]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
compat: replace PC_COMPAT_3_1 & HW_COMPAT_3_1 macros
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...) \
83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93
94 #define E820_NR_ENTRIES 16
95
96 struct e820_entry {
97 uint64_t address;
98 uint64_t length;
99 uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 struct e820_table {
103 uint32_t count;
104 struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111
112 GlobalProperty pc_compat_3_1[] = {
113 {
114 .driver = "intel-iommu",
115 .property = "dma-drain",
116 .value = "off",
117 },
118 };
119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
120
121 void gsi_handler(void *opaque, int n, int level)
122 {
123 GSIState *s = opaque;
124
125 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
126 if (n < ISA_NUM_IRQS) {
127 qemu_set_irq(s->i8259_irq[n], level);
128 }
129 qemu_set_irq(s->ioapic_irq[n], level);
130 }
131
132 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
133 unsigned size)
134 {
135 }
136
137 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
138 {
139 return 0xffffffffffffffffULL;
140 }
141
142 /* MSDOS compatibility mode FPU exception support */
143 static qemu_irq ferr_irq;
144
145 void pc_register_ferr_irq(qemu_irq irq)
146 {
147 ferr_irq = irq;
148 }
149
150 /* XXX: add IGNNE support */
151 void cpu_set_ferr(CPUX86State *s)
152 {
153 qemu_irq_raise(ferr_irq);
154 }
155
156 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
157 unsigned size)
158 {
159 qemu_irq_lower(ferr_irq);
160 }
161
162 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
163 {
164 return 0xffffffffffffffffULL;
165 }
166
167 /* TSC handling */
168 uint64_t cpu_get_tsc(CPUX86State *env)
169 {
170 return cpu_get_ticks();
171 }
172
173 /* IRQ handling */
174 int cpu_get_pic_interrupt(CPUX86State *env)
175 {
176 X86CPU *cpu = x86_env_get_cpu(env);
177 int intno;
178
179 if (!kvm_irqchip_in_kernel()) {
180 intno = apic_get_interrupt(cpu->apic_state);
181 if (intno >= 0) {
182 return intno;
183 }
184 /* read the irq from the PIC */
185 if (!apic_accept_pic_intr(cpu->apic_state)) {
186 return -1;
187 }
188 }
189
190 intno = pic_read_irq(isa_pic);
191 return intno;
192 }
193
194 static void pic_irq_request(void *opaque, int irq, int level)
195 {
196 CPUState *cs = first_cpu;
197 X86CPU *cpu = X86_CPU(cs);
198
199 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
200 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
201 CPU_FOREACH(cs) {
202 cpu = X86_CPU(cs);
203 if (apic_accept_pic_intr(cpu->apic_state)) {
204 apic_deliver_pic_intr(cpu->apic_state, level);
205 }
206 }
207 } else {
208 if (level) {
209 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
210 } else {
211 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
212 }
213 }
214 }
215
216 /* PC cmos mappings */
217
218 #define REG_EQUIPMENT_BYTE 0x14
219
220 int cmos_get_fd_drive_type(FloppyDriveType fd0)
221 {
222 int val;
223
224 switch (fd0) {
225 case FLOPPY_DRIVE_TYPE_144:
226 /* 1.44 Mb 3"5 drive */
227 val = 4;
228 break;
229 case FLOPPY_DRIVE_TYPE_288:
230 /* 2.88 Mb 3"5 drive */
231 val = 5;
232 break;
233 case FLOPPY_DRIVE_TYPE_120:
234 /* 1.2 Mb 5"5 drive */
235 val = 2;
236 break;
237 case FLOPPY_DRIVE_TYPE_NONE:
238 default:
239 val = 0;
240 break;
241 }
242 return val;
243 }
244
245 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
246 int16_t cylinders, int8_t heads, int8_t sectors)
247 {
248 rtc_set_memory(s, type_ofs, 47);
249 rtc_set_memory(s, info_ofs, cylinders);
250 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
251 rtc_set_memory(s, info_ofs + 2, heads);
252 rtc_set_memory(s, info_ofs + 3, 0xff);
253 rtc_set_memory(s, info_ofs + 4, 0xff);
254 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
255 rtc_set_memory(s, info_ofs + 6, cylinders);
256 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
257 rtc_set_memory(s, info_ofs + 8, sectors);
258 }
259
260 /* convert boot_device letter to something recognizable by the bios */
261 static int boot_device2nibble(char boot_device)
262 {
263 switch(boot_device) {
264 case 'a':
265 case 'b':
266 return 0x01; /* floppy boot */
267 case 'c':
268 return 0x02; /* hard drive boot */
269 case 'd':
270 return 0x03; /* CD-ROM boot */
271 case 'n':
272 return 0x04; /* Network boot */
273 }
274 return 0;
275 }
276
277 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
278 {
279 #define PC_MAX_BOOT_DEVICES 3
280 int nbds, bds[3] = { 0, };
281 int i;
282
283 nbds = strlen(boot_device);
284 if (nbds > PC_MAX_BOOT_DEVICES) {
285 error_setg(errp, "Too many boot devices for PC");
286 return;
287 }
288 for (i = 0; i < nbds; i++) {
289 bds[i] = boot_device2nibble(boot_device[i]);
290 if (bds[i] == 0) {
291 error_setg(errp, "Invalid boot device for PC: '%c'",
292 boot_device[i]);
293 return;
294 }
295 }
296 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
297 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
298 }
299
300 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
301 {
302 set_boot_dev(opaque, boot_device, errp);
303 }
304
305 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
306 {
307 int val, nb, i;
308 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
309 FLOPPY_DRIVE_TYPE_NONE };
310
311 /* floppy type */
312 if (floppy) {
313 for (i = 0; i < 2; i++) {
314 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
315 }
316 }
317 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
318 cmos_get_fd_drive_type(fd_type[1]);
319 rtc_set_memory(rtc_state, 0x10, val);
320
321 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
322 nb = 0;
323 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
324 nb++;
325 }
326 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
327 nb++;
328 }
329 switch (nb) {
330 case 0:
331 break;
332 case 1:
333 val |= 0x01; /* 1 drive, ready for boot */
334 break;
335 case 2:
336 val |= 0x41; /* 2 drives, ready for boot */
337 break;
338 }
339 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
340 }
341
342 typedef struct pc_cmos_init_late_arg {
343 ISADevice *rtc_state;
344 BusState *idebus[2];
345 } pc_cmos_init_late_arg;
346
347 typedef struct check_fdc_state {
348 ISADevice *floppy;
349 bool multiple;
350 } CheckFdcState;
351
352 static int check_fdc(Object *obj, void *opaque)
353 {
354 CheckFdcState *state = opaque;
355 Object *fdc;
356 uint32_t iobase;
357 Error *local_err = NULL;
358
359 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
360 if (!fdc) {
361 return 0;
362 }
363
364 iobase = object_property_get_uint(obj, "iobase", &local_err);
365 if (local_err || iobase != 0x3f0) {
366 error_free(local_err);
367 return 0;
368 }
369
370 if (state->floppy) {
371 state->multiple = true;
372 } else {
373 state->floppy = ISA_DEVICE(obj);
374 }
375 return 0;
376 }
377
378 static const char * const fdc_container_path[] = {
379 "/unattached", "/peripheral", "/peripheral-anon"
380 };
381
382 /*
383 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
384 * and ACPI objects.
385 */
386 ISADevice *pc_find_fdc0(void)
387 {
388 int i;
389 Object *container;
390 CheckFdcState state = { 0 };
391
392 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
393 container = container_get(qdev_get_machine(), fdc_container_path[i]);
394 object_child_foreach(container, check_fdc, &state);
395 }
396
397 if (state.multiple) {
398 warn_report("multiple floppy disk controllers with "
399 "iobase=0x3f0 have been found");
400 error_printf("the one being picked for CMOS setup might not reflect "
401 "your intent");
402 }
403
404 return state.floppy;
405 }
406
407 static void pc_cmos_init_late(void *opaque)
408 {
409 pc_cmos_init_late_arg *arg = opaque;
410 ISADevice *s = arg->rtc_state;
411 int16_t cylinders;
412 int8_t heads, sectors;
413 int val;
414 int i, trans;
415
416 val = 0;
417 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
418 &cylinders, &heads, &sectors) >= 0) {
419 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
420 val |= 0xf0;
421 }
422 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
423 &cylinders, &heads, &sectors) >= 0) {
424 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
425 val |= 0x0f;
426 }
427 rtc_set_memory(s, 0x12, val);
428
429 val = 0;
430 for (i = 0; i < 4; i++) {
431 /* NOTE: ide_get_geometry() returns the physical
432 geometry. It is always such that: 1 <= sects <= 63, 1
433 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
434 geometry can be different if a translation is done. */
435 if (arg->idebus[i / 2] &&
436 ide_get_geometry(arg->idebus[i / 2], i % 2,
437 &cylinders, &heads, &sectors) >= 0) {
438 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
439 assert((trans & ~3) == 0);
440 val |= trans << (i * 2);
441 }
442 }
443 rtc_set_memory(s, 0x39, val);
444
445 pc_cmos_init_floppy(s, pc_find_fdc0());
446
447 qemu_unregister_reset(pc_cmos_init_late, opaque);
448 }
449
450 void pc_cmos_init(PCMachineState *pcms,
451 BusState *idebus0, BusState *idebus1,
452 ISADevice *s)
453 {
454 int val;
455 static pc_cmos_init_late_arg arg;
456
457 /* various important CMOS locations needed by PC/Bochs bios */
458
459 /* memory size */
460 /* base memory (first MiB) */
461 val = MIN(pcms->below_4g_mem_size / KiB, 640);
462 rtc_set_memory(s, 0x15, val);
463 rtc_set_memory(s, 0x16, val >> 8);
464 /* extended memory (next 64MiB) */
465 if (pcms->below_4g_mem_size > 1 * MiB) {
466 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
467 } else {
468 val = 0;
469 }
470 if (val > 65535)
471 val = 65535;
472 rtc_set_memory(s, 0x17, val);
473 rtc_set_memory(s, 0x18, val >> 8);
474 rtc_set_memory(s, 0x30, val);
475 rtc_set_memory(s, 0x31, val >> 8);
476 /* memory between 16MiB and 4GiB */
477 if (pcms->below_4g_mem_size > 16 * MiB) {
478 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
479 } else {
480 val = 0;
481 }
482 if (val > 65535)
483 val = 65535;
484 rtc_set_memory(s, 0x34, val);
485 rtc_set_memory(s, 0x35, val >> 8);
486 /* memory above 4GiB */
487 val = pcms->above_4g_mem_size / 65536;
488 rtc_set_memory(s, 0x5b, val);
489 rtc_set_memory(s, 0x5c, val >> 8);
490 rtc_set_memory(s, 0x5d, val >> 16);
491
492 object_property_add_link(OBJECT(pcms), "rtc_state",
493 TYPE_ISA_DEVICE,
494 (Object **)&pcms->rtc,
495 object_property_allow_set_link,
496 OBJ_PROP_LINK_STRONG, &error_abort);
497 object_property_set_link(OBJECT(pcms), OBJECT(s),
498 "rtc_state", &error_abort);
499
500 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
501
502 val = 0;
503 val |= 0x02; /* FPU is there */
504 val |= 0x04; /* PS/2 mouse installed */
505 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
506
507 /* hard drives and FDC */
508 arg.rtc_state = s;
509 arg.idebus[0] = idebus0;
510 arg.idebus[1] = idebus1;
511 qemu_register_reset(pc_cmos_init_late, &arg);
512 }
513
514 #define TYPE_PORT92 "port92"
515 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
516
517 /* port 92 stuff: could be split off */
518 typedef struct Port92State {
519 ISADevice parent_obj;
520
521 MemoryRegion io;
522 uint8_t outport;
523 qemu_irq a20_out;
524 } Port92State;
525
526 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
527 unsigned size)
528 {
529 Port92State *s = opaque;
530 int oldval = s->outport;
531
532 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
533 s->outport = val;
534 qemu_set_irq(s->a20_out, (val >> 1) & 1);
535 if ((val & 1) && !(oldval & 1)) {
536 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
537 }
538 }
539
540 static uint64_t port92_read(void *opaque, hwaddr addr,
541 unsigned size)
542 {
543 Port92State *s = opaque;
544 uint32_t ret;
545
546 ret = s->outport;
547 DPRINTF("port92: read 0x%02x\n", ret);
548 return ret;
549 }
550
551 static void port92_init(ISADevice *dev, qemu_irq a20_out)
552 {
553 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
554 }
555
556 static const VMStateDescription vmstate_port92_isa = {
557 .name = "port92",
558 .version_id = 1,
559 .minimum_version_id = 1,
560 .fields = (VMStateField[]) {
561 VMSTATE_UINT8(outport, Port92State),
562 VMSTATE_END_OF_LIST()
563 }
564 };
565
566 static void port92_reset(DeviceState *d)
567 {
568 Port92State *s = PORT92(d);
569
570 s->outport &= ~1;
571 }
572
573 static const MemoryRegionOps port92_ops = {
574 .read = port92_read,
575 .write = port92_write,
576 .impl = {
577 .min_access_size = 1,
578 .max_access_size = 1,
579 },
580 .endianness = DEVICE_LITTLE_ENDIAN,
581 };
582
583 static void port92_initfn(Object *obj)
584 {
585 Port92State *s = PORT92(obj);
586
587 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
588
589 s->outport = 0;
590
591 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
592 }
593
594 static void port92_realizefn(DeviceState *dev, Error **errp)
595 {
596 ISADevice *isadev = ISA_DEVICE(dev);
597 Port92State *s = PORT92(dev);
598
599 isa_register_ioport(isadev, &s->io, 0x92);
600 }
601
602 static void port92_class_initfn(ObjectClass *klass, void *data)
603 {
604 DeviceClass *dc = DEVICE_CLASS(klass);
605
606 dc->realize = port92_realizefn;
607 dc->reset = port92_reset;
608 dc->vmsd = &vmstate_port92_isa;
609 /*
610 * Reason: unlike ordinary ISA devices, this one needs additional
611 * wiring: its A20 output line needs to be wired up by
612 * port92_init().
613 */
614 dc->user_creatable = false;
615 }
616
617 static const TypeInfo port92_info = {
618 .name = TYPE_PORT92,
619 .parent = TYPE_ISA_DEVICE,
620 .instance_size = sizeof(Port92State),
621 .instance_init = port92_initfn,
622 .class_init = port92_class_initfn,
623 };
624
625 static void port92_register_types(void)
626 {
627 type_register_static(&port92_info);
628 }
629
630 type_init(port92_register_types)
631
632 static void handle_a20_line_change(void *opaque, int irq, int level)
633 {
634 X86CPU *cpu = opaque;
635
636 /* XXX: send to all CPUs ? */
637 /* XXX: add logic to handle multiple A20 line sources */
638 x86_cpu_set_a20(cpu, level);
639 }
640
641 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
642 {
643 int index = le32_to_cpu(e820_reserve.count);
644 struct e820_entry *entry;
645
646 if (type != E820_RAM) {
647 /* old FW_CFG_E820_TABLE entry -- reservations only */
648 if (index >= E820_NR_ENTRIES) {
649 return -EBUSY;
650 }
651 entry = &e820_reserve.entry[index++];
652
653 entry->address = cpu_to_le64(address);
654 entry->length = cpu_to_le64(length);
655 entry->type = cpu_to_le32(type);
656
657 e820_reserve.count = cpu_to_le32(index);
658 }
659
660 /* new "etc/e820" file -- include ram too */
661 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
662 e820_table[e820_entries].address = cpu_to_le64(address);
663 e820_table[e820_entries].length = cpu_to_le64(length);
664 e820_table[e820_entries].type = cpu_to_le32(type);
665 e820_entries++;
666
667 return e820_entries;
668 }
669
670 int e820_get_num_entries(void)
671 {
672 return e820_entries;
673 }
674
675 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
676 {
677 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
678 *address = le64_to_cpu(e820_table[idx].address);
679 *length = le64_to_cpu(e820_table[idx].length);
680 return true;
681 }
682 return false;
683 }
684
685 /* Enables contiguous-apic-ID mode, for compatibility */
686 static bool compat_apic_id_mode;
687
688 void enable_compat_apic_id_mode(void)
689 {
690 compat_apic_id_mode = true;
691 }
692
693 /* Calculates initial APIC ID for a specific CPU index
694 *
695 * Currently we need to be able to calculate the APIC ID from the CPU index
696 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
697 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
698 * all CPUs up to max_cpus.
699 */
700 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
701 {
702 uint32_t correct_id;
703 static bool warned;
704
705 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
706 if (compat_apic_id_mode) {
707 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
708 error_report("APIC IDs set in compatibility mode, "
709 "CPU topology won't match the configuration");
710 warned = true;
711 }
712 return cpu_index;
713 } else {
714 return correct_id;
715 }
716 }
717
718 static void pc_build_smbios(PCMachineState *pcms)
719 {
720 uint8_t *smbios_tables, *smbios_anchor;
721 size_t smbios_tables_len, smbios_anchor_len;
722 struct smbios_phys_mem_area *mem_array;
723 unsigned i, array_count;
724 MachineState *ms = MACHINE(pcms);
725 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
726
727 /* tell smbios about cpuid version and features */
728 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
729
730 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
731 if (smbios_tables) {
732 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
733 smbios_tables, smbios_tables_len);
734 }
735
736 /* build the array of physical mem area from e820 table */
737 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
738 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
739 uint64_t addr, len;
740
741 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
742 mem_array[array_count].address = addr;
743 mem_array[array_count].length = len;
744 array_count++;
745 }
746 }
747 smbios_get_tables(mem_array, array_count,
748 &smbios_tables, &smbios_tables_len,
749 &smbios_anchor, &smbios_anchor_len);
750 g_free(mem_array);
751
752 if (smbios_anchor) {
753 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
754 smbios_tables, smbios_tables_len);
755 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
756 smbios_anchor, smbios_anchor_len);
757 }
758 }
759
760 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
761 {
762 FWCfgState *fw_cfg;
763 uint64_t *numa_fw_cfg;
764 int i;
765 const CPUArchIdList *cpus;
766 MachineClass *mc = MACHINE_GET_CLASS(pcms);
767
768 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
769 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
770
771 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
772 *
773 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
774 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
775 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
776 * for CPU hotplug also uses APIC ID and not "CPU index".
777 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
778 * but the "limit to the APIC ID values SeaBIOS may see".
779 *
780 * So for compatibility reasons with old BIOSes we are stuck with
781 * "etc/max-cpus" actually being apic_id_limit
782 */
783 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
784 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
785 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
786 acpi_tables, acpi_tables_len);
787 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
788
789 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
790 &e820_reserve, sizeof(e820_reserve));
791 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
792 sizeof(struct e820_entry) * e820_entries);
793
794 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
795 /* allocate memory for the NUMA channel: one (64bit) word for the number
796 * of nodes, one word for each VCPU->node and one word for each node to
797 * hold the amount of memory.
798 */
799 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
800 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
801 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
802 for (i = 0; i < cpus->len; i++) {
803 unsigned int apic_id = cpus->cpus[i].arch_id;
804 assert(apic_id < pcms->apic_id_limit);
805 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
806 }
807 for (i = 0; i < nb_numa_nodes; i++) {
808 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
809 cpu_to_le64(numa_info[i].node_mem);
810 }
811 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
812 (1 + pcms->apic_id_limit + nb_numa_nodes) *
813 sizeof(*numa_fw_cfg));
814
815 return fw_cfg;
816 }
817
818 static long get_file_size(FILE *f)
819 {
820 long where, size;
821
822 /* XXX: on Unix systems, using fstat() probably makes more sense */
823
824 where = ftell(f);
825 fseek(f, 0, SEEK_END);
826 size = ftell(f);
827 fseek(f, where, SEEK_SET);
828
829 return size;
830 }
831
832 /* setup_data types */
833 #define SETUP_NONE 0
834 #define SETUP_E820_EXT 1
835 #define SETUP_DTB 2
836 #define SETUP_PCI 3
837 #define SETUP_EFI 4
838
839 struct setup_data {
840 uint64_t next;
841 uint32_t type;
842 uint32_t len;
843 uint8_t data[0];
844 } __attribute__((packed));
845
846 static void load_linux(PCMachineState *pcms,
847 FWCfgState *fw_cfg)
848 {
849 uint16_t protocol;
850 int setup_size, kernel_size, cmdline_size;
851 int dtb_size, setup_data_offset;
852 uint32_t initrd_max;
853 uint8_t header[8192], *setup, *kernel;
854 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
855 FILE *f;
856 char *vmode;
857 MachineState *machine = MACHINE(pcms);
858 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
859 struct setup_data *setup_data;
860 const char *kernel_filename = machine->kernel_filename;
861 const char *initrd_filename = machine->initrd_filename;
862 const char *dtb_filename = machine->dtb;
863 const char *kernel_cmdline = machine->kernel_cmdline;
864
865 /* Align to 16 bytes as a paranoia measure */
866 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
867
868 /* load the kernel header */
869 f = fopen(kernel_filename, "rb");
870 if (!f || !(kernel_size = get_file_size(f)) ||
871 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
872 MIN(ARRAY_SIZE(header), kernel_size)) {
873 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
874 kernel_filename, strerror(errno));
875 exit(1);
876 }
877
878 /* kernel protocol version */
879 #if 0
880 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
881 #endif
882 if (ldl_p(header+0x202) == 0x53726448) {
883 protocol = lduw_p(header+0x206);
884 } else {
885 /* This looks like a multiboot kernel. If it is, let's stop
886 treating it like a Linux kernel. */
887 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
888 kernel_cmdline, kernel_size, header)) {
889 return;
890 }
891 protocol = 0;
892 }
893
894 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
895 /* Low kernel */
896 real_addr = 0x90000;
897 cmdline_addr = 0x9a000 - cmdline_size;
898 prot_addr = 0x10000;
899 } else if (protocol < 0x202) {
900 /* High but ancient kernel */
901 real_addr = 0x90000;
902 cmdline_addr = 0x9a000 - cmdline_size;
903 prot_addr = 0x100000;
904 } else {
905 /* High and recent kernel */
906 real_addr = 0x10000;
907 cmdline_addr = 0x20000;
908 prot_addr = 0x100000;
909 }
910
911 #if 0
912 fprintf(stderr,
913 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
914 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
915 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
916 real_addr,
917 cmdline_addr,
918 prot_addr);
919 #endif
920
921 /* highest address for loading the initrd */
922 if (protocol >= 0x203) {
923 initrd_max = ldl_p(header+0x22c);
924 } else {
925 initrd_max = 0x37ffffff;
926 }
927
928 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
929 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
930 }
931
932 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
933 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
934 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
935
936 if (protocol >= 0x202) {
937 stl_p(header+0x228, cmdline_addr);
938 } else {
939 stw_p(header+0x20, 0xA33F);
940 stw_p(header+0x22, cmdline_addr-real_addr);
941 }
942
943 /* handle vga= parameter */
944 vmode = strstr(kernel_cmdline, "vga=");
945 if (vmode) {
946 unsigned int video_mode;
947 /* skip "vga=" */
948 vmode += 4;
949 if (!strncmp(vmode, "normal", 6)) {
950 video_mode = 0xffff;
951 } else if (!strncmp(vmode, "ext", 3)) {
952 video_mode = 0xfffe;
953 } else if (!strncmp(vmode, "ask", 3)) {
954 video_mode = 0xfffd;
955 } else {
956 video_mode = strtol(vmode, NULL, 0);
957 }
958 stw_p(header+0x1fa, video_mode);
959 }
960
961 /* loader type */
962 /* High nybble = B reserved for QEMU; low nybble is revision number.
963 If this code is substantially changed, you may want to consider
964 incrementing the revision. */
965 if (protocol >= 0x200) {
966 header[0x210] = 0xB0;
967 }
968 /* heap */
969 if (protocol >= 0x201) {
970 header[0x211] |= 0x80; /* CAN_USE_HEAP */
971 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
972 }
973
974 /* load initrd */
975 if (initrd_filename) {
976 gsize initrd_size;
977 gchar *initrd_data;
978 GError *gerr = NULL;
979
980 if (protocol < 0x200) {
981 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
982 exit(1);
983 }
984
985 if (!g_file_get_contents(initrd_filename, &initrd_data,
986 &initrd_size, &gerr)) {
987 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
988 initrd_filename, gerr->message);
989 exit(1);
990 }
991 if (initrd_size >= initrd_max) {
992 fprintf(stderr, "qemu: initrd is too large, cannot support."
993 "(max: %"PRIu32", need %"PRId64")\n",
994 initrd_max, (uint64_t)initrd_size);
995 exit(1);
996 }
997
998 initrd_addr = (initrd_max-initrd_size) & ~4095;
999
1000 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1001 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1002 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1003
1004 stl_p(header+0x218, initrd_addr);
1005 stl_p(header+0x21c, initrd_size);
1006 }
1007
1008 /* load kernel and setup */
1009 setup_size = header[0x1f1];
1010 if (setup_size == 0) {
1011 setup_size = 4;
1012 }
1013 setup_size = (setup_size+1)*512;
1014 if (setup_size > kernel_size) {
1015 fprintf(stderr, "qemu: invalid kernel header\n");
1016 exit(1);
1017 }
1018 kernel_size -= setup_size;
1019
1020 setup = g_malloc(setup_size);
1021 kernel = g_malloc(kernel_size);
1022 fseek(f, 0, SEEK_SET);
1023 if (fread(setup, 1, setup_size, f) != setup_size) {
1024 fprintf(stderr, "fread() failed\n");
1025 exit(1);
1026 }
1027 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1028 fprintf(stderr, "fread() failed\n");
1029 exit(1);
1030 }
1031 fclose(f);
1032
1033 /* append dtb to kernel */
1034 if (dtb_filename) {
1035 if (protocol < 0x209) {
1036 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1037 exit(1);
1038 }
1039
1040 dtb_size = get_image_size(dtb_filename);
1041 if (dtb_size <= 0) {
1042 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1043 dtb_filename, strerror(errno));
1044 exit(1);
1045 }
1046
1047 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1048 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1049 kernel = g_realloc(kernel, kernel_size);
1050
1051 stq_p(header+0x250, prot_addr + setup_data_offset);
1052
1053 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1054 setup_data->next = 0;
1055 setup_data->type = cpu_to_le32(SETUP_DTB);
1056 setup_data->len = cpu_to_le32(dtb_size);
1057
1058 load_image_size(dtb_filename, setup_data->data, dtb_size);
1059 }
1060
1061 memcpy(setup, header, MIN(sizeof(header), setup_size));
1062
1063 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1064 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1065 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1066
1067 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1068 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1069 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1070
1071 option_rom[nb_option_roms].bootindex = 0;
1072 option_rom[nb_option_roms].name = "linuxboot.bin";
1073 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1074 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1075 }
1076 nb_option_roms++;
1077 }
1078
1079 #define NE2000_NB_MAX 6
1080
1081 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1082 0x280, 0x380 };
1083 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1084
1085 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1086 {
1087 static int nb_ne2k = 0;
1088
1089 if (nb_ne2k == NE2000_NB_MAX)
1090 return;
1091 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1092 ne2000_irq[nb_ne2k], nd);
1093 nb_ne2k++;
1094 }
1095
1096 DeviceState *cpu_get_current_apic(void)
1097 {
1098 if (current_cpu) {
1099 X86CPU *cpu = X86_CPU(current_cpu);
1100 return cpu->apic_state;
1101 } else {
1102 return NULL;
1103 }
1104 }
1105
1106 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1107 {
1108 X86CPU *cpu = opaque;
1109
1110 if (level) {
1111 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1112 }
1113 }
1114
1115 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1116 {
1117 Object *cpu = NULL;
1118 Error *local_err = NULL;
1119
1120 cpu = object_new(typename);
1121
1122 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1123 object_property_set_bool(cpu, true, "realized", &local_err);
1124
1125 object_unref(cpu);
1126 error_propagate(errp, local_err);
1127 }
1128
1129 void pc_hot_add_cpu(const int64_t id, Error **errp)
1130 {
1131 MachineState *ms = MACHINE(qdev_get_machine());
1132 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1133 Error *local_err = NULL;
1134
1135 if (id < 0) {
1136 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1137 return;
1138 }
1139
1140 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1141 error_setg(errp, "Unable to add CPU: %" PRIi64
1142 ", resulting APIC ID (%" PRIi64 ") is too large",
1143 id, apic_id);
1144 return;
1145 }
1146
1147 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1148 if (local_err) {
1149 error_propagate(errp, local_err);
1150 return;
1151 }
1152 }
1153
1154 void pc_cpus_init(PCMachineState *pcms)
1155 {
1156 int i;
1157 const CPUArchIdList *possible_cpus;
1158 MachineState *ms = MACHINE(pcms);
1159 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1160
1161 /* Calculates the limit to CPU APIC ID values
1162 *
1163 * Limit for the APIC ID value, so that all
1164 * CPU APIC IDs are < pcms->apic_id_limit.
1165 *
1166 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1167 */
1168 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1169 possible_cpus = mc->possible_cpu_arch_ids(ms);
1170 for (i = 0; i < smp_cpus; i++) {
1171 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1172 &error_fatal);
1173 }
1174 }
1175
1176 static void pc_build_feature_control_file(PCMachineState *pcms)
1177 {
1178 MachineState *ms = MACHINE(pcms);
1179 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1180 CPUX86State *env = &cpu->env;
1181 uint32_t unused, ecx, edx;
1182 uint64_t feature_control_bits = 0;
1183 uint64_t *val;
1184
1185 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1186 if (ecx & CPUID_EXT_VMX) {
1187 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1188 }
1189
1190 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1191 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1192 (env->mcg_cap & MCG_LMCE_P)) {
1193 feature_control_bits |= FEATURE_CONTROL_LMCE;
1194 }
1195
1196 if (!feature_control_bits) {
1197 return;
1198 }
1199
1200 val = g_malloc(sizeof(*val));
1201 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1202 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1203 }
1204
1205 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1206 {
1207 if (cpus_count > 0xff) {
1208 /* If the number of CPUs can't be represented in 8 bits, the
1209 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1210 * to make old BIOSes fail more predictably.
1211 */
1212 rtc_set_memory(rtc, 0x5f, 0);
1213 } else {
1214 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1215 }
1216 }
1217
1218 static
1219 void pc_machine_done(Notifier *notifier, void *data)
1220 {
1221 PCMachineState *pcms = container_of(notifier,
1222 PCMachineState, machine_done);
1223 PCIBus *bus = pcms->bus;
1224
1225 /* set the number of CPUs */
1226 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1227
1228 if (bus) {
1229 int extra_hosts = 0;
1230
1231 QLIST_FOREACH(bus, &bus->child, sibling) {
1232 /* look for expander root buses */
1233 if (pci_bus_is_root(bus)) {
1234 extra_hosts++;
1235 }
1236 }
1237 if (extra_hosts && pcms->fw_cfg) {
1238 uint64_t *val = g_malloc(sizeof(*val));
1239 *val = cpu_to_le64(extra_hosts);
1240 fw_cfg_add_file(pcms->fw_cfg,
1241 "etc/extra-pci-roots", val, sizeof(*val));
1242 }
1243 }
1244
1245 acpi_setup();
1246 if (pcms->fw_cfg) {
1247 pc_build_smbios(pcms);
1248 pc_build_feature_control_file(pcms);
1249 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1250 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1251 }
1252
1253 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1254 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1255
1256 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1257 iommu->intr_eim != ON_OFF_AUTO_ON) {
1258 error_report("current -smp configuration requires "
1259 "Extended Interrupt Mode enabled. "
1260 "You can add an IOMMU using: "
1261 "-device intel-iommu,intremap=on,eim=on");
1262 exit(EXIT_FAILURE);
1263 }
1264 }
1265 }
1266
1267 void pc_guest_info_init(PCMachineState *pcms)
1268 {
1269 int i;
1270
1271 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1272 pcms->numa_nodes = nb_numa_nodes;
1273 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1274 sizeof *pcms->node_mem);
1275 for (i = 0; i < nb_numa_nodes; i++) {
1276 pcms->node_mem[i] = numa_info[i].node_mem;
1277 }
1278
1279 pcms->machine_done.notify = pc_machine_done;
1280 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1281 }
1282
1283 /* setup pci memory address space mapping into system address space */
1284 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1285 MemoryRegion *pci_address_space)
1286 {
1287 /* Set to lower priority than RAM */
1288 memory_region_add_subregion_overlap(system_memory, 0x0,
1289 pci_address_space, -1);
1290 }
1291
1292 void pc_acpi_init(const char *default_dsdt)
1293 {
1294 char *filename;
1295
1296 if (acpi_tables != NULL) {
1297 /* manually set via -acpitable, leave it alone */
1298 return;
1299 }
1300
1301 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1302 if (filename == NULL) {
1303 warn_report("failed to find %s", default_dsdt);
1304 } else {
1305 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1306 &error_abort);
1307 Error *err = NULL;
1308
1309 qemu_opt_set(opts, "file", filename, &error_abort);
1310
1311 acpi_table_add_builtin(opts, &err);
1312 if (err) {
1313 warn_reportf_err(err, "failed to load %s: ", filename);
1314 }
1315 g_free(filename);
1316 }
1317 }
1318
1319 void xen_load_linux(PCMachineState *pcms)
1320 {
1321 int i;
1322 FWCfgState *fw_cfg;
1323
1324 assert(MACHINE(pcms)->kernel_filename != NULL);
1325
1326 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1327 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1328 rom_set_fw(fw_cfg);
1329
1330 load_linux(pcms, fw_cfg);
1331 for (i = 0; i < nb_option_roms; i++) {
1332 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1333 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1334 !strcmp(option_rom[i].name, "multiboot.bin"));
1335 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1336 }
1337 pcms->fw_cfg = fw_cfg;
1338 }
1339
1340 void pc_memory_init(PCMachineState *pcms,
1341 MemoryRegion *system_memory,
1342 MemoryRegion *rom_memory,
1343 MemoryRegion **ram_memory)
1344 {
1345 int linux_boot, i;
1346 MemoryRegion *ram, *option_rom_mr;
1347 MemoryRegion *ram_below_4g, *ram_above_4g;
1348 FWCfgState *fw_cfg;
1349 MachineState *machine = MACHINE(pcms);
1350 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1351
1352 assert(machine->ram_size == pcms->below_4g_mem_size +
1353 pcms->above_4g_mem_size);
1354
1355 linux_boot = (machine->kernel_filename != NULL);
1356
1357 /* Allocate RAM. We allocate it as a single memory region and use
1358 * aliases to address portions of it, mostly for backwards compatibility
1359 * with older qemus that used qemu_ram_alloc().
1360 */
1361 ram = g_malloc(sizeof(*ram));
1362 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1363 machine->ram_size);
1364 *ram_memory = ram;
1365 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1366 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1367 0, pcms->below_4g_mem_size);
1368 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1369 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1370 if (pcms->above_4g_mem_size > 0) {
1371 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1372 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1373 pcms->below_4g_mem_size,
1374 pcms->above_4g_mem_size);
1375 memory_region_add_subregion(system_memory, 0x100000000ULL,
1376 ram_above_4g);
1377 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1378 }
1379
1380 if (!pcmc->has_reserved_memory &&
1381 (machine->ram_slots ||
1382 (machine->maxram_size > machine->ram_size))) {
1383 MachineClass *mc = MACHINE_GET_CLASS(machine);
1384
1385 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1386 mc->name);
1387 exit(EXIT_FAILURE);
1388 }
1389
1390 /* always allocate the device memory information */
1391 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1392
1393 /* initialize device memory address space */
1394 if (pcmc->has_reserved_memory &&
1395 (machine->ram_size < machine->maxram_size)) {
1396 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1397
1398 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1399 error_report("unsupported amount of memory slots: %"PRIu64,
1400 machine->ram_slots);
1401 exit(EXIT_FAILURE);
1402 }
1403
1404 if (QEMU_ALIGN_UP(machine->maxram_size,
1405 TARGET_PAGE_SIZE) != machine->maxram_size) {
1406 error_report("maximum memory size must by aligned to multiple of "
1407 "%d bytes", TARGET_PAGE_SIZE);
1408 exit(EXIT_FAILURE);
1409 }
1410
1411 machine->device_memory->base =
1412 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1413
1414 if (pcmc->enforce_aligned_dimm) {
1415 /* size device region assuming 1G page max alignment per slot */
1416 device_mem_size += (1 * GiB) * machine->ram_slots;
1417 }
1418
1419 if ((machine->device_memory->base + device_mem_size) <
1420 device_mem_size) {
1421 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1422 machine->maxram_size);
1423 exit(EXIT_FAILURE);
1424 }
1425
1426 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1427 "device-memory", device_mem_size);
1428 memory_region_add_subregion(system_memory, machine->device_memory->base,
1429 &machine->device_memory->mr);
1430 }
1431
1432 /* Initialize PC system firmware */
1433 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1434
1435 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1436 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1437 &error_fatal);
1438 if (pcmc->pci_enabled) {
1439 memory_region_set_readonly(option_rom_mr, true);
1440 }
1441 memory_region_add_subregion_overlap(rom_memory,
1442 PC_ROM_MIN_VGA,
1443 option_rom_mr,
1444 1);
1445
1446 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1447
1448 rom_set_fw(fw_cfg);
1449
1450 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1451 uint64_t *val = g_malloc(sizeof(*val));
1452 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1453 uint64_t res_mem_end = machine->device_memory->base;
1454
1455 if (!pcmc->broken_reserved_end) {
1456 res_mem_end += memory_region_size(&machine->device_memory->mr);
1457 }
1458 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1459 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1460 }
1461
1462 if (linux_boot) {
1463 load_linux(pcms, fw_cfg);
1464 }
1465
1466 for (i = 0; i < nb_option_roms; i++) {
1467 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1468 }
1469 pcms->fw_cfg = fw_cfg;
1470
1471 /* Init default IOAPIC address space */
1472 pcms->ioapic_as = &address_space_memory;
1473 }
1474
1475 /*
1476 * The 64bit pci hole starts after "above 4G RAM" and
1477 * potentially the space reserved for memory hotplug.
1478 */
1479 uint64_t pc_pci_hole64_start(void)
1480 {
1481 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1482 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1483 MachineState *ms = MACHINE(pcms);
1484 uint64_t hole64_start = 0;
1485
1486 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1487 hole64_start = ms->device_memory->base;
1488 if (!pcmc->broken_reserved_end) {
1489 hole64_start += memory_region_size(&ms->device_memory->mr);
1490 }
1491 } else {
1492 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1493 }
1494
1495 return ROUND_UP(hole64_start, 1 * GiB);
1496 }
1497
1498 qemu_irq pc_allocate_cpu_irq(void)
1499 {
1500 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1501 }
1502
1503 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1504 {
1505 DeviceState *dev = NULL;
1506
1507 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1508 if (pci_bus) {
1509 PCIDevice *pcidev = pci_vga_init(pci_bus);
1510 dev = pcidev ? &pcidev->qdev : NULL;
1511 } else if (isa_bus) {
1512 ISADevice *isadev = isa_vga_init(isa_bus);
1513 dev = isadev ? DEVICE(isadev) : NULL;
1514 }
1515 rom_reset_order_override();
1516 return dev;
1517 }
1518
1519 static const MemoryRegionOps ioport80_io_ops = {
1520 .write = ioport80_write,
1521 .read = ioport80_read,
1522 .endianness = DEVICE_NATIVE_ENDIAN,
1523 .impl = {
1524 .min_access_size = 1,
1525 .max_access_size = 1,
1526 },
1527 };
1528
1529 static const MemoryRegionOps ioportF0_io_ops = {
1530 .write = ioportF0_write,
1531 .read = ioportF0_read,
1532 .endianness = DEVICE_NATIVE_ENDIAN,
1533 .impl = {
1534 .min_access_size = 1,
1535 .max_access_size = 1,
1536 },
1537 };
1538
1539 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1540 {
1541 int i;
1542 DriveInfo *fd[MAX_FD];
1543 qemu_irq *a20_line;
1544 ISADevice *i8042, *port92, *vmmouse;
1545
1546 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1547 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1548
1549 for (i = 0; i < MAX_FD; i++) {
1550 fd[i] = drive_get(IF_FLOPPY, 0, i);
1551 create_fdctrl |= !!fd[i];
1552 }
1553 if (create_fdctrl) {
1554 fdctrl_init_isa(isa_bus, fd);
1555 }
1556
1557 i8042 = isa_create_simple(isa_bus, "i8042");
1558 if (!no_vmport) {
1559 vmport_init(isa_bus);
1560 vmmouse = isa_try_create(isa_bus, "vmmouse");
1561 } else {
1562 vmmouse = NULL;
1563 }
1564 if (vmmouse) {
1565 DeviceState *dev = DEVICE(vmmouse);
1566 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1567 qdev_init_nofail(dev);
1568 }
1569 port92 = isa_create_simple(isa_bus, "port92");
1570
1571 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1572 i8042_setup_a20_line(i8042, a20_line[0]);
1573 port92_init(port92, a20_line[1]);
1574 g_free(a20_line);
1575 }
1576
1577 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1578 ISADevice **rtc_state,
1579 bool create_fdctrl,
1580 bool no_vmport,
1581 bool has_pit,
1582 uint32_t hpet_irqs)
1583 {
1584 int i;
1585 DeviceState *hpet = NULL;
1586 int pit_isa_irq = 0;
1587 qemu_irq pit_alt_irq = NULL;
1588 qemu_irq rtc_irq = NULL;
1589 ISADevice *pit = NULL;
1590 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1591 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1592
1593 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1594 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1595
1596 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1597 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1598
1599 /*
1600 * Check if an HPET shall be created.
1601 *
1602 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1603 * when the HPET wants to take over. Thus we have to disable the latter.
1604 */
1605 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1606 /* In order to set property, here not using sysbus_try_create_simple */
1607 hpet = qdev_try_create(NULL, TYPE_HPET);
1608 if (hpet) {
1609 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1610 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1611 * IRQ8 and IRQ2.
1612 */
1613 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1614 HPET_INTCAP, NULL);
1615 if (!compat) {
1616 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1617 }
1618 qdev_init_nofail(hpet);
1619 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1620
1621 for (i = 0; i < GSI_NUM_PINS; i++) {
1622 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1623 }
1624 pit_isa_irq = -1;
1625 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1626 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1627 }
1628 }
1629 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1630
1631 qemu_register_boot_set(pc_boot_set, *rtc_state);
1632
1633 if (!xen_enabled() && has_pit) {
1634 if (kvm_pit_in_kernel()) {
1635 pit = kvm_pit_init(isa_bus, 0x40);
1636 } else {
1637 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1638 }
1639 if (hpet) {
1640 /* connect PIT to output control line of the HPET */
1641 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1642 }
1643 pcspk_init(isa_bus, pit);
1644 }
1645
1646 i8257_dma_init(isa_bus, 0);
1647
1648 /* Super I/O */
1649 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1650 }
1651
1652 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1653 {
1654 int i;
1655
1656 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1657 for (i = 0; i < nb_nics; i++) {
1658 NICInfo *nd = &nd_table[i];
1659 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1660
1661 if (g_str_equal(model, "ne2k_isa")) {
1662 pc_init_ne2k_isa(isa_bus, nd);
1663 } else {
1664 pci_nic_init_nofail(nd, pci_bus, model, NULL);
1665 }
1666 }
1667 rom_reset_order_override();
1668 }
1669
1670 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1671 {
1672 DeviceState *dev;
1673 SysBusDevice *d;
1674 unsigned int i;
1675
1676 if (kvm_ioapic_in_kernel()) {
1677 dev = qdev_create(NULL, "kvm-ioapic");
1678 } else {
1679 dev = qdev_create(NULL, "ioapic");
1680 }
1681 if (parent_name) {
1682 object_property_add_child(object_resolve_path(parent_name, NULL),
1683 "ioapic", OBJECT(dev), NULL);
1684 }
1685 qdev_init_nofail(dev);
1686 d = SYS_BUS_DEVICE(dev);
1687 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1688
1689 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1690 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1691 }
1692 }
1693
1694 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1695 Error **errp)
1696 {
1697 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1698 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1699 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1700 const uint64_t legacy_align = TARGET_PAGE_SIZE;
1701
1702 /*
1703 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1704 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1705 * addition to cover this case.
1706 */
1707 if (!pcms->acpi_dev || !acpi_enabled) {
1708 error_setg(errp,
1709 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1710 return;
1711 }
1712
1713 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1714 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1715 return;
1716 }
1717
1718 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1719 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1720 }
1721
1722 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1723 DeviceState *dev, Error **errp)
1724 {
1725 HotplugHandlerClass *hhc;
1726 Error *local_err = NULL;
1727 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1728 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1729
1730 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1731 if (local_err) {
1732 goto out;
1733 }
1734
1735 if (is_nvdimm) {
1736 nvdimm_plug(&pcms->acpi_nvdimm_state);
1737 }
1738
1739 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1740 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1741 out:
1742 error_propagate(errp, local_err);
1743 }
1744
1745 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1746 DeviceState *dev, Error **errp)
1747 {
1748 HotplugHandlerClass *hhc;
1749 Error *local_err = NULL;
1750 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1751
1752 /*
1753 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1754 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1755 * addition to cover this case.
1756 */
1757 if (!pcms->acpi_dev || !acpi_enabled) {
1758 error_setg(&local_err,
1759 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1760 goto out;
1761 }
1762
1763 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1764 error_setg(&local_err,
1765 "nvdimm device hot unplug is not supported yet.");
1766 goto out;
1767 }
1768
1769 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1770 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1771
1772 out:
1773 error_propagate(errp, local_err);
1774 }
1775
1776 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1777 DeviceState *dev, Error **errp)
1778 {
1779 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1780 HotplugHandlerClass *hhc;
1781 Error *local_err = NULL;
1782
1783 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1784 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1785
1786 if (local_err) {
1787 goto out;
1788 }
1789
1790 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
1791 object_unparent(OBJECT(dev));
1792
1793 out:
1794 error_propagate(errp, local_err);
1795 }
1796
1797 static int pc_apic_cmp(const void *a, const void *b)
1798 {
1799 CPUArchId *apic_a = (CPUArchId *)a;
1800 CPUArchId *apic_b = (CPUArchId *)b;
1801
1802 return apic_a->arch_id - apic_b->arch_id;
1803 }
1804
1805 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1806 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1807 * entry corresponding to CPU's apic_id returns NULL.
1808 */
1809 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1810 {
1811 CPUArchId apic_id, *found_cpu;
1812
1813 apic_id.arch_id = id;
1814 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1815 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1816 pc_apic_cmp);
1817 if (found_cpu && idx) {
1818 *idx = found_cpu - ms->possible_cpus->cpus;
1819 }
1820 return found_cpu;
1821 }
1822
1823 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1824 DeviceState *dev, Error **errp)
1825 {
1826 CPUArchId *found_cpu;
1827 HotplugHandlerClass *hhc;
1828 Error *local_err = NULL;
1829 X86CPU *cpu = X86_CPU(dev);
1830 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1831
1832 if (pcms->acpi_dev) {
1833 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1834 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1835 if (local_err) {
1836 goto out;
1837 }
1838 }
1839
1840 /* increment the number of CPUs */
1841 pcms->boot_cpus++;
1842 if (pcms->rtc) {
1843 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1844 }
1845 if (pcms->fw_cfg) {
1846 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1847 }
1848
1849 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1850 found_cpu->cpu = OBJECT(dev);
1851 out:
1852 error_propagate(errp, local_err);
1853 }
1854 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1855 DeviceState *dev, Error **errp)
1856 {
1857 int idx = -1;
1858 HotplugHandlerClass *hhc;
1859 Error *local_err = NULL;
1860 X86CPU *cpu = X86_CPU(dev);
1861 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1862
1863 if (!pcms->acpi_dev) {
1864 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1865 goto out;
1866 }
1867
1868 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1869 assert(idx != -1);
1870 if (idx == 0) {
1871 error_setg(&local_err, "Boot CPU is unpluggable");
1872 goto out;
1873 }
1874
1875 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1876 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1877
1878 if (local_err) {
1879 goto out;
1880 }
1881
1882 out:
1883 error_propagate(errp, local_err);
1884
1885 }
1886
1887 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1888 DeviceState *dev, Error **errp)
1889 {
1890 CPUArchId *found_cpu;
1891 HotplugHandlerClass *hhc;
1892 Error *local_err = NULL;
1893 X86CPU *cpu = X86_CPU(dev);
1894 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1895
1896 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1897 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1898
1899 if (local_err) {
1900 goto out;
1901 }
1902
1903 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1904 found_cpu->cpu = NULL;
1905 object_unparent(OBJECT(dev));
1906
1907 /* decrement the number of CPUs */
1908 pcms->boot_cpus--;
1909 /* Update the number of CPUs in CMOS */
1910 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1911 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1912 out:
1913 error_propagate(errp, local_err);
1914 }
1915
1916 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1917 DeviceState *dev, Error **errp)
1918 {
1919 int idx;
1920 CPUState *cs;
1921 CPUArchId *cpu_slot;
1922 X86CPUTopoInfo topo;
1923 X86CPU *cpu = X86_CPU(dev);
1924 MachineState *ms = MACHINE(hotplug_dev);
1925 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1926
1927 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1928 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1929 ms->cpu_type);
1930 return;
1931 }
1932
1933 /* if APIC ID is not set, set it based on socket/core/thread properties */
1934 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1935 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1936
1937 if (cpu->socket_id < 0) {
1938 error_setg(errp, "CPU socket-id is not set");
1939 return;
1940 } else if (cpu->socket_id > max_socket) {
1941 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1942 cpu->socket_id, max_socket);
1943 return;
1944 }
1945 if (cpu->core_id < 0) {
1946 error_setg(errp, "CPU core-id is not set");
1947 return;
1948 } else if (cpu->core_id > (smp_cores - 1)) {
1949 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1950 cpu->core_id, smp_cores - 1);
1951 return;
1952 }
1953 if (cpu->thread_id < 0) {
1954 error_setg(errp, "CPU thread-id is not set");
1955 return;
1956 } else if (cpu->thread_id > (smp_threads - 1)) {
1957 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1958 cpu->thread_id, smp_threads - 1);
1959 return;
1960 }
1961
1962 topo.pkg_id = cpu->socket_id;
1963 topo.core_id = cpu->core_id;
1964 topo.smt_id = cpu->thread_id;
1965 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1966 }
1967
1968 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1969 if (!cpu_slot) {
1970 MachineState *ms = MACHINE(pcms);
1971
1972 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1973 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1974 " APIC ID %" PRIu32 ", valid index range 0:%d",
1975 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1976 ms->possible_cpus->len - 1);
1977 return;
1978 }
1979
1980 if (cpu_slot->cpu) {
1981 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1982 idx, cpu->apic_id);
1983 return;
1984 }
1985
1986 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1987 * so that machine_query_hotpluggable_cpus would show correct values
1988 */
1989 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1990 * once -smp refactoring is complete and there will be CPU private
1991 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1992 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1993 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1994 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1995 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1996 return;
1997 }
1998 cpu->socket_id = topo.pkg_id;
1999
2000 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2001 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2002 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2003 return;
2004 }
2005 cpu->core_id = topo.core_id;
2006
2007 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2008 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2009 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2010 return;
2011 }
2012 cpu->thread_id = topo.smt_id;
2013
2014 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2015 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2016 return;
2017 }
2018
2019 cs = CPU(cpu);
2020 cs->cpu_index = idx;
2021
2022 numa_cpu_pre_plug(cpu_slot, dev, errp);
2023 }
2024
2025 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2026 DeviceState *dev, Error **errp)
2027 {
2028 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2029 pc_memory_pre_plug(hotplug_dev, dev, errp);
2030 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2031 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2032 }
2033 }
2034
2035 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2036 DeviceState *dev, Error **errp)
2037 {
2038 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2039 pc_memory_plug(hotplug_dev, dev, errp);
2040 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2041 pc_cpu_plug(hotplug_dev, dev, errp);
2042 }
2043 }
2044
2045 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2046 DeviceState *dev, Error **errp)
2047 {
2048 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2049 pc_memory_unplug_request(hotplug_dev, dev, errp);
2050 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2051 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2052 } else {
2053 error_setg(errp, "acpi: device unplug request for not supported device"
2054 " type: %s", object_get_typename(OBJECT(dev)));
2055 }
2056 }
2057
2058 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2059 DeviceState *dev, Error **errp)
2060 {
2061 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2062 pc_memory_unplug(hotplug_dev, dev, errp);
2063 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2064 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2065 } else {
2066 error_setg(errp, "acpi: device unplug for not supported device"
2067 " type: %s", object_get_typename(OBJECT(dev)));
2068 }
2069 }
2070
2071 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2072 DeviceState *dev)
2073 {
2074 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2075 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2076 return HOTPLUG_HANDLER(machine);
2077 }
2078
2079 return NULL;
2080 }
2081
2082 static void
2083 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2084 const char *name, void *opaque,
2085 Error **errp)
2086 {
2087 MachineState *ms = MACHINE(obj);
2088 int64_t value = memory_region_size(&ms->device_memory->mr);
2089
2090 visit_type_int(v, name, &value, errp);
2091 }
2092
2093 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2094 const char *name, void *opaque,
2095 Error **errp)
2096 {
2097 PCMachineState *pcms = PC_MACHINE(obj);
2098 uint64_t value = pcms->max_ram_below_4g;
2099
2100 visit_type_size(v, name, &value, errp);
2101 }
2102
2103 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2104 const char *name, void *opaque,
2105 Error **errp)
2106 {
2107 PCMachineState *pcms = PC_MACHINE(obj);
2108 Error *error = NULL;
2109 uint64_t value;
2110
2111 visit_type_size(v, name, &value, &error);
2112 if (error) {
2113 error_propagate(errp, error);
2114 return;
2115 }
2116 if (value > 4 * GiB) {
2117 error_setg(&error,
2118 "Machine option 'max-ram-below-4g=%"PRIu64
2119 "' expects size less than or equal to 4G", value);
2120 error_propagate(errp, error);
2121 return;
2122 }
2123
2124 if (value < 1 * MiB) {
2125 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2126 "BIOS may not work with less than 1MiB", value);
2127 }
2128
2129 pcms->max_ram_below_4g = value;
2130 }
2131
2132 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2133 void *opaque, Error **errp)
2134 {
2135 PCMachineState *pcms = PC_MACHINE(obj);
2136 OnOffAuto vmport = pcms->vmport;
2137
2138 visit_type_OnOffAuto(v, name, &vmport, errp);
2139 }
2140
2141 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2142 void *opaque, Error **errp)
2143 {
2144 PCMachineState *pcms = PC_MACHINE(obj);
2145
2146 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2147 }
2148
2149 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2150 {
2151 bool smm_available = false;
2152
2153 if (pcms->smm == ON_OFF_AUTO_OFF) {
2154 return false;
2155 }
2156
2157 if (tcg_enabled() || qtest_enabled()) {
2158 smm_available = true;
2159 } else if (kvm_enabled()) {
2160 smm_available = kvm_has_smm();
2161 }
2162
2163 if (smm_available) {
2164 return true;
2165 }
2166
2167 if (pcms->smm == ON_OFF_AUTO_ON) {
2168 error_report("System Management Mode not supported by this hypervisor.");
2169 exit(1);
2170 }
2171 return false;
2172 }
2173
2174 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2175 void *opaque, Error **errp)
2176 {
2177 PCMachineState *pcms = PC_MACHINE(obj);
2178 OnOffAuto smm = pcms->smm;
2179
2180 visit_type_OnOffAuto(v, name, &smm, errp);
2181 }
2182
2183 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2184 void *opaque, Error **errp)
2185 {
2186 PCMachineState *pcms = PC_MACHINE(obj);
2187
2188 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2189 }
2190
2191 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2192 {
2193 PCMachineState *pcms = PC_MACHINE(obj);
2194
2195 return pcms->acpi_nvdimm_state.is_enabled;
2196 }
2197
2198 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2199 {
2200 PCMachineState *pcms = PC_MACHINE(obj);
2201
2202 pcms->acpi_nvdimm_state.is_enabled = value;
2203 }
2204
2205 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2206 {
2207 PCMachineState *pcms = PC_MACHINE(obj);
2208
2209 return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2210 }
2211
2212 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2213 Error **errp)
2214 {
2215 PCMachineState *pcms = PC_MACHINE(obj);
2216 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2217
2218 if (strcmp(value, "cpu") == 0)
2219 nvdimm_state->persistence = 3;
2220 else if (strcmp(value, "mem-ctrl") == 0)
2221 nvdimm_state->persistence = 2;
2222 else {
2223 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2224 value);
2225 return;
2226 }
2227
2228 g_free(nvdimm_state->persistence_string);
2229 nvdimm_state->persistence_string = g_strdup(value);
2230 }
2231
2232 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2233 {
2234 PCMachineState *pcms = PC_MACHINE(obj);
2235
2236 return pcms->smbus_enabled;
2237 }
2238
2239 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2240 {
2241 PCMachineState *pcms = PC_MACHINE(obj);
2242
2243 pcms->smbus_enabled = value;
2244 }
2245
2246 static bool pc_machine_get_sata(Object *obj, Error **errp)
2247 {
2248 PCMachineState *pcms = PC_MACHINE(obj);
2249
2250 return pcms->sata_enabled;
2251 }
2252
2253 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2254 {
2255 PCMachineState *pcms = PC_MACHINE(obj);
2256
2257 pcms->sata_enabled = value;
2258 }
2259
2260 static bool pc_machine_get_pit(Object *obj, Error **errp)
2261 {
2262 PCMachineState *pcms = PC_MACHINE(obj);
2263
2264 return pcms->pit_enabled;
2265 }
2266
2267 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2268 {
2269 PCMachineState *pcms = PC_MACHINE(obj);
2270
2271 pcms->pit_enabled = value;
2272 }
2273
2274 static void pc_machine_initfn(Object *obj)
2275 {
2276 PCMachineState *pcms = PC_MACHINE(obj);
2277
2278 pcms->max_ram_below_4g = 0; /* use default */
2279 pcms->smm = ON_OFF_AUTO_AUTO;
2280 pcms->vmport = ON_OFF_AUTO_AUTO;
2281 /* nvdimm is disabled on default. */
2282 pcms->acpi_nvdimm_state.is_enabled = false;
2283 /* acpi build is enabled by default if machine supports it */
2284 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2285 pcms->smbus_enabled = true;
2286 pcms->sata_enabled = true;
2287 pcms->pit_enabled = true;
2288 }
2289
2290 static void pc_machine_reset(void)
2291 {
2292 CPUState *cs;
2293 X86CPU *cpu;
2294
2295 qemu_devices_reset();
2296
2297 /* Reset APIC after devices have been reset to cancel
2298 * any changes that qemu_devices_reset() might have done.
2299 */
2300 CPU_FOREACH(cs) {
2301 cpu = X86_CPU(cs);
2302
2303 if (cpu->apic_state) {
2304 device_reset(cpu->apic_state);
2305 }
2306 }
2307 }
2308
2309 static CpuInstanceProperties
2310 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2311 {
2312 MachineClass *mc = MACHINE_GET_CLASS(ms);
2313 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2314
2315 assert(cpu_index < possible_cpus->len);
2316 return possible_cpus->cpus[cpu_index].props;
2317 }
2318
2319 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2320 {
2321 X86CPUTopoInfo topo;
2322
2323 assert(idx < ms->possible_cpus->len);
2324 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2325 smp_cores, smp_threads, &topo);
2326 return topo.pkg_id % nb_numa_nodes;
2327 }
2328
2329 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2330 {
2331 int i;
2332
2333 if (ms->possible_cpus) {
2334 /*
2335 * make sure that max_cpus hasn't changed since the first use, i.e.
2336 * -smp hasn't been parsed after it
2337 */
2338 assert(ms->possible_cpus->len == max_cpus);
2339 return ms->possible_cpus;
2340 }
2341
2342 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2343 sizeof(CPUArchId) * max_cpus);
2344 ms->possible_cpus->len = max_cpus;
2345 for (i = 0; i < ms->possible_cpus->len; i++) {
2346 X86CPUTopoInfo topo;
2347
2348 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2349 ms->possible_cpus->cpus[i].vcpus_count = 1;
2350 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2351 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2352 smp_cores, smp_threads, &topo);
2353 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2354 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2355 ms->possible_cpus->cpus[i].props.has_core_id = true;
2356 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2357 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2358 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2359 }
2360 return ms->possible_cpus;
2361 }
2362
2363 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2364 {
2365 /* cpu index isn't used */
2366 CPUState *cs;
2367
2368 CPU_FOREACH(cs) {
2369 X86CPU *cpu = X86_CPU(cs);
2370
2371 if (!cpu->apic_state) {
2372 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2373 } else {
2374 apic_deliver_nmi(cpu->apic_state);
2375 }
2376 }
2377 }
2378
2379 static void pc_machine_class_init(ObjectClass *oc, void *data)
2380 {
2381 MachineClass *mc = MACHINE_CLASS(oc);
2382 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2383 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2384 NMIClass *nc = NMI_CLASS(oc);
2385
2386 pcmc->pci_enabled = true;
2387 pcmc->has_acpi_build = true;
2388 pcmc->rsdp_in_ram = true;
2389 pcmc->smbios_defaults = true;
2390 pcmc->smbios_uuid_encoded = true;
2391 pcmc->gigabyte_align = true;
2392 pcmc->has_reserved_memory = true;
2393 pcmc->kvmclock_enabled = true;
2394 pcmc->enforce_aligned_dimm = true;
2395 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2396 * to be used at the moment, 32K should be enough for a while. */
2397 pcmc->acpi_data_size = 0x20000 + 0x8000;
2398 pcmc->save_tsc_khz = true;
2399 pcmc->linuxboot_dma_enabled = true;
2400 assert(!mc->get_hotplug_handler);
2401 mc->get_hotplug_handler = pc_get_hotpug_handler;
2402 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2403 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2404 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2405 mc->auto_enable_numa_with_memhp = true;
2406 mc->has_hotpluggable_cpus = true;
2407 mc->default_boot_order = "cad";
2408 mc->hot_add_cpu = pc_hot_add_cpu;
2409 mc->block_default_type = IF_IDE;
2410 mc->max_cpus = 255;
2411 mc->reset = pc_machine_reset;
2412 hc->pre_plug = pc_machine_device_pre_plug_cb;
2413 hc->plug = pc_machine_device_plug_cb;
2414 hc->unplug_request = pc_machine_device_unplug_request_cb;
2415 hc->unplug = pc_machine_device_unplug_cb;
2416 nc->nmi_monitor_handler = x86_nmi;
2417 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2418
2419 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2420 pc_machine_get_device_memory_region_size, NULL,
2421 NULL, NULL, &error_abort);
2422
2423 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2424 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2425 NULL, NULL, &error_abort);
2426
2427 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2428 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2429
2430 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2431 pc_machine_get_smm, pc_machine_set_smm,
2432 NULL, NULL, &error_abort);
2433 object_class_property_set_description(oc, PC_MACHINE_SMM,
2434 "Enable SMM (pc & q35)", &error_abort);
2435
2436 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2437 pc_machine_get_vmport, pc_machine_set_vmport,
2438 NULL, NULL, &error_abort);
2439 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2440 "Enable vmport (pc & q35)", &error_abort);
2441
2442 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2443 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2444
2445 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2446 pc_machine_get_nvdimm_persistence,
2447 pc_machine_set_nvdimm_persistence, &error_abort);
2448
2449 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2450 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2451
2452 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2453 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2454
2455 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2456 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2457 }
2458
2459 static const TypeInfo pc_machine_info = {
2460 .name = TYPE_PC_MACHINE,
2461 .parent = TYPE_MACHINE,
2462 .abstract = true,
2463 .instance_size = sizeof(PCMachineState),
2464 .instance_init = pc_machine_initfn,
2465 .class_size = sizeof(PCMachineClass),
2466 .class_init = pc_machine_class_init,
2467 .interfaces = (InterfaceInfo[]) {
2468 { TYPE_HOTPLUG_HANDLER },
2469 { TYPE_NMI },
2470 { }
2471 },
2472 };
2473
2474 static void pc_machine_register_types(void)
2475 {
2476 type_register_static(&pc_machine_info);
2477 }
2478
2479 type_init(pc_machine_register_types)