]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
Merge remote-tracking branch 'remotes/ehabkost/tags/machine-next-pull-request' into...
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/usb.h"
76 #include "hw/i386/intel_iommu.h"
77 #include "hw/net/ne2000-isa.h"
78
79 /* debug PC/ISA interrupts */
80 //#define DEBUG_IRQ
81
82 #ifdef DEBUG_IRQ
83 #define DPRINTF(fmt, ...) \
84 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
85 #else
86 #define DPRINTF(fmt, ...)
87 #endif
88
89 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
90 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
91 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
92 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
93 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
94
95 #define E820_NR_ENTRIES 16
96
97 struct e820_entry {
98 uint64_t address;
99 uint64_t length;
100 uint32_t type;
101 } QEMU_PACKED __attribute((__aligned__(4)));
102
103 struct e820_table {
104 uint32_t count;
105 struct e820_entry entry[E820_NR_ENTRIES];
106 } QEMU_PACKED __attribute((__aligned__(4)));
107
108 static struct e820_table e820_reserve;
109 static struct e820_entry *e820_table;
110 static unsigned e820_entries;
111 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
112
113 GlobalProperty pc_compat_3_1[] = {
114 { "intel-iommu", "dma-drain", "off" },
115 };
116 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
117
118 GlobalProperty pc_compat_3_0[] = {
119 { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
120 { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
121 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
122 };
123 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
124
125 GlobalProperty pc_compat_2_12[] = {
126 { TYPE_X86_CPU, "legacy-cache", "on" },
127 { TYPE_X86_CPU, "topoext", "off" },
128 { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
129 { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
130 };
131 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
132
133 GlobalProperty pc_compat_2_11[] = {
134 { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
135 { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
136 };
137 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
138
139 GlobalProperty pc_compat_2_10[] = {
140 { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
141 { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
142 { "q35-pcihost", "x-pci-hole64-fix", "off" },
143 };
144 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
145
146 GlobalProperty pc_compat_2_9[] = {
147 { "mch", "extended-tseg-mbytes", "0" },
148 };
149 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
150
151 GlobalProperty pc_compat_2_8[] = {
152 { TYPE_X86_CPU, "tcg-cpuid", "off" },
153 { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
154 { "ICH9-LPC", "x-smi-broadcast", "off" },
155 { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
156 { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
157 };
158 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
159
160 GlobalProperty pc_compat_2_7[] = {
161 { TYPE_X86_CPU, "l3-cache", "off" },
162 { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
163 { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
164 { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
165 { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
166 { "isa-pcspk", "migrate", "off" },
167 };
168 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
169
170 GlobalProperty pc_compat_2_6[] = {
171 { TYPE_X86_CPU, "cpuid-0xb", "off" },
172 { "vmxnet3", "romfile", "" },
173 { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
174 { "apic-common", "legacy-instance-id", "on", }
175 };
176 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
177
178 GlobalProperty pc_compat_2_5[] = {};
179 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
180
181 GlobalProperty pc_compat_2_4[] = {
182 PC_CPU_MODEL_IDS("2.4.0")
183 { "Haswell-" TYPE_X86_CPU, "abm", "off" },
184 { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
185 { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
186 { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
187 { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
188 { TYPE_X86_CPU, "check", "off" },
189 { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
190 { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
191 { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
192 { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
193 { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
194 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
195 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
196 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
197 };
198 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
199
200 GlobalProperty pc_compat_2_3[] = {
201 PC_CPU_MODEL_IDS("2.3.0")
202 { TYPE_X86_CPU, "arat", "off" },
203 { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
204 { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
205 { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
206 { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
207 { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
208 { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
209 { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
210 { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
211 { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
212 { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
213 { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
214 { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
215 { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
216 { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
217 { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
218 { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
219 { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
220 { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
221 { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
222 };
223 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
224
225 GlobalProperty pc_compat_2_2[] = {
226 PC_CPU_MODEL_IDS("2.2.0")
227 { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
228 { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
229 { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
230 { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
231 { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
232 { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
233 { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
234 { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
235 { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
236 { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
237 { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
238 { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
239 { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
240 { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
241 { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
242 { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
243 { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
244 { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
245 };
246 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
247
248 GlobalProperty pc_compat_2_1[] = {
249 PC_CPU_MODEL_IDS("2.1.0")
250 { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
251 { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
252 };
253 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
254
255 GlobalProperty pc_compat_2_0[] = {
256 PC_CPU_MODEL_IDS("2.0.0")
257 { "virtio-scsi-pci", "any_layout", "off" },
258 { "PIIX4_PM", "memory-hotplug-support", "off" },
259 { "apic", "version", "0x11" },
260 { "nec-usb-xhci", "superspeed-ports-first", "off" },
261 { "nec-usb-xhci", "force-pcie-endcap", "on" },
262 { "pci-serial", "prog_if", "0" },
263 { "pci-serial-2x", "prog_if", "0" },
264 { "pci-serial-4x", "prog_if", "0" },
265 { "virtio-net-pci", "guest_announce", "off" },
266 { "ICH9-LPC", "memory-hotplug-support", "off" },
267 { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
268 { "ioh3420", COMPAT_PROP_PCP, "off" },
269 };
270 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
271
272 GlobalProperty pc_compat_1_7[] = {
273 PC_CPU_MODEL_IDS("1.7.0")
274 { TYPE_USB_DEVICE, "msos-desc", "no" },
275 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
276 { "hpet", HPET_INTCAP, "4" },
277 };
278 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
279
280 GlobalProperty pc_compat_1_6[] = {
281 PC_CPU_MODEL_IDS("1.6.0")
282 { "e1000", "mitigation", "off" },
283 { "qemu64-" TYPE_X86_CPU, "model", "2" },
284 { "qemu32-" TYPE_X86_CPU, "model", "3" },
285 { "i440FX-pcihost", "short_root_bus", "1" },
286 { "q35-pcihost", "short_root_bus", "1" },
287 };
288 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
289
290 GlobalProperty pc_compat_1_5[] = {
291 PC_CPU_MODEL_IDS("1.5.0")
292 { "Conroe-" TYPE_X86_CPU, "model", "2" },
293 { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
294 { "Penryn-" TYPE_X86_CPU, "model", "2" },
295 { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
296 { "Nehalem-" TYPE_X86_CPU, "model", "2" },
297 { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
298 { "virtio-net-pci", "any_layout", "off" },
299 { TYPE_X86_CPU, "pmu", "on" },
300 { "i440FX-pcihost", "short_root_bus", "0" },
301 { "q35-pcihost", "short_root_bus", "0" },
302 };
303 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
304
305 GlobalProperty pc_compat_1_4[] = {
306 PC_CPU_MODEL_IDS("1.4.0")
307 { "scsi-hd", "discard_granularity", "0" },
308 { "scsi-cd", "discard_granularity", "0" },
309 { "scsi-disk", "discard_granularity", "0" },
310 { "ide-hd", "discard_granularity", "0" },
311 { "ide-cd", "discard_granularity", "0" },
312 { "ide-drive", "discard_granularity", "0" },
313 { "virtio-blk-pci", "discard_granularity", "0" },
314 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
315 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
316 { "virtio-net-pci", "ctrl_guest_offloads", "off" },
317 { "e1000", "romfile", "pxe-e1000.rom" },
318 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
319 { "pcnet", "romfile", "pxe-pcnet.rom" },
320 { "rtl8139", "romfile", "pxe-rtl8139.rom" },
321 { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
322 { "486-" TYPE_X86_CPU, "model", "0" },
323 { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
324 { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
325 };
326 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
327
328 void gsi_handler(void *opaque, int n, int level)
329 {
330 GSIState *s = opaque;
331
332 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
333 if (n < ISA_NUM_IRQS) {
334 qemu_set_irq(s->i8259_irq[n], level);
335 }
336 qemu_set_irq(s->ioapic_irq[n], level);
337 }
338
339 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
340 unsigned size)
341 {
342 }
343
344 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
345 {
346 return 0xffffffffffffffffULL;
347 }
348
349 /* MSDOS compatibility mode FPU exception support */
350 static qemu_irq ferr_irq;
351
352 void pc_register_ferr_irq(qemu_irq irq)
353 {
354 ferr_irq = irq;
355 }
356
357 /* XXX: add IGNNE support */
358 void cpu_set_ferr(CPUX86State *s)
359 {
360 qemu_irq_raise(ferr_irq);
361 }
362
363 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
364 unsigned size)
365 {
366 qemu_irq_lower(ferr_irq);
367 }
368
369 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
370 {
371 return 0xffffffffffffffffULL;
372 }
373
374 /* TSC handling */
375 uint64_t cpu_get_tsc(CPUX86State *env)
376 {
377 return cpu_get_ticks();
378 }
379
380 /* IRQ handling */
381 int cpu_get_pic_interrupt(CPUX86State *env)
382 {
383 X86CPU *cpu = x86_env_get_cpu(env);
384 int intno;
385
386 if (!kvm_irqchip_in_kernel()) {
387 intno = apic_get_interrupt(cpu->apic_state);
388 if (intno >= 0) {
389 return intno;
390 }
391 /* read the irq from the PIC */
392 if (!apic_accept_pic_intr(cpu->apic_state)) {
393 return -1;
394 }
395 }
396
397 intno = pic_read_irq(isa_pic);
398 return intno;
399 }
400
401 static void pic_irq_request(void *opaque, int irq, int level)
402 {
403 CPUState *cs = first_cpu;
404 X86CPU *cpu = X86_CPU(cs);
405
406 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
407 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
408 CPU_FOREACH(cs) {
409 cpu = X86_CPU(cs);
410 if (apic_accept_pic_intr(cpu->apic_state)) {
411 apic_deliver_pic_intr(cpu->apic_state, level);
412 }
413 }
414 } else {
415 if (level) {
416 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
417 } else {
418 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
419 }
420 }
421 }
422
423 /* PC cmos mappings */
424
425 #define REG_EQUIPMENT_BYTE 0x14
426
427 int cmos_get_fd_drive_type(FloppyDriveType fd0)
428 {
429 int val;
430
431 switch (fd0) {
432 case FLOPPY_DRIVE_TYPE_144:
433 /* 1.44 Mb 3"5 drive */
434 val = 4;
435 break;
436 case FLOPPY_DRIVE_TYPE_288:
437 /* 2.88 Mb 3"5 drive */
438 val = 5;
439 break;
440 case FLOPPY_DRIVE_TYPE_120:
441 /* 1.2 Mb 5"5 drive */
442 val = 2;
443 break;
444 case FLOPPY_DRIVE_TYPE_NONE:
445 default:
446 val = 0;
447 break;
448 }
449 return val;
450 }
451
452 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
453 int16_t cylinders, int8_t heads, int8_t sectors)
454 {
455 rtc_set_memory(s, type_ofs, 47);
456 rtc_set_memory(s, info_ofs, cylinders);
457 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
458 rtc_set_memory(s, info_ofs + 2, heads);
459 rtc_set_memory(s, info_ofs + 3, 0xff);
460 rtc_set_memory(s, info_ofs + 4, 0xff);
461 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
462 rtc_set_memory(s, info_ofs + 6, cylinders);
463 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
464 rtc_set_memory(s, info_ofs + 8, sectors);
465 }
466
467 /* convert boot_device letter to something recognizable by the bios */
468 static int boot_device2nibble(char boot_device)
469 {
470 switch(boot_device) {
471 case 'a':
472 case 'b':
473 return 0x01; /* floppy boot */
474 case 'c':
475 return 0x02; /* hard drive boot */
476 case 'd':
477 return 0x03; /* CD-ROM boot */
478 case 'n':
479 return 0x04; /* Network boot */
480 }
481 return 0;
482 }
483
484 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
485 {
486 #define PC_MAX_BOOT_DEVICES 3
487 int nbds, bds[3] = { 0, };
488 int i;
489
490 nbds = strlen(boot_device);
491 if (nbds > PC_MAX_BOOT_DEVICES) {
492 error_setg(errp, "Too many boot devices for PC");
493 return;
494 }
495 for (i = 0; i < nbds; i++) {
496 bds[i] = boot_device2nibble(boot_device[i]);
497 if (bds[i] == 0) {
498 error_setg(errp, "Invalid boot device for PC: '%c'",
499 boot_device[i]);
500 return;
501 }
502 }
503 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
504 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
505 }
506
507 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
508 {
509 set_boot_dev(opaque, boot_device, errp);
510 }
511
512 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
513 {
514 int val, nb, i;
515 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
516 FLOPPY_DRIVE_TYPE_NONE };
517
518 /* floppy type */
519 if (floppy) {
520 for (i = 0; i < 2; i++) {
521 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
522 }
523 }
524 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
525 cmos_get_fd_drive_type(fd_type[1]);
526 rtc_set_memory(rtc_state, 0x10, val);
527
528 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
529 nb = 0;
530 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
531 nb++;
532 }
533 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
534 nb++;
535 }
536 switch (nb) {
537 case 0:
538 break;
539 case 1:
540 val |= 0x01; /* 1 drive, ready for boot */
541 break;
542 case 2:
543 val |= 0x41; /* 2 drives, ready for boot */
544 break;
545 }
546 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
547 }
548
549 typedef struct pc_cmos_init_late_arg {
550 ISADevice *rtc_state;
551 BusState *idebus[2];
552 } pc_cmos_init_late_arg;
553
554 typedef struct check_fdc_state {
555 ISADevice *floppy;
556 bool multiple;
557 } CheckFdcState;
558
559 static int check_fdc(Object *obj, void *opaque)
560 {
561 CheckFdcState *state = opaque;
562 Object *fdc;
563 uint32_t iobase;
564 Error *local_err = NULL;
565
566 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
567 if (!fdc) {
568 return 0;
569 }
570
571 iobase = object_property_get_uint(obj, "iobase", &local_err);
572 if (local_err || iobase != 0x3f0) {
573 error_free(local_err);
574 return 0;
575 }
576
577 if (state->floppy) {
578 state->multiple = true;
579 } else {
580 state->floppy = ISA_DEVICE(obj);
581 }
582 return 0;
583 }
584
585 static const char * const fdc_container_path[] = {
586 "/unattached", "/peripheral", "/peripheral-anon"
587 };
588
589 /*
590 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
591 * and ACPI objects.
592 */
593 ISADevice *pc_find_fdc0(void)
594 {
595 int i;
596 Object *container;
597 CheckFdcState state = { 0 };
598
599 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
600 container = container_get(qdev_get_machine(), fdc_container_path[i]);
601 object_child_foreach(container, check_fdc, &state);
602 }
603
604 if (state.multiple) {
605 warn_report("multiple floppy disk controllers with "
606 "iobase=0x3f0 have been found");
607 error_printf("the one being picked for CMOS setup might not reflect "
608 "your intent");
609 }
610
611 return state.floppy;
612 }
613
614 static void pc_cmos_init_late(void *opaque)
615 {
616 pc_cmos_init_late_arg *arg = opaque;
617 ISADevice *s = arg->rtc_state;
618 int16_t cylinders;
619 int8_t heads, sectors;
620 int val;
621 int i, trans;
622
623 val = 0;
624 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
625 &cylinders, &heads, &sectors) >= 0) {
626 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
627 val |= 0xf0;
628 }
629 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
630 &cylinders, &heads, &sectors) >= 0) {
631 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
632 val |= 0x0f;
633 }
634 rtc_set_memory(s, 0x12, val);
635
636 val = 0;
637 for (i = 0; i < 4; i++) {
638 /* NOTE: ide_get_geometry() returns the physical
639 geometry. It is always such that: 1 <= sects <= 63, 1
640 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
641 geometry can be different if a translation is done. */
642 if (arg->idebus[i / 2] &&
643 ide_get_geometry(arg->idebus[i / 2], i % 2,
644 &cylinders, &heads, &sectors) >= 0) {
645 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
646 assert((trans & ~3) == 0);
647 val |= trans << (i * 2);
648 }
649 }
650 rtc_set_memory(s, 0x39, val);
651
652 pc_cmos_init_floppy(s, pc_find_fdc0());
653
654 qemu_unregister_reset(pc_cmos_init_late, opaque);
655 }
656
657 void pc_cmos_init(PCMachineState *pcms,
658 BusState *idebus0, BusState *idebus1,
659 ISADevice *s)
660 {
661 int val;
662 static pc_cmos_init_late_arg arg;
663
664 /* various important CMOS locations needed by PC/Bochs bios */
665
666 /* memory size */
667 /* base memory (first MiB) */
668 val = MIN(pcms->below_4g_mem_size / KiB, 640);
669 rtc_set_memory(s, 0x15, val);
670 rtc_set_memory(s, 0x16, val >> 8);
671 /* extended memory (next 64MiB) */
672 if (pcms->below_4g_mem_size > 1 * MiB) {
673 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
674 } else {
675 val = 0;
676 }
677 if (val > 65535)
678 val = 65535;
679 rtc_set_memory(s, 0x17, val);
680 rtc_set_memory(s, 0x18, val >> 8);
681 rtc_set_memory(s, 0x30, val);
682 rtc_set_memory(s, 0x31, val >> 8);
683 /* memory between 16MiB and 4GiB */
684 if (pcms->below_4g_mem_size > 16 * MiB) {
685 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
686 } else {
687 val = 0;
688 }
689 if (val > 65535)
690 val = 65535;
691 rtc_set_memory(s, 0x34, val);
692 rtc_set_memory(s, 0x35, val >> 8);
693 /* memory above 4GiB */
694 val = pcms->above_4g_mem_size / 65536;
695 rtc_set_memory(s, 0x5b, val);
696 rtc_set_memory(s, 0x5c, val >> 8);
697 rtc_set_memory(s, 0x5d, val >> 16);
698
699 object_property_add_link(OBJECT(pcms), "rtc_state",
700 TYPE_ISA_DEVICE,
701 (Object **)&pcms->rtc,
702 object_property_allow_set_link,
703 OBJ_PROP_LINK_STRONG, &error_abort);
704 object_property_set_link(OBJECT(pcms), OBJECT(s),
705 "rtc_state", &error_abort);
706
707 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
708
709 val = 0;
710 val |= 0x02; /* FPU is there */
711 val |= 0x04; /* PS/2 mouse installed */
712 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
713
714 /* hard drives and FDC */
715 arg.rtc_state = s;
716 arg.idebus[0] = idebus0;
717 arg.idebus[1] = idebus1;
718 qemu_register_reset(pc_cmos_init_late, &arg);
719 }
720
721 #define TYPE_PORT92 "port92"
722 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
723
724 /* port 92 stuff: could be split off */
725 typedef struct Port92State {
726 ISADevice parent_obj;
727
728 MemoryRegion io;
729 uint8_t outport;
730 qemu_irq a20_out;
731 } Port92State;
732
733 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
734 unsigned size)
735 {
736 Port92State *s = opaque;
737 int oldval = s->outport;
738
739 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
740 s->outport = val;
741 qemu_set_irq(s->a20_out, (val >> 1) & 1);
742 if ((val & 1) && !(oldval & 1)) {
743 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
744 }
745 }
746
747 static uint64_t port92_read(void *opaque, hwaddr addr,
748 unsigned size)
749 {
750 Port92State *s = opaque;
751 uint32_t ret;
752
753 ret = s->outport;
754 DPRINTF("port92: read 0x%02x\n", ret);
755 return ret;
756 }
757
758 static void port92_init(ISADevice *dev, qemu_irq a20_out)
759 {
760 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
761 }
762
763 static const VMStateDescription vmstate_port92_isa = {
764 .name = "port92",
765 .version_id = 1,
766 .minimum_version_id = 1,
767 .fields = (VMStateField[]) {
768 VMSTATE_UINT8(outport, Port92State),
769 VMSTATE_END_OF_LIST()
770 }
771 };
772
773 static void port92_reset(DeviceState *d)
774 {
775 Port92State *s = PORT92(d);
776
777 s->outport &= ~1;
778 }
779
780 static const MemoryRegionOps port92_ops = {
781 .read = port92_read,
782 .write = port92_write,
783 .impl = {
784 .min_access_size = 1,
785 .max_access_size = 1,
786 },
787 .endianness = DEVICE_LITTLE_ENDIAN,
788 };
789
790 static void port92_initfn(Object *obj)
791 {
792 Port92State *s = PORT92(obj);
793
794 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
795
796 s->outport = 0;
797
798 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
799 }
800
801 static void port92_realizefn(DeviceState *dev, Error **errp)
802 {
803 ISADevice *isadev = ISA_DEVICE(dev);
804 Port92State *s = PORT92(dev);
805
806 isa_register_ioport(isadev, &s->io, 0x92);
807 }
808
809 static void port92_class_initfn(ObjectClass *klass, void *data)
810 {
811 DeviceClass *dc = DEVICE_CLASS(klass);
812
813 dc->realize = port92_realizefn;
814 dc->reset = port92_reset;
815 dc->vmsd = &vmstate_port92_isa;
816 /*
817 * Reason: unlike ordinary ISA devices, this one needs additional
818 * wiring: its A20 output line needs to be wired up by
819 * port92_init().
820 */
821 dc->user_creatable = false;
822 }
823
824 static const TypeInfo port92_info = {
825 .name = TYPE_PORT92,
826 .parent = TYPE_ISA_DEVICE,
827 .instance_size = sizeof(Port92State),
828 .instance_init = port92_initfn,
829 .class_init = port92_class_initfn,
830 };
831
832 static void port92_register_types(void)
833 {
834 type_register_static(&port92_info);
835 }
836
837 type_init(port92_register_types)
838
839 static void handle_a20_line_change(void *opaque, int irq, int level)
840 {
841 X86CPU *cpu = opaque;
842
843 /* XXX: send to all CPUs ? */
844 /* XXX: add logic to handle multiple A20 line sources */
845 x86_cpu_set_a20(cpu, level);
846 }
847
848 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
849 {
850 int index = le32_to_cpu(e820_reserve.count);
851 struct e820_entry *entry;
852
853 if (type != E820_RAM) {
854 /* old FW_CFG_E820_TABLE entry -- reservations only */
855 if (index >= E820_NR_ENTRIES) {
856 return -EBUSY;
857 }
858 entry = &e820_reserve.entry[index++];
859
860 entry->address = cpu_to_le64(address);
861 entry->length = cpu_to_le64(length);
862 entry->type = cpu_to_le32(type);
863
864 e820_reserve.count = cpu_to_le32(index);
865 }
866
867 /* new "etc/e820" file -- include ram too */
868 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
869 e820_table[e820_entries].address = cpu_to_le64(address);
870 e820_table[e820_entries].length = cpu_to_le64(length);
871 e820_table[e820_entries].type = cpu_to_le32(type);
872 e820_entries++;
873
874 return e820_entries;
875 }
876
877 int e820_get_num_entries(void)
878 {
879 return e820_entries;
880 }
881
882 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
883 {
884 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
885 *address = le64_to_cpu(e820_table[idx].address);
886 *length = le64_to_cpu(e820_table[idx].length);
887 return true;
888 }
889 return false;
890 }
891
892 /* Enables contiguous-apic-ID mode, for compatibility */
893 static bool compat_apic_id_mode;
894
895 void enable_compat_apic_id_mode(void)
896 {
897 compat_apic_id_mode = true;
898 }
899
900 /* Calculates initial APIC ID for a specific CPU index
901 *
902 * Currently we need to be able to calculate the APIC ID from the CPU index
903 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
904 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
905 * all CPUs up to max_cpus.
906 */
907 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
908 {
909 uint32_t correct_id;
910 static bool warned;
911
912 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
913 if (compat_apic_id_mode) {
914 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
915 error_report("APIC IDs set in compatibility mode, "
916 "CPU topology won't match the configuration");
917 warned = true;
918 }
919 return cpu_index;
920 } else {
921 return correct_id;
922 }
923 }
924
925 static void pc_build_smbios(PCMachineState *pcms)
926 {
927 uint8_t *smbios_tables, *smbios_anchor;
928 size_t smbios_tables_len, smbios_anchor_len;
929 struct smbios_phys_mem_area *mem_array;
930 unsigned i, array_count;
931 MachineState *ms = MACHINE(pcms);
932 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
933
934 /* tell smbios about cpuid version and features */
935 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
936
937 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
938 if (smbios_tables) {
939 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
940 smbios_tables, smbios_tables_len);
941 }
942
943 /* build the array of physical mem area from e820 table */
944 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
945 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
946 uint64_t addr, len;
947
948 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
949 mem_array[array_count].address = addr;
950 mem_array[array_count].length = len;
951 array_count++;
952 }
953 }
954 smbios_get_tables(mem_array, array_count,
955 &smbios_tables, &smbios_tables_len,
956 &smbios_anchor, &smbios_anchor_len);
957 g_free(mem_array);
958
959 if (smbios_anchor) {
960 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
961 smbios_tables, smbios_tables_len);
962 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
963 smbios_anchor, smbios_anchor_len);
964 }
965 }
966
967 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
968 {
969 FWCfgState *fw_cfg;
970 uint64_t *numa_fw_cfg;
971 int i;
972 const CPUArchIdList *cpus;
973 MachineClass *mc = MACHINE_GET_CLASS(pcms);
974
975 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
976 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
977
978 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
979 *
980 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
981 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
982 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
983 * for CPU hotplug also uses APIC ID and not "CPU index".
984 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
985 * but the "limit to the APIC ID values SeaBIOS may see".
986 *
987 * So for compatibility reasons with old BIOSes we are stuck with
988 * "etc/max-cpus" actually being apic_id_limit
989 */
990 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
991 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
992 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
993 acpi_tables, acpi_tables_len);
994 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
995
996 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
997 &e820_reserve, sizeof(e820_reserve));
998 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
999 sizeof(struct e820_entry) * e820_entries);
1000
1001 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1002 /* allocate memory for the NUMA channel: one (64bit) word for the number
1003 * of nodes, one word for each VCPU->node and one word for each node to
1004 * hold the amount of memory.
1005 */
1006 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1007 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1008 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1009 for (i = 0; i < cpus->len; i++) {
1010 unsigned int apic_id = cpus->cpus[i].arch_id;
1011 assert(apic_id < pcms->apic_id_limit);
1012 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1013 }
1014 for (i = 0; i < nb_numa_nodes; i++) {
1015 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1016 cpu_to_le64(numa_info[i].node_mem);
1017 }
1018 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1019 (1 + pcms->apic_id_limit + nb_numa_nodes) *
1020 sizeof(*numa_fw_cfg));
1021
1022 return fw_cfg;
1023 }
1024
1025 static long get_file_size(FILE *f)
1026 {
1027 long where, size;
1028
1029 /* XXX: on Unix systems, using fstat() probably makes more sense */
1030
1031 where = ftell(f);
1032 fseek(f, 0, SEEK_END);
1033 size = ftell(f);
1034 fseek(f, where, SEEK_SET);
1035
1036 return size;
1037 }
1038
1039 /* setup_data types */
1040 #define SETUP_NONE 0
1041 #define SETUP_E820_EXT 1
1042 #define SETUP_DTB 2
1043 #define SETUP_PCI 3
1044 #define SETUP_EFI 4
1045
1046 struct setup_data {
1047 uint64_t next;
1048 uint32_t type;
1049 uint32_t len;
1050 uint8_t data[0];
1051 } __attribute__((packed));
1052
1053 static void load_linux(PCMachineState *pcms,
1054 FWCfgState *fw_cfg)
1055 {
1056 uint16_t protocol;
1057 int setup_size, kernel_size, cmdline_size;
1058 int dtb_size, setup_data_offset;
1059 uint32_t initrd_max;
1060 uint8_t header[8192], *setup, *kernel;
1061 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1062 FILE *f;
1063 char *vmode;
1064 MachineState *machine = MACHINE(pcms);
1065 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1066 struct setup_data *setup_data;
1067 const char *kernel_filename = machine->kernel_filename;
1068 const char *initrd_filename = machine->initrd_filename;
1069 const char *dtb_filename = machine->dtb;
1070 const char *kernel_cmdline = machine->kernel_cmdline;
1071
1072 /* Align to 16 bytes as a paranoia measure */
1073 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1074
1075 /* load the kernel header */
1076 f = fopen(kernel_filename, "rb");
1077 if (!f || !(kernel_size = get_file_size(f)) ||
1078 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1079 MIN(ARRAY_SIZE(header), kernel_size)) {
1080 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1081 kernel_filename, strerror(errno));
1082 exit(1);
1083 }
1084
1085 /* kernel protocol version */
1086 #if 0
1087 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1088 #endif
1089 if (ldl_p(header+0x202) == 0x53726448) {
1090 protocol = lduw_p(header+0x206);
1091 } else {
1092 /* This looks like a multiboot kernel. If it is, let's stop
1093 treating it like a Linux kernel. */
1094 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1095 kernel_cmdline, kernel_size, header)) {
1096 return;
1097 }
1098 protocol = 0;
1099 }
1100
1101 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1102 /* Low kernel */
1103 real_addr = 0x90000;
1104 cmdline_addr = 0x9a000 - cmdline_size;
1105 prot_addr = 0x10000;
1106 } else if (protocol < 0x202) {
1107 /* High but ancient kernel */
1108 real_addr = 0x90000;
1109 cmdline_addr = 0x9a000 - cmdline_size;
1110 prot_addr = 0x100000;
1111 } else {
1112 /* High and recent kernel */
1113 real_addr = 0x10000;
1114 cmdline_addr = 0x20000;
1115 prot_addr = 0x100000;
1116 }
1117
1118 #if 0
1119 fprintf(stderr,
1120 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1121 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1122 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1123 real_addr,
1124 cmdline_addr,
1125 prot_addr);
1126 #endif
1127
1128 /* highest address for loading the initrd */
1129 if (protocol >= 0x203) {
1130 initrd_max = ldl_p(header+0x22c);
1131 } else {
1132 initrd_max = 0x37ffffff;
1133 }
1134
1135 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1136 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1137 }
1138
1139 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1140 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1141 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1142
1143 if (protocol >= 0x202) {
1144 stl_p(header+0x228, cmdline_addr);
1145 } else {
1146 stw_p(header+0x20, 0xA33F);
1147 stw_p(header+0x22, cmdline_addr-real_addr);
1148 }
1149
1150 /* handle vga= parameter */
1151 vmode = strstr(kernel_cmdline, "vga=");
1152 if (vmode) {
1153 unsigned int video_mode;
1154 /* skip "vga=" */
1155 vmode += 4;
1156 if (!strncmp(vmode, "normal", 6)) {
1157 video_mode = 0xffff;
1158 } else if (!strncmp(vmode, "ext", 3)) {
1159 video_mode = 0xfffe;
1160 } else if (!strncmp(vmode, "ask", 3)) {
1161 video_mode = 0xfffd;
1162 } else {
1163 video_mode = strtol(vmode, NULL, 0);
1164 }
1165 stw_p(header+0x1fa, video_mode);
1166 }
1167
1168 /* loader type */
1169 /* High nybble = B reserved for QEMU; low nybble is revision number.
1170 If this code is substantially changed, you may want to consider
1171 incrementing the revision. */
1172 if (protocol >= 0x200) {
1173 header[0x210] = 0xB0;
1174 }
1175 /* heap */
1176 if (protocol >= 0x201) {
1177 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1178 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1179 }
1180
1181 /* load initrd */
1182 if (initrd_filename) {
1183 gsize initrd_size;
1184 gchar *initrd_data;
1185 GError *gerr = NULL;
1186
1187 if (protocol < 0x200) {
1188 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1189 exit(1);
1190 }
1191
1192 if (!g_file_get_contents(initrd_filename, &initrd_data,
1193 &initrd_size, &gerr)) {
1194 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1195 initrd_filename, gerr->message);
1196 exit(1);
1197 }
1198 if (initrd_size >= initrd_max) {
1199 fprintf(stderr, "qemu: initrd is too large, cannot support."
1200 "(max: %"PRIu32", need %"PRId64")\n",
1201 initrd_max, (uint64_t)initrd_size);
1202 exit(1);
1203 }
1204
1205 initrd_addr = (initrd_max-initrd_size) & ~4095;
1206
1207 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1208 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1209 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1210
1211 stl_p(header+0x218, initrd_addr);
1212 stl_p(header+0x21c, initrd_size);
1213 }
1214
1215 /* load kernel and setup */
1216 setup_size = header[0x1f1];
1217 if (setup_size == 0) {
1218 setup_size = 4;
1219 }
1220 setup_size = (setup_size+1)*512;
1221 if (setup_size > kernel_size) {
1222 fprintf(stderr, "qemu: invalid kernel header\n");
1223 exit(1);
1224 }
1225 kernel_size -= setup_size;
1226
1227 setup = g_malloc(setup_size);
1228 kernel = g_malloc(kernel_size);
1229 fseek(f, 0, SEEK_SET);
1230 if (fread(setup, 1, setup_size, f) != setup_size) {
1231 fprintf(stderr, "fread() failed\n");
1232 exit(1);
1233 }
1234 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1235 fprintf(stderr, "fread() failed\n");
1236 exit(1);
1237 }
1238 fclose(f);
1239
1240 /* append dtb to kernel */
1241 if (dtb_filename) {
1242 if (protocol < 0x209) {
1243 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1244 exit(1);
1245 }
1246
1247 dtb_size = get_image_size(dtb_filename);
1248 if (dtb_size <= 0) {
1249 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1250 dtb_filename, strerror(errno));
1251 exit(1);
1252 }
1253
1254 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1255 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1256 kernel = g_realloc(kernel, kernel_size);
1257
1258 stq_p(header+0x250, prot_addr + setup_data_offset);
1259
1260 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1261 setup_data->next = 0;
1262 setup_data->type = cpu_to_le32(SETUP_DTB);
1263 setup_data->len = cpu_to_le32(dtb_size);
1264
1265 load_image_size(dtb_filename, setup_data->data, dtb_size);
1266 }
1267
1268 memcpy(setup, header, MIN(sizeof(header), setup_size));
1269
1270 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1271 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1272 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1273
1274 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1275 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1276 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1277
1278 option_rom[nb_option_roms].bootindex = 0;
1279 option_rom[nb_option_roms].name = "linuxboot.bin";
1280 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1281 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1282 }
1283 nb_option_roms++;
1284 }
1285
1286 #define NE2000_NB_MAX 6
1287
1288 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1289 0x280, 0x380 };
1290 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1291
1292 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1293 {
1294 static int nb_ne2k = 0;
1295
1296 if (nb_ne2k == NE2000_NB_MAX)
1297 return;
1298 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1299 ne2000_irq[nb_ne2k], nd);
1300 nb_ne2k++;
1301 }
1302
1303 DeviceState *cpu_get_current_apic(void)
1304 {
1305 if (current_cpu) {
1306 X86CPU *cpu = X86_CPU(current_cpu);
1307 return cpu->apic_state;
1308 } else {
1309 return NULL;
1310 }
1311 }
1312
1313 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1314 {
1315 X86CPU *cpu = opaque;
1316
1317 if (level) {
1318 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1319 }
1320 }
1321
1322 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1323 {
1324 Object *cpu = NULL;
1325 Error *local_err = NULL;
1326
1327 cpu = object_new(typename);
1328
1329 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1330 object_property_set_bool(cpu, true, "realized", &local_err);
1331
1332 object_unref(cpu);
1333 error_propagate(errp, local_err);
1334 }
1335
1336 void pc_hot_add_cpu(const int64_t id, Error **errp)
1337 {
1338 MachineState *ms = MACHINE(qdev_get_machine());
1339 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1340 Error *local_err = NULL;
1341
1342 if (id < 0) {
1343 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1344 return;
1345 }
1346
1347 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1348 error_setg(errp, "Unable to add CPU: %" PRIi64
1349 ", resulting APIC ID (%" PRIi64 ") is too large",
1350 id, apic_id);
1351 return;
1352 }
1353
1354 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1355 if (local_err) {
1356 error_propagate(errp, local_err);
1357 return;
1358 }
1359 }
1360
1361 void pc_cpus_init(PCMachineState *pcms)
1362 {
1363 int i;
1364 const CPUArchIdList *possible_cpus;
1365 MachineState *ms = MACHINE(pcms);
1366 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1367
1368 /* Calculates the limit to CPU APIC ID values
1369 *
1370 * Limit for the APIC ID value, so that all
1371 * CPU APIC IDs are < pcms->apic_id_limit.
1372 *
1373 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1374 */
1375 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1376 possible_cpus = mc->possible_cpu_arch_ids(ms);
1377 for (i = 0; i < smp_cpus; i++) {
1378 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1379 &error_fatal);
1380 }
1381 }
1382
1383 static void pc_build_feature_control_file(PCMachineState *pcms)
1384 {
1385 MachineState *ms = MACHINE(pcms);
1386 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1387 CPUX86State *env = &cpu->env;
1388 uint32_t unused, ecx, edx;
1389 uint64_t feature_control_bits = 0;
1390 uint64_t *val;
1391
1392 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1393 if (ecx & CPUID_EXT_VMX) {
1394 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1395 }
1396
1397 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1398 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1399 (env->mcg_cap & MCG_LMCE_P)) {
1400 feature_control_bits |= FEATURE_CONTROL_LMCE;
1401 }
1402
1403 if (!feature_control_bits) {
1404 return;
1405 }
1406
1407 val = g_malloc(sizeof(*val));
1408 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1409 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1410 }
1411
1412 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1413 {
1414 if (cpus_count > 0xff) {
1415 /* If the number of CPUs can't be represented in 8 bits, the
1416 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1417 * to make old BIOSes fail more predictably.
1418 */
1419 rtc_set_memory(rtc, 0x5f, 0);
1420 } else {
1421 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1422 }
1423 }
1424
1425 static
1426 void pc_machine_done(Notifier *notifier, void *data)
1427 {
1428 PCMachineState *pcms = container_of(notifier,
1429 PCMachineState, machine_done);
1430 PCIBus *bus = pcms->bus;
1431
1432 /* set the number of CPUs */
1433 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1434
1435 if (bus) {
1436 int extra_hosts = 0;
1437
1438 QLIST_FOREACH(bus, &bus->child, sibling) {
1439 /* look for expander root buses */
1440 if (pci_bus_is_root(bus)) {
1441 extra_hosts++;
1442 }
1443 }
1444 if (extra_hosts && pcms->fw_cfg) {
1445 uint64_t *val = g_malloc(sizeof(*val));
1446 *val = cpu_to_le64(extra_hosts);
1447 fw_cfg_add_file(pcms->fw_cfg,
1448 "etc/extra-pci-roots", val, sizeof(*val));
1449 }
1450 }
1451
1452 acpi_setup();
1453 if (pcms->fw_cfg) {
1454 pc_build_smbios(pcms);
1455 pc_build_feature_control_file(pcms);
1456 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1457 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1458 }
1459
1460 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1461 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1462
1463 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1464 iommu->intr_eim != ON_OFF_AUTO_ON) {
1465 error_report("current -smp configuration requires "
1466 "Extended Interrupt Mode enabled. "
1467 "You can add an IOMMU using: "
1468 "-device intel-iommu,intremap=on,eim=on");
1469 exit(EXIT_FAILURE);
1470 }
1471 }
1472 }
1473
1474 void pc_guest_info_init(PCMachineState *pcms)
1475 {
1476 int i;
1477
1478 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1479 pcms->numa_nodes = nb_numa_nodes;
1480 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1481 sizeof *pcms->node_mem);
1482 for (i = 0; i < nb_numa_nodes; i++) {
1483 pcms->node_mem[i] = numa_info[i].node_mem;
1484 }
1485
1486 pcms->machine_done.notify = pc_machine_done;
1487 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1488 }
1489
1490 /* setup pci memory address space mapping into system address space */
1491 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1492 MemoryRegion *pci_address_space)
1493 {
1494 /* Set to lower priority than RAM */
1495 memory_region_add_subregion_overlap(system_memory, 0x0,
1496 pci_address_space, -1);
1497 }
1498
1499 void pc_acpi_init(const char *default_dsdt)
1500 {
1501 char *filename;
1502
1503 if (acpi_tables != NULL) {
1504 /* manually set via -acpitable, leave it alone */
1505 return;
1506 }
1507
1508 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1509 if (filename == NULL) {
1510 warn_report("failed to find %s", default_dsdt);
1511 } else {
1512 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1513 &error_abort);
1514 Error *err = NULL;
1515
1516 qemu_opt_set(opts, "file", filename, &error_abort);
1517
1518 acpi_table_add_builtin(opts, &err);
1519 if (err) {
1520 warn_reportf_err(err, "failed to load %s: ", filename);
1521 }
1522 g_free(filename);
1523 }
1524 }
1525
1526 void xen_load_linux(PCMachineState *pcms)
1527 {
1528 int i;
1529 FWCfgState *fw_cfg;
1530
1531 assert(MACHINE(pcms)->kernel_filename != NULL);
1532
1533 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1534 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1535 rom_set_fw(fw_cfg);
1536
1537 load_linux(pcms, fw_cfg);
1538 for (i = 0; i < nb_option_roms; i++) {
1539 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1540 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1541 !strcmp(option_rom[i].name, "multiboot.bin"));
1542 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1543 }
1544 pcms->fw_cfg = fw_cfg;
1545 }
1546
1547 void pc_memory_init(PCMachineState *pcms,
1548 MemoryRegion *system_memory,
1549 MemoryRegion *rom_memory,
1550 MemoryRegion **ram_memory)
1551 {
1552 int linux_boot, i;
1553 MemoryRegion *ram, *option_rom_mr;
1554 MemoryRegion *ram_below_4g, *ram_above_4g;
1555 FWCfgState *fw_cfg;
1556 MachineState *machine = MACHINE(pcms);
1557 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1558
1559 assert(machine->ram_size == pcms->below_4g_mem_size +
1560 pcms->above_4g_mem_size);
1561
1562 linux_boot = (machine->kernel_filename != NULL);
1563
1564 /* Allocate RAM. We allocate it as a single memory region and use
1565 * aliases to address portions of it, mostly for backwards compatibility
1566 * with older qemus that used qemu_ram_alloc().
1567 */
1568 ram = g_malloc(sizeof(*ram));
1569 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1570 machine->ram_size);
1571 *ram_memory = ram;
1572 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1573 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1574 0, pcms->below_4g_mem_size);
1575 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1576 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1577 if (pcms->above_4g_mem_size > 0) {
1578 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1579 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1580 pcms->below_4g_mem_size,
1581 pcms->above_4g_mem_size);
1582 memory_region_add_subregion(system_memory, 0x100000000ULL,
1583 ram_above_4g);
1584 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1585 }
1586
1587 if (!pcmc->has_reserved_memory &&
1588 (machine->ram_slots ||
1589 (machine->maxram_size > machine->ram_size))) {
1590 MachineClass *mc = MACHINE_GET_CLASS(machine);
1591
1592 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1593 mc->name);
1594 exit(EXIT_FAILURE);
1595 }
1596
1597 /* always allocate the device memory information */
1598 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1599
1600 /* initialize device memory address space */
1601 if (pcmc->has_reserved_memory &&
1602 (machine->ram_size < machine->maxram_size)) {
1603 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1604
1605 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1606 error_report("unsupported amount of memory slots: %"PRIu64,
1607 machine->ram_slots);
1608 exit(EXIT_FAILURE);
1609 }
1610
1611 if (QEMU_ALIGN_UP(machine->maxram_size,
1612 TARGET_PAGE_SIZE) != machine->maxram_size) {
1613 error_report("maximum memory size must by aligned to multiple of "
1614 "%d bytes", TARGET_PAGE_SIZE);
1615 exit(EXIT_FAILURE);
1616 }
1617
1618 machine->device_memory->base =
1619 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1620
1621 if (pcmc->enforce_aligned_dimm) {
1622 /* size device region assuming 1G page max alignment per slot */
1623 device_mem_size += (1 * GiB) * machine->ram_slots;
1624 }
1625
1626 if ((machine->device_memory->base + device_mem_size) <
1627 device_mem_size) {
1628 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1629 machine->maxram_size);
1630 exit(EXIT_FAILURE);
1631 }
1632
1633 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1634 "device-memory", device_mem_size);
1635 memory_region_add_subregion(system_memory, machine->device_memory->base,
1636 &machine->device_memory->mr);
1637 }
1638
1639 /* Initialize PC system firmware */
1640 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1641
1642 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1643 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1644 &error_fatal);
1645 if (pcmc->pci_enabled) {
1646 memory_region_set_readonly(option_rom_mr, true);
1647 }
1648 memory_region_add_subregion_overlap(rom_memory,
1649 PC_ROM_MIN_VGA,
1650 option_rom_mr,
1651 1);
1652
1653 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1654
1655 rom_set_fw(fw_cfg);
1656
1657 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1658 uint64_t *val = g_malloc(sizeof(*val));
1659 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1660 uint64_t res_mem_end = machine->device_memory->base;
1661
1662 if (!pcmc->broken_reserved_end) {
1663 res_mem_end += memory_region_size(&machine->device_memory->mr);
1664 }
1665 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1666 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1667 }
1668
1669 if (linux_boot) {
1670 load_linux(pcms, fw_cfg);
1671 }
1672
1673 for (i = 0; i < nb_option_roms; i++) {
1674 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1675 }
1676 pcms->fw_cfg = fw_cfg;
1677
1678 /* Init default IOAPIC address space */
1679 pcms->ioapic_as = &address_space_memory;
1680 }
1681
1682 /*
1683 * The 64bit pci hole starts after "above 4G RAM" and
1684 * potentially the space reserved for memory hotplug.
1685 */
1686 uint64_t pc_pci_hole64_start(void)
1687 {
1688 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1689 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1690 MachineState *ms = MACHINE(pcms);
1691 uint64_t hole64_start = 0;
1692
1693 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1694 hole64_start = ms->device_memory->base;
1695 if (!pcmc->broken_reserved_end) {
1696 hole64_start += memory_region_size(&ms->device_memory->mr);
1697 }
1698 } else {
1699 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1700 }
1701
1702 return ROUND_UP(hole64_start, 1 * GiB);
1703 }
1704
1705 qemu_irq pc_allocate_cpu_irq(void)
1706 {
1707 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1708 }
1709
1710 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1711 {
1712 DeviceState *dev = NULL;
1713
1714 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1715 if (pci_bus) {
1716 PCIDevice *pcidev = pci_vga_init(pci_bus);
1717 dev = pcidev ? &pcidev->qdev : NULL;
1718 } else if (isa_bus) {
1719 ISADevice *isadev = isa_vga_init(isa_bus);
1720 dev = isadev ? DEVICE(isadev) : NULL;
1721 }
1722 rom_reset_order_override();
1723 return dev;
1724 }
1725
1726 static const MemoryRegionOps ioport80_io_ops = {
1727 .write = ioport80_write,
1728 .read = ioport80_read,
1729 .endianness = DEVICE_NATIVE_ENDIAN,
1730 .impl = {
1731 .min_access_size = 1,
1732 .max_access_size = 1,
1733 },
1734 };
1735
1736 static const MemoryRegionOps ioportF0_io_ops = {
1737 .write = ioportF0_write,
1738 .read = ioportF0_read,
1739 .endianness = DEVICE_NATIVE_ENDIAN,
1740 .impl = {
1741 .min_access_size = 1,
1742 .max_access_size = 1,
1743 },
1744 };
1745
1746 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1747 {
1748 int i;
1749 DriveInfo *fd[MAX_FD];
1750 qemu_irq *a20_line;
1751 ISADevice *i8042, *port92, *vmmouse;
1752
1753 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1754 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1755
1756 for (i = 0; i < MAX_FD; i++) {
1757 fd[i] = drive_get(IF_FLOPPY, 0, i);
1758 create_fdctrl |= !!fd[i];
1759 }
1760 if (create_fdctrl) {
1761 fdctrl_init_isa(isa_bus, fd);
1762 }
1763
1764 i8042 = isa_create_simple(isa_bus, "i8042");
1765 if (!no_vmport) {
1766 vmport_init(isa_bus);
1767 vmmouse = isa_try_create(isa_bus, "vmmouse");
1768 } else {
1769 vmmouse = NULL;
1770 }
1771 if (vmmouse) {
1772 DeviceState *dev = DEVICE(vmmouse);
1773 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1774 qdev_init_nofail(dev);
1775 }
1776 port92 = isa_create_simple(isa_bus, "port92");
1777
1778 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1779 i8042_setup_a20_line(i8042, a20_line[0]);
1780 port92_init(port92, a20_line[1]);
1781 g_free(a20_line);
1782 }
1783
1784 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1785 ISADevice **rtc_state,
1786 bool create_fdctrl,
1787 bool no_vmport,
1788 bool has_pit,
1789 uint32_t hpet_irqs)
1790 {
1791 int i;
1792 DeviceState *hpet = NULL;
1793 int pit_isa_irq = 0;
1794 qemu_irq pit_alt_irq = NULL;
1795 qemu_irq rtc_irq = NULL;
1796 ISADevice *pit = NULL;
1797 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1798 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1799
1800 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1801 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1802
1803 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1804 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1805
1806 /*
1807 * Check if an HPET shall be created.
1808 *
1809 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1810 * when the HPET wants to take over. Thus we have to disable the latter.
1811 */
1812 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1813 /* In order to set property, here not using sysbus_try_create_simple */
1814 hpet = qdev_try_create(NULL, TYPE_HPET);
1815 if (hpet) {
1816 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1817 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1818 * IRQ8 and IRQ2.
1819 */
1820 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1821 HPET_INTCAP, NULL);
1822 if (!compat) {
1823 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1824 }
1825 qdev_init_nofail(hpet);
1826 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1827
1828 for (i = 0; i < GSI_NUM_PINS; i++) {
1829 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1830 }
1831 pit_isa_irq = -1;
1832 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1833 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1834 }
1835 }
1836 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1837
1838 qemu_register_boot_set(pc_boot_set, *rtc_state);
1839
1840 if (!xen_enabled() && has_pit) {
1841 if (kvm_pit_in_kernel()) {
1842 pit = kvm_pit_init(isa_bus, 0x40);
1843 } else {
1844 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1845 }
1846 if (hpet) {
1847 /* connect PIT to output control line of the HPET */
1848 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1849 }
1850 pcspk_init(isa_bus, pit);
1851 }
1852
1853 i8257_dma_init(isa_bus, 0);
1854
1855 /* Super I/O */
1856 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1857 }
1858
1859 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1860 {
1861 int i;
1862
1863 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1864 for (i = 0; i < nb_nics; i++) {
1865 NICInfo *nd = &nd_table[i];
1866 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1867
1868 if (g_str_equal(model, "ne2k_isa")) {
1869 pc_init_ne2k_isa(isa_bus, nd);
1870 } else {
1871 pci_nic_init_nofail(nd, pci_bus, model, NULL);
1872 }
1873 }
1874 rom_reset_order_override();
1875 }
1876
1877 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1878 {
1879 DeviceState *dev;
1880 SysBusDevice *d;
1881 unsigned int i;
1882
1883 if (kvm_ioapic_in_kernel()) {
1884 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
1885 } else {
1886 dev = qdev_create(NULL, TYPE_IOAPIC);
1887 }
1888 if (parent_name) {
1889 object_property_add_child(object_resolve_path(parent_name, NULL),
1890 "ioapic", OBJECT(dev), NULL);
1891 }
1892 qdev_init_nofail(dev);
1893 d = SYS_BUS_DEVICE(dev);
1894 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1895
1896 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1897 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1898 }
1899 }
1900
1901 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1902 Error **errp)
1903 {
1904 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1905 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1906 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1907 const uint64_t legacy_align = TARGET_PAGE_SIZE;
1908
1909 /*
1910 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1911 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1912 * addition to cover this case.
1913 */
1914 if (!pcms->acpi_dev || !acpi_enabled) {
1915 error_setg(errp,
1916 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1917 return;
1918 }
1919
1920 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1921 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1922 return;
1923 }
1924
1925 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1926 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1927 }
1928
1929 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1930 DeviceState *dev, Error **errp)
1931 {
1932 HotplugHandlerClass *hhc;
1933 Error *local_err = NULL;
1934 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1935 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1936
1937 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1938 if (local_err) {
1939 goto out;
1940 }
1941
1942 if (is_nvdimm) {
1943 nvdimm_plug(&pcms->acpi_nvdimm_state);
1944 }
1945
1946 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1947 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1948 out:
1949 error_propagate(errp, local_err);
1950 }
1951
1952 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1953 DeviceState *dev, Error **errp)
1954 {
1955 HotplugHandlerClass *hhc;
1956 Error *local_err = NULL;
1957 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1958
1959 /*
1960 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1961 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1962 * addition to cover this case.
1963 */
1964 if (!pcms->acpi_dev || !acpi_enabled) {
1965 error_setg(&local_err,
1966 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1967 goto out;
1968 }
1969
1970 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1971 error_setg(&local_err,
1972 "nvdimm device hot unplug is not supported yet.");
1973 goto out;
1974 }
1975
1976 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1977 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1978
1979 out:
1980 error_propagate(errp, local_err);
1981 }
1982
1983 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1984 DeviceState *dev, Error **errp)
1985 {
1986 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1987 HotplugHandlerClass *hhc;
1988 Error *local_err = NULL;
1989
1990 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1991 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1992
1993 if (local_err) {
1994 goto out;
1995 }
1996
1997 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
1998 object_unparent(OBJECT(dev));
1999
2000 out:
2001 error_propagate(errp, local_err);
2002 }
2003
2004 static int pc_apic_cmp(const void *a, const void *b)
2005 {
2006 CPUArchId *apic_a = (CPUArchId *)a;
2007 CPUArchId *apic_b = (CPUArchId *)b;
2008
2009 return apic_a->arch_id - apic_b->arch_id;
2010 }
2011
2012 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2013 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2014 * entry corresponding to CPU's apic_id returns NULL.
2015 */
2016 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2017 {
2018 CPUArchId apic_id, *found_cpu;
2019
2020 apic_id.arch_id = id;
2021 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2022 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2023 pc_apic_cmp);
2024 if (found_cpu && idx) {
2025 *idx = found_cpu - ms->possible_cpus->cpus;
2026 }
2027 return found_cpu;
2028 }
2029
2030 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2031 DeviceState *dev, Error **errp)
2032 {
2033 CPUArchId *found_cpu;
2034 HotplugHandlerClass *hhc;
2035 Error *local_err = NULL;
2036 X86CPU *cpu = X86_CPU(dev);
2037 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2038
2039 if (pcms->acpi_dev) {
2040 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2041 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2042 if (local_err) {
2043 goto out;
2044 }
2045 }
2046
2047 /* increment the number of CPUs */
2048 pcms->boot_cpus++;
2049 if (pcms->rtc) {
2050 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2051 }
2052 if (pcms->fw_cfg) {
2053 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2054 }
2055
2056 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2057 found_cpu->cpu = OBJECT(dev);
2058 out:
2059 error_propagate(errp, local_err);
2060 }
2061 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2062 DeviceState *dev, Error **errp)
2063 {
2064 int idx = -1;
2065 HotplugHandlerClass *hhc;
2066 Error *local_err = NULL;
2067 X86CPU *cpu = X86_CPU(dev);
2068 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2069
2070 if (!pcms->acpi_dev) {
2071 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2072 goto out;
2073 }
2074
2075 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2076 assert(idx != -1);
2077 if (idx == 0) {
2078 error_setg(&local_err, "Boot CPU is unpluggable");
2079 goto out;
2080 }
2081
2082 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2083 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2084
2085 if (local_err) {
2086 goto out;
2087 }
2088
2089 out:
2090 error_propagate(errp, local_err);
2091
2092 }
2093
2094 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2095 DeviceState *dev, Error **errp)
2096 {
2097 CPUArchId *found_cpu;
2098 HotplugHandlerClass *hhc;
2099 Error *local_err = NULL;
2100 X86CPU *cpu = X86_CPU(dev);
2101 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2102
2103 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2104 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2105
2106 if (local_err) {
2107 goto out;
2108 }
2109
2110 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2111 found_cpu->cpu = NULL;
2112 object_unparent(OBJECT(dev));
2113
2114 /* decrement the number of CPUs */
2115 pcms->boot_cpus--;
2116 /* Update the number of CPUs in CMOS */
2117 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2118 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2119 out:
2120 error_propagate(errp, local_err);
2121 }
2122
2123 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2124 DeviceState *dev, Error **errp)
2125 {
2126 int idx;
2127 CPUState *cs;
2128 CPUArchId *cpu_slot;
2129 X86CPUTopoInfo topo;
2130 X86CPU *cpu = X86_CPU(dev);
2131 MachineState *ms = MACHINE(hotplug_dev);
2132 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2133
2134 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2135 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2136 ms->cpu_type);
2137 return;
2138 }
2139
2140 /* if APIC ID is not set, set it based on socket/core/thread properties */
2141 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2142 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2143
2144 if (cpu->socket_id < 0) {
2145 error_setg(errp, "CPU socket-id is not set");
2146 return;
2147 } else if (cpu->socket_id > max_socket) {
2148 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2149 cpu->socket_id, max_socket);
2150 return;
2151 }
2152 if (cpu->core_id < 0) {
2153 error_setg(errp, "CPU core-id is not set");
2154 return;
2155 } else if (cpu->core_id > (smp_cores - 1)) {
2156 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2157 cpu->core_id, smp_cores - 1);
2158 return;
2159 }
2160 if (cpu->thread_id < 0) {
2161 error_setg(errp, "CPU thread-id is not set");
2162 return;
2163 } else if (cpu->thread_id > (smp_threads - 1)) {
2164 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2165 cpu->thread_id, smp_threads - 1);
2166 return;
2167 }
2168
2169 topo.pkg_id = cpu->socket_id;
2170 topo.core_id = cpu->core_id;
2171 topo.smt_id = cpu->thread_id;
2172 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2173 }
2174
2175 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2176 if (!cpu_slot) {
2177 MachineState *ms = MACHINE(pcms);
2178
2179 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2180 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2181 " APIC ID %" PRIu32 ", valid index range 0:%d",
2182 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2183 ms->possible_cpus->len - 1);
2184 return;
2185 }
2186
2187 if (cpu_slot->cpu) {
2188 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2189 idx, cpu->apic_id);
2190 return;
2191 }
2192
2193 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2194 * so that machine_query_hotpluggable_cpus would show correct values
2195 */
2196 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2197 * once -smp refactoring is complete and there will be CPU private
2198 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2199 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2200 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2201 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2202 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2203 return;
2204 }
2205 cpu->socket_id = topo.pkg_id;
2206
2207 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2208 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2209 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2210 return;
2211 }
2212 cpu->core_id = topo.core_id;
2213
2214 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2215 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2216 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2217 return;
2218 }
2219 cpu->thread_id = topo.smt_id;
2220
2221 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2222 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2223 return;
2224 }
2225
2226 cs = CPU(cpu);
2227 cs->cpu_index = idx;
2228
2229 numa_cpu_pre_plug(cpu_slot, dev, errp);
2230 }
2231
2232 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2233 DeviceState *dev, Error **errp)
2234 {
2235 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2236 pc_memory_pre_plug(hotplug_dev, dev, errp);
2237 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2238 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2239 }
2240 }
2241
2242 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2243 DeviceState *dev, Error **errp)
2244 {
2245 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2246 pc_memory_plug(hotplug_dev, dev, errp);
2247 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2248 pc_cpu_plug(hotplug_dev, dev, errp);
2249 }
2250 }
2251
2252 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2253 DeviceState *dev, Error **errp)
2254 {
2255 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2256 pc_memory_unplug_request(hotplug_dev, dev, errp);
2257 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2258 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2259 } else {
2260 error_setg(errp, "acpi: device unplug request for not supported device"
2261 " type: %s", object_get_typename(OBJECT(dev)));
2262 }
2263 }
2264
2265 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2266 DeviceState *dev, Error **errp)
2267 {
2268 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2269 pc_memory_unplug(hotplug_dev, dev, errp);
2270 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2271 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2272 } else {
2273 error_setg(errp, "acpi: device unplug for not supported device"
2274 " type: %s", object_get_typename(OBJECT(dev)));
2275 }
2276 }
2277
2278 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2279 DeviceState *dev)
2280 {
2281 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2282 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2283 return HOTPLUG_HANDLER(machine);
2284 }
2285
2286 return NULL;
2287 }
2288
2289 static void
2290 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2291 const char *name, void *opaque,
2292 Error **errp)
2293 {
2294 MachineState *ms = MACHINE(obj);
2295 int64_t value = memory_region_size(&ms->device_memory->mr);
2296
2297 visit_type_int(v, name, &value, errp);
2298 }
2299
2300 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2301 const char *name, void *opaque,
2302 Error **errp)
2303 {
2304 PCMachineState *pcms = PC_MACHINE(obj);
2305 uint64_t value = pcms->max_ram_below_4g;
2306
2307 visit_type_size(v, name, &value, errp);
2308 }
2309
2310 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2311 const char *name, void *opaque,
2312 Error **errp)
2313 {
2314 PCMachineState *pcms = PC_MACHINE(obj);
2315 Error *error = NULL;
2316 uint64_t value;
2317
2318 visit_type_size(v, name, &value, &error);
2319 if (error) {
2320 error_propagate(errp, error);
2321 return;
2322 }
2323 if (value > 4 * GiB) {
2324 error_setg(&error,
2325 "Machine option 'max-ram-below-4g=%"PRIu64
2326 "' expects size less than or equal to 4G", value);
2327 error_propagate(errp, error);
2328 return;
2329 }
2330
2331 if (value < 1 * MiB) {
2332 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2333 "BIOS may not work with less than 1MiB", value);
2334 }
2335
2336 pcms->max_ram_below_4g = value;
2337 }
2338
2339 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2340 void *opaque, Error **errp)
2341 {
2342 PCMachineState *pcms = PC_MACHINE(obj);
2343 OnOffAuto vmport = pcms->vmport;
2344
2345 visit_type_OnOffAuto(v, name, &vmport, errp);
2346 }
2347
2348 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2349 void *opaque, Error **errp)
2350 {
2351 PCMachineState *pcms = PC_MACHINE(obj);
2352
2353 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2354 }
2355
2356 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2357 {
2358 bool smm_available = false;
2359
2360 if (pcms->smm == ON_OFF_AUTO_OFF) {
2361 return false;
2362 }
2363
2364 if (tcg_enabled() || qtest_enabled()) {
2365 smm_available = true;
2366 } else if (kvm_enabled()) {
2367 smm_available = kvm_has_smm();
2368 }
2369
2370 if (smm_available) {
2371 return true;
2372 }
2373
2374 if (pcms->smm == ON_OFF_AUTO_ON) {
2375 error_report("System Management Mode not supported by this hypervisor.");
2376 exit(1);
2377 }
2378 return false;
2379 }
2380
2381 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2382 void *opaque, Error **errp)
2383 {
2384 PCMachineState *pcms = PC_MACHINE(obj);
2385 OnOffAuto smm = pcms->smm;
2386
2387 visit_type_OnOffAuto(v, name, &smm, errp);
2388 }
2389
2390 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2391 void *opaque, Error **errp)
2392 {
2393 PCMachineState *pcms = PC_MACHINE(obj);
2394
2395 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2396 }
2397
2398 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2399 {
2400 PCMachineState *pcms = PC_MACHINE(obj);
2401
2402 return pcms->acpi_nvdimm_state.is_enabled;
2403 }
2404
2405 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2406 {
2407 PCMachineState *pcms = PC_MACHINE(obj);
2408
2409 pcms->acpi_nvdimm_state.is_enabled = value;
2410 }
2411
2412 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2413 {
2414 PCMachineState *pcms = PC_MACHINE(obj);
2415
2416 return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2417 }
2418
2419 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2420 Error **errp)
2421 {
2422 PCMachineState *pcms = PC_MACHINE(obj);
2423 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2424
2425 if (strcmp(value, "cpu") == 0)
2426 nvdimm_state->persistence = 3;
2427 else if (strcmp(value, "mem-ctrl") == 0)
2428 nvdimm_state->persistence = 2;
2429 else {
2430 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2431 value);
2432 return;
2433 }
2434
2435 g_free(nvdimm_state->persistence_string);
2436 nvdimm_state->persistence_string = g_strdup(value);
2437 }
2438
2439 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2440 {
2441 PCMachineState *pcms = PC_MACHINE(obj);
2442
2443 return pcms->smbus_enabled;
2444 }
2445
2446 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2447 {
2448 PCMachineState *pcms = PC_MACHINE(obj);
2449
2450 pcms->smbus_enabled = value;
2451 }
2452
2453 static bool pc_machine_get_sata(Object *obj, Error **errp)
2454 {
2455 PCMachineState *pcms = PC_MACHINE(obj);
2456
2457 return pcms->sata_enabled;
2458 }
2459
2460 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2461 {
2462 PCMachineState *pcms = PC_MACHINE(obj);
2463
2464 pcms->sata_enabled = value;
2465 }
2466
2467 static bool pc_machine_get_pit(Object *obj, Error **errp)
2468 {
2469 PCMachineState *pcms = PC_MACHINE(obj);
2470
2471 return pcms->pit_enabled;
2472 }
2473
2474 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2475 {
2476 PCMachineState *pcms = PC_MACHINE(obj);
2477
2478 pcms->pit_enabled = value;
2479 }
2480
2481 static void pc_machine_initfn(Object *obj)
2482 {
2483 PCMachineState *pcms = PC_MACHINE(obj);
2484
2485 pcms->max_ram_below_4g = 0; /* use default */
2486 pcms->smm = ON_OFF_AUTO_AUTO;
2487 pcms->vmport = ON_OFF_AUTO_AUTO;
2488 /* nvdimm is disabled on default. */
2489 pcms->acpi_nvdimm_state.is_enabled = false;
2490 /* acpi build is enabled by default if machine supports it */
2491 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2492 pcms->smbus_enabled = true;
2493 pcms->sata_enabled = true;
2494 pcms->pit_enabled = true;
2495 }
2496
2497 static void pc_machine_reset(void)
2498 {
2499 CPUState *cs;
2500 X86CPU *cpu;
2501
2502 qemu_devices_reset();
2503
2504 /* Reset APIC after devices have been reset to cancel
2505 * any changes that qemu_devices_reset() might have done.
2506 */
2507 CPU_FOREACH(cs) {
2508 cpu = X86_CPU(cs);
2509
2510 if (cpu->apic_state) {
2511 device_reset(cpu->apic_state);
2512 }
2513 }
2514 }
2515
2516 static CpuInstanceProperties
2517 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2518 {
2519 MachineClass *mc = MACHINE_GET_CLASS(ms);
2520 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2521
2522 assert(cpu_index < possible_cpus->len);
2523 return possible_cpus->cpus[cpu_index].props;
2524 }
2525
2526 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2527 {
2528 X86CPUTopoInfo topo;
2529
2530 assert(idx < ms->possible_cpus->len);
2531 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2532 smp_cores, smp_threads, &topo);
2533 return topo.pkg_id % nb_numa_nodes;
2534 }
2535
2536 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2537 {
2538 int i;
2539
2540 if (ms->possible_cpus) {
2541 /*
2542 * make sure that max_cpus hasn't changed since the first use, i.e.
2543 * -smp hasn't been parsed after it
2544 */
2545 assert(ms->possible_cpus->len == max_cpus);
2546 return ms->possible_cpus;
2547 }
2548
2549 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2550 sizeof(CPUArchId) * max_cpus);
2551 ms->possible_cpus->len = max_cpus;
2552 for (i = 0; i < ms->possible_cpus->len; i++) {
2553 X86CPUTopoInfo topo;
2554
2555 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2556 ms->possible_cpus->cpus[i].vcpus_count = 1;
2557 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2558 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2559 smp_cores, smp_threads, &topo);
2560 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2561 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2562 ms->possible_cpus->cpus[i].props.has_core_id = true;
2563 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2564 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2565 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2566 }
2567 return ms->possible_cpus;
2568 }
2569
2570 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2571 {
2572 /* cpu index isn't used */
2573 CPUState *cs;
2574
2575 CPU_FOREACH(cs) {
2576 X86CPU *cpu = X86_CPU(cs);
2577
2578 if (!cpu->apic_state) {
2579 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2580 } else {
2581 apic_deliver_nmi(cpu->apic_state);
2582 }
2583 }
2584 }
2585
2586 static void pc_machine_class_init(ObjectClass *oc, void *data)
2587 {
2588 MachineClass *mc = MACHINE_CLASS(oc);
2589 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2590 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2591 NMIClass *nc = NMI_CLASS(oc);
2592
2593 pcmc->pci_enabled = true;
2594 pcmc->has_acpi_build = true;
2595 pcmc->rsdp_in_ram = true;
2596 pcmc->smbios_defaults = true;
2597 pcmc->smbios_uuid_encoded = true;
2598 pcmc->gigabyte_align = true;
2599 pcmc->has_reserved_memory = true;
2600 pcmc->kvmclock_enabled = true;
2601 pcmc->enforce_aligned_dimm = true;
2602 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2603 * to be used at the moment, 32K should be enough for a while. */
2604 pcmc->acpi_data_size = 0x20000 + 0x8000;
2605 pcmc->save_tsc_khz = true;
2606 pcmc->linuxboot_dma_enabled = true;
2607 assert(!mc->get_hotplug_handler);
2608 mc->get_hotplug_handler = pc_get_hotpug_handler;
2609 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2610 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2611 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2612 mc->auto_enable_numa_with_memhp = true;
2613 mc->has_hotpluggable_cpus = true;
2614 mc->default_boot_order = "cad";
2615 mc->hot_add_cpu = pc_hot_add_cpu;
2616 mc->block_default_type = IF_IDE;
2617 mc->max_cpus = 255;
2618 mc->reset = pc_machine_reset;
2619 hc->pre_plug = pc_machine_device_pre_plug_cb;
2620 hc->plug = pc_machine_device_plug_cb;
2621 hc->unplug_request = pc_machine_device_unplug_request_cb;
2622 hc->unplug = pc_machine_device_unplug_cb;
2623 nc->nmi_monitor_handler = x86_nmi;
2624 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2625
2626 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2627 pc_machine_get_device_memory_region_size, NULL,
2628 NULL, NULL, &error_abort);
2629
2630 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2631 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2632 NULL, NULL, &error_abort);
2633
2634 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2635 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2636
2637 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2638 pc_machine_get_smm, pc_machine_set_smm,
2639 NULL, NULL, &error_abort);
2640 object_class_property_set_description(oc, PC_MACHINE_SMM,
2641 "Enable SMM (pc & q35)", &error_abort);
2642
2643 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2644 pc_machine_get_vmport, pc_machine_set_vmport,
2645 NULL, NULL, &error_abort);
2646 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2647 "Enable vmport (pc & q35)", &error_abort);
2648
2649 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2650 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2651
2652 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2653 pc_machine_get_nvdimm_persistence,
2654 pc_machine_set_nvdimm_persistence, &error_abort);
2655
2656 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2657 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2658
2659 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2660 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2661
2662 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2663 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2664 }
2665
2666 static const TypeInfo pc_machine_info = {
2667 .name = TYPE_PC_MACHINE,
2668 .parent = TYPE_MACHINE,
2669 .abstract = true,
2670 .instance_size = sizeof(PCMachineState),
2671 .instance_init = pc_machine_initfn,
2672 .class_size = sizeof(PCMachineClass),
2673 .class_init = pc_machine_class_init,
2674 .interfaces = (InterfaceInfo[]) {
2675 { TYPE_HOTPLUG_HANDLER },
2676 { TYPE_NMI },
2677 { }
2678 },
2679 };
2680
2681 static void pc_machine_register_types(void)
2682 {
2683 type_register_static(&pc_machine_info);
2684 }
2685
2686 type_init(pc_machine_register_types)