]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
pc: init pcms->apic_id_limit once and use it throughout pc.c
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70
71 /* debug PC/ISA interrupts */
72 //#define DEBUG_IRQ
73
74 #ifdef DEBUG_IRQ
75 #define DPRINTF(fmt, ...) \
76 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...)
79 #endif
80
81 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
82 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
83 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
84 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
85 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
86
87 #define E820_NR_ENTRIES 16
88
89 struct e820_entry {
90 uint64_t address;
91 uint64_t length;
92 uint32_t type;
93 } QEMU_PACKED __attribute((__aligned__(4)));
94
95 struct e820_table {
96 uint32_t count;
97 struct e820_entry entry[E820_NR_ENTRIES];
98 } QEMU_PACKED __attribute((__aligned__(4)));
99
100 static struct e820_table e820_reserve;
101 static struct e820_entry *e820_table;
102 static unsigned e820_entries;
103 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
104
105 void gsi_handler(void *opaque, int n, int level)
106 {
107 GSIState *s = opaque;
108
109 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
110 if (n < ISA_NUM_IRQS) {
111 qemu_set_irq(s->i8259_irq[n], level);
112 }
113 qemu_set_irq(s->ioapic_irq[n], level);
114 }
115
116 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
117 unsigned size)
118 {
119 }
120
121 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
122 {
123 return 0xffffffffffffffffULL;
124 }
125
126 /* MSDOS compatibility mode FPU exception support */
127 static qemu_irq ferr_irq;
128
129 void pc_register_ferr_irq(qemu_irq irq)
130 {
131 ferr_irq = irq;
132 }
133
134 /* XXX: add IGNNE support */
135 void cpu_set_ferr(CPUX86State *s)
136 {
137 qemu_irq_raise(ferr_irq);
138 }
139
140 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
141 unsigned size)
142 {
143 qemu_irq_lower(ferr_irq);
144 }
145
146 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
147 {
148 return 0xffffffffffffffffULL;
149 }
150
151 /* TSC handling */
152 uint64_t cpu_get_tsc(CPUX86State *env)
153 {
154 return cpu_get_ticks();
155 }
156
157 /* IRQ handling */
158 int cpu_get_pic_interrupt(CPUX86State *env)
159 {
160 X86CPU *cpu = x86_env_get_cpu(env);
161 int intno;
162
163 intno = apic_get_interrupt(cpu->apic_state);
164 if (intno >= 0) {
165 return intno;
166 }
167 /* read the irq from the PIC */
168 if (!apic_accept_pic_intr(cpu->apic_state)) {
169 return -1;
170 }
171
172 intno = pic_read_irq(isa_pic);
173 return intno;
174 }
175
176 static void pic_irq_request(void *opaque, int irq, int level)
177 {
178 CPUState *cs = first_cpu;
179 X86CPU *cpu = X86_CPU(cs);
180
181 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
182 if (cpu->apic_state) {
183 CPU_FOREACH(cs) {
184 cpu = X86_CPU(cs);
185 if (apic_accept_pic_intr(cpu->apic_state)) {
186 apic_deliver_pic_intr(cpu->apic_state, level);
187 }
188 }
189 } else {
190 if (level) {
191 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
192 } else {
193 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
194 }
195 }
196 }
197
198 /* PC cmos mappings */
199
200 #define REG_EQUIPMENT_BYTE 0x14
201
202 int cmos_get_fd_drive_type(FloppyDriveType fd0)
203 {
204 int val;
205
206 switch (fd0) {
207 case FLOPPY_DRIVE_TYPE_144:
208 /* 1.44 Mb 3"5 drive */
209 val = 4;
210 break;
211 case FLOPPY_DRIVE_TYPE_288:
212 /* 2.88 Mb 3"5 drive */
213 val = 5;
214 break;
215 case FLOPPY_DRIVE_TYPE_120:
216 /* 1.2 Mb 5"5 drive */
217 val = 2;
218 break;
219 case FLOPPY_DRIVE_TYPE_NONE:
220 default:
221 val = 0;
222 break;
223 }
224 return val;
225 }
226
227 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
228 int16_t cylinders, int8_t heads, int8_t sectors)
229 {
230 rtc_set_memory(s, type_ofs, 47);
231 rtc_set_memory(s, info_ofs, cylinders);
232 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
233 rtc_set_memory(s, info_ofs + 2, heads);
234 rtc_set_memory(s, info_ofs + 3, 0xff);
235 rtc_set_memory(s, info_ofs + 4, 0xff);
236 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
237 rtc_set_memory(s, info_ofs + 6, cylinders);
238 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
239 rtc_set_memory(s, info_ofs + 8, sectors);
240 }
241
242 /* convert boot_device letter to something recognizable by the bios */
243 static int boot_device2nibble(char boot_device)
244 {
245 switch(boot_device) {
246 case 'a':
247 case 'b':
248 return 0x01; /* floppy boot */
249 case 'c':
250 return 0x02; /* hard drive boot */
251 case 'd':
252 return 0x03; /* CD-ROM boot */
253 case 'n':
254 return 0x04; /* Network boot */
255 }
256 return 0;
257 }
258
259 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
260 {
261 #define PC_MAX_BOOT_DEVICES 3
262 int nbds, bds[3] = { 0, };
263 int i;
264
265 nbds = strlen(boot_device);
266 if (nbds > PC_MAX_BOOT_DEVICES) {
267 error_setg(errp, "Too many boot devices for PC");
268 return;
269 }
270 for (i = 0; i < nbds; i++) {
271 bds[i] = boot_device2nibble(boot_device[i]);
272 if (bds[i] == 0) {
273 error_setg(errp, "Invalid boot device for PC: '%c'",
274 boot_device[i]);
275 return;
276 }
277 }
278 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
279 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
280 }
281
282 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
283 {
284 set_boot_dev(opaque, boot_device, errp);
285 }
286
287 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
288 {
289 int val, nb, i;
290 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
291 FLOPPY_DRIVE_TYPE_NONE };
292
293 /* floppy type */
294 if (floppy) {
295 for (i = 0; i < 2; i++) {
296 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
297 }
298 }
299 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
300 cmos_get_fd_drive_type(fd_type[1]);
301 rtc_set_memory(rtc_state, 0x10, val);
302
303 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
304 nb = 0;
305 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
306 nb++;
307 }
308 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
309 nb++;
310 }
311 switch (nb) {
312 case 0:
313 break;
314 case 1:
315 val |= 0x01; /* 1 drive, ready for boot */
316 break;
317 case 2:
318 val |= 0x41; /* 2 drives, ready for boot */
319 break;
320 }
321 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
322 }
323
324 typedef struct pc_cmos_init_late_arg {
325 ISADevice *rtc_state;
326 BusState *idebus[2];
327 } pc_cmos_init_late_arg;
328
329 typedef struct check_fdc_state {
330 ISADevice *floppy;
331 bool multiple;
332 } CheckFdcState;
333
334 static int check_fdc(Object *obj, void *opaque)
335 {
336 CheckFdcState *state = opaque;
337 Object *fdc;
338 uint32_t iobase;
339 Error *local_err = NULL;
340
341 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
342 if (!fdc) {
343 return 0;
344 }
345
346 iobase = object_property_get_int(obj, "iobase", &local_err);
347 if (local_err || iobase != 0x3f0) {
348 error_free(local_err);
349 return 0;
350 }
351
352 if (state->floppy) {
353 state->multiple = true;
354 } else {
355 state->floppy = ISA_DEVICE(obj);
356 }
357 return 0;
358 }
359
360 static const char * const fdc_container_path[] = {
361 "/unattached", "/peripheral", "/peripheral-anon"
362 };
363
364 /*
365 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
366 * and ACPI objects.
367 */
368 ISADevice *pc_find_fdc0(void)
369 {
370 int i;
371 Object *container;
372 CheckFdcState state = { 0 };
373
374 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
375 container = container_get(qdev_get_machine(), fdc_container_path[i]);
376 object_child_foreach(container, check_fdc, &state);
377 }
378
379 if (state.multiple) {
380 error_report("warning: multiple floppy disk controllers with "
381 "iobase=0x3f0 have been found");
382 error_printf("the one being picked for CMOS setup might not reflect "
383 "your intent");
384 }
385
386 return state.floppy;
387 }
388
389 static void pc_cmos_init_late(void *opaque)
390 {
391 pc_cmos_init_late_arg *arg = opaque;
392 ISADevice *s = arg->rtc_state;
393 int16_t cylinders;
394 int8_t heads, sectors;
395 int val;
396 int i, trans;
397
398 val = 0;
399 if (ide_get_geometry(arg->idebus[0], 0,
400 &cylinders, &heads, &sectors) >= 0) {
401 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
402 val |= 0xf0;
403 }
404 if (ide_get_geometry(arg->idebus[0], 1,
405 &cylinders, &heads, &sectors) >= 0) {
406 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
407 val |= 0x0f;
408 }
409 rtc_set_memory(s, 0x12, val);
410
411 val = 0;
412 for (i = 0; i < 4; i++) {
413 /* NOTE: ide_get_geometry() returns the physical
414 geometry. It is always such that: 1 <= sects <= 63, 1
415 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
416 geometry can be different if a translation is done. */
417 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
418 &cylinders, &heads, &sectors) >= 0) {
419 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
420 assert((trans & ~3) == 0);
421 val |= trans << (i * 2);
422 }
423 }
424 rtc_set_memory(s, 0x39, val);
425
426 pc_cmos_init_floppy(s, pc_find_fdc0());
427
428 qemu_unregister_reset(pc_cmos_init_late, opaque);
429 }
430
431 void pc_cmos_init(PCMachineState *pcms,
432 BusState *idebus0, BusState *idebus1,
433 ISADevice *s)
434 {
435 int val;
436 static pc_cmos_init_late_arg arg;
437
438 /* various important CMOS locations needed by PC/Bochs bios */
439
440 /* memory size */
441 /* base memory (first MiB) */
442 val = MIN(pcms->below_4g_mem_size / 1024, 640);
443 rtc_set_memory(s, 0x15, val);
444 rtc_set_memory(s, 0x16, val >> 8);
445 /* extended memory (next 64MiB) */
446 if (pcms->below_4g_mem_size > 1024 * 1024) {
447 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
448 } else {
449 val = 0;
450 }
451 if (val > 65535)
452 val = 65535;
453 rtc_set_memory(s, 0x17, val);
454 rtc_set_memory(s, 0x18, val >> 8);
455 rtc_set_memory(s, 0x30, val);
456 rtc_set_memory(s, 0x31, val >> 8);
457 /* memory between 16MiB and 4GiB */
458 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
459 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
460 } else {
461 val = 0;
462 }
463 if (val > 65535)
464 val = 65535;
465 rtc_set_memory(s, 0x34, val);
466 rtc_set_memory(s, 0x35, val >> 8);
467 /* memory above 4GiB */
468 val = pcms->above_4g_mem_size / 65536;
469 rtc_set_memory(s, 0x5b, val);
470 rtc_set_memory(s, 0x5c, val >> 8);
471 rtc_set_memory(s, 0x5d, val >> 16);
472
473 /* set the number of CPU */
474 rtc_set_memory(s, 0x5f, smp_cpus - 1);
475
476 object_property_add_link(OBJECT(pcms), "rtc_state",
477 TYPE_ISA_DEVICE,
478 (Object **)&pcms->rtc,
479 object_property_allow_set_link,
480 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
481 object_property_set_link(OBJECT(pcms), OBJECT(s),
482 "rtc_state", &error_abort);
483
484 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
485
486 val = 0;
487 val |= 0x02; /* FPU is there */
488 val |= 0x04; /* PS/2 mouse installed */
489 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
490
491 /* hard drives and FDC */
492 arg.rtc_state = s;
493 arg.idebus[0] = idebus0;
494 arg.idebus[1] = idebus1;
495 qemu_register_reset(pc_cmos_init_late, &arg);
496 }
497
498 #define TYPE_PORT92 "port92"
499 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
500
501 /* port 92 stuff: could be split off */
502 typedef struct Port92State {
503 ISADevice parent_obj;
504
505 MemoryRegion io;
506 uint8_t outport;
507 qemu_irq *a20_out;
508 } Port92State;
509
510 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
511 unsigned size)
512 {
513 Port92State *s = opaque;
514 int oldval = s->outport;
515
516 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
517 s->outport = val;
518 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
519 if ((val & 1) && !(oldval & 1)) {
520 qemu_system_reset_request();
521 }
522 }
523
524 static uint64_t port92_read(void *opaque, hwaddr addr,
525 unsigned size)
526 {
527 Port92State *s = opaque;
528 uint32_t ret;
529
530 ret = s->outport;
531 DPRINTF("port92: read 0x%02x\n", ret);
532 return ret;
533 }
534
535 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
536 {
537 Port92State *s = PORT92(dev);
538
539 s->a20_out = a20_out;
540 }
541
542 static const VMStateDescription vmstate_port92_isa = {
543 .name = "port92",
544 .version_id = 1,
545 .minimum_version_id = 1,
546 .fields = (VMStateField[]) {
547 VMSTATE_UINT8(outport, Port92State),
548 VMSTATE_END_OF_LIST()
549 }
550 };
551
552 static void port92_reset(DeviceState *d)
553 {
554 Port92State *s = PORT92(d);
555
556 s->outport &= ~1;
557 }
558
559 static const MemoryRegionOps port92_ops = {
560 .read = port92_read,
561 .write = port92_write,
562 .impl = {
563 .min_access_size = 1,
564 .max_access_size = 1,
565 },
566 .endianness = DEVICE_LITTLE_ENDIAN,
567 };
568
569 static void port92_initfn(Object *obj)
570 {
571 Port92State *s = PORT92(obj);
572
573 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
574
575 s->outport = 0;
576 }
577
578 static void port92_realizefn(DeviceState *dev, Error **errp)
579 {
580 ISADevice *isadev = ISA_DEVICE(dev);
581 Port92State *s = PORT92(dev);
582
583 isa_register_ioport(isadev, &s->io, 0x92);
584 }
585
586 static void port92_class_initfn(ObjectClass *klass, void *data)
587 {
588 DeviceClass *dc = DEVICE_CLASS(klass);
589
590 dc->realize = port92_realizefn;
591 dc->reset = port92_reset;
592 dc->vmsd = &vmstate_port92_isa;
593 /*
594 * Reason: unlike ordinary ISA devices, this one needs additional
595 * wiring: its A20 output line needs to be wired up by
596 * port92_init().
597 */
598 dc->cannot_instantiate_with_device_add_yet = true;
599 }
600
601 static const TypeInfo port92_info = {
602 .name = TYPE_PORT92,
603 .parent = TYPE_ISA_DEVICE,
604 .instance_size = sizeof(Port92State),
605 .instance_init = port92_initfn,
606 .class_init = port92_class_initfn,
607 };
608
609 static void port92_register_types(void)
610 {
611 type_register_static(&port92_info);
612 }
613
614 type_init(port92_register_types)
615
616 static void handle_a20_line_change(void *opaque, int irq, int level)
617 {
618 X86CPU *cpu = opaque;
619
620 /* XXX: send to all CPUs ? */
621 /* XXX: add logic to handle multiple A20 line sources */
622 x86_cpu_set_a20(cpu, level);
623 }
624
625 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
626 {
627 int index = le32_to_cpu(e820_reserve.count);
628 struct e820_entry *entry;
629
630 if (type != E820_RAM) {
631 /* old FW_CFG_E820_TABLE entry -- reservations only */
632 if (index >= E820_NR_ENTRIES) {
633 return -EBUSY;
634 }
635 entry = &e820_reserve.entry[index++];
636
637 entry->address = cpu_to_le64(address);
638 entry->length = cpu_to_le64(length);
639 entry->type = cpu_to_le32(type);
640
641 e820_reserve.count = cpu_to_le32(index);
642 }
643
644 /* new "etc/e820" file -- include ram too */
645 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
646 e820_table[e820_entries].address = cpu_to_le64(address);
647 e820_table[e820_entries].length = cpu_to_le64(length);
648 e820_table[e820_entries].type = cpu_to_le32(type);
649 e820_entries++;
650
651 return e820_entries;
652 }
653
654 int e820_get_num_entries(void)
655 {
656 return e820_entries;
657 }
658
659 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
660 {
661 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
662 *address = le64_to_cpu(e820_table[idx].address);
663 *length = le64_to_cpu(e820_table[idx].length);
664 return true;
665 }
666 return false;
667 }
668
669 /* Enables contiguous-apic-ID mode, for compatibility */
670 static bool compat_apic_id_mode;
671
672 void enable_compat_apic_id_mode(void)
673 {
674 compat_apic_id_mode = true;
675 }
676
677 /* Calculates initial APIC ID for a specific CPU index
678 *
679 * Currently we need to be able to calculate the APIC ID from the CPU index
680 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
681 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
682 * all CPUs up to max_cpus.
683 */
684 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
685 {
686 uint32_t correct_id;
687 static bool warned;
688
689 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
690 if (compat_apic_id_mode) {
691 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
692 error_report("APIC IDs set in compatibility mode, "
693 "CPU topology won't match the configuration");
694 warned = true;
695 }
696 return cpu_index;
697 } else {
698 return correct_id;
699 }
700 }
701
702 static void pc_build_smbios(FWCfgState *fw_cfg)
703 {
704 uint8_t *smbios_tables, *smbios_anchor;
705 size_t smbios_tables_len, smbios_anchor_len;
706 struct smbios_phys_mem_area *mem_array;
707 unsigned i, array_count;
708
709 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
710 if (smbios_tables) {
711 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
712 smbios_tables, smbios_tables_len);
713 }
714
715 /* build the array of physical mem area from e820 table */
716 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
717 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
718 uint64_t addr, len;
719
720 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
721 mem_array[array_count].address = addr;
722 mem_array[array_count].length = len;
723 array_count++;
724 }
725 }
726 smbios_get_tables(mem_array, array_count,
727 &smbios_tables, &smbios_tables_len,
728 &smbios_anchor, &smbios_anchor_len);
729 g_free(mem_array);
730
731 if (smbios_anchor) {
732 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
733 smbios_tables, smbios_tables_len);
734 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
735 smbios_anchor, smbios_anchor_len);
736 }
737 }
738
739 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
740 {
741 FWCfgState *fw_cfg;
742 uint64_t *numa_fw_cfg;
743 int i, j;
744
745 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
746
747 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
748 *
749 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
750 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
751 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
752 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
753 * may see".
754 *
755 * So, this means we must not use max_cpus, here, but the maximum possible
756 * APIC ID value, plus one.
757 *
758 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
759 * the APIC ID, not the "CPU index"
760 */
761 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
762 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
763 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
764 acpi_tables, acpi_tables_len);
765 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
766
767 pc_build_smbios(fw_cfg);
768
769 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
770 &e820_reserve, sizeof(e820_reserve));
771 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
772 sizeof(struct e820_entry) * e820_entries);
773
774 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
775 /* allocate memory for the NUMA channel: one (64bit) word for the number
776 * of nodes, one word for each VCPU->node and one word for each node to
777 * hold the amount of memory.
778 */
779 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
780 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
781 for (i = 0; i < max_cpus; i++) {
782 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
783 assert(apic_id < pcms->apic_id_limit);
784 for (j = 0; j < nb_numa_nodes; j++) {
785 if (test_bit(i, numa_info[j].node_cpu)) {
786 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
787 break;
788 }
789 }
790 }
791 for (i = 0; i < nb_numa_nodes; i++) {
792 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
793 cpu_to_le64(numa_info[i].node_mem);
794 }
795 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
796 (1 + pcms->apic_id_limit + nb_numa_nodes) *
797 sizeof(*numa_fw_cfg));
798
799 return fw_cfg;
800 }
801
802 static long get_file_size(FILE *f)
803 {
804 long where, size;
805
806 /* XXX: on Unix systems, using fstat() probably makes more sense */
807
808 where = ftell(f);
809 fseek(f, 0, SEEK_END);
810 size = ftell(f);
811 fseek(f, where, SEEK_SET);
812
813 return size;
814 }
815
816 static void load_linux(PCMachineState *pcms,
817 FWCfgState *fw_cfg)
818 {
819 uint16_t protocol;
820 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
821 uint32_t initrd_max;
822 uint8_t header[8192], *setup, *kernel, *initrd_data;
823 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
824 FILE *f;
825 char *vmode;
826 MachineState *machine = MACHINE(pcms);
827 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
828 const char *kernel_filename = machine->kernel_filename;
829 const char *initrd_filename = machine->initrd_filename;
830 const char *kernel_cmdline = machine->kernel_cmdline;
831
832 /* Align to 16 bytes as a paranoia measure */
833 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
834
835 /* load the kernel header */
836 f = fopen(kernel_filename, "rb");
837 if (!f || !(kernel_size = get_file_size(f)) ||
838 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
839 MIN(ARRAY_SIZE(header), kernel_size)) {
840 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
841 kernel_filename, strerror(errno));
842 exit(1);
843 }
844
845 /* kernel protocol version */
846 #if 0
847 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
848 #endif
849 if (ldl_p(header+0x202) == 0x53726448) {
850 protocol = lduw_p(header+0x206);
851 } else {
852 /* This looks like a multiboot kernel. If it is, let's stop
853 treating it like a Linux kernel. */
854 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
855 kernel_cmdline, kernel_size, header)) {
856 return;
857 }
858 protocol = 0;
859 }
860
861 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
862 /* Low kernel */
863 real_addr = 0x90000;
864 cmdline_addr = 0x9a000 - cmdline_size;
865 prot_addr = 0x10000;
866 } else if (protocol < 0x202) {
867 /* High but ancient kernel */
868 real_addr = 0x90000;
869 cmdline_addr = 0x9a000 - cmdline_size;
870 prot_addr = 0x100000;
871 } else {
872 /* High and recent kernel */
873 real_addr = 0x10000;
874 cmdline_addr = 0x20000;
875 prot_addr = 0x100000;
876 }
877
878 #if 0
879 fprintf(stderr,
880 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
881 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
882 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
883 real_addr,
884 cmdline_addr,
885 prot_addr);
886 #endif
887
888 /* highest address for loading the initrd */
889 if (protocol >= 0x203) {
890 initrd_max = ldl_p(header+0x22c);
891 } else {
892 initrd_max = 0x37ffffff;
893 }
894
895 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
896 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
897 }
898
899 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
900 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
901 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
902
903 if (protocol >= 0x202) {
904 stl_p(header+0x228, cmdline_addr);
905 } else {
906 stw_p(header+0x20, 0xA33F);
907 stw_p(header+0x22, cmdline_addr-real_addr);
908 }
909
910 /* handle vga= parameter */
911 vmode = strstr(kernel_cmdline, "vga=");
912 if (vmode) {
913 unsigned int video_mode;
914 /* skip "vga=" */
915 vmode += 4;
916 if (!strncmp(vmode, "normal", 6)) {
917 video_mode = 0xffff;
918 } else if (!strncmp(vmode, "ext", 3)) {
919 video_mode = 0xfffe;
920 } else if (!strncmp(vmode, "ask", 3)) {
921 video_mode = 0xfffd;
922 } else {
923 video_mode = strtol(vmode, NULL, 0);
924 }
925 stw_p(header+0x1fa, video_mode);
926 }
927
928 /* loader type */
929 /* High nybble = B reserved for QEMU; low nybble is revision number.
930 If this code is substantially changed, you may want to consider
931 incrementing the revision. */
932 if (protocol >= 0x200) {
933 header[0x210] = 0xB0;
934 }
935 /* heap */
936 if (protocol >= 0x201) {
937 header[0x211] |= 0x80; /* CAN_USE_HEAP */
938 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
939 }
940
941 /* load initrd */
942 if (initrd_filename) {
943 if (protocol < 0x200) {
944 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
945 exit(1);
946 }
947
948 initrd_size = get_image_size(initrd_filename);
949 if (initrd_size < 0) {
950 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
951 initrd_filename, strerror(errno));
952 exit(1);
953 }
954
955 initrd_addr = (initrd_max-initrd_size) & ~4095;
956
957 initrd_data = g_malloc(initrd_size);
958 load_image(initrd_filename, initrd_data);
959
960 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
961 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
962 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
963
964 stl_p(header+0x218, initrd_addr);
965 stl_p(header+0x21c, initrd_size);
966 }
967
968 /* load kernel and setup */
969 setup_size = header[0x1f1];
970 if (setup_size == 0) {
971 setup_size = 4;
972 }
973 setup_size = (setup_size+1)*512;
974 if (setup_size > kernel_size) {
975 fprintf(stderr, "qemu: invalid kernel header\n");
976 exit(1);
977 }
978 kernel_size -= setup_size;
979
980 setup = g_malloc(setup_size);
981 kernel = g_malloc(kernel_size);
982 fseek(f, 0, SEEK_SET);
983 if (fread(setup, 1, setup_size, f) != setup_size) {
984 fprintf(stderr, "fread() failed\n");
985 exit(1);
986 }
987 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
988 fprintf(stderr, "fread() failed\n");
989 exit(1);
990 }
991 fclose(f);
992 memcpy(setup, header, MIN(sizeof(header), setup_size));
993
994 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
995 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
996 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
997
998 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
999 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1000 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1001
1002 option_rom[nb_option_roms].name = "linuxboot.bin";
1003 option_rom[nb_option_roms].bootindex = 0;
1004 nb_option_roms++;
1005 }
1006
1007 #define NE2000_NB_MAX 6
1008
1009 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1010 0x280, 0x380 };
1011 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1012
1013 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1014 {
1015 static int nb_ne2k = 0;
1016
1017 if (nb_ne2k == NE2000_NB_MAX)
1018 return;
1019 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1020 ne2000_irq[nb_ne2k], nd);
1021 nb_ne2k++;
1022 }
1023
1024 DeviceState *cpu_get_current_apic(void)
1025 {
1026 if (current_cpu) {
1027 X86CPU *cpu = X86_CPU(current_cpu);
1028 return cpu->apic_state;
1029 } else {
1030 return NULL;
1031 }
1032 }
1033
1034 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1035 {
1036 X86CPU *cpu = opaque;
1037
1038 if (level) {
1039 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1040 }
1041 }
1042
1043 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1044 Error **errp)
1045 {
1046 X86CPU *cpu = NULL;
1047 Error *local_err = NULL;
1048
1049 cpu = cpu_x86_create(cpu_model, &local_err);
1050 if (local_err != NULL) {
1051 goto out;
1052 }
1053
1054 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1055 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1056
1057 out:
1058 if (local_err) {
1059 error_propagate(errp, local_err);
1060 object_unref(OBJECT(cpu));
1061 cpu = NULL;
1062 }
1063 return cpu;
1064 }
1065
1066 void pc_hot_add_cpu(const int64_t id, Error **errp)
1067 {
1068 X86CPU *cpu;
1069 MachineState *machine = MACHINE(qdev_get_machine());
1070 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1071 Error *local_err = NULL;
1072
1073 if (id < 0) {
1074 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1075 return;
1076 }
1077
1078 if (cpu_exists(apic_id)) {
1079 error_setg(errp, "Unable to add CPU: %" PRIi64
1080 ", it already exists", id);
1081 return;
1082 }
1083
1084 if (id >= max_cpus) {
1085 error_setg(errp, "Unable to add CPU: %" PRIi64
1086 ", max allowed: %d", id, max_cpus - 1);
1087 return;
1088 }
1089
1090 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1091 error_setg(errp, "Unable to add CPU: %" PRIi64
1092 ", resulting APIC ID (%" PRIi64 ") is too large",
1093 id, apic_id);
1094 return;
1095 }
1096
1097 cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1098 if (local_err) {
1099 error_propagate(errp, local_err);
1100 return;
1101 }
1102 object_unref(OBJECT(cpu));
1103 }
1104
1105 void pc_cpus_init(PCMachineState *pcms)
1106 {
1107 int i;
1108 X86CPU *cpu = NULL;
1109 MachineState *machine = MACHINE(pcms);
1110
1111 /* init CPUs */
1112 if (machine->cpu_model == NULL) {
1113 #ifdef TARGET_X86_64
1114 machine->cpu_model = "qemu64";
1115 #else
1116 machine->cpu_model = "qemu32";
1117 #endif
1118 }
1119
1120 /* Calculates the limit to CPU APIC ID values
1121 *
1122 * Limit for the APIC ID value, so that all
1123 * CPU APIC IDs are < pcms->apic_id_limit.
1124 *
1125 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1126 */
1127 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1128 if (pcms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1129 error_report("max_cpus is too large. APIC ID of last CPU is %u",
1130 pcms->apic_id_limit - 1);
1131 exit(1);
1132 }
1133
1134 for (i = 0; i < smp_cpus; i++) {
1135 cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1136 &error_fatal);
1137 object_unref(OBJECT(cpu));
1138 }
1139
1140 /* tell smbios about cpuid version and features */
1141 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1142 }
1143
1144 /* pci-info ROM file. Little endian format */
1145 typedef struct PcRomPciInfo {
1146 uint64_t w32_min;
1147 uint64_t w32_max;
1148 uint64_t w64_min;
1149 uint64_t w64_max;
1150 } PcRomPciInfo;
1151
1152 static
1153 void pc_machine_done(Notifier *notifier, void *data)
1154 {
1155 PCMachineState *pcms = container_of(notifier,
1156 PCMachineState, machine_done);
1157 PCIBus *bus = pcms->bus;
1158
1159 if (bus) {
1160 int extra_hosts = 0;
1161
1162 QLIST_FOREACH(bus, &bus->child, sibling) {
1163 /* look for expander root buses */
1164 if (pci_bus_is_root(bus)) {
1165 extra_hosts++;
1166 }
1167 }
1168 if (extra_hosts && pcms->fw_cfg) {
1169 uint64_t *val = g_malloc(sizeof(*val));
1170 *val = cpu_to_le64(extra_hosts);
1171 fw_cfg_add_file(pcms->fw_cfg,
1172 "etc/extra-pci-roots", val, sizeof(*val));
1173 }
1174 }
1175
1176 acpi_setup();
1177 }
1178
1179 void pc_guest_info_init(PCMachineState *pcms)
1180 {
1181 int i, j;
1182
1183 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1184 pcms->numa_nodes = nb_numa_nodes;
1185 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1186 sizeof *pcms->node_mem);
1187 for (i = 0; i < nb_numa_nodes; i++) {
1188 pcms->node_mem[i] = numa_info[i].node_mem;
1189 }
1190
1191 pcms->node_cpu = g_malloc0(pcms->apic_id_limit *
1192 sizeof *pcms->node_cpu);
1193
1194 for (i = 0; i < max_cpus; i++) {
1195 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1196 assert(apic_id < pcms->apic_id_limit);
1197 for (j = 0; j < nb_numa_nodes; j++) {
1198 if (test_bit(i, numa_info[j].node_cpu)) {
1199 pcms->node_cpu[apic_id] = j;
1200 break;
1201 }
1202 }
1203 }
1204
1205 pcms->machine_done.notify = pc_machine_done;
1206 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1207 }
1208
1209 /* setup pci memory address space mapping into system address space */
1210 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1211 MemoryRegion *pci_address_space)
1212 {
1213 /* Set to lower priority than RAM */
1214 memory_region_add_subregion_overlap(system_memory, 0x0,
1215 pci_address_space, -1);
1216 }
1217
1218 void pc_acpi_init(const char *default_dsdt)
1219 {
1220 char *filename;
1221
1222 if (acpi_tables != NULL) {
1223 /* manually set via -acpitable, leave it alone */
1224 return;
1225 }
1226
1227 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1228 if (filename == NULL) {
1229 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1230 } else {
1231 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1232 &error_abort);
1233 Error *err = NULL;
1234
1235 qemu_opt_set(opts, "file", filename, &error_abort);
1236
1237 acpi_table_add_builtin(opts, &err);
1238 if (err) {
1239 error_reportf_err(err, "WARNING: failed to load %s: ",
1240 filename);
1241 }
1242 g_free(filename);
1243 }
1244 }
1245
1246 void xen_load_linux(PCMachineState *pcms)
1247 {
1248 int i;
1249 FWCfgState *fw_cfg;
1250
1251 assert(MACHINE(pcms)->kernel_filename != NULL);
1252
1253 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1254 rom_set_fw(fw_cfg);
1255
1256 load_linux(pcms, fw_cfg);
1257 for (i = 0; i < nb_option_roms; i++) {
1258 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1259 !strcmp(option_rom[i].name, "multiboot.bin"));
1260 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1261 }
1262 pcms->fw_cfg = fw_cfg;
1263 }
1264
1265 void pc_memory_init(PCMachineState *pcms,
1266 MemoryRegion *system_memory,
1267 MemoryRegion *rom_memory,
1268 MemoryRegion **ram_memory)
1269 {
1270 int linux_boot, i;
1271 MemoryRegion *ram, *option_rom_mr;
1272 MemoryRegion *ram_below_4g, *ram_above_4g;
1273 FWCfgState *fw_cfg;
1274 MachineState *machine = MACHINE(pcms);
1275 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1276
1277 assert(machine->ram_size == pcms->below_4g_mem_size +
1278 pcms->above_4g_mem_size);
1279
1280 linux_boot = (machine->kernel_filename != NULL);
1281
1282 /* Allocate RAM. We allocate it as a single memory region and use
1283 * aliases to address portions of it, mostly for backwards compatibility
1284 * with older qemus that used qemu_ram_alloc().
1285 */
1286 ram = g_malloc(sizeof(*ram));
1287 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1288 machine->ram_size);
1289 *ram_memory = ram;
1290 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1291 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1292 0, pcms->below_4g_mem_size);
1293 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1294 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1295 if (pcms->above_4g_mem_size > 0) {
1296 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1297 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1298 pcms->below_4g_mem_size,
1299 pcms->above_4g_mem_size);
1300 memory_region_add_subregion(system_memory, 0x100000000ULL,
1301 ram_above_4g);
1302 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1303 }
1304
1305 if (!pcmc->has_reserved_memory &&
1306 (machine->ram_slots ||
1307 (machine->maxram_size > machine->ram_size))) {
1308 MachineClass *mc = MACHINE_GET_CLASS(machine);
1309
1310 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1311 mc->name);
1312 exit(EXIT_FAILURE);
1313 }
1314
1315 /* initialize hotplug memory address space */
1316 if (pcmc->has_reserved_memory &&
1317 (machine->ram_size < machine->maxram_size)) {
1318 ram_addr_t hotplug_mem_size =
1319 machine->maxram_size - machine->ram_size;
1320
1321 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1322 error_report("unsupported amount of memory slots: %"PRIu64,
1323 machine->ram_slots);
1324 exit(EXIT_FAILURE);
1325 }
1326
1327 if (QEMU_ALIGN_UP(machine->maxram_size,
1328 TARGET_PAGE_SIZE) != machine->maxram_size) {
1329 error_report("maximum memory size must by aligned to multiple of "
1330 "%d bytes", TARGET_PAGE_SIZE);
1331 exit(EXIT_FAILURE);
1332 }
1333
1334 pcms->hotplug_memory.base =
1335 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1336
1337 if (pcmc->enforce_aligned_dimm) {
1338 /* size hotplug region assuming 1G page max alignment per slot */
1339 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1340 }
1341
1342 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1343 hotplug_mem_size) {
1344 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1345 machine->maxram_size);
1346 exit(EXIT_FAILURE);
1347 }
1348
1349 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1350 "hotplug-memory", hotplug_mem_size);
1351 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1352 &pcms->hotplug_memory.mr);
1353 }
1354
1355 /* Initialize PC system firmware */
1356 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1357
1358 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1359 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1360 &error_fatal);
1361 vmstate_register_ram_global(option_rom_mr);
1362 memory_region_add_subregion_overlap(rom_memory,
1363 PC_ROM_MIN_VGA,
1364 option_rom_mr,
1365 1);
1366
1367 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1368
1369 rom_set_fw(fw_cfg);
1370
1371 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1372 uint64_t *val = g_malloc(sizeof(*val));
1373 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1374 uint64_t res_mem_end = pcms->hotplug_memory.base;
1375
1376 if (!pcmc->broken_reserved_end) {
1377 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1378 }
1379 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1380 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1381 }
1382
1383 if (linux_boot) {
1384 load_linux(pcms, fw_cfg);
1385 }
1386
1387 for (i = 0; i < nb_option_roms; i++) {
1388 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1389 }
1390 pcms->fw_cfg = fw_cfg;
1391 }
1392
1393 qemu_irq pc_allocate_cpu_irq(void)
1394 {
1395 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1396 }
1397
1398 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1399 {
1400 DeviceState *dev = NULL;
1401
1402 if (pci_bus) {
1403 PCIDevice *pcidev = pci_vga_init(pci_bus);
1404 dev = pcidev ? &pcidev->qdev : NULL;
1405 } else if (isa_bus) {
1406 ISADevice *isadev = isa_vga_init(isa_bus);
1407 dev = isadev ? DEVICE(isadev) : NULL;
1408 }
1409 return dev;
1410 }
1411
1412 static const MemoryRegionOps ioport80_io_ops = {
1413 .write = ioport80_write,
1414 .read = ioport80_read,
1415 .endianness = DEVICE_NATIVE_ENDIAN,
1416 .impl = {
1417 .min_access_size = 1,
1418 .max_access_size = 1,
1419 },
1420 };
1421
1422 static const MemoryRegionOps ioportF0_io_ops = {
1423 .write = ioportF0_write,
1424 .read = ioportF0_read,
1425 .endianness = DEVICE_NATIVE_ENDIAN,
1426 .impl = {
1427 .min_access_size = 1,
1428 .max_access_size = 1,
1429 },
1430 };
1431
1432 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1433 ISADevice **rtc_state,
1434 bool create_fdctrl,
1435 bool no_vmport,
1436 uint32_t hpet_irqs)
1437 {
1438 int i;
1439 DriveInfo *fd[MAX_FD];
1440 DeviceState *hpet = NULL;
1441 int pit_isa_irq = 0;
1442 qemu_irq pit_alt_irq = NULL;
1443 qemu_irq rtc_irq = NULL;
1444 qemu_irq *a20_line;
1445 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1446 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1447 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1448
1449 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1450 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1451
1452 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1453 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1454
1455 /*
1456 * Check if an HPET shall be created.
1457 *
1458 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1459 * when the HPET wants to take over. Thus we have to disable the latter.
1460 */
1461 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1462 /* In order to set property, here not using sysbus_try_create_simple */
1463 hpet = qdev_try_create(NULL, TYPE_HPET);
1464 if (hpet) {
1465 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1466 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1467 * IRQ8 and IRQ2.
1468 */
1469 uint8_t compat = object_property_get_int(OBJECT(hpet),
1470 HPET_INTCAP, NULL);
1471 if (!compat) {
1472 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1473 }
1474 qdev_init_nofail(hpet);
1475 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1476
1477 for (i = 0; i < GSI_NUM_PINS; i++) {
1478 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1479 }
1480 pit_isa_irq = -1;
1481 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1482 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1483 }
1484 }
1485 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1486
1487 qemu_register_boot_set(pc_boot_set, *rtc_state);
1488
1489 if (!xen_enabled()) {
1490 if (kvm_pit_in_kernel()) {
1491 pit = kvm_pit_init(isa_bus, 0x40);
1492 } else {
1493 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1494 }
1495 if (hpet) {
1496 /* connect PIT to output control line of the HPET */
1497 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1498 }
1499 pcspk_init(isa_bus, pit);
1500 }
1501
1502 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1503 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1504
1505 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1506 i8042 = isa_create_simple(isa_bus, "i8042");
1507 i8042_setup_a20_line(i8042, &a20_line[0]);
1508 if (!no_vmport) {
1509 vmport_init(isa_bus);
1510 vmmouse = isa_try_create(isa_bus, "vmmouse");
1511 } else {
1512 vmmouse = NULL;
1513 }
1514 if (vmmouse) {
1515 DeviceState *dev = DEVICE(vmmouse);
1516 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1517 qdev_init_nofail(dev);
1518 }
1519 port92 = isa_create_simple(isa_bus, "port92");
1520 port92_init(port92, &a20_line[1]);
1521
1522 DMA_init(isa_bus, 0);
1523
1524 for(i = 0; i < MAX_FD; i++) {
1525 fd[i] = drive_get(IF_FLOPPY, 0, i);
1526 create_fdctrl |= !!fd[i];
1527 }
1528 if (create_fdctrl) {
1529 fdctrl_init_isa(isa_bus, fd);
1530 }
1531 }
1532
1533 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1534 {
1535 int i;
1536
1537 for (i = 0; i < nb_nics; i++) {
1538 NICInfo *nd = &nd_table[i];
1539
1540 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1541 pc_init_ne2k_isa(isa_bus, nd);
1542 } else {
1543 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1544 }
1545 }
1546 }
1547
1548 void pc_pci_device_init(PCIBus *pci_bus)
1549 {
1550 int max_bus;
1551 int bus;
1552
1553 max_bus = drive_get_max_bus(IF_SCSI);
1554 for (bus = 0; bus <= max_bus; bus++) {
1555 pci_create_simple(pci_bus, -1, "lsi53c895a");
1556 }
1557 }
1558
1559 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1560 {
1561 DeviceState *dev;
1562 SysBusDevice *d;
1563 unsigned int i;
1564
1565 if (kvm_ioapic_in_kernel()) {
1566 dev = qdev_create(NULL, "kvm-ioapic");
1567 } else {
1568 dev = qdev_create(NULL, "ioapic");
1569 }
1570 if (parent_name) {
1571 object_property_add_child(object_resolve_path(parent_name, NULL),
1572 "ioapic", OBJECT(dev), NULL);
1573 }
1574 qdev_init_nofail(dev);
1575 d = SYS_BUS_DEVICE(dev);
1576 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1577
1578 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1579 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1580 }
1581 }
1582
1583 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1584 DeviceState *dev, Error **errp)
1585 {
1586 HotplugHandlerClass *hhc;
1587 Error *local_err = NULL;
1588 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1589 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1590 PCDIMMDevice *dimm = PC_DIMM(dev);
1591 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1592 MemoryRegion *mr = ddc->get_memory_region(dimm);
1593 uint64_t align = TARGET_PAGE_SIZE;
1594
1595 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1596 align = memory_region_get_alignment(mr);
1597 }
1598
1599 if (!pcms->acpi_dev) {
1600 error_setg(&local_err,
1601 "memory hotplug is not enabled: missing acpi device");
1602 goto out;
1603 }
1604
1605 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1606 if (local_err) {
1607 goto out;
1608 }
1609
1610 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1611 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1612 out:
1613 error_propagate(errp, local_err);
1614 }
1615
1616 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1617 DeviceState *dev, Error **errp)
1618 {
1619 HotplugHandlerClass *hhc;
1620 Error *local_err = NULL;
1621 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1622
1623 if (!pcms->acpi_dev) {
1624 error_setg(&local_err,
1625 "memory hotplug is not enabled: missing acpi device");
1626 goto out;
1627 }
1628
1629 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1630 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1631
1632 out:
1633 error_propagate(errp, local_err);
1634 }
1635
1636 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1637 DeviceState *dev, Error **errp)
1638 {
1639 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1640 PCDIMMDevice *dimm = PC_DIMM(dev);
1641 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1642 MemoryRegion *mr = ddc->get_memory_region(dimm);
1643 HotplugHandlerClass *hhc;
1644 Error *local_err = NULL;
1645
1646 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1647 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1648
1649 if (local_err) {
1650 goto out;
1651 }
1652
1653 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1654 object_unparent(OBJECT(dev));
1655
1656 out:
1657 error_propagate(errp, local_err);
1658 }
1659
1660 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1661 DeviceState *dev, Error **errp)
1662 {
1663 HotplugHandlerClass *hhc;
1664 Error *local_err = NULL;
1665 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1666
1667 if (!dev->hotplugged) {
1668 goto out;
1669 }
1670
1671 if (!pcms->acpi_dev) {
1672 error_setg(&local_err,
1673 "cpu hotplug is not enabled: missing acpi device");
1674 goto out;
1675 }
1676
1677 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1678 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1679 if (local_err) {
1680 goto out;
1681 }
1682
1683 /* increment the number of CPUs */
1684 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1685 out:
1686 error_propagate(errp, local_err);
1687 }
1688
1689 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1690 DeviceState *dev, Error **errp)
1691 {
1692 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1693 pc_dimm_plug(hotplug_dev, dev, errp);
1694 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1695 pc_cpu_plug(hotplug_dev, dev, errp);
1696 }
1697 }
1698
1699 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1700 DeviceState *dev, Error **errp)
1701 {
1702 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1703 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1704 } else {
1705 error_setg(errp, "acpi: device unplug request for not supported device"
1706 " type: %s", object_get_typename(OBJECT(dev)));
1707 }
1708 }
1709
1710 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1711 DeviceState *dev, Error **errp)
1712 {
1713 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1714 pc_dimm_unplug(hotplug_dev, dev, errp);
1715 } else {
1716 error_setg(errp, "acpi: device unplug for not supported device"
1717 " type: %s", object_get_typename(OBJECT(dev)));
1718 }
1719 }
1720
1721 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1722 DeviceState *dev)
1723 {
1724 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1725
1726 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1727 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1728 return HOTPLUG_HANDLER(machine);
1729 }
1730
1731 return pcmc->get_hotplug_handler ?
1732 pcmc->get_hotplug_handler(machine, dev) : NULL;
1733 }
1734
1735 static void
1736 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
1737 const char *name, void *opaque,
1738 Error **errp)
1739 {
1740 PCMachineState *pcms = PC_MACHINE(obj);
1741 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1742
1743 visit_type_int(v, name, &value, errp);
1744 }
1745
1746 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1747 const char *name, void *opaque,
1748 Error **errp)
1749 {
1750 PCMachineState *pcms = PC_MACHINE(obj);
1751 uint64_t value = pcms->max_ram_below_4g;
1752
1753 visit_type_size(v, name, &value, errp);
1754 }
1755
1756 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1757 const char *name, void *opaque,
1758 Error **errp)
1759 {
1760 PCMachineState *pcms = PC_MACHINE(obj);
1761 Error *error = NULL;
1762 uint64_t value;
1763
1764 visit_type_size(v, name, &value, &error);
1765 if (error) {
1766 error_propagate(errp, error);
1767 return;
1768 }
1769 if (value > (1ULL << 32)) {
1770 error_setg(&error,
1771 "Machine option 'max-ram-below-4g=%"PRIu64
1772 "' expects size less than or equal to 4G", value);
1773 error_propagate(errp, error);
1774 return;
1775 }
1776
1777 if (value < (1ULL << 20)) {
1778 error_report("Warning: small max_ram_below_4g(%"PRIu64
1779 ") less than 1M. BIOS may not work..",
1780 value);
1781 }
1782
1783 pcms->max_ram_below_4g = value;
1784 }
1785
1786 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
1787 void *opaque, Error **errp)
1788 {
1789 PCMachineState *pcms = PC_MACHINE(obj);
1790 OnOffAuto vmport = pcms->vmport;
1791
1792 visit_type_OnOffAuto(v, name, &vmport, errp);
1793 }
1794
1795 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
1796 void *opaque, Error **errp)
1797 {
1798 PCMachineState *pcms = PC_MACHINE(obj);
1799
1800 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
1801 }
1802
1803 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1804 {
1805 bool smm_available = false;
1806
1807 if (pcms->smm == ON_OFF_AUTO_OFF) {
1808 return false;
1809 }
1810
1811 if (tcg_enabled() || qtest_enabled()) {
1812 smm_available = true;
1813 } else if (kvm_enabled()) {
1814 smm_available = kvm_has_smm();
1815 }
1816
1817 if (smm_available) {
1818 return true;
1819 }
1820
1821 if (pcms->smm == ON_OFF_AUTO_ON) {
1822 error_report("System Management Mode not supported by this hypervisor.");
1823 exit(1);
1824 }
1825 return false;
1826 }
1827
1828 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
1829 void *opaque, Error **errp)
1830 {
1831 PCMachineState *pcms = PC_MACHINE(obj);
1832 OnOffAuto smm = pcms->smm;
1833
1834 visit_type_OnOffAuto(v, name, &smm, errp);
1835 }
1836
1837 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
1838 void *opaque, Error **errp)
1839 {
1840 PCMachineState *pcms = PC_MACHINE(obj);
1841
1842 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
1843 }
1844
1845 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
1846 {
1847 PCMachineState *pcms = PC_MACHINE(obj);
1848
1849 return pcms->acpi_nvdimm_state.is_enabled;
1850 }
1851
1852 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
1853 {
1854 PCMachineState *pcms = PC_MACHINE(obj);
1855
1856 pcms->acpi_nvdimm_state.is_enabled = value;
1857 }
1858
1859 static void pc_machine_initfn(Object *obj)
1860 {
1861 PCMachineState *pcms = PC_MACHINE(obj);
1862
1863 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1864 pc_machine_get_hotplug_memory_region_size,
1865 NULL, NULL, NULL, &error_abort);
1866
1867 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1868 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1869 pc_machine_get_max_ram_below_4g,
1870 pc_machine_set_max_ram_below_4g,
1871 NULL, NULL, &error_abort);
1872 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1873 "Maximum ram below the 4G boundary (32bit boundary)",
1874 &error_abort);
1875
1876 pcms->smm = ON_OFF_AUTO_AUTO;
1877 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1878 pc_machine_get_smm,
1879 pc_machine_set_smm,
1880 NULL, NULL, &error_abort);
1881 object_property_set_description(obj, PC_MACHINE_SMM,
1882 "Enable SMM (pc & q35)",
1883 &error_abort);
1884
1885 pcms->vmport = ON_OFF_AUTO_AUTO;
1886 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1887 pc_machine_get_vmport,
1888 pc_machine_set_vmport,
1889 NULL, NULL, &error_abort);
1890 object_property_set_description(obj, PC_MACHINE_VMPORT,
1891 "Enable vmport (pc & q35)",
1892 &error_abort);
1893
1894 /* nvdimm is disabled on default. */
1895 pcms->acpi_nvdimm_state.is_enabled = false;
1896 object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
1897 pc_machine_set_nvdimm, &error_abort);
1898 }
1899
1900 static void pc_machine_reset(void)
1901 {
1902 CPUState *cs;
1903 X86CPU *cpu;
1904
1905 qemu_devices_reset();
1906
1907 /* Reset APIC after devices have been reset to cancel
1908 * any changes that qemu_devices_reset() might have done.
1909 */
1910 CPU_FOREACH(cs) {
1911 cpu = X86_CPU(cs);
1912
1913 if (cpu->apic_state) {
1914 device_reset(cpu->apic_state);
1915 }
1916 }
1917 }
1918
1919 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1920 {
1921 X86CPUTopoInfo topo;
1922 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1923 &topo);
1924 return topo.pkg_id;
1925 }
1926
1927 static void pc_machine_class_init(ObjectClass *oc, void *data)
1928 {
1929 MachineClass *mc = MACHINE_CLASS(oc);
1930 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1931 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1932
1933 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1934 pcmc->pci_enabled = true;
1935 pcmc->has_acpi_build = true;
1936 pcmc->rsdp_in_ram = true;
1937 pcmc->smbios_defaults = true;
1938 pcmc->smbios_uuid_encoded = true;
1939 pcmc->gigabyte_align = true;
1940 pcmc->has_reserved_memory = true;
1941 pcmc->kvmclock_enabled = true;
1942 pcmc->enforce_aligned_dimm = true;
1943 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
1944 * to be used at the moment, 32K should be enough for a while. */
1945 pcmc->acpi_data_size = 0x20000 + 0x8000;
1946 pcmc->save_tsc_khz = true;
1947 mc->get_hotplug_handler = pc_get_hotpug_handler;
1948 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1949 mc->default_boot_order = "cad";
1950 mc->hot_add_cpu = pc_hot_add_cpu;
1951 mc->max_cpus = 255;
1952 mc->reset = pc_machine_reset;
1953 hc->plug = pc_machine_device_plug_cb;
1954 hc->unplug_request = pc_machine_device_unplug_request_cb;
1955 hc->unplug = pc_machine_device_unplug_cb;
1956 }
1957
1958 static const TypeInfo pc_machine_info = {
1959 .name = TYPE_PC_MACHINE,
1960 .parent = TYPE_MACHINE,
1961 .abstract = true,
1962 .instance_size = sizeof(PCMachineState),
1963 .instance_init = pc_machine_initfn,
1964 .class_size = sizeof(PCMachineClass),
1965 .class_init = pc_machine_class_init,
1966 .interfaces = (InterfaceInfo[]) {
1967 { TYPE_HOTPLUG_HANDLER },
1968 { }
1969 },
1970 };
1971
1972 static void pc_machine_register_types(void)
1973 {
1974 type_register_static(&pc_machine_info);
1975 }
1976
1977 type_init(pc_machine_register_types)