]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
pc: Remove redundant arguments from *load_linux()
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/pci_bus.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/i386/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "hw/acpi/acpi.h"
61 #include "hw/acpi/cpu_hotplug.h"
62 #include "hw/cpu/icc_bus.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69
70 /* debug PC/ISA interrupts */
71 //#define DEBUG_IRQ
72
73 #ifdef DEBUG_IRQ
74 #define DPRINTF(fmt, ...) \
75 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76 #else
77 #define DPRINTF(fmt, ...)
78 #endif
79
80 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
81 * (128K) and other BIOS datastructures (less than 4K reported to be used at
82 * the moment, 32K should be enough for a while). */
83 static unsigned acpi_data_size = 0x20000 + 0x8000;
84 void pc_set_legacy_acpi_data_size(void)
85 {
86 acpi_data_size = 0x10000;
87 }
88
89 #define BIOS_CFG_IOPORT 0x510
90 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
91 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
92 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
93 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
94 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
95
96 #define E820_NR_ENTRIES 16
97
98 struct e820_entry {
99 uint64_t address;
100 uint64_t length;
101 uint32_t type;
102 } QEMU_PACKED __attribute((__aligned__(4)));
103
104 struct e820_table {
105 uint32_t count;
106 struct e820_entry entry[E820_NR_ENTRIES];
107 } QEMU_PACKED __attribute((__aligned__(4)));
108
109 static struct e820_table e820_reserve;
110 static struct e820_entry *e820_table;
111 static unsigned e820_entries;
112 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
113
114 void gsi_handler(void *opaque, int n, int level)
115 {
116 GSIState *s = opaque;
117
118 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
119 if (n < ISA_NUM_IRQS) {
120 qemu_set_irq(s->i8259_irq[n], level);
121 }
122 qemu_set_irq(s->ioapic_irq[n], level);
123 }
124
125 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
126 unsigned size)
127 {
128 }
129
130 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
131 {
132 return 0xffffffffffffffffULL;
133 }
134
135 /* MSDOS compatibility mode FPU exception support */
136 static qemu_irq ferr_irq;
137
138 void pc_register_ferr_irq(qemu_irq irq)
139 {
140 ferr_irq = irq;
141 }
142
143 /* XXX: add IGNNE support */
144 void cpu_set_ferr(CPUX86State *s)
145 {
146 qemu_irq_raise(ferr_irq);
147 }
148
149 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
150 unsigned size)
151 {
152 qemu_irq_lower(ferr_irq);
153 }
154
155 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
156 {
157 return 0xffffffffffffffffULL;
158 }
159
160 /* TSC handling */
161 uint64_t cpu_get_tsc(CPUX86State *env)
162 {
163 return cpu_get_ticks();
164 }
165
166 /* IRQ handling */
167 int cpu_get_pic_interrupt(CPUX86State *env)
168 {
169 X86CPU *cpu = x86_env_get_cpu(env);
170 int intno;
171
172 intno = apic_get_interrupt(cpu->apic_state);
173 if (intno >= 0) {
174 return intno;
175 }
176 /* read the irq from the PIC */
177 if (!apic_accept_pic_intr(cpu->apic_state)) {
178 return -1;
179 }
180
181 intno = pic_read_irq(isa_pic);
182 return intno;
183 }
184
185 static void pic_irq_request(void *opaque, int irq, int level)
186 {
187 CPUState *cs = first_cpu;
188 X86CPU *cpu = X86_CPU(cs);
189
190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191 if (cpu->apic_state) {
192 CPU_FOREACH(cs) {
193 cpu = X86_CPU(cs);
194 if (apic_accept_pic_intr(cpu->apic_state)) {
195 apic_deliver_pic_intr(cpu->apic_state, level);
196 }
197 }
198 } else {
199 if (level) {
200 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
201 } else {
202 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
203 }
204 }
205 }
206
207 /* PC cmos mappings */
208
209 #define REG_EQUIPMENT_BYTE 0x14
210
211 static int cmos_get_fd_drive_type(FDriveType fd0)
212 {
213 int val;
214
215 switch (fd0) {
216 case FDRIVE_DRV_144:
217 /* 1.44 Mb 3"5 drive */
218 val = 4;
219 break;
220 case FDRIVE_DRV_288:
221 /* 2.88 Mb 3"5 drive */
222 val = 5;
223 break;
224 case FDRIVE_DRV_120:
225 /* 1.2 Mb 5"5 drive */
226 val = 2;
227 break;
228 case FDRIVE_DRV_NONE:
229 default:
230 val = 0;
231 break;
232 }
233 return val;
234 }
235
236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
237 int16_t cylinders, int8_t heads, int8_t sectors)
238 {
239 rtc_set_memory(s, type_ofs, 47);
240 rtc_set_memory(s, info_ofs, cylinders);
241 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
242 rtc_set_memory(s, info_ofs + 2, heads);
243 rtc_set_memory(s, info_ofs + 3, 0xff);
244 rtc_set_memory(s, info_ofs + 4, 0xff);
245 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
246 rtc_set_memory(s, info_ofs + 6, cylinders);
247 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
248 rtc_set_memory(s, info_ofs + 8, sectors);
249 }
250
251 /* convert boot_device letter to something recognizable by the bios */
252 static int boot_device2nibble(char boot_device)
253 {
254 switch(boot_device) {
255 case 'a':
256 case 'b':
257 return 0x01; /* floppy boot */
258 case 'c':
259 return 0x02; /* hard drive boot */
260 case 'd':
261 return 0x03; /* CD-ROM boot */
262 case 'n':
263 return 0x04; /* Network boot */
264 }
265 return 0;
266 }
267
268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
269 {
270 #define PC_MAX_BOOT_DEVICES 3
271 int nbds, bds[3] = { 0, };
272 int i;
273
274 nbds = strlen(boot_device);
275 if (nbds > PC_MAX_BOOT_DEVICES) {
276 error_setg(errp, "Too many boot devices for PC");
277 return;
278 }
279 for (i = 0; i < nbds; i++) {
280 bds[i] = boot_device2nibble(boot_device[i]);
281 if (bds[i] == 0) {
282 error_setg(errp, "Invalid boot device for PC: '%c'",
283 boot_device[i]);
284 return;
285 }
286 }
287 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
288 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
289 }
290
291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
292 {
293 set_boot_dev(opaque, boot_device, errp);
294 }
295
296 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
297 {
298 int val, nb, i;
299 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
300
301 /* floppy type */
302 if (floppy) {
303 for (i = 0; i < 2; i++) {
304 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
305 }
306 }
307 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
308 cmos_get_fd_drive_type(fd_type[1]);
309 rtc_set_memory(rtc_state, 0x10, val);
310
311 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
312 nb = 0;
313 if (fd_type[0] < FDRIVE_DRV_NONE) {
314 nb++;
315 }
316 if (fd_type[1] < FDRIVE_DRV_NONE) {
317 nb++;
318 }
319 switch (nb) {
320 case 0:
321 break;
322 case 1:
323 val |= 0x01; /* 1 drive, ready for boot */
324 break;
325 case 2:
326 val |= 0x41; /* 2 drives, ready for boot */
327 break;
328 }
329 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
330 }
331
332 typedef struct pc_cmos_init_late_arg {
333 ISADevice *rtc_state;
334 BusState *idebus[2];
335 } pc_cmos_init_late_arg;
336
337 typedef struct check_fdc_state {
338 ISADevice *floppy;
339 bool multiple;
340 } CheckFdcState;
341
342 static int check_fdc(Object *obj, void *opaque)
343 {
344 CheckFdcState *state = opaque;
345 Object *fdc;
346 uint32_t iobase;
347 Error *local_err = NULL;
348
349 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
350 if (!fdc) {
351 return 0;
352 }
353
354 iobase = object_property_get_int(obj, "iobase", &local_err);
355 if (local_err || iobase != 0x3f0) {
356 error_free(local_err);
357 return 0;
358 }
359
360 if (state->floppy) {
361 state->multiple = true;
362 } else {
363 state->floppy = ISA_DEVICE(obj);
364 }
365 return 0;
366 }
367
368 static const char * const fdc_container_path[] = {
369 "/unattached", "/peripheral", "/peripheral-anon"
370 };
371
372 static void pc_cmos_init_late(void *opaque)
373 {
374 pc_cmos_init_late_arg *arg = opaque;
375 ISADevice *s = arg->rtc_state;
376 int16_t cylinders;
377 int8_t heads, sectors;
378 int val;
379 int i, trans;
380 Object *container;
381 CheckFdcState state = { 0 };
382
383 val = 0;
384 if (ide_get_geometry(arg->idebus[0], 0,
385 &cylinders, &heads, &sectors) >= 0) {
386 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
387 val |= 0xf0;
388 }
389 if (ide_get_geometry(arg->idebus[0], 1,
390 &cylinders, &heads, &sectors) >= 0) {
391 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
392 val |= 0x0f;
393 }
394 rtc_set_memory(s, 0x12, val);
395
396 val = 0;
397 for (i = 0; i < 4; i++) {
398 /* NOTE: ide_get_geometry() returns the physical
399 geometry. It is always such that: 1 <= sects <= 63, 1
400 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
401 geometry can be different if a translation is done. */
402 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
403 &cylinders, &heads, &sectors) >= 0) {
404 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
405 assert((trans & ~3) == 0);
406 val |= trans << (i * 2);
407 }
408 }
409 rtc_set_memory(s, 0x39, val);
410
411 /*
412 * Locate the FDC at IO address 0x3f0, and configure the CMOS registers
413 * accordingly.
414 */
415 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
416 container = container_get(qdev_get_machine(), fdc_container_path[i]);
417 object_child_foreach(container, check_fdc, &state);
418 }
419
420 if (state.multiple) {
421 error_report("warning: multiple floppy disk controllers with "
422 "iobase=0x3f0 have been found;\n"
423 "the one being picked for CMOS setup might not reflect "
424 "your intent");
425 }
426 pc_cmos_init_floppy(s, state.floppy);
427
428 qemu_unregister_reset(pc_cmos_init_late, opaque);
429 }
430
431 void pc_cmos_init(PCMachineState *pcms,
432 ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
433 const char *boot_device,
434 BusState *idebus0, BusState *idebus1,
435 ISADevice *s)
436 {
437 int val;
438 static pc_cmos_init_late_arg arg;
439 Error *local_err = NULL;
440
441 /* various important CMOS locations needed by PC/Bochs bios */
442
443 /* memory size */
444 /* base memory (first MiB) */
445 val = MIN(ram_size / 1024, 640);
446 rtc_set_memory(s, 0x15, val);
447 rtc_set_memory(s, 0x16, val >> 8);
448 /* extended memory (next 64MiB) */
449 if (ram_size > 1024 * 1024) {
450 val = (ram_size - 1024 * 1024) / 1024;
451 } else {
452 val = 0;
453 }
454 if (val > 65535)
455 val = 65535;
456 rtc_set_memory(s, 0x17, val);
457 rtc_set_memory(s, 0x18, val >> 8);
458 rtc_set_memory(s, 0x30, val);
459 rtc_set_memory(s, 0x31, val >> 8);
460 /* memory between 16MiB and 4GiB */
461 if (ram_size > 16 * 1024 * 1024) {
462 val = (ram_size - 16 * 1024 * 1024) / 65536;
463 } else {
464 val = 0;
465 }
466 if (val > 65535)
467 val = 65535;
468 rtc_set_memory(s, 0x34, val);
469 rtc_set_memory(s, 0x35, val >> 8);
470 /* memory above 4GiB */
471 val = above_4g_mem_size / 65536;
472 rtc_set_memory(s, 0x5b, val);
473 rtc_set_memory(s, 0x5c, val >> 8);
474 rtc_set_memory(s, 0x5d, val >> 16);
475
476 /* set the number of CPU */
477 rtc_set_memory(s, 0x5f, smp_cpus - 1);
478
479 object_property_add_link(OBJECT(pcms), "rtc_state",
480 TYPE_ISA_DEVICE,
481 (Object **)&pcms->rtc,
482 object_property_allow_set_link,
483 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
484 object_property_set_link(OBJECT(pcms), OBJECT(s),
485 "rtc_state", &error_abort);
486
487 set_boot_dev(s, boot_device, &local_err);
488 if (local_err) {
489 error_report_err(local_err);
490 exit(1);
491 }
492
493 val = 0;
494 val |= 0x02; /* FPU is there */
495 val |= 0x04; /* PS/2 mouse installed */
496 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
497
498 /* hard drives and FDC */
499 arg.rtc_state = s;
500 arg.idebus[0] = idebus0;
501 arg.idebus[1] = idebus1;
502 qemu_register_reset(pc_cmos_init_late, &arg);
503 }
504
505 #define TYPE_PORT92 "port92"
506 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
507
508 /* port 92 stuff: could be split off */
509 typedef struct Port92State {
510 ISADevice parent_obj;
511
512 MemoryRegion io;
513 uint8_t outport;
514 qemu_irq *a20_out;
515 } Port92State;
516
517 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
518 unsigned size)
519 {
520 Port92State *s = opaque;
521 int oldval = s->outport;
522
523 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
524 s->outport = val;
525 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
526 if ((val & 1) && !(oldval & 1)) {
527 qemu_system_reset_request();
528 }
529 }
530
531 static uint64_t port92_read(void *opaque, hwaddr addr,
532 unsigned size)
533 {
534 Port92State *s = opaque;
535 uint32_t ret;
536
537 ret = s->outport;
538 DPRINTF("port92: read 0x%02x\n", ret);
539 return ret;
540 }
541
542 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
543 {
544 Port92State *s = PORT92(dev);
545
546 s->a20_out = a20_out;
547 }
548
549 static const VMStateDescription vmstate_port92_isa = {
550 .name = "port92",
551 .version_id = 1,
552 .minimum_version_id = 1,
553 .fields = (VMStateField[]) {
554 VMSTATE_UINT8(outport, Port92State),
555 VMSTATE_END_OF_LIST()
556 }
557 };
558
559 static void port92_reset(DeviceState *d)
560 {
561 Port92State *s = PORT92(d);
562
563 s->outport &= ~1;
564 }
565
566 static const MemoryRegionOps port92_ops = {
567 .read = port92_read,
568 .write = port92_write,
569 .impl = {
570 .min_access_size = 1,
571 .max_access_size = 1,
572 },
573 .endianness = DEVICE_LITTLE_ENDIAN,
574 };
575
576 static void port92_initfn(Object *obj)
577 {
578 Port92State *s = PORT92(obj);
579
580 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
581
582 s->outport = 0;
583 }
584
585 static void port92_realizefn(DeviceState *dev, Error **errp)
586 {
587 ISADevice *isadev = ISA_DEVICE(dev);
588 Port92State *s = PORT92(dev);
589
590 isa_register_ioport(isadev, &s->io, 0x92);
591 }
592
593 static void port92_class_initfn(ObjectClass *klass, void *data)
594 {
595 DeviceClass *dc = DEVICE_CLASS(klass);
596
597 dc->realize = port92_realizefn;
598 dc->reset = port92_reset;
599 dc->vmsd = &vmstate_port92_isa;
600 /*
601 * Reason: unlike ordinary ISA devices, this one needs additional
602 * wiring: its A20 output line needs to be wired up by
603 * port92_init().
604 */
605 dc->cannot_instantiate_with_device_add_yet = true;
606 }
607
608 static const TypeInfo port92_info = {
609 .name = TYPE_PORT92,
610 .parent = TYPE_ISA_DEVICE,
611 .instance_size = sizeof(Port92State),
612 .instance_init = port92_initfn,
613 .class_init = port92_class_initfn,
614 };
615
616 static void port92_register_types(void)
617 {
618 type_register_static(&port92_info);
619 }
620
621 type_init(port92_register_types)
622
623 static void handle_a20_line_change(void *opaque, int irq, int level)
624 {
625 X86CPU *cpu = opaque;
626
627 /* XXX: send to all CPUs ? */
628 /* XXX: add logic to handle multiple A20 line sources */
629 x86_cpu_set_a20(cpu, level);
630 }
631
632 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
633 {
634 int index = le32_to_cpu(e820_reserve.count);
635 struct e820_entry *entry;
636
637 if (type != E820_RAM) {
638 /* old FW_CFG_E820_TABLE entry -- reservations only */
639 if (index >= E820_NR_ENTRIES) {
640 return -EBUSY;
641 }
642 entry = &e820_reserve.entry[index++];
643
644 entry->address = cpu_to_le64(address);
645 entry->length = cpu_to_le64(length);
646 entry->type = cpu_to_le32(type);
647
648 e820_reserve.count = cpu_to_le32(index);
649 }
650
651 /* new "etc/e820" file -- include ram too */
652 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
653 e820_table[e820_entries].address = cpu_to_le64(address);
654 e820_table[e820_entries].length = cpu_to_le64(length);
655 e820_table[e820_entries].type = cpu_to_le32(type);
656 e820_entries++;
657
658 return e820_entries;
659 }
660
661 int e820_get_num_entries(void)
662 {
663 return e820_entries;
664 }
665
666 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
667 {
668 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
669 *address = le64_to_cpu(e820_table[idx].address);
670 *length = le64_to_cpu(e820_table[idx].length);
671 return true;
672 }
673 return false;
674 }
675
676 /* Enables contiguous-apic-ID mode, for compatibility */
677 static bool compat_apic_id_mode;
678
679 void enable_compat_apic_id_mode(void)
680 {
681 compat_apic_id_mode = true;
682 }
683
684 /* Calculates initial APIC ID for a specific CPU index
685 *
686 * Currently we need to be able to calculate the APIC ID from the CPU index
687 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
688 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
689 * all CPUs up to max_cpus.
690 */
691 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
692 {
693 uint32_t correct_id;
694 static bool warned;
695
696 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
697 if (compat_apic_id_mode) {
698 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
699 error_report("APIC IDs set in compatibility mode, "
700 "CPU topology won't match the configuration");
701 warned = true;
702 }
703 return cpu_index;
704 } else {
705 return correct_id;
706 }
707 }
708
709 /* Calculates the limit to CPU APIC ID values
710 *
711 * This function returns the limit for the APIC ID value, so that all
712 * CPU APIC IDs are < pc_apic_id_limit().
713 *
714 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
715 */
716 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
717 {
718 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
719 }
720
721 static FWCfgState *bochs_bios_init(void)
722 {
723 FWCfgState *fw_cfg;
724 uint8_t *smbios_tables, *smbios_anchor;
725 size_t smbios_tables_len, smbios_anchor_len;
726 uint64_t *numa_fw_cfg;
727 int i, j;
728 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
729
730 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
731 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
732 *
733 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
734 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
735 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
736 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
737 * may see".
738 *
739 * So, this means we must not use max_cpus, here, but the maximum possible
740 * APIC ID value, plus one.
741 *
742 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
743 * the APIC ID, not the "CPU index"
744 */
745 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
746 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
747 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
748 acpi_tables, acpi_tables_len);
749 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
750
751 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
752 if (smbios_tables) {
753 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
754 smbios_tables, smbios_tables_len);
755 }
756
757 smbios_get_tables(&smbios_tables, &smbios_tables_len,
758 &smbios_anchor, &smbios_anchor_len);
759 if (smbios_anchor) {
760 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
761 smbios_tables, smbios_tables_len);
762 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
763 smbios_anchor, smbios_anchor_len);
764 }
765
766 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
767 &e820_reserve, sizeof(e820_reserve));
768 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
769 sizeof(struct e820_entry) * e820_entries);
770
771 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
772 /* allocate memory for the NUMA channel: one (64bit) word for the number
773 * of nodes, one word for each VCPU->node and one word for each node to
774 * hold the amount of memory.
775 */
776 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
777 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
778 for (i = 0; i < max_cpus; i++) {
779 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
780 assert(apic_id < apic_id_limit);
781 for (j = 0; j < nb_numa_nodes; j++) {
782 if (test_bit(i, numa_info[j].node_cpu)) {
783 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
784 break;
785 }
786 }
787 }
788 for (i = 0; i < nb_numa_nodes; i++) {
789 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
790 }
791 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
792 (1 + apic_id_limit + nb_numa_nodes) *
793 sizeof(*numa_fw_cfg));
794
795 return fw_cfg;
796 }
797
798 static long get_file_size(FILE *f)
799 {
800 long where, size;
801
802 /* XXX: on Unix systems, using fstat() probably makes more sense */
803
804 where = ftell(f);
805 fseek(f, 0, SEEK_END);
806 size = ftell(f);
807 fseek(f, where, SEEK_SET);
808
809 return size;
810 }
811
812 static void load_linux(PCMachineState *pcms,
813 FWCfgState *fw_cfg)
814 {
815 uint16_t protocol;
816 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
817 uint32_t initrd_max;
818 uint8_t header[8192], *setup, *kernel, *initrd_data;
819 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
820 FILE *f;
821 char *vmode;
822 MachineState *machine = MACHINE(pcms);
823 const char *kernel_filename = machine->kernel_filename;
824 const char *initrd_filename = machine->initrd_filename;
825 const char *kernel_cmdline = machine->kernel_cmdline;
826
827 /* Align to 16 bytes as a paranoia measure */
828 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
829
830 /* load the kernel header */
831 f = fopen(kernel_filename, "rb");
832 if (!f || !(kernel_size = get_file_size(f)) ||
833 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
834 MIN(ARRAY_SIZE(header), kernel_size)) {
835 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
836 kernel_filename, strerror(errno));
837 exit(1);
838 }
839
840 /* kernel protocol version */
841 #if 0
842 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
843 #endif
844 if (ldl_p(header+0x202) == 0x53726448) {
845 protocol = lduw_p(header+0x206);
846 } else {
847 /* This looks like a multiboot kernel. If it is, let's stop
848 treating it like a Linux kernel. */
849 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
850 kernel_cmdline, kernel_size, header)) {
851 return;
852 }
853 protocol = 0;
854 }
855
856 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
857 /* Low kernel */
858 real_addr = 0x90000;
859 cmdline_addr = 0x9a000 - cmdline_size;
860 prot_addr = 0x10000;
861 } else if (protocol < 0x202) {
862 /* High but ancient kernel */
863 real_addr = 0x90000;
864 cmdline_addr = 0x9a000 - cmdline_size;
865 prot_addr = 0x100000;
866 } else {
867 /* High and recent kernel */
868 real_addr = 0x10000;
869 cmdline_addr = 0x20000;
870 prot_addr = 0x100000;
871 }
872
873 #if 0
874 fprintf(stderr,
875 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
876 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
877 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
878 real_addr,
879 cmdline_addr,
880 prot_addr);
881 #endif
882
883 /* highest address for loading the initrd */
884 if (protocol >= 0x203) {
885 initrd_max = ldl_p(header+0x22c);
886 } else {
887 initrd_max = 0x37ffffff;
888 }
889
890 if (initrd_max >= pcms->below_4g_mem_size - acpi_data_size) {
891 initrd_max = pcms->below_4g_mem_size - acpi_data_size - 1;
892 }
893
894 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
895 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
896 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
897
898 if (protocol >= 0x202) {
899 stl_p(header+0x228, cmdline_addr);
900 } else {
901 stw_p(header+0x20, 0xA33F);
902 stw_p(header+0x22, cmdline_addr-real_addr);
903 }
904
905 /* handle vga= parameter */
906 vmode = strstr(kernel_cmdline, "vga=");
907 if (vmode) {
908 unsigned int video_mode;
909 /* skip "vga=" */
910 vmode += 4;
911 if (!strncmp(vmode, "normal", 6)) {
912 video_mode = 0xffff;
913 } else if (!strncmp(vmode, "ext", 3)) {
914 video_mode = 0xfffe;
915 } else if (!strncmp(vmode, "ask", 3)) {
916 video_mode = 0xfffd;
917 } else {
918 video_mode = strtol(vmode, NULL, 0);
919 }
920 stw_p(header+0x1fa, video_mode);
921 }
922
923 /* loader type */
924 /* High nybble = B reserved for QEMU; low nybble is revision number.
925 If this code is substantially changed, you may want to consider
926 incrementing the revision. */
927 if (protocol >= 0x200) {
928 header[0x210] = 0xB0;
929 }
930 /* heap */
931 if (protocol >= 0x201) {
932 header[0x211] |= 0x80; /* CAN_USE_HEAP */
933 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
934 }
935
936 /* load initrd */
937 if (initrd_filename) {
938 if (protocol < 0x200) {
939 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
940 exit(1);
941 }
942
943 initrd_size = get_image_size(initrd_filename);
944 if (initrd_size < 0) {
945 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
946 initrd_filename, strerror(errno));
947 exit(1);
948 }
949
950 initrd_addr = (initrd_max-initrd_size) & ~4095;
951
952 initrd_data = g_malloc(initrd_size);
953 load_image(initrd_filename, initrd_data);
954
955 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
956 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
957 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
958
959 stl_p(header+0x218, initrd_addr);
960 stl_p(header+0x21c, initrd_size);
961 }
962
963 /* load kernel and setup */
964 setup_size = header[0x1f1];
965 if (setup_size == 0) {
966 setup_size = 4;
967 }
968 setup_size = (setup_size+1)*512;
969 kernel_size -= setup_size;
970
971 setup = g_malloc(setup_size);
972 kernel = g_malloc(kernel_size);
973 fseek(f, 0, SEEK_SET);
974 if (fread(setup, 1, setup_size, f) != setup_size) {
975 fprintf(stderr, "fread() failed\n");
976 exit(1);
977 }
978 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
979 fprintf(stderr, "fread() failed\n");
980 exit(1);
981 }
982 fclose(f);
983 memcpy(setup, header, MIN(sizeof(header), setup_size));
984
985 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
986 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
987 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
988
989 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
990 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
991 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
992
993 option_rom[nb_option_roms].name = "linuxboot.bin";
994 option_rom[nb_option_roms].bootindex = 0;
995 nb_option_roms++;
996 }
997
998 #define NE2000_NB_MAX 6
999
1000 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1001 0x280, 0x380 };
1002 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1003
1004 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1005 {
1006 static int nb_ne2k = 0;
1007
1008 if (nb_ne2k == NE2000_NB_MAX)
1009 return;
1010 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1011 ne2000_irq[nb_ne2k], nd);
1012 nb_ne2k++;
1013 }
1014
1015 DeviceState *cpu_get_current_apic(void)
1016 {
1017 if (current_cpu) {
1018 X86CPU *cpu = X86_CPU(current_cpu);
1019 return cpu->apic_state;
1020 } else {
1021 return NULL;
1022 }
1023 }
1024
1025 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1026 {
1027 X86CPU *cpu = opaque;
1028
1029 if (level) {
1030 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1031 }
1032 }
1033
1034 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1035 DeviceState *icc_bridge, Error **errp)
1036 {
1037 X86CPU *cpu = NULL;
1038 Error *local_err = NULL;
1039
1040 if (icc_bridge == NULL) {
1041 error_setg(&local_err, "Invalid icc-bridge value");
1042 goto out;
1043 }
1044
1045 cpu = cpu_x86_create(cpu_model, &local_err);
1046 if (local_err != NULL) {
1047 goto out;
1048 }
1049
1050 qdev_set_parent_bus(DEVICE(cpu), qdev_get_child_bus(icc_bridge, "icc"));
1051
1052 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1053 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1054
1055 out:
1056 if (local_err) {
1057 error_propagate(errp, local_err);
1058 object_unref(OBJECT(cpu));
1059 cpu = NULL;
1060 }
1061 return cpu;
1062 }
1063
1064 static const char *current_cpu_model;
1065
1066 void pc_hot_add_cpu(const int64_t id, Error **errp)
1067 {
1068 DeviceState *icc_bridge;
1069 X86CPU *cpu;
1070 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1071 Error *local_err = NULL;
1072
1073 if (id < 0) {
1074 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1075 return;
1076 }
1077
1078 if (cpu_exists(apic_id)) {
1079 error_setg(errp, "Unable to add CPU: %" PRIi64
1080 ", it already exists", id);
1081 return;
1082 }
1083
1084 if (id >= max_cpus) {
1085 error_setg(errp, "Unable to add CPU: %" PRIi64
1086 ", max allowed: %d", id, max_cpus - 1);
1087 return;
1088 }
1089
1090 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1091 error_setg(errp, "Unable to add CPU: %" PRIi64
1092 ", resulting APIC ID (%" PRIi64 ") is too large",
1093 id, apic_id);
1094 return;
1095 }
1096
1097 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1098 TYPE_ICC_BRIDGE, NULL));
1099 cpu = pc_new_cpu(current_cpu_model, apic_id, icc_bridge, &local_err);
1100 if (local_err) {
1101 error_propagate(errp, local_err);
1102 return;
1103 }
1104 object_unref(OBJECT(cpu));
1105 }
1106
1107 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1108 {
1109 int i;
1110 X86CPU *cpu = NULL;
1111 Error *error = NULL;
1112 unsigned long apic_id_limit;
1113
1114 /* init CPUs */
1115 if (cpu_model == NULL) {
1116 #ifdef TARGET_X86_64
1117 cpu_model = "qemu64";
1118 #else
1119 cpu_model = "qemu32";
1120 #endif
1121 }
1122 current_cpu_model = cpu_model;
1123
1124 apic_id_limit = pc_apic_id_limit(max_cpus);
1125 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1126 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1127 apic_id_limit - 1);
1128 exit(1);
1129 }
1130
1131 for (i = 0; i < smp_cpus; i++) {
1132 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1133 icc_bridge, &error);
1134 if (error) {
1135 error_report_err(error);
1136 exit(1);
1137 }
1138 object_unref(OBJECT(cpu));
1139 }
1140
1141 /* map APIC MMIO area if CPU has APIC */
1142 if (cpu && cpu->apic_state) {
1143 /* XXX: what if the base changes? */
1144 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1145 APIC_DEFAULT_ADDRESS, 0x1000);
1146 }
1147
1148 /* tell smbios about cpuid version and features */
1149 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1150 }
1151
1152 /* pci-info ROM file. Little endian format */
1153 typedef struct PcRomPciInfo {
1154 uint64_t w32_min;
1155 uint64_t w32_max;
1156 uint64_t w64_min;
1157 uint64_t w64_max;
1158 } PcRomPciInfo;
1159
1160 typedef struct PcGuestInfoState {
1161 PcGuestInfo info;
1162 Notifier machine_done;
1163 } PcGuestInfoState;
1164
1165 static
1166 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1167 {
1168 PcGuestInfoState *guest_info_state = container_of(notifier,
1169 PcGuestInfoState,
1170 machine_done);
1171 PCIBus *bus = find_i440fx();
1172
1173 if (bus) {
1174 int extra_hosts = 0;
1175
1176 QLIST_FOREACH(bus, &bus->child, sibling) {
1177 /* look for expander root buses */
1178 if (pci_bus_is_root(bus)) {
1179 extra_hosts++;
1180 }
1181 }
1182 if (extra_hosts && guest_info_state->info.fw_cfg) {
1183 uint64_t *val = g_malloc(sizeof(*val));
1184 *val = cpu_to_le64(extra_hosts);
1185 fw_cfg_add_file(guest_info_state->info.fw_cfg,
1186 "etc/extra-pci-roots", val, sizeof(*val));
1187 }
1188 }
1189
1190 acpi_setup(&guest_info_state->info);
1191 }
1192
1193 PcGuestInfo *pc_guest_info_init(PCMachineState *pcms)
1194 {
1195 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1196 PcGuestInfo *guest_info = &guest_info_state->info;
1197 int i, j;
1198
1199 guest_info->ram_size_below_4g = pcms->below_4g_mem_size;
1200 guest_info->ram_size = pcms->below_4g_mem_size + pcms->above_4g_mem_size;
1201 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1202 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1203 guest_info->numa_nodes = nb_numa_nodes;
1204 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1205 sizeof *guest_info->node_mem);
1206 for (i = 0; i < nb_numa_nodes; i++) {
1207 guest_info->node_mem[i] = numa_info[i].node_mem;
1208 }
1209
1210 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1211 sizeof *guest_info->node_cpu);
1212
1213 for (i = 0; i < max_cpus; i++) {
1214 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1215 assert(apic_id < guest_info->apic_id_limit);
1216 for (j = 0; j < nb_numa_nodes; j++) {
1217 if (test_bit(i, numa_info[j].node_cpu)) {
1218 guest_info->node_cpu[apic_id] = j;
1219 break;
1220 }
1221 }
1222 }
1223
1224 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1225 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1226 return guest_info;
1227 }
1228
1229 /* setup pci memory address space mapping into system address space */
1230 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1231 MemoryRegion *pci_address_space)
1232 {
1233 /* Set to lower priority than RAM */
1234 memory_region_add_subregion_overlap(system_memory, 0x0,
1235 pci_address_space, -1);
1236 }
1237
1238 void pc_acpi_init(const char *default_dsdt)
1239 {
1240 char *filename;
1241
1242 if (acpi_tables != NULL) {
1243 /* manually set via -acpitable, leave it alone */
1244 return;
1245 }
1246
1247 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1248 if (filename == NULL) {
1249 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1250 } else {
1251 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1252 &error_abort);
1253 Error *err = NULL;
1254
1255 qemu_opt_set(opts, "file", filename, &error_abort);
1256
1257 acpi_table_add_builtin(opts, &err);
1258 if (err) {
1259 error_report("WARNING: failed to load %s: %s", filename,
1260 error_get_pretty(err));
1261 error_free(err);
1262 }
1263 g_free(filename);
1264 }
1265 }
1266
1267 FWCfgState *xen_load_linux(PCMachineState *pcms,
1268 PcGuestInfo *guest_info)
1269 {
1270 int i;
1271 FWCfgState *fw_cfg;
1272
1273 assert(MACHINE(pcms)->kernel_filename != NULL);
1274
1275 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1276 rom_set_fw(fw_cfg);
1277
1278 load_linux(pcms, fw_cfg);
1279 for (i = 0; i < nb_option_roms; i++) {
1280 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1281 !strcmp(option_rom[i].name, "multiboot.bin"));
1282 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1283 }
1284 guest_info->fw_cfg = fw_cfg;
1285 return fw_cfg;
1286 }
1287
1288 FWCfgState *pc_memory_init(PCMachineState *pcms,
1289 MemoryRegion *system_memory,
1290 ram_addr_t below_4g_mem_size,
1291 ram_addr_t above_4g_mem_size,
1292 MemoryRegion *rom_memory,
1293 MemoryRegion **ram_memory,
1294 PcGuestInfo *guest_info)
1295 {
1296 int linux_boot, i;
1297 MemoryRegion *ram, *option_rom_mr;
1298 MemoryRegion *ram_below_4g, *ram_above_4g;
1299 FWCfgState *fw_cfg;
1300 MachineState *machine = MACHINE(pcms);
1301
1302 assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1303
1304 linux_boot = (machine->kernel_filename != NULL);
1305
1306 /* Allocate RAM. We allocate it as a single memory region and use
1307 * aliases to address portions of it, mostly for backwards compatibility
1308 * with older qemus that used qemu_ram_alloc().
1309 */
1310 ram = g_malloc(sizeof(*ram));
1311 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1312 machine->ram_size);
1313 *ram_memory = ram;
1314 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1315 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1316 0, below_4g_mem_size);
1317 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1318 e820_add_entry(0, below_4g_mem_size, E820_RAM);
1319 if (above_4g_mem_size > 0) {
1320 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1321 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1322 below_4g_mem_size, above_4g_mem_size);
1323 memory_region_add_subregion(system_memory, 0x100000000ULL,
1324 ram_above_4g);
1325 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1326 }
1327
1328 if (!guest_info->has_reserved_memory &&
1329 (machine->ram_slots ||
1330 (machine->maxram_size > machine->ram_size))) {
1331 MachineClass *mc = MACHINE_GET_CLASS(machine);
1332
1333 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1334 mc->name);
1335 exit(EXIT_FAILURE);
1336 }
1337
1338 /* initialize hotplug memory address space */
1339 if (guest_info->has_reserved_memory &&
1340 (machine->ram_size < machine->maxram_size)) {
1341 ram_addr_t hotplug_mem_size =
1342 machine->maxram_size - machine->ram_size;
1343
1344 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1345 error_report("unsupported amount of memory slots: %"PRIu64,
1346 machine->ram_slots);
1347 exit(EXIT_FAILURE);
1348 }
1349
1350 if (QEMU_ALIGN_UP(machine->maxram_size,
1351 TARGET_PAGE_SIZE) != machine->maxram_size) {
1352 error_report("maximum memory size must by aligned to multiple of "
1353 "%d bytes", TARGET_PAGE_SIZE);
1354 exit(EXIT_FAILURE);
1355 }
1356
1357 pcms->hotplug_memory.base =
1358 ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1359
1360 if (pcms->enforce_aligned_dimm) {
1361 /* size hotplug region assuming 1G page max alignment per slot */
1362 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1363 }
1364
1365 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1366 hotplug_mem_size) {
1367 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1368 machine->maxram_size);
1369 exit(EXIT_FAILURE);
1370 }
1371
1372 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1373 "hotplug-memory", hotplug_mem_size);
1374 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1375 &pcms->hotplug_memory.mr);
1376 }
1377
1378 /* Initialize PC system firmware */
1379 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1380
1381 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1382 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1383 &error_abort);
1384 vmstate_register_ram_global(option_rom_mr);
1385 memory_region_add_subregion_overlap(rom_memory,
1386 PC_ROM_MIN_VGA,
1387 option_rom_mr,
1388 1);
1389
1390 fw_cfg = bochs_bios_init();
1391 rom_set_fw(fw_cfg);
1392
1393 if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1394 uint64_t *val = g_malloc(sizeof(*val));
1395 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory.base, 0x1ULL << 30));
1396 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1397 }
1398
1399 if (linux_boot) {
1400 load_linux(pcms, fw_cfg);
1401 }
1402
1403 for (i = 0; i < nb_option_roms; i++) {
1404 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1405 }
1406 guest_info->fw_cfg = fw_cfg;
1407 return fw_cfg;
1408 }
1409
1410 qemu_irq pc_allocate_cpu_irq(void)
1411 {
1412 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1413 }
1414
1415 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1416 {
1417 DeviceState *dev = NULL;
1418
1419 if (pci_bus) {
1420 PCIDevice *pcidev = pci_vga_init(pci_bus);
1421 dev = pcidev ? &pcidev->qdev : NULL;
1422 } else if (isa_bus) {
1423 ISADevice *isadev = isa_vga_init(isa_bus);
1424 dev = isadev ? DEVICE(isadev) : NULL;
1425 }
1426 return dev;
1427 }
1428
1429 static void cpu_request_exit(void *opaque, int irq, int level)
1430 {
1431 CPUState *cpu = current_cpu;
1432
1433 if (cpu && level) {
1434 cpu_exit(cpu);
1435 }
1436 }
1437
1438 static const MemoryRegionOps ioport80_io_ops = {
1439 .write = ioport80_write,
1440 .read = ioport80_read,
1441 .endianness = DEVICE_NATIVE_ENDIAN,
1442 .impl = {
1443 .min_access_size = 1,
1444 .max_access_size = 1,
1445 },
1446 };
1447
1448 static const MemoryRegionOps ioportF0_io_ops = {
1449 .write = ioportF0_write,
1450 .read = ioportF0_read,
1451 .endianness = DEVICE_NATIVE_ENDIAN,
1452 .impl = {
1453 .min_access_size = 1,
1454 .max_access_size = 1,
1455 },
1456 };
1457
1458 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1459 ISADevice **rtc_state,
1460 bool create_fdctrl,
1461 bool no_vmport,
1462 uint32 hpet_irqs)
1463 {
1464 int i;
1465 DriveInfo *fd[MAX_FD];
1466 DeviceState *hpet = NULL;
1467 int pit_isa_irq = 0;
1468 qemu_irq pit_alt_irq = NULL;
1469 qemu_irq rtc_irq = NULL;
1470 qemu_irq *a20_line;
1471 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1472 qemu_irq *cpu_exit_irq;
1473 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1474 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1475
1476 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1477 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1478
1479 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1480 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1481
1482 /*
1483 * Check if an HPET shall be created.
1484 *
1485 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1486 * when the HPET wants to take over. Thus we have to disable the latter.
1487 */
1488 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1489 /* In order to set property, here not using sysbus_try_create_simple */
1490 hpet = qdev_try_create(NULL, TYPE_HPET);
1491 if (hpet) {
1492 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1493 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1494 * IRQ8 and IRQ2.
1495 */
1496 uint8_t compat = object_property_get_int(OBJECT(hpet),
1497 HPET_INTCAP, NULL);
1498 if (!compat) {
1499 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1500 }
1501 qdev_init_nofail(hpet);
1502 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1503
1504 for (i = 0; i < GSI_NUM_PINS; i++) {
1505 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1506 }
1507 pit_isa_irq = -1;
1508 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1509 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1510 }
1511 }
1512 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1513
1514 qemu_register_boot_set(pc_boot_set, *rtc_state);
1515
1516 if (!xen_enabled()) {
1517 if (kvm_irqchip_in_kernel()) {
1518 pit = kvm_pit_init(isa_bus, 0x40);
1519 } else {
1520 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1521 }
1522 if (hpet) {
1523 /* connect PIT to output control line of the HPET */
1524 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1525 }
1526 pcspk_init(isa_bus, pit);
1527 }
1528
1529 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1530 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1531
1532 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1533 i8042 = isa_create_simple(isa_bus, "i8042");
1534 i8042_setup_a20_line(i8042, &a20_line[0]);
1535 if (!no_vmport) {
1536 vmport_init(isa_bus);
1537 vmmouse = isa_try_create(isa_bus, "vmmouse");
1538 } else {
1539 vmmouse = NULL;
1540 }
1541 if (vmmouse) {
1542 DeviceState *dev = DEVICE(vmmouse);
1543 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1544 qdev_init_nofail(dev);
1545 }
1546 port92 = isa_create_simple(isa_bus, "port92");
1547 port92_init(port92, &a20_line[1]);
1548
1549 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1550 DMA_init(0, cpu_exit_irq);
1551
1552 for(i = 0; i < MAX_FD; i++) {
1553 fd[i] = drive_get(IF_FLOPPY, 0, i);
1554 create_fdctrl |= !!fd[i];
1555 }
1556 if (create_fdctrl) {
1557 fdctrl_init_isa(isa_bus, fd);
1558 }
1559 }
1560
1561 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1562 {
1563 int i;
1564
1565 for (i = 0; i < nb_nics; i++) {
1566 NICInfo *nd = &nd_table[i];
1567
1568 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1569 pc_init_ne2k_isa(isa_bus, nd);
1570 } else {
1571 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1572 }
1573 }
1574 }
1575
1576 void pc_pci_device_init(PCIBus *pci_bus)
1577 {
1578 int max_bus;
1579 int bus;
1580
1581 max_bus = drive_get_max_bus(IF_SCSI);
1582 for (bus = 0; bus <= max_bus; bus++) {
1583 pci_create_simple(pci_bus, -1, "lsi53c895a");
1584 }
1585 }
1586
1587 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1588 {
1589 DeviceState *dev;
1590 SysBusDevice *d;
1591 unsigned int i;
1592
1593 if (kvm_irqchip_in_kernel()) {
1594 dev = qdev_create(NULL, "kvm-ioapic");
1595 } else {
1596 dev = qdev_create(NULL, "ioapic");
1597 }
1598 if (parent_name) {
1599 object_property_add_child(object_resolve_path(parent_name, NULL),
1600 "ioapic", OBJECT(dev), NULL);
1601 }
1602 qdev_init_nofail(dev);
1603 d = SYS_BUS_DEVICE(dev);
1604 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1605
1606 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1607 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1608 }
1609 }
1610
1611 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1612 DeviceState *dev, Error **errp)
1613 {
1614 HotplugHandlerClass *hhc;
1615 Error *local_err = NULL;
1616 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1617 PCDIMMDevice *dimm = PC_DIMM(dev);
1618 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1619 MemoryRegion *mr = ddc->get_memory_region(dimm);
1620 uint64_t align = TARGET_PAGE_SIZE;
1621
1622 if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1623 align = memory_region_get_alignment(mr);
1624 }
1625
1626 if (!pcms->acpi_dev) {
1627 error_setg(&local_err,
1628 "memory hotplug is not enabled: missing acpi device");
1629 goto out;
1630 }
1631
1632 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1633 if (local_err) {
1634 goto out;
1635 }
1636
1637 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1638 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1639 out:
1640 error_propagate(errp, local_err);
1641 }
1642
1643 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1644 DeviceState *dev, Error **errp)
1645 {
1646 HotplugHandlerClass *hhc;
1647 Error *local_err = NULL;
1648 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1649
1650 if (!pcms->acpi_dev) {
1651 error_setg(&local_err,
1652 "memory hotplug is not enabled: missing acpi device");
1653 goto out;
1654 }
1655
1656 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1657 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1658
1659 out:
1660 error_propagate(errp, local_err);
1661 }
1662
1663 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1664 DeviceState *dev, Error **errp)
1665 {
1666 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1667 PCDIMMDevice *dimm = PC_DIMM(dev);
1668 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1669 MemoryRegion *mr = ddc->get_memory_region(dimm);
1670 HotplugHandlerClass *hhc;
1671 Error *local_err = NULL;
1672
1673 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1674 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1675
1676 if (local_err) {
1677 goto out;
1678 }
1679
1680 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1681 object_unparent(OBJECT(dev));
1682
1683 out:
1684 error_propagate(errp, local_err);
1685 }
1686
1687 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1688 DeviceState *dev, Error **errp)
1689 {
1690 HotplugHandlerClass *hhc;
1691 Error *local_err = NULL;
1692 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1693
1694 if (!dev->hotplugged) {
1695 goto out;
1696 }
1697
1698 if (!pcms->acpi_dev) {
1699 error_setg(&local_err,
1700 "cpu hotplug is not enabled: missing acpi device");
1701 goto out;
1702 }
1703
1704 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1705 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1706 if (local_err) {
1707 goto out;
1708 }
1709
1710 /* increment the number of CPUs */
1711 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1712 out:
1713 error_propagate(errp, local_err);
1714 }
1715
1716 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1717 DeviceState *dev, Error **errp)
1718 {
1719 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1720 pc_dimm_plug(hotplug_dev, dev, errp);
1721 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1722 pc_cpu_plug(hotplug_dev, dev, errp);
1723 }
1724 }
1725
1726 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1727 DeviceState *dev, Error **errp)
1728 {
1729 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1730 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1731 } else {
1732 error_setg(errp, "acpi: device unplug request for not supported device"
1733 " type: %s", object_get_typename(OBJECT(dev)));
1734 }
1735 }
1736
1737 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1738 DeviceState *dev, Error **errp)
1739 {
1740 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1741 pc_dimm_unplug(hotplug_dev, dev, errp);
1742 } else {
1743 error_setg(errp, "acpi: device unplug for not supported device"
1744 " type: %s", object_get_typename(OBJECT(dev)));
1745 }
1746 }
1747
1748 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1749 DeviceState *dev)
1750 {
1751 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1752
1753 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1754 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1755 return HOTPLUG_HANDLER(machine);
1756 }
1757
1758 return pcmc->get_hotplug_handler ?
1759 pcmc->get_hotplug_handler(machine, dev) : NULL;
1760 }
1761
1762 static void
1763 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1764 const char *name, Error **errp)
1765 {
1766 PCMachineState *pcms = PC_MACHINE(obj);
1767 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1768
1769 visit_type_int(v, &value, name, errp);
1770 }
1771
1772 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1773 void *opaque, const char *name,
1774 Error **errp)
1775 {
1776 PCMachineState *pcms = PC_MACHINE(obj);
1777 uint64_t value = pcms->max_ram_below_4g;
1778
1779 visit_type_size(v, &value, name, errp);
1780 }
1781
1782 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1783 void *opaque, const char *name,
1784 Error **errp)
1785 {
1786 PCMachineState *pcms = PC_MACHINE(obj);
1787 Error *error = NULL;
1788 uint64_t value;
1789
1790 visit_type_size(v, &value, name, &error);
1791 if (error) {
1792 error_propagate(errp, error);
1793 return;
1794 }
1795 if (value > (1ULL << 32)) {
1796 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1797 "Machine option 'max-ram-below-4g=%"PRIu64
1798 "' expects size less than or equal to 4G", value);
1799 error_propagate(errp, error);
1800 return;
1801 }
1802
1803 if (value < (1ULL << 20)) {
1804 error_report("Warning: small max_ram_below_4g(%"PRIu64
1805 ") less than 1M. BIOS may not work..",
1806 value);
1807 }
1808
1809 pcms->max_ram_below_4g = value;
1810 }
1811
1812 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1813 const char *name, Error **errp)
1814 {
1815 PCMachineState *pcms = PC_MACHINE(obj);
1816 OnOffAuto vmport = pcms->vmport;
1817
1818 visit_type_OnOffAuto(v, &vmport, name, errp);
1819 }
1820
1821 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1822 const char *name, Error **errp)
1823 {
1824 PCMachineState *pcms = PC_MACHINE(obj);
1825
1826 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1827 }
1828
1829 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1830 {
1831 bool smm_available = false;
1832
1833 if (pcms->smm == ON_OFF_AUTO_OFF) {
1834 return false;
1835 }
1836
1837 if (tcg_enabled() || qtest_enabled()) {
1838 smm_available = true;
1839 } else if (kvm_enabled()) {
1840 smm_available = kvm_has_smm();
1841 }
1842
1843 if (smm_available) {
1844 return true;
1845 }
1846
1847 if (pcms->smm == ON_OFF_AUTO_ON) {
1848 error_report("System Management Mode not supported by this hypervisor.");
1849 exit(1);
1850 }
1851 return false;
1852 }
1853
1854 static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
1855 const char *name, Error **errp)
1856 {
1857 PCMachineState *pcms = PC_MACHINE(obj);
1858 OnOffAuto smm = pcms->smm;
1859
1860 visit_type_OnOffAuto(v, &smm, name, errp);
1861 }
1862
1863 static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
1864 const char *name, Error **errp)
1865 {
1866 PCMachineState *pcms = PC_MACHINE(obj);
1867
1868 visit_type_OnOffAuto(v, &pcms->smm, name, errp);
1869 }
1870
1871 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1872 {
1873 PCMachineState *pcms = PC_MACHINE(obj);
1874
1875 return pcms->enforce_aligned_dimm;
1876 }
1877
1878 static void pc_machine_initfn(Object *obj)
1879 {
1880 PCMachineState *pcms = PC_MACHINE(obj);
1881
1882 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1883 pc_machine_get_hotplug_memory_region_size,
1884 NULL, NULL, NULL, &error_abort);
1885
1886 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1887 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1888 pc_machine_get_max_ram_below_4g,
1889 pc_machine_set_max_ram_below_4g,
1890 NULL, NULL, &error_abort);
1891 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1892 "Maximum ram below the 4G boundary (32bit boundary)",
1893 &error_abort);
1894
1895 pcms->smm = ON_OFF_AUTO_AUTO;
1896 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1897 pc_machine_get_smm,
1898 pc_machine_set_smm,
1899 NULL, NULL, &error_abort);
1900 object_property_set_description(obj, PC_MACHINE_SMM,
1901 "Enable SMM (pc & q35)",
1902 &error_abort);
1903
1904 pcms->vmport = ON_OFF_AUTO_AUTO;
1905 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1906 pc_machine_get_vmport,
1907 pc_machine_set_vmport,
1908 NULL, NULL, &error_abort);
1909 object_property_set_description(obj, PC_MACHINE_VMPORT,
1910 "Enable vmport (pc & q35)",
1911 &error_abort);
1912
1913 pcms->enforce_aligned_dimm = true;
1914 object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1915 pc_machine_get_aligned_dimm,
1916 NULL, &error_abort);
1917 }
1918
1919 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1920 {
1921 unsigned pkg_id, core_id, smt_id;
1922 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1923 &pkg_id, &core_id, &smt_id);
1924 return pkg_id;
1925 }
1926
1927 static void pc_machine_class_init(ObjectClass *oc, void *data)
1928 {
1929 MachineClass *mc = MACHINE_CLASS(oc);
1930 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1931 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1932
1933 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1934 mc->get_hotplug_handler = pc_get_hotpug_handler;
1935 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1936 mc->default_boot_order = "cad";
1937 mc->hot_add_cpu = pc_hot_add_cpu;
1938 mc->max_cpus = 255;
1939 hc->plug = pc_machine_device_plug_cb;
1940 hc->unplug_request = pc_machine_device_unplug_request_cb;
1941 hc->unplug = pc_machine_device_unplug_cb;
1942 }
1943
1944 static const TypeInfo pc_machine_info = {
1945 .name = TYPE_PC_MACHINE,
1946 .parent = TYPE_MACHINE,
1947 .abstract = true,
1948 .instance_size = sizeof(PCMachineState),
1949 .instance_init = pc_machine_initfn,
1950 .class_size = sizeof(PCMachineClass),
1951 .class_init = pc_machine_class_init,
1952 .interfaces = (InterfaceInfo[]) {
1953 { TYPE_HOTPLUG_HANDLER },
1954 { }
1955 },
1956 };
1957
1958 static void pc_machine_register_types(void)
1959 {
1960 type_register_static(&pc_machine_info);
1961 }
1962
1963 type_init(pc_machine_register_types)