {
1915 fdctrl_init_isa(isa_bus, fd);
1916 }
1917
1918 i8042 = isa_create_simple(isa_bus, "i8042");
1919 if (!no_vmport) {
1920 vmport_init(isa_bus);
1921 vmmouse = isa_try_create(isa_bus, "vmmouse");
1922 } else {
1923 vmmouse = NULL;
1924 }
1925 if (vmmouse) {
1926 DeviceState *dev = DEVICE(vmmouse);
1927 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1928 qdev_init_nofail(dev);
1929 }
1930 port92 = isa_create_simple(isa_bus, "port92");
1931
1932 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1933 i8042_setup_a20_line(i8042, a20_line[0]);
1934 port92_init(port92, a20_line[1]);
1935 g_free(a20_line);
1936 }
1937
1938 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1939 ISADevice **rtc_state,
1940 bool create_fdctrl,
1941 bool no_vmport,
1942 bool has_pit,
1943 uint32_t hpet_irqs)
1944 {
1945 int i;
1946 DeviceState *hpet = NULL;
1947 int pit_isa_irq = 0;
1948 qemu_irq pit_alt_irq = NULL;
1949 qemu_irq rtc_irq = NULL;
1950 ISADevice *pit = NULL;
1951 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1952 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1953
1954 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1955 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1956
1957 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1958 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1959
1960 /*
1961 * Check if an HPET shall be created.
1962 *
1963 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1964 * when the HPET wants to take over. Thus we have to disable the latter.
1965 */
1966 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1967 /* In order to set property, here not using sysbus_try_create_simple */
1968 hpet = qdev_try_create(NULL, TYPE_HPET);
1969 if (hpet) {
1970 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1971 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1972 * IRQ8 and IRQ2.
1973 */
1974 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1975 HPET_INTCAP, NULL);
1976 if (!compat) {
1977 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1978 }
1979 qdev_init_nofail(hpet);
1980 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1981
1982 for (i = 0; i < GSI_NUM_PINS; i++) {
1983 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1984 }
1985 pit_isa_irq = -1;
1986 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1987 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1988 }
1989 }
1990 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1991
1992 qemu_register_boot_set(pc_boot_set, *rtc_state);
1993
1994 if (!xen_enabled() && has_pit) {
1995 if (kvm_pit_in_kernel()) {
1996 pit = kvm_pit_init(isa_bus, 0x40);
1997 } else {
1998 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1999 }
2000 if (hpet) {
2001 /* connect PIT to output control line of the HPET */
2002 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2003 }
2004 pcspk_init(isa_bus, pit);
2005 }
2006
2007 i8257_dma_init(isa_bus, 0);
2008
2009 /* Super I/O */
2010 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2011 }
2012
2013 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2014 {
2015 int i;
2016
2017 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2018 for (i = 0; i < nb_nics; i++) {
2019 NICInfo *nd = &nd_table[i];
2020 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2021
2022 if (g_str_equal(model, "ne2k_isa")) {
2023 pc_init_ne2k_isa(isa_bus, nd);
2024 } else {
2025 pci_nic_init_nofail(nd, pci_bus, model, NULL);
2026 }
2027 }
2028 rom_reset_order_override();
2029 }
2030
2031 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2032 {
2033 DeviceState *dev;
2034 SysBusDevice *d;
2035 unsigned int i;
2036
2037 if (kvm_ioapic_in_kernel()) {
2038 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2039 } else {
2040 dev = qdev_create(NULL, TYPE_IOAPIC);
2041 }
2042 if (parent_name) {
2043 object_property_add_child(object_resolve_path(parent_name, NULL),
2044 "ioapic", OBJECT(dev), NULL);
2045 }
2046 qdev_init_nofail(dev);
2047 d = SYS_BUS_DEVICE(dev);
2048 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2049
2050 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2051 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2052 }
2053 }
2054
2055 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2056 Error **errp)
2057 {
2058 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2059 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2060 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2061 const uint64_t legacy_align = TARGET_PAGE_SIZE;
2062
2063 /*
2064 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2065 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2066 * addition to cover this case.
2067 */
2068 if (!pcms->acpi_dev || !acpi_enabled) {
2069 error_setg(errp,
2070 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2071 return;
2072 }
2073
2074 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
2075 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2076 return;
2077 }
2078
2079 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2080 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2081 }
2082
2083 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2084 DeviceState *dev, Error **errp)
2085 {
2086 HotplugHandlerClass *hhc;
2087 Error *local_err = NULL;
2088 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2089 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2090
2091 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2092 if (local_err) {
2093 goto out;
2094 }
2095
2096 if (is_nvdimm) {
2097 nvdimm_plug(&pcms->acpi_nvdimm_state);
2098 }
2099
2100 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2101 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2102 out:
2103 error_propagate(errp, local_err);
2104 }
2105
2106 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2107 DeviceState *dev, Error **errp)
2108 {
2109 HotplugHandlerClass *hhc;
2110 Error *local_err = NULL;
2111 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2112
2113 /*
2114 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2115 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2116 * addition to cover this case.
2117 */
2118 if (!pcms->acpi_dev || !acpi_enabled) {
2119 error_setg(&local_err,
2120 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2121 goto out;
2122 }
2123
2124 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2125 error_setg(&local_err,
2126 "nvdimm device hot unplug is not supported yet.");
2127 goto out;
2128 }
2129
2130 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2131 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2132
2133 out:
2134 error_propagate(errp, local_err);
2135 }
2136
2137 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2138 DeviceState *dev, Error **errp)
2139 {
2140 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2141 HotplugHandlerClass *hhc;
2142 Error *local_err = NULL;
2143
2144 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2145 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2146
2147 if (local_err) {
2148 goto out;
2149 }
2150
2151 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2152 object_unparent(OBJECT(dev));
2153
2154 out:
2155 error_propagate(errp, local_err);
2156 }
2157
2158 static int pc_apic_cmp(const void *a, const void *b)
2159 {
2160 CPUArchId *apic_a = (CPUArchId *)a;
2161 CPUArchId *apic_b = (CPUArchId *)b;
2162
2163 return apic_a->arch_id - apic_b->arch_id;
2164 }
2165
2166 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2167 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2168 * entry corresponding to CPU's apic_id returns NULL.
2169 */
2170 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2171 {
2172 CPUArchId apic_id, *found_cpu;
2173
2174 apic_id.arch_id = id;
2175 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2176 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2177 pc_apic_cmp);
2178 if (found_cpu && idx) {
2179 *idx = found_cpu - ms->possible_cpus->cpus;
2180 }
2181 return found_cpu;
2182 }
2183
2184 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2185 DeviceState *dev, Error **errp)
2186 {
2187 CPUArchId *found_cpu;
2188 HotplugHandlerClass *hhc;
2189 Error *local_err = NULL;
2190 X86CPU *cpu = X86_CPU(dev);
2191 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2192
2193 if (pcms->acpi_dev) {
2194 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2195 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2196 if (local_err) {
2197 goto out;
2198 }
2199 }
2200
2201 /* increment the number of CPUs */
2202 pcms->boot_cpus++;
2203 if (pcms->rtc) {
2204 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2205 }
2206 if (pcms->fw_cfg) {
2207 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2208 }
2209
2210 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2211 found_cpu->cpu = OBJECT(dev);
2212 out:
2213 error_propagate(errp, local_err);
2214 }
2215 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2216 DeviceState *dev, Error **errp)
2217 {
2218 int idx = -1;
2219 HotplugHandlerClass *hhc;
2220 Error *local_err = NULL;
2221 X86CPU *cpu = X86_CPU(dev);
2222 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2223
2224 if (!pcms->acpi_dev) {
2225 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2226 goto out;
2227 }
2228
2229 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2230 assert(idx != -1);
2231 if (idx == 0) {
2232 error_setg(&local_err, "Boot CPU is unpluggable");
2233 goto out;
2234 }
2235
2236 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2237 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2238
2239 if (local_err) {
2240 goto out;
2241 }
2242
2243 out:
2244 error_propagate(errp, local_err);
2245
2246 }
2247
2248 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2249 DeviceState *dev, Error **errp)
2250 {
2251 CPUArchId *found_cpu;
2252 HotplugHandlerClass *hhc;
2253 Error *local_err = NULL;
2254 X86CPU *cpu = X86_CPU(dev);
2255 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2256
2257 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2258 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2259
2260 if (local_err) {
2261 goto out;
2262 }
2263
2264 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2265 found_cpu->cpu = NULL;
2266 object_unparent(OBJECT(dev));
2267
2268 /* decrement the number of CPUs */
2269 pcms->boot_cpus--;
2270 /* Update the number of CPUs in CMOS */
2271 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2272 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2273 out:
2274 error_propagate(errp, local_err);
2275 }
2276
2277 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2278 DeviceState *dev, Error **errp)
2279 {
2280 int idx;
2281 CPUState *cs;
2282 CPUArchId *cpu_slot;
2283 X86CPUTopoInfo topo;
2284 X86CPU *cpu = X86_CPU(dev);
2285 MachineState *ms = MACHINE(hotplug_dev);
2286 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2287
2288 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2289 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2290 ms->cpu_type);
2291 return;
2292 }
2293
2294 /* if APIC ID is not set, set it based on socket/core/thread properties */
2295 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2296 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2297
2298 if (cpu->socket_id < 0) {
2299 error_setg(errp, "CPU socket-id is not set");
2300 return;
2301 } else if (cpu->socket_id > max_socket) {
2302 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2303 cpu->socket_id, max_socket);
2304 return;
2305 }
2306 if (cpu->core_id < 0) {
2307 error_setg(errp, "CPU core-id is not set");
2308 return;
2309 } else if (cpu->core_id > (smp_cores - 1)) {
2310 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2311 cpu->core_id, smp_cores - 1);
2312 return;
2313 }
2314 if (cpu->thread_id < 0) {
2315 error_setg(errp, "CPU thread-id is not set");
2316 return;
2317 } else if (cpu->thread_id > (smp_threads - 1)) {
2318 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2319 cpu->thread_id, smp_threads - 1);
2320 return;
2321 }
2322
2323 topo.pkg_id = cpu->socket_id;
2324 topo.core_id = cpu->core_id;
2325 topo.smt_id = cpu->thread_id;
2326 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2327 }
2328
2329 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2330 if (!cpu_slot) {
2331 MachineState *ms = MACHINE(pcms);
2332
2333 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2334 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2335 " APIC ID %" PRIu32 ", valid index range 0:%d",
2336 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2337 ms->possible_cpus->len - 1);
2338 return;
2339 }
2340
2341 if (cpu_slot->cpu) {
2342 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2343 idx, cpu->apic_id);
2344 return;
2345 }
2346
2347 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2348 * so that machine_query_hotpluggable_cpus would show correct values
2349 */
2350 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2351 * once -smp refactoring is complete and there will be CPU private
2352 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2353 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2354 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2355 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2356 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2357 return;
2358 }
2359 cpu->socket_id = topo.pkg_id;
2360
2361 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2362 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2363 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2364 return;
2365 }
2366 cpu->core_id = topo.core_id;
2367
2368 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2369 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2370 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2371 return;
2372 }
2373 cpu->thread_id = topo.smt_id;
2374
2375 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2376 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2377 return;
2378 }
2379
2380 cs = CPU(cpu);
2381 cs->cpu_index = idx;
2382
2383 numa_cpu_pre_plug(cpu_slot, dev, errp);
2384 }
2385
2386 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2387 DeviceState *dev, Error **errp)
2388 {
2389 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2390 pc_memory_pre_plug(hotplug_dev, dev, errp);
2391 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2392 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2393 }
2394 }
2395
2396 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2397 DeviceState *dev, Error **errp)
2398 {
2399 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2400 pc_memory_plug(hotplug_dev, dev, errp);
2401 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2402 pc_cpu_plug(hotplug_dev, dev, errp);
2403 }
2404 }
2405
2406 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2407 DeviceState *dev, Error **errp)
2408 {
2409 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2410 pc_memory_unplug_request(hotplug_dev, dev, errp);
2411 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2412 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2413 } else {
2414 error_setg(errp, "acpi: device unplug request for not supported device"
2415 " type: %s", object_get_typename(OBJECT(dev)));
2416 }
2417 }
2418
2419 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2420 DeviceState *dev, Error **errp)
2421 {
2422 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2423 pc_memory_unplug(hotplug_dev, dev, errp);
2424 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2425 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2426 } else {
2427 error_setg(errp, "acpi: device unplug for not supported device"
2428 " type: %s", object_get_typename(OBJECT(dev)));
2429 }
2430 }
2431
2432 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2433 DeviceState *dev)
2434 {
2435 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2436 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2437 return HOTPLUG_HANDLER(machine);
2438 }
2439
2440 return NULL;
2441 }
2442
2443 static void
2444 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2445 const char *name, void *opaque,
2446 Error **errp)
2447 {
2448 MachineState *ms = MACHINE(obj);
2449 int64_t value = memory_region_size(&ms->device_memory->mr);
2450
2451 visit_type_int(v, name, &value, errp);
2452 }
2453
2454 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2455 const char *name, void *opaque,
2456 Error **errp)
2457 {
2458 PCMachineState *pcms = PC_MACHINE(obj);
2459 uint64_t value = pcms->max_ram_below_4g;
2460
2461 visit_type_size(v, name, &value, errp);
2462 }
2463
2464 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2465 const char *name, void *opaque,
2466 Error **errp)
2467 {
2468 PCMachineState *pcms = PC_MACHINE(obj);
2469 Error *error = NULL;
2470 uint64_t value;
2471
2472 visit_type_size(v, name, &value, &error);
2473 if (error) {
2474 error_propagate(errp, error);
2475 return;
2476 }
2477 if (value > 4 * GiB) {
2478 error_setg(&error,
2479 "Machine option 'max-ram-below-4g=%"PRIu64
2480 "' expects size less than or equal to 4G", value);
2481 error_propagate(errp, error);
2482 return;
2483 }
2484
2485 if (value < 1 * MiB) {
2486 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2487 "BIOS may not work with less than 1MiB", value);
2488 }
2489
2490 pcms->max_ram_below_4g = value;
2491 }
2492
2493 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2494 void *opaque, Error **errp)
2495 {
2496 PCMachineState *pcms = PC_MACHINE(obj);
2497 OnOffAuto vmport = pcms->vmport;
2498
2499 visit_type_OnOffAuto(v, name, &vmport, errp);
2500 }
2501
2502 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2503 void *opaque, Error **errp)
2504 {
2505 PCMachineState *pcms = PC_MACHINE(obj);
2506
2507 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2508 }
2509
2510 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2511 {
2512 bool smm_available = false;
2513
2514 if (pcms->smm == ON_OFF_AUTO_OFF) {
2515 return false;
2516 }
2517
2518 if (tcg_enabled() || qtest_enabled()) {
2519 smm_available = true;
2520 } else if (kvm_enabled()) {
2521 smm_available = kvm_has_smm();
2522 }
2523
2524 if (smm_available) {
2525 return true;
2526 }
2527
2528 if (pcms->smm == ON_OFF_AUTO_ON) {
2529 error_report("System Management Mode not supported by this hypervisor.");
2530 exit(1);
2531 }
2532 return false;
2533 }
2534
2535 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2536 void *opaque, Error **errp)
2537 {
2538 PCMachineState *pcms = PC_MACHINE(obj);
2539 OnOffAuto smm = pcms->smm;
2540
2541 visit_type_OnOffAuto(v, name, &smm, errp);
2542 }
2543
2544 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2545 void *opaque, Error **errp)
2546 {
2547 PCMachineState *pcms = PC_MACHINE(obj);
2548
2549 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2550 }
2551
2552 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2553 {
2554 PCMachineState *pcms = PC_MACHINE(obj);
2555
2556 return pcms->acpi_nvdimm_state.is_enabled;
2557 }
2558
2559 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2560 {
2561 PCMachineState *pcms = PC_MACHINE(obj);
2562
2563 pcms->acpi_nvdimm_state.is_enabled = value;
2564 }
2565
2566 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2567 {
2568 PCMachineState *pcms = PC_MACHINE(obj);
2569
2570 return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2571 }
2572
2573 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2574 Error **errp)
2575 {
2576 PCMachineState *pcms = PC_MACHINE(obj);
2577 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2578
2579 if (strcmp(value, "cpu") == 0)
2580 nvdimm_state->persistence = 3;
2581 else if (strcmp(value, "mem-ctrl") == 0)
2582 nvdimm_state->persistence = 2;
2583 else {
2584 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2585 value);
2586 return;
2587 }
2588
2589 g_free(nvdimm_state->persistence_string);
2590 nvdimm_state->persistence_string = g_strdup(value);
2591 }
2592
2593 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2594 {
2595 PCMachineState *pcms = PC_MACHINE(obj);
2596
2597 return pcms->smbus_enabled;
2598 }
2599
2600 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2601 {
2602 PCMachineState *pcms = PC_MACHINE(obj);
2603
2604 pcms->smbus_enabled = value;
2605 }
2606
2607 static bool pc_machine_get_sata(Object *obj, Error **errp)
2608 {
2609 PCMachineState *pcms = PC_MACHINE(obj);
2610
2611 return pcms->sata_enabled;
2612 }
2613
2614 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2615 {
2616 PCMachineState *pcms = PC_MACHINE(obj);
2617
2618 pcms->sata_enabled = value;
2619 }
2620
2621 static bool pc_machine_get_pit(Object *obj, Error **errp)
2622 {
2623 PCMachineState *pcms = PC_MACHINE(obj);
2624
2625 return pcms->pit_enabled;
2626 }
2627
2628 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2629 {
2630 PCMachineState *pcms = PC_MACHINE(obj);
2631
2632 pcms->pit_enabled = value;
2633 }
2634
2635 static void pc_machine_initfn(Object *obj)
2636 {
2637 PCMachineState *pcms = PC_MACHINE(obj);
2638
2639 pcms->max_ram_below_4g = 0; /* use default */
2640 pcms->smm = ON_OFF_AUTO_AUTO;
2641 pcms->vmport = ON_OFF_AUTO_AUTO;
2642 /* nvdimm is disabled on default. */
2643 pcms->acpi_nvdimm_state.is_enabled = false;
2644 /* acpi build is enabled by default if machine supports it */
2645 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2646 pcms->smbus_enabled = true;
2647 pcms->sata_enabled = true;
2648 pcms->pit_enabled = true;
2649 }
2650
2651 static void pc_machine_reset(void)
2652 {
2653 CPUState *cs;
2654 X86CPU *cpu;
2655
2656 qemu_devices_reset();
2657
2658 /* Reset APIC after devices have been reset to cancel
2659 * any changes that qemu_devices_reset() might have done.
2660 */
2661 CPU_FOREACH(cs) {
2662 cpu = X86_CPU(cs);
2663
2664 if (cpu->apic_state) {
2665 device_reset(cpu->apic_state);
2666 }
2667 }
2668 }
2669
2670 static CpuInstanceProperties
2671 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2672 {
2673 MachineClass *mc = MACHINE_GET_CLASS(ms);
2674 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2675
2676 assert(cpu_index < possible_cpus->len);
2677 return possible_cpus->cpus[cpu_index].props;
2678 }
2679
2680 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2681 {
2682 X86CPUTopoInfo topo;
2683
2684 assert(idx < ms->possible_cpus->len);
2685 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2686 smp_cores, smp_threads, &topo);
2687 return topo.pkg_id % nb_numa_nodes;
2688 }
2689
2690 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2691 {
2692 int i;
2693
2694 if (ms->possible_cpus) {
2695 /*
2696 * make sure that max_cpus hasn't changed since the first use, i.e.
2697 * -smp hasn't been parsed after it
2698 */
2699 assert(ms->possible_cpus->len == max_cpus);
2700 return ms->possible_cpus;
2701 }
2702
2703 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2704 sizeof(CPUArchId) * max_cpus);
2705 ms->possible_cpus->len = max_cpus;
2706 for (i = 0; i < ms->possible_cpus->len; i++) {
2707 X86CPUTopoInfo topo;
2708
2709 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2710 ms->possible_cpus->cpus[i].vcpus_count = 1;
2711 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2712 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2713 smp_cores, smp_threads, &topo);
2714 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2715 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2716 ms->possible_cpus->cpus[i].props.has_core_id = true;
2717 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2718 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2719 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2720 }
2721 return ms->possible_cpus;
2722 }
2723
2724 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2725 {
2726 /* cpu index isn't used */
2727 CPUState *cs;
2728
2729 CPU_FOREACH(cs) {
2730 X86CPU *cpu = X86_CPU(cs);
2731
2732 if (!cpu->apic_state) {
2733 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2734 } else {
2735 apic_deliver_nmi(cpu->apic_state);
2736 }
2737 }
2738 }
2739
2740 static void pc_machine_class_init(ObjectClass *oc, void *data)
2741 {
2742 MachineClass *mc = MACHINE_CLASS(oc);
2743 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2744 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2745 NMIClass *nc = NMI_CLASS(oc);
2746
2747 pcmc->pci_enabled = true;
2748 pcmc->has_acpi_build = true;
2749 pcmc->rsdp_in_ram = true;
2750 pcmc->smbios_defaults = true;
2751 pcmc->smbios_uuid_encoded = true;
2752 pcmc->gigabyte_align = true;
2753 pcmc->has_reserved_memory = true;
2754 pcmc->kvmclock_enabled = true;
2755 pcmc->enforce_aligned_dimm = true;
2756 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2757 * to be used at the moment, 32K should be enough for a while. */
2758 pcmc->acpi_data_size = 0x20000 + 0x8000;
2759 pcmc->save_tsc_khz = true;
2760 pcmc->linuxboot_dma_enabled = true;
2761 assert(!mc->get_hotplug_handler);
2762 mc->get_hotplug_handler = pc_get_hotplug_handler;
2763 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2764 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2765 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2766 mc->auto_enable_numa_with_memhp = true;
2767 mc->has_hotpluggable_cpus = true;
2768 mc->default_boot_order = "cad";
2769 mc->hot_add_cpu = pc_hot_add_cpu;
2770 mc->block_default_type = IF_IDE;
2771 mc->max_cpus = 255;
2772 mc->reset = pc_machine_reset;
2773 hc->pre_plug = pc_machine_device_pre_plug_cb;
2774 hc->plug = pc_machine_device_plug_cb;
2775 hc->unplug_request = pc_machine_device_unplug_request_cb;
2776 hc->unplug = pc_machine_device_unplug_cb;
2777 nc->nmi_monitor_handler = x86_nmi;
2778 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2779
2780 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2781 pc_machine_get_device_memory_region_size, NULL,
2782 NULL, NULL, &error_abort);
2783
2784 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2785 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2786 NULL, NULL, &error_abort);
2787
2788 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2789 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2790
2791 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2792 pc_machine_get_smm, pc_machine_set_smm,
2793 NULL, NULL, &error_abort);
2794 object_class_property_set_description(oc, PC_MACHINE_SMM,
2795 "Enable SMM (pc & q35)", &error_abort);
2796
2797 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2798 pc_machine_get_vmport, pc_machine_set_vmport,
2799 NULL, NULL, &error_abort);
2800 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2801 "Enable vmport (pc & q35)", &error_abort);
2802
2803 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2804 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2805
2806 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2807 pc_machine_get_nvdimm_persistence,
2808 pc_machine_set_nvdimm_persistence, &error_abort);
2809
2810 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2811 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2812
2813 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2814 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2815
2816 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2817 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2818 }
2819
2820 static const TypeInfo pc_machine_info = {
2821 .name = TYPE_PC_MACHINE,
2822 .parent = TYPE_MACHINE,
2823 .abstract = true,
2824 .instance_size = sizeof(PCMachineState),
2825 .instance_init = pc_machine_initfn,
2826 .class_size = sizeof(PCMachineClass),
2827 .class_init = pc_machine_class_init,
2828 .interfaces = (InterfaceInfo[]) {
2829 { TYPE_HOTPLUG_HANDLER },
2830 { TYPE_NMI },
2831 { }
2832 },
2833 };
2834
2835 static void pc_machine_register_types(void)
2836 {
2837 type_register_static(&pc_machine_info);
2838 }
2839
2840 type_init(pc_machine_register_types)