]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
Merge remote-tracking branch 'bonzini/scsi-next' into staging
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/cpu/icc_bus.h"
57 #include "hw/boards.h"
58 #include "hw/pci/pci_host.h"
59 #include "acpi-build.h"
60
61 /* debug PC/ISA interrupts */
62 //#define DEBUG_IRQ
63
64 #ifdef DEBUG_IRQ
65 #define DPRINTF(fmt, ...) \
66 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
67 #else
68 #define DPRINTF(fmt, ...)
69 #endif
70
71 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
72 #define ACPI_DATA_SIZE 0x10000
73 #define BIOS_CFG_IOPORT 0x510
74 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
75 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
76 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
77 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
78 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
79
80 #define E820_NR_ENTRIES 16
81
82 struct e820_entry {
83 uint64_t address;
84 uint64_t length;
85 uint32_t type;
86 } QEMU_PACKED __attribute((__aligned__(4)));
87
88 struct e820_table {
89 uint32_t count;
90 struct e820_entry entry[E820_NR_ENTRIES];
91 } QEMU_PACKED __attribute((__aligned__(4)));
92
93 static struct e820_table e820_reserve;
94 static struct e820_entry *e820_table;
95 static unsigned e820_entries;
96 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
97
98 void gsi_handler(void *opaque, int n, int level)
99 {
100 GSIState *s = opaque;
101
102 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
103 if (n < ISA_NUM_IRQS) {
104 qemu_set_irq(s->i8259_irq[n], level);
105 }
106 qemu_set_irq(s->ioapic_irq[n], level);
107 }
108
109 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
110 unsigned size)
111 {
112 }
113
114 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
115 {
116 return 0xffffffffffffffffULL;
117 }
118
119 /* MSDOS compatibility mode FPU exception support */
120 static qemu_irq ferr_irq;
121
122 void pc_register_ferr_irq(qemu_irq irq)
123 {
124 ferr_irq = irq;
125 }
126
127 /* XXX: add IGNNE support */
128 void cpu_set_ferr(CPUX86State *s)
129 {
130 qemu_irq_raise(ferr_irq);
131 }
132
133 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
134 unsigned size)
135 {
136 qemu_irq_lower(ferr_irq);
137 }
138
139 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
140 {
141 return 0xffffffffffffffffULL;
142 }
143
144 /* TSC handling */
145 uint64_t cpu_get_tsc(CPUX86State *env)
146 {
147 return cpu_get_ticks();
148 }
149
150 /* SMM support */
151
152 static cpu_set_smm_t smm_set;
153 static void *smm_arg;
154
155 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
156 {
157 assert(smm_set == NULL);
158 assert(smm_arg == NULL);
159 smm_set = callback;
160 smm_arg = arg;
161 }
162
163 void cpu_smm_update(CPUX86State *env)
164 {
165 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
166 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
167 }
168 }
169
170
171 /* IRQ handling */
172 int cpu_get_pic_interrupt(CPUX86State *env)
173 {
174 X86CPU *cpu = x86_env_get_cpu(env);
175 int intno;
176
177 intno = apic_get_interrupt(cpu->apic_state);
178 if (intno >= 0) {
179 return intno;
180 }
181 /* read the irq from the PIC */
182 if (!apic_accept_pic_intr(cpu->apic_state)) {
183 return -1;
184 }
185
186 intno = pic_read_irq(isa_pic);
187 return intno;
188 }
189
190 static void pic_irq_request(void *opaque, int irq, int level)
191 {
192 CPUState *cs = first_cpu;
193 X86CPU *cpu = X86_CPU(cs);
194
195 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
196 if (cpu->apic_state) {
197 CPU_FOREACH(cs) {
198 cpu = X86_CPU(cs);
199 if (apic_accept_pic_intr(cpu->apic_state)) {
200 apic_deliver_pic_intr(cpu->apic_state, level);
201 }
202 }
203 } else {
204 if (level) {
205 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
206 } else {
207 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
208 }
209 }
210 }
211
212 /* PC cmos mappings */
213
214 #define REG_EQUIPMENT_BYTE 0x14
215
216 static int cmos_get_fd_drive_type(FDriveType fd0)
217 {
218 int val;
219
220 switch (fd0) {
221 case FDRIVE_DRV_144:
222 /* 1.44 Mb 3"5 drive */
223 val = 4;
224 break;
225 case FDRIVE_DRV_288:
226 /* 2.88 Mb 3"5 drive */
227 val = 5;
228 break;
229 case FDRIVE_DRV_120:
230 /* 1.2 Mb 5"5 drive */
231 val = 2;
232 break;
233 case FDRIVE_DRV_NONE:
234 default:
235 val = 0;
236 break;
237 }
238 return val;
239 }
240
241 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
242 int16_t cylinders, int8_t heads, int8_t sectors)
243 {
244 rtc_set_memory(s, type_ofs, 47);
245 rtc_set_memory(s, info_ofs, cylinders);
246 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
247 rtc_set_memory(s, info_ofs + 2, heads);
248 rtc_set_memory(s, info_ofs + 3, 0xff);
249 rtc_set_memory(s, info_ofs + 4, 0xff);
250 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
251 rtc_set_memory(s, info_ofs + 6, cylinders);
252 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
253 rtc_set_memory(s, info_ofs + 8, sectors);
254 }
255
256 /* convert boot_device letter to something recognizable by the bios */
257 static int boot_device2nibble(char boot_device)
258 {
259 switch(boot_device) {
260 case 'a':
261 case 'b':
262 return 0x01; /* floppy boot */
263 case 'c':
264 return 0x02; /* hard drive boot */
265 case 'd':
266 return 0x03; /* CD-ROM boot */
267 case 'n':
268 return 0x04; /* Network boot */
269 }
270 return 0;
271 }
272
273 static int set_boot_dev(ISADevice *s, const char *boot_device)
274 {
275 #define PC_MAX_BOOT_DEVICES 3
276 int nbds, bds[3] = { 0, };
277 int i;
278
279 nbds = strlen(boot_device);
280 if (nbds > PC_MAX_BOOT_DEVICES) {
281 error_report("Too many boot devices for PC");
282 return(1);
283 }
284 for (i = 0; i < nbds; i++) {
285 bds[i] = boot_device2nibble(boot_device[i]);
286 if (bds[i] == 0) {
287 error_report("Invalid boot device for PC: '%c'",
288 boot_device[i]);
289 return(1);
290 }
291 }
292 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
293 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
294 return(0);
295 }
296
297 static int pc_boot_set(void *opaque, const char *boot_device)
298 {
299 return set_boot_dev(opaque, boot_device);
300 }
301
302 typedef struct pc_cmos_init_late_arg {
303 ISADevice *rtc_state;
304 BusState *idebus[2];
305 } pc_cmos_init_late_arg;
306
307 static void pc_cmos_init_late(void *opaque)
308 {
309 pc_cmos_init_late_arg *arg = opaque;
310 ISADevice *s = arg->rtc_state;
311 int16_t cylinders;
312 int8_t heads, sectors;
313 int val;
314 int i, trans;
315
316 val = 0;
317 if (ide_get_geometry(arg->idebus[0], 0,
318 &cylinders, &heads, &sectors) >= 0) {
319 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
320 val |= 0xf0;
321 }
322 if (ide_get_geometry(arg->idebus[0], 1,
323 &cylinders, &heads, &sectors) >= 0) {
324 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
325 val |= 0x0f;
326 }
327 rtc_set_memory(s, 0x12, val);
328
329 val = 0;
330 for (i = 0; i < 4; i++) {
331 /* NOTE: ide_get_geometry() returns the physical
332 geometry. It is always such that: 1 <= sects <= 63, 1
333 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
334 geometry can be different if a translation is done. */
335 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
336 &cylinders, &heads, &sectors) >= 0) {
337 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
338 assert((trans & ~3) == 0);
339 val |= trans << (i * 2);
340 }
341 }
342 rtc_set_memory(s, 0x39, val);
343
344 qemu_unregister_reset(pc_cmos_init_late, opaque);
345 }
346
347 typedef struct RTCCPUHotplugArg {
348 Notifier cpu_added_notifier;
349 ISADevice *rtc_state;
350 } RTCCPUHotplugArg;
351
352 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
353 {
354 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
355 cpu_added_notifier);
356 ISADevice *s = arg->rtc_state;
357
358 /* increment the number of CPUs */
359 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
360 }
361
362 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
363 const char *boot_device,
364 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
365 ISADevice *s)
366 {
367 int val, nb, i;
368 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
369 static pc_cmos_init_late_arg arg;
370 static RTCCPUHotplugArg cpu_hotplug_cb;
371
372 /* various important CMOS locations needed by PC/Bochs bios */
373
374 /* memory size */
375 /* base memory (first MiB) */
376 val = MIN(ram_size / 1024, 640);
377 rtc_set_memory(s, 0x15, val);
378 rtc_set_memory(s, 0x16, val >> 8);
379 /* extended memory (next 64MiB) */
380 if (ram_size > 1024 * 1024) {
381 val = (ram_size - 1024 * 1024) / 1024;
382 } else {
383 val = 0;
384 }
385 if (val > 65535)
386 val = 65535;
387 rtc_set_memory(s, 0x17, val);
388 rtc_set_memory(s, 0x18, val >> 8);
389 rtc_set_memory(s, 0x30, val);
390 rtc_set_memory(s, 0x31, val >> 8);
391 /* memory between 16MiB and 4GiB */
392 if (ram_size > 16 * 1024 * 1024) {
393 val = (ram_size - 16 * 1024 * 1024) / 65536;
394 } else {
395 val = 0;
396 }
397 if (val > 65535)
398 val = 65535;
399 rtc_set_memory(s, 0x34, val);
400 rtc_set_memory(s, 0x35, val >> 8);
401 /* memory above 4GiB */
402 val = above_4g_mem_size / 65536;
403 rtc_set_memory(s, 0x5b, val);
404 rtc_set_memory(s, 0x5c, val >> 8);
405 rtc_set_memory(s, 0x5d, val >> 16);
406
407 /* set the number of CPU */
408 rtc_set_memory(s, 0x5f, smp_cpus - 1);
409 /* init CPU hotplug notifier */
410 cpu_hotplug_cb.rtc_state = s;
411 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
412 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
413
414 if (set_boot_dev(s, boot_device)) {
415 exit(1);
416 }
417
418 /* floppy type */
419 if (floppy) {
420 for (i = 0; i < 2; i++) {
421 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
422 }
423 }
424 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
425 cmos_get_fd_drive_type(fd_type[1]);
426 rtc_set_memory(s, 0x10, val);
427
428 val = 0;
429 nb = 0;
430 if (fd_type[0] < FDRIVE_DRV_NONE) {
431 nb++;
432 }
433 if (fd_type[1] < FDRIVE_DRV_NONE) {
434 nb++;
435 }
436 switch (nb) {
437 case 0:
438 break;
439 case 1:
440 val |= 0x01; /* 1 drive, ready for boot */
441 break;
442 case 2:
443 val |= 0x41; /* 2 drives, ready for boot */
444 break;
445 }
446 val |= 0x02; /* FPU is there */
447 val |= 0x04; /* PS/2 mouse installed */
448 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
449
450 /* hard drives */
451 arg.rtc_state = s;
452 arg.idebus[0] = idebus0;
453 arg.idebus[1] = idebus1;
454 qemu_register_reset(pc_cmos_init_late, &arg);
455 }
456
457 #define TYPE_PORT92 "port92"
458 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
459
460 /* port 92 stuff: could be split off */
461 typedef struct Port92State {
462 ISADevice parent_obj;
463
464 MemoryRegion io;
465 uint8_t outport;
466 qemu_irq *a20_out;
467 } Port92State;
468
469 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
470 unsigned size)
471 {
472 Port92State *s = opaque;
473
474 DPRINTF("port92: write 0x%02x\n", val);
475 s->outport = val;
476 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
477 if (val & 1) {
478 qemu_system_reset_request();
479 }
480 }
481
482 static uint64_t port92_read(void *opaque, hwaddr addr,
483 unsigned size)
484 {
485 Port92State *s = opaque;
486 uint32_t ret;
487
488 ret = s->outport;
489 DPRINTF("port92: read 0x%02x\n", ret);
490 return ret;
491 }
492
493 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
494 {
495 Port92State *s = PORT92(dev);
496
497 s->a20_out = a20_out;
498 }
499
500 static const VMStateDescription vmstate_port92_isa = {
501 .name = "port92",
502 .version_id = 1,
503 .minimum_version_id = 1,
504 .minimum_version_id_old = 1,
505 .fields = (VMStateField []) {
506 VMSTATE_UINT8(outport, Port92State),
507 VMSTATE_END_OF_LIST()
508 }
509 };
510
511 static void port92_reset(DeviceState *d)
512 {
513 Port92State *s = PORT92(d);
514
515 s->outport &= ~1;
516 }
517
518 static const MemoryRegionOps port92_ops = {
519 .read = port92_read,
520 .write = port92_write,
521 .impl = {
522 .min_access_size = 1,
523 .max_access_size = 1,
524 },
525 .endianness = DEVICE_LITTLE_ENDIAN,
526 };
527
528 static void port92_initfn(Object *obj)
529 {
530 Port92State *s = PORT92(obj);
531
532 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
533
534 s->outport = 0;
535 }
536
537 static void port92_realizefn(DeviceState *dev, Error **errp)
538 {
539 ISADevice *isadev = ISA_DEVICE(dev);
540 Port92State *s = PORT92(dev);
541
542 isa_register_ioport(isadev, &s->io, 0x92);
543 }
544
545 static void port92_class_initfn(ObjectClass *klass, void *data)
546 {
547 DeviceClass *dc = DEVICE_CLASS(klass);
548
549 dc->realize = port92_realizefn;
550 dc->reset = port92_reset;
551 dc->vmsd = &vmstate_port92_isa;
552 /*
553 * Reason: unlike ordinary ISA devices, this one needs additional
554 * wiring: its A20 output line needs to be wired up by
555 * port92_init().
556 */
557 dc->cannot_instantiate_with_device_add_yet = true;
558 }
559
560 static const TypeInfo port92_info = {
561 .name = TYPE_PORT92,
562 .parent = TYPE_ISA_DEVICE,
563 .instance_size = sizeof(Port92State),
564 .instance_init = port92_initfn,
565 .class_init = port92_class_initfn,
566 };
567
568 static void port92_register_types(void)
569 {
570 type_register_static(&port92_info);
571 }
572
573 type_init(port92_register_types)
574
575 static void handle_a20_line_change(void *opaque, int irq, int level)
576 {
577 X86CPU *cpu = opaque;
578
579 /* XXX: send to all CPUs ? */
580 /* XXX: add logic to handle multiple A20 line sources */
581 x86_cpu_set_a20(cpu, level);
582 }
583
584 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
585 {
586 int index = le32_to_cpu(e820_reserve.count);
587 struct e820_entry *entry;
588
589 if (type != E820_RAM) {
590 /* old FW_CFG_E820_TABLE entry -- reservations only */
591 if (index >= E820_NR_ENTRIES) {
592 return -EBUSY;
593 }
594 entry = &e820_reserve.entry[index++];
595
596 entry->address = cpu_to_le64(address);
597 entry->length = cpu_to_le64(length);
598 entry->type = cpu_to_le32(type);
599
600 e820_reserve.count = cpu_to_le32(index);
601 }
602
603 /* new "etc/e820" file -- include ram too */
604 e820_table = g_realloc(e820_table,
605 sizeof(struct e820_entry) * (e820_entries+1));
606 e820_table[e820_entries].address = cpu_to_le64(address);
607 e820_table[e820_entries].length = cpu_to_le64(length);
608 e820_table[e820_entries].type = cpu_to_le32(type);
609 e820_entries++;
610
611 return e820_entries;
612 }
613
614 /* Calculates the limit to CPU APIC ID values
615 *
616 * This function returns the limit for the APIC ID value, so that all
617 * CPU APIC IDs are < pc_apic_id_limit().
618 *
619 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
620 */
621 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
622 {
623 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
624 }
625
626 static FWCfgState *bochs_bios_init(void)
627 {
628 FWCfgState *fw_cfg;
629 uint8_t *smbios_table;
630 size_t smbios_len;
631 uint64_t *numa_fw_cfg;
632 int i, j;
633 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
634
635 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
636 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
637 *
638 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
639 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
640 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
641 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
642 * may see".
643 *
644 * So, this means we must not use max_cpus, here, but the maximum possible
645 * APIC ID value, plus one.
646 *
647 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
648 * the APIC ID, not the "CPU index"
649 */
650 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
651 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
652 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
653 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
654 acpi_tables, acpi_tables_len);
655 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
656
657 smbios_table = smbios_get_table(&smbios_len);
658 if (smbios_table)
659 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
660 smbios_table, smbios_len);
661 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
662 &e820_reserve, sizeof(e820_reserve));
663 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
664 sizeof(struct e820_entry) * e820_entries);
665
666 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
667 /* allocate memory for the NUMA channel: one (64bit) word for the number
668 * of nodes, one word for each VCPU->node and one word for each node to
669 * hold the amount of memory.
670 */
671 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
672 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
673 for (i = 0; i < max_cpus; i++) {
674 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
675 assert(apic_id < apic_id_limit);
676 for (j = 0; j < nb_numa_nodes; j++) {
677 if (test_bit(i, node_cpumask[j])) {
678 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
679 break;
680 }
681 }
682 }
683 for (i = 0; i < nb_numa_nodes; i++) {
684 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
685 }
686 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
687 (1 + apic_id_limit + nb_numa_nodes) *
688 sizeof(*numa_fw_cfg));
689
690 return fw_cfg;
691 }
692
693 static long get_file_size(FILE *f)
694 {
695 long where, size;
696
697 /* XXX: on Unix systems, using fstat() probably makes more sense */
698
699 where = ftell(f);
700 fseek(f, 0, SEEK_END);
701 size = ftell(f);
702 fseek(f, where, SEEK_SET);
703
704 return size;
705 }
706
707 static void load_linux(FWCfgState *fw_cfg,
708 const char *kernel_filename,
709 const char *initrd_filename,
710 const char *kernel_cmdline,
711 hwaddr max_ram_size)
712 {
713 uint16_t protocol;
714 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
715 uint32_t initrd_max;
716 uint8_t header[8192], *setup, *kernel, *initrd_data;
717 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
718 FILE *f;
719 char *vmode;
720
721 /* Align to 16 bytes as a paranoia measure */
722 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
723
724 /* load the kernel header */
725 f = fopen(kernel_filename, "rb");
726 if (!f || !(kernel_size = get_file_size(f)) ||
727 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
728 MIN(ARRAY_SIZE(header), kernel_size)) {
729 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
730 kernel_filename, strerror(errno));
731 exit(1);
732 }
733
734 /* kernel protocol version */
735 #if 0
736 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
737 #endif
738 if (ldl_p(header+0x202) == 0x53726448) {
739 protocol = lduw_p(header+0x206);
740 } else {
741 /* This looks like a multiboot kernel. If it is, let's stop
742 treating it like a Linux kernel. */
743 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
744 kernel_cmdline, kernel_size, header)) {
745 return;
746 }
747 protocol = 0;
748 }
749
750 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
751 /* Low kernel */
752 real_addr = 0x90000;
753 cmdline_addr = 0x9a000 - cmdline_size;
754 prot_addr = 0x10000;
755 } else if (protocol < 0x202) {
756 /* High but ancient kernel */
757 real_addr = 0x90000;
758 cmdline_addr = 0x9a000 - cmdline_size;
759 prot_addr = 0x100000;
760 } else {
761 /* High and recent kernel */
762 real_addr = 0x10000;
763 cmdline_addr = 0x20000;
764 prot_addr = 0x100000;
765 }
766
767 #if 0
768 fprintf(stderr,
769 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
770 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
771 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
772 real_addr,
773 cmdline_addr,
774 prot_addr);
775 #endif
776
777 /* highest address for loading the initrd */
778 if (protocol >= 0x203) {
779 initrd_max = ldl_p(header+0x22c);
780 } else {
781 initrd_max = 0x37ffffff;
782 }
783
784 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
785 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
786
787 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
788 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
789 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
790
791 if (protocol >= 0x202) {
792 stl_p(header+0x228, cmdline_addr);
793 } else {
794 stw_p(header+0x20, 0xA33F);
795 stw_p(header+0x22, cmdline_addr-real_addr);
796 }
797
798 /* handle vga= parameter */
799 vmode = strstr(kernel_cmdline, "vga=");
800 if (vmode) {
801 unsigned int video_mode;
802 /* skip "vga=" */
803 vmode += 4;
804 if (!strncmp(vmode, "normal", 6)) {
805 video_mode = 0xffff;
806 } else if (!strncmp(vmode, "ext", 3)) {
807 video_mode = 0xfffe;
808 } else if (!strncmp(vmode, "ask", 3)) {
809 video_mode = 0xfffd;
810 } else {
811 video_mode = strtol(vmode, NULL, 0);
812 }
813 stw_p(header+0x1fa, video_mode);
814 }
815
816 /* loader type */
817 /* High nybble = B reserved for QEMU; low nybble is revision number.
818 If this code is substantially changed, you may want to consider
819 incrementing the revision. */
820 if (protocol >= 0x200) {
821 header[0x210] = 0xB0;
822 }
823 /* heap */
824 if (protocol >= 0x201) {
825 header[0x211] |= 0x80; /* CAN_USE_HEAP */
826 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
827 }
828
829 /* load initrd */
830 if (initrd_filename) {
831 if (protocol < 0x200) {
832 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
833 exit(1);
834 }
835
836 initrd_size = get_image_size(initrd_filename);
837 if (initrd_size < 0) {
838 fprintf(stderr, "qemu: error reading initrd %s\n",
839 initrd_filename);
840 exit(1);
841 }
842
843 initrd_addr = (initrd_max-initrd_size) & ~4095;
844
845 initrd_data = g_malloc(initrd_size);
846 load_image(initrd_filename, initrd_data);
847
848 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
849 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
850 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
851
852 stl_p(header+0x218, initrd_addr);
853 stl_p(header+0x21c, initrd_size);
854 }
855
856 /* load kernel and setup */
857 setup_size = header[0x1f1];
858 if (setup_size == 0) {
859 setup_size = 4;
860 }
861 setup_size = (setup_size+1)*512;
862 kernel_size -= setup_size;
863
864 setup = g_malloc(setup_size);
865 kernel = g_malloc(kernel_size);
866 fseek(f, 0, SEEK_SET);
867 if (fread(setup, 1, setup_size, f) != setup_size) {
868 fprintf(stderr, "fread() failed\n");
869 exit(1);
870 }
871 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
872 fprintf(stderr, "fread() failed\n");
873 exit(1);
874 }
875 fclose(f);
876 memcpy(setup, header, MIN(sizeof(header), setup_size));
877
878 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
879 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
880 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
881
882 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
883 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
884 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
885
886 option_rom[nb_option_roms].name = "linuxboot.bin";
887 option_rom[nb_option_roms].bootindex = 0;
888 nb_option_roms++;
889 }
890
891 #define NE2000_NB_MAX 6
892
893 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
894 0x280, 0x380 };
895 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
896
897 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
898 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
899
900 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
901 {
902 static int nb_ne2k = 0;
903
904 if (nb_ne2k == NE2000_NB_MAX)
905 return;
906 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
907 ne2000_irq[nb_ne2k], nd);
908 nb_ne2k++;
909 }
910
911 DeviceState *cpu_get_current_apic(void)
912 {
913 if (current_cpu) {
914 X86CPU *cpu = X86_CPU(current_cpu);
915 return cpu->apic_state;
916 } else {
917 return NULL;
918 }
919 }
920
921 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
922 {
923 X86CPU *cpu = opaque;
924
925 if (level) {
926 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
927 }
928 }
929
930 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
931 DeviceState *icc_bridge, Error **errp)
932 {
933 X86CPU *cpu;
934 Error *local_err = NULL;
935
936 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
937 if (local_err != NULL) {
938 error_propagate(errp, local_err);
939 return NULL;
940 }
941
942 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
943 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
944
945 if (local_err) {
946 error_propagate(errp, local_err);
947 object_unref(OBJECT(cpu));
948 cpu = NULL;
949 }
950 return cpu;
951 }
952
953 static const char *current_cpu_model;
954
955 void pc_hot_add_cpu(const int64_t id, Error **errp)
956 {
957 DeviceState *icc_bridge;
958 int64_t apic_id = x86_cpu_apic_id_from_index(id);
959
960 if (id < 0) {
961 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
962 return;
963 }
964
965 if (cpu_exists(apic_id)) {
966 error_setg(errp, "Unable to add CPU: %" PRIi64
967 ", it already exists", id);
968 return;
969 }
970
971 if (id >= max_cpus) {
972 error_setg(errp, "Unable to add CPU: %" PRIi64
973 ", max allowed: %d", id, max_cpus - 1);
974 return;
975 }
976
977 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
978 TYPE_ICC_BRIDGE, NULL));
979 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
980 }
981
982 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
983 {
984 int i;
985 X86CPU *cpu = NULL;
986 Error *error = NULL;
987
988 /* init CPUs */
989 if (cpu_model == NULL) {
990 #ifdef TARGET_X86_64
991 cpu_model = "qemu64";
992 #else
993 cpu_model = "qemu32";
994 #endif
995 }
996 current_cpu_model = cpu_model;
997
998 for (i = 0; i < smp_cpus; i++) {
999 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1000 icc_bridge, &error);
1001 if (error) {
1002 error_report("%s", error_get_pretty(error));
1003 error_free(error);
1004 exit(1);
1005 }
1006 }
1007
1008 /* map APIC MMIO area if CPU has APIC */
1009 if (cpu && cpu->apic_state) {
1010 /* XXX: what if the base changes? */
1011 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1012 APIC_DEFAULT_ADDRESS, 0x1000);
1013 }
1014 }
1015
1016 /* pci-info ROM file. Little endian format */
1017 typedef struct PcRomPciInfo {
1018 uint64_t w32_min;
1019 uint64_t w32_max;
1020 uint64_t w64_min;
1021 uint64_t w64_max;
1022 } PcRomPciInfo;
1023
1024 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1025 {
1026 PcRomPciInfo *info;
1027 Object *pci_info;
1028 bool ambiguous = false;
1029
1030 if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1031 return;
1032 }
1033 pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
1034 g_assert(!ambiguous);
1035 if (!pci_info) {
1036 return;
1037 }
1038
1039 info = g_malloc(sizeof *info);
1040 info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
1041 PCI_HOST_PROP_PCI_HOLE_START, NULL));
1042 info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
1043 PCI_HOST_PROP_PCI_HOLE_END, NULL));
1044 info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
1045 PCI_HOST_PROP_PCI_HOLE64_START, NULL));
1046 info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
1047 PCI_HOST_PROP_PCI_HOLE64_END, NULL));
1048 /* Pass PCI hole info to guest via a side channel.
1049 * Required so guest PCI enumeration does the right thing. */
1050 fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1051 }
1052
1053 typedef struct PcGuestInfoState {
1054 PcGuestInfo info;
1055 Notifier machine_done;
1056 } PcGuestInfoState;
1057
1058 static
1059 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1060 {
1061 PcGuestInfoState *guest_info_state = container_of(notifier,
1062 PcGuestInfoState,
1063 machine_done);
1064 pc_fw_cfg_guest_info(&guest_info_state->info);
1065 acpi_setup(&guest_info_state->info);
1066 }
1067
1068 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1069 ram_addr_t above_4g_mem_size)
1070 {
1071 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1072 PcGuestInfo *guest_info = &guest_info_state->info;
1073 int i, j;
1074
1075 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1076 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1077 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1078 guest_info->numa_nodes = nb_numa_nodes;
1079 guest_info->node_mem = g_memdup(node_mem, guest_info->numa_nodes *
1080 sizeof *guest_info->node_mem);
1081 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1082 sizeof *guest_info->node_cpu);
1083
1084 for (i = 0; i < max_cpus; i++) {
1085 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1086 assert(apic_id < guest_info->apic_id_limit);
1087 for (j = 0; j < nb_numa_nodes; j++) {
1088 if (test_bit(i, node_cpumask[j])) {
1089 guest_info->node_cpu[apic_id] = j;
1090 break;
1091 }
1092 }
1093 }
1094
1095 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1096 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1097 return guest_info;
1098 }
1099
1100 /* setup pci memory address space mapping into system address space */
1101 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1102 MemoryRegion *pci_address_space)
1103 {
1104 /* Set to lower priority than RAM */
1105 memory_region_add_subregion_overlap(system_memory, 0x0,
1106 pci_address_space, -1);
1107 }
1108
1109 void pc_acpi_init(const char *default_dsdt)
1110 {
1111 char *filename;
1112
1113 if (acpi_tables != NULL) {
1114 /* manually set via -acpitable, leave it alone */
1115 return;
1116 }
1117
1118 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1119 if (filename == NULL) {
1120 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1121 } else {
1122 char *arg;
1123 QemuOpts *opts;
1124 Error *err = NULL;
1125
1126 arg = g_strdup_printf("file=%s", filename);
1127
1128 /* creates a deep copy of "arg" */
1129 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1130 g_assert(opts != NULL);
1131
1132 acpi_table_add_builtin(opts, &err);
1133 if (err) {
1134 error_report("WARNING: failed to load %s: %s", filename,
1135 error_get_pretty(err));
1136 error_free(err);
1137 }
1138 g_free(arg);
1139 g_free(filename);
1140 }
1141 }
1142
1143 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1144 const char *kernel_filename,
1145 const char *kernel_cmdline,
1146 const char *initrd_filename,
1147 ram_addr_t below_4g_mem_size,
1148 ram_addr_t above_4g_mem_size,
1149 MemoryRegion *rom_memory,
1150 MemoryRegion **ram_memory,
1151 PcGuestInfo *guest_info)
1152 {
1153 int linux_boot, i;
1154 MemoryRegion *ram, *option_rom_mr;
1155 MemoryRegion *ram_below_4g, *ram_above_4g;
1156 FWCfgState *fw_cfg;
1157
1158 linux_boot = (kernel_filename != NULL);
1159
1160 /* Allocate RAM. We allocate it as a single memory region and use
1161 * aliases to address portions of it, mostly for backwards compatibility
1162 * with older qemus that used qemu_ram_alloc().
1163 */
1164 ram = g_malloc(sizeof(*ram));
1165 memory_region_init_ram(ram, NULL, "pc.ram",
1166 below_4g_mem_size + above_4g_mem_size);
1167 vmstate_register_ram_global(ram);
1168 *ram_memory = ram;
1169 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1170 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1171 0, below_4g_mem_size);
1172 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1173 e820_add_entry(0, below_4g_mem_size, E820_RAM);
1174 if (above_4g_mem_size > 0) {
1175 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1176 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1177 below_4g_mem_size, above_4g_mem_size);
1178 memory_region_add_subregion(system_memory, 0x100000000ULL,
1179 ram_above_4g);
1180 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1181 }
1182
1183
1184 /* Initialize PC system firmware */
1185 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1186
1187 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1188 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1189 vmstate_register_ram_global(option_rom_mr);
1190 memory_region_add_subregion_overlap(rom_memory,
1191 PC_ROM_MIN_VGA,
1192 option_rom_mr,
1193 1);
1194
1195 fw_cfg = bochs_bios_init();
1196 rom_set_fw(fw_cfg);
1197
1198 if (linux_boot) {
1199 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1200 }
1201
1202 for (i = 0; i < nb_option_roms; i++) {
1203 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1204 }
1205 guest_info->fw_cfg = fw_cfg;
1206 return fw_cfg;
1207 }
1208
1209 qemu_irq *pc_allocate_cpu_irq(void)
1210 {
1211 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1212 }
1213
1214 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1215 {
1216 DeviceState *dev = NULL;
1217
1218 if (pci_bus) {
1219 PCIDevice *pcidev = pci_vga_init(pci_bus);
1220 dev = pcidev ? &pcidev->qdev : NULL;
1221 } else if (isa_bus) {
1222 ISADevice *isadev = isa_vga_init(isa_bus);
1223 dev = isadev ? DEVICE(isadev) : NULL;
1224 }
1225 return dev;
1226 }
1227
1228 static void cpu_request_exit(void *opaque, int irq, int level)
1229 {
1230 CPUState *cpu = current_cpu;
1231
1232 if (cpu && level) {
1233 cpu_exit(cpu);
1234 }
1235 }
1236
1237 static const MemoryRegionOps ioport80_io_ops = {
1238 .write = ioport80_write,
1239 .read = ioport80_read,
1240 .endianness = DEVICE_NATIVE_ENDIAN,
1241 .impl = {
1242 .min_access_size = 1,
1243 .max_access_size = 1,
1244 },
1245 };
1246
1247 static const MemoryRegionOps ioportF0_io_ops = {
1248 .write = ioportF0_write,
1249 .read = ioportF0_read,
1250 .endianness = DEVICE_NATIVE_ENDIAN,
1251 .impl = {
1252 .min_access_size = 1,
1253 .max_access_size = 1,
1254 },
1255 };
1256
1257 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1258 ISADevice **rtc_state,
1259 ISADevice **floppy,
1260 bool no_vmport,
1261 uint32 hpet_irqs)
1262 {
1263 int i;
1264 DriveInfo *fd[MAX_FD];
1265 DeviceState *hpet = NULL;
1266 int pit_isa_irq = 0;
1267 qemu_irq pit_alt_irq = NULL;
1268 qemu_irq rtc_irq = NULL;
1269 qemu_irq *a20_line;
1270 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1271 qemu_irq *cpu_exit_irq;
1272 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1273 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1274
1275 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1276 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1277
1278 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1279 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1280
1281 /*
1282 * Check if an HPET shall be created.
1283 *
1284 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1285 * when the HPET wants to take over. Thus we have to disable the latter.
1286 */
1287 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1288 /* In order to set property, here not using sysbus_try_create_simple */
1289 hpet = qdev_try_create(NULL, TYPE_HPET);
1290 if (hpet) {
1291 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1292 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1293 * IRQ8 and IRQ2.
1294 */
1295 uint8_t compat = object_property_get_int(OBJECT(hpet),
1296 HPET_INTCAP, NULL);
1297 if (!compat) {
1298 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1299 }
1300 qdev_init_nofail(hpet);
1301 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1302
1303 for (i = 0; i < GSI_NUM_PINS; i++) {
1304 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1305 }
1306 pit_isa_irq = -1;
1307 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1308 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1309 }
1310 }
1311 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1312
1313 qemu_register_boot_set(pc_boot_set, *rtc_state);
1314
1315 if (!xen_enabled()) {
1316 if (kvm_irqchip_in_kernel()) {
1317 pit = kvm_pit_init(isa_bus, 0x40);
1318 } else {
1319 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1320 }
1321 if (hpet) {
1322 /* connect PIT to output control line of the HPET */
1323 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1324 }
1325 pcspk_init(isa_bus, pit);
1326 }
1327
1328 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1329 if (serial_hds[i]) {
1330 serial_isa_init(isa_bus, i, serial_hds[i]);
1331 }
1332 }
1333
1334 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1335 if (parallel_hds[i]) {
1336 parallel_init(isa_bus, i, parallel_hds[i]);
1337 }
1338 }
1339
1340 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1341 i8042 = isa_create_simple(isa_bus, "i8042");
1342 i8042_setup_a20_line(i8042, &a20_line[0]);
1343 if (!no_vmport) {
1344 vmport_init(isa_bus);
1345 vmmouse = isa_try_create(isa_bus, "vmmouse");
1346 } else {
1347 vmmouse = NULL;
1348 }
1349 if (vmmouse) {
1350 DeviceState *dev = DEVICE(vmmouse);
1351 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1352 qdev_init_nofail(dev);
1353 }
1354 port92 = isa_create_simple(isa_bus, "port92");
1355 port92_init(port92, &a20_line[1]);
1356
1357 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1358 DMA_init(0, cpu_exit_irq);
1359
1360 for(i = 0; i < MAX_FD; i++) {
1361 fd[i] = drive_get(IF_FLOPPY, 0, i);
1362 }
1363 *floppy = fdctrl_init_isa(isa_bus, fd);
1364 }
1365
1366 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1367 {
1368 int i;
1369
1370 for (i = 0; i < nb_nics; i++) {
1371 NICInfo *nd = &nd_table[i];
1372
1373 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1374 pc_init_ne2k_isa(isa_bus, nd);
1375 } else {
1376 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1377 }
1378 }
1379 }
1380
1381 void pc_pci_device_init(PCIBus *pci_bus)
1382 {
1383 int max_bus;
1384 int bus;
1385
1386 max_bus = drive_get_max_bus(IF_SCSI);
1387 for (bus = 0; bus <= max_bus; bus++) {
1388 pci_create_simple(pci_bus, -1, "lsi53c895a");
1389 }
1390 }
1391
1392 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1393 {
1394 DeviceState *dev;
1395 SysBusDevice *d;
1396 unsigned int i;
1397
1398 if (kvm_irqchip_in_kernel()) {
1399 dev = qdev_create(NULL, "kvm-ioapic");
1400 } else {
1401 dev = qdev_create(NULL, "ioapic");
1402 }
1403 if (parent_name) {
1404 object_property_add_child(object_resolve_path(parent_name, NULL),
1405 "ioapic", OBJECT(dev), NULL);
1406 }
1407 qdev_init_nofail(dev);
1408 d = SYS_BUS_DEVICE(dev);
1409 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1410
1411 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1412 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1413 }
1414 }