]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
Merge remote-tracking branch 'remotes/borntraeger/tags/s390x-20170714' into staging
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71 #include "hw/i386/intel_iommu.h"
72
73 /* debug PC/ISA interrupts */
74 //#define DEBUG_IRQ
75
76 #ifdef DEBUG_IRQ
77 #define DPRINTF(fmt, ...) \
78 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
79 #else
80 #define DPRINTF(fmt, ...)
81 #endif
82
83 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
84 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
85 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
86 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
87 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
88
89 #define E820_NR_ENTRIES 16
90
91 struct e820_entry {
92 uint64_t address;
93 uint64_t length;
94 uint32_t type;
95 } QEMU_PACKED __attribute((__aligned__(4)));
96
97 struct e820_table {
98 uint32_t count;
99 struct e820_entry entry[E820_NR_ENTRIES];
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 static struct e820_table e820_reserve;
103 static struct e820_entry *e820_table;
104 static unsigned e820_entries;
105 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
106
107 void gsi_handler(void *opaque, int n, int level)
108 {
109 GSIState *s = opaque;
110
111 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
112 if (n < ISA_NUM_IRQS) {
113 qemu_set_irq(s->i8259_irq[n], level);
114 }
115 qemu_set_irq(s->ioapic_irq[n], level);
116 }
117
118 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
119 unsigned size)
120 {
121 }
122
123 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
124 {
125 return 0xffffffffffffffffULL;
126 }
127
128 /* MSDOS compatibility mode FPU exception support */
129 static qemu_irq ferr_irq;
130
131 void pc_register_ferr_irq(qemu_irq irq)
132 {
133 ferr_irq = irq;
134 }
135
136 /* XXX: add IGNNE support */
137 void cpu_set_ferr(CPUX86State *s)
138 {
139 qemu_irq_raise(ferr_irq);
140 }
141
142 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
143 unsigned size)
144 {
145 qemu_irq_lower(ferr_irq);
146 }
147
148 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
149 {
150 return 0xffffffffffffffffULL;
151 }
152
153 /* TSC handling */
154 uint64_t cpu_get_tsc(CPUX86State *env)
155 {
156 return cpu_get_ticks();
157 }
158
159 /* IRQ handling */
160 int cpu_get_pic_interrupt(CPUX86State *env)
161 {
162 X86CPU *cpu = x86_env_get_cpu(env);
163 int intno;
164
165 if (!kvm_irqchip_in_kernel()) {
166 intno = apic_get_interrupt(cpu->apic_state);
167 if (intno >= 0) {
168 return intno;
169 }
170 /* read the irq from the PIC */
171 if (!apic_accept_pic_intr(cpu->apic_state)) {
172 return -1;
173 }
174 }
175
176 intno = pic_read_irq(isa_pic);
177 return intno;
178 }
179
180 static void pic_irq_request(void *opaque, int irq, int level)
181 {
182 CPUState *cs = first_cpu;
183 X86CPU *cpu = X86_CPU(cs);
184
185 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
186 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
187 CPU_FOREACH(cs) {
188 cpu = X86_CPU(cs);
189 if (apic_accept_pic_intr(cpu->apic_state)) {
190 apic_deliver_pic_intr(cpu->apic_state, level);
191 }
192 }
193 } else {
194 if (level) {
195 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
196 } else {
197 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
198 }
199 }
200 }
201
202 /* PC cmos mappings */
203
204 #define REG_EQUIPMENT_BYTE 0x14
205
206 int cmos_get_fd_drive_type(FloppyDriveType fd0)
207 {
208 int val;
209
210 switch (fd0) {
211 case FLOPPY_DRIVE_TYPE_144:
212 /* 1.44 Mb 3"5 drive */
213 val = 4;
214 break;
215 case FLOPPY_DRIVE_TYPE_288:
216 /* 2.88 Mb 3"5 drive */
217 val = 5;
218 break;
219 case FLOPPY_DRIVE_TYPE_120:
220 /* 1.2 Mb 5"5 drive */
221 val = 2;
222 break;
223 case FLOPPY_DRIVE_TYPE_NONE:
224 default:
225 val = 0;
226 break;
227 }
228 return val;
229 }
230
231 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
232 int16_t cylinders, int8_t heads, int8_t sectors)
233 {
234 rtc_set_memory(s, type_ofs, 47);
235 rtc_set_memory(s, info_ofs, cylinders);
236 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
237 rtc_set_memory(s, info_ofs + 2, heads);
238 rtc_set_memory(s, info_ofs + 3, 0xff);
239 rtc_set_memory(s, info_ofs + 4, 0xff);
240 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
241 rtc_set_memory(s, info_ofs + 6, cylinders);
242 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
243 rtc_set_memory(s, info_ofs + 8, sectors);
244 }
245
246 /* convert boot_device letter to something recognizable by the bios */
247 static int boot_device2nibble(char boot_device)
248 {
249 switch(boot_device) {
250 case 'a':
251 case 'b':
252 return 0x01; /* floppy boot */
253 case 'c':
254 return 0x02; /* hard drive boot */
255 case 'd':
256 return 0x03; /* CD-ROM boot */
257 case 'n':
258 return 0x04; /* Network boot */
259 }
260 return 0;
261 }
262
263 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
264 {
265 #define PC_MAX_BOOT_DEVICES 3
266 int nbds, bds[3] = { 0, };
267 int i;
268
269 nbds = strlen(boot_device);
270 if (nbds > PC_MAX_BOOT_DEVICES) {
271 error_setg(errp, "Too many boot devices for PC");
272 return;
273 }
274 for (i = 0; i < nbds; i++) {
275 bds[i] = boot_device2nibble(boot_device[i]);
276 if (bds[i] == 0) {
277 error_setg(errp, "Invalid boot device for PC: '%c'",
278 boot_device[i]);
279 return;
280 }
281 }
282 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
283 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
284 }
285
286 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
287 {
288 set_boot_dev(opaque, boot_device, errp);
289 }
290
291 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
292 {
293 int val, nb, i;
294 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
295 FLOPPY_DRIVE_TYPE_NONE };
296
297 /* floppy type */
298 if (floppy) {
299 for (i = 0; i < 2; i++) {
300 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
301 }
302 }
303 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
304 cmos_get_fd_drive_type(fd_type[1]);
305 rtc_set_memory(rtc_state, 0x10, val);
306
307 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
308 nb = 0;
309 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
310 nb++;
311 }
312 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
313 nb++;
314 }
315 switch (nb) {
316 case 0:
317 break;
318 case 1:
319 val |= 0x01; /* 1 drive, ready for boot */
320 break;
321 case 2:
322 val |= 0x41; /* 2 drives, ready for boot */
323 break;
324 }
325 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
326 }
327
328 typedef struct pc_cmos_init_late_arg {
329 ISADevice *rtc_state;
330 BusState *idebus[2];
331 } pc_cmos_init_late_arg;
332
333 typedef struct check_fdc_state {
334 ISADevice *floppy;
335 bool multiple;
336 } CheckFdcState;
337
338 static int check_fdc(Object *obj, void *opaque)
339 {
340 CheckFdcState *state = opaque;
341 Object *fdc;
342 uint32_t iobase;
343 Error *local_err = NULL;
344
345 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
346 if (!fdc) {
347 return 0;
348 }
349
350 iobase = object_property_get_uint(obj, "iobase", &local_err);
351 if (local_err || iobase != 0x3f0) {
352 error_free(local_err);
353 return 0;
354 }
355
356 if (state->floppy) {
357 state->multiple = true;
358 } else {
359 state->floppy = ISA_DEVICE(obj);
360 }
361 return 0;
362 }
363
364 static const char * const fdc_container_path[] = {
365 "/unattached", "/peripheral", "/peripheral-anon"
366 };
367
368 /*
369 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
370 * and ACPI objects.
371 */
372 ISADevice *pc_find_fdc0(void)
373 {
374 int i;
375 Object *container;
376 CheckFdcState state = { 0 };
377
378 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
379 container = container_get(qdev_get_machine(), fdc_container_path[i]);
380 object_child_foreach(container, check_fdc, &state);
381 }
382
383 if (state.multiple) {
384 warn_report("multiple floppy disk controllers with "
385 "iobase=0x3f0 have been found");
386 error_printf("the one being picked for CMOS setup might not reflect "
387 "your intent\n");
388 }
389
390 return state.floppy;
391 }
392
393 static void pc_cmos_init_late(void *opaque)
394 {
395 pc_cmos_init_late_arg *arg = opaque;
396 ISADevice *s = arg->rtc_state;
397 int16_t cylinders;
398 int8_t heads, sectors;
399 int val;
400 int i, trans;
401
402 val = 0;
403 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
404 &cylinders, &heads, &sectors) >= 0) {
405 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
406 val |= 0xf0;
407 }
408 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
409 &cylinders, &heads, &sectors) >= 0) {
410 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
411 val |= 0x0f;
412 }
413 rtc_set_memory(s, 0x12, val);
414
415 val = 0;
416 for (i = 0; i < 4; i++) {
417 /* NOTE: ide_get_geometry() returns the physical
418 geometry. It is always such that: 1 <= sects <= 63, 1
419 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
420 geometry can be different if a translation is done. */
421 if (arg->idebus[i / 2] &&
422 ide_get_geometry(arg->idebus[i / 2], i % 2,
423 &cylinders, &heads, &sectors) >= 0) {
424 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
425 assert((trans & ~3) == 0);
426 val |= trans << (i * 2);
427 }
428 }
429 rtc_set_memory(s, 0x39, val);
430
431 pc_cmos_init_floppy(s, pc_find_fdc0());
432
433 qemu_unregister_reset(pc_cmos_init_late, opaque);
434 }
435
436 void pc_cmos_init(PCMachineState *pcms,
437 BusState *idebus0, BusState *idebus1,
438 ISADevice *s)
439 {
440 int val;
441 static pc_cmos_init_late_arg arg;
442
443 /* various important CMOS locations needed by PC/Bochs bios */
444
445 /* memory size */
446 /* base memory (first MiB) */
447 val = MIN(pcms->below_4g_mem_size / 1024, 640);
448 rtc_set_memory(s, 0x15, val);
449 rtc_set_memory(s, 0x16, val >> 8);
450 /* extended memory (next 64MiB) */
451 if (pcms->below_4g_mem_size > 1024 * 1024) {
452 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
453 } else {
454 val = 0;
455 }
456 if (val > 65535)
457 val = 65535;
458 rtc_set_memory(s, 0x17, val);
459 rtc_set_memory(s, 0x18, val >> 8);
460 rtc_set_memory(s, 0x30, val);
461 rtc_set_memory(s, 0x31, val >> 8);
462 /* memory between 16MiB and 4GiB */
463 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
464 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
465 } else {
466 val = 0;
467 }
468 if (val > 65535)
469 val = 65535;
470 rtc_set_memory(s, 0x34, val);
471 rtc_set_memory(s, 0x35, val >> 8);
472 /* memory above 4GiB */
473 val = pcms->above_4g_mem_size / 65536;
474 rtc_set_memory(s, 0x5b, val);
475 rtc_set_memory(s, 0x5c, val >> 8);
476 rtc_set_memory(s, 0x5d, val >> 16);
477
478 object_property_add_link(OBJECT(pcms), "rtc_state",
479 TYPE_ISA_DEVICE,
480 (Object **)&pcms->rtc,
481 object_property_allow_set_link,
482 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
483 object_property_set_link(OBJECT(pcms), OBJECT(s),
484 "rtc_state", &error_abort);
485
486 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
487
488 val = 0;
489 val |= 0x02; /* FPU is there */
490 val |= 0x04; /* PS/2 mouse installed */
491 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
492
493 /* hard drives and FDC */
494 arg.rtc_state = s;
495 arg.idebus[0] = idebus0;
496 arg.idebus[1] = idebus1;
497 qemu_register_reset(pc_cmos_init_late, &arg);
498 }
499
500 #define TYPE_PORT92 "port92"
501 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
502
503 /* port 92 stuff: could be split off */
504 typedef struct Port92State {
505 ISADevice parent_obj;
506
507 MemoryRegion io;
508 uint8_t outport;
509 qemu_irq a20_out;
510 } Port92State;
511
512 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
513 unsigned size)
514 {
515 Port92State *s = opaque;
516 int oldval = s->outport;
517
518 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
519 s->outport = val;
520 qemu_set_irq(s->a20_out, (val >> 1) & 1);
521 if ((val & 1) && !(oldval & 1)) {
522 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
523 }
524 }
525
526 static uint64_t port92_read(void *opaque, hwaddr addr,
527 unsigned size)
528 {
529 Port92State *s = opaque;
530 uint32_t ret;
531
532 ret = s->outport;
533 DPRINTF("port92: read 0x%02x\n", ret);
534 return ret;
535 }
536
537 static void port92_init(ISADevice *dev, qemu_irq a20_out)
538 {
539 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
540 }
541
542 static const VMStateDescription vmstate_port92_isa = {
543 .name = "port92",
544 .version_id = 1,
545 .minimum_version_id = 1,
546 .fields = (VMStateField[]) {
547 VMSTATE_UINT8(outport, Port92State),
548 VMSTATE_END_OF_LIST()
549 }
550 };
551
552 static void port92_reset(DeviceState *d)
553 {
554 Port92State *s = PORT92(d);
555
556 s->outport &= ~1;
557 }
558
559 static const MemoryRegionOps port92_ops = {
560 .read = port92_read,
561 .write = port92_write,
562 .impl = {
563 .min_access_size = 1,
564 .max_access_size = 1,
565 },
566 .endianness = DEVICE_LITTLE_ENDIAN,
567 };
568
569 static void port92_initfn(Object *obj)
570 {
571 Port92State *s = PORT92(obj);
572
573 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
574
575 s->outport = 0;
576
577 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
578 }
579
580 static void port92_realizefn(DeviceState *dev, Error **errp)
581 {
582 ISADevice *isadev = ISA_DEVICE(dev);
583 Port92State *s = PORT92(dev);
584
585 isa_register_ioport(isadev, &s->io, 0x92);
586 }
587
588 static void port92_class_initfn(ObjectClass *klass, void *data)
589 {
590 DeviceClass *dc = DEVICE_CLASS(klass);
591
592 dc->realize = port92_realizefn;
593 dc->reset = port92_reset;
594 dc->vmsd = &vmstate_port92_isa;
595 /*
596 * Reason: unlike ordinary ISA devices, this one needs additional
597 * wiring: its A20 output line needs to be wired up by
598 * port92_init().
599 */
600 dc->user_creatable = false;
601 }
602
603 static const TypeInfo port92_info = {
604 .name = TYPE_PORT92,
605 .parent = TYPE_ISA_DEVICE,
606 .instance_size = sizeof(Port92State),
607 .instance_init = port92_initfn,
608 .class_init = port92_class_initfn,
609 };
610
611 static void port92_register_types(void)
612 {
613 type_register_static(&port92_info);
614 }
615
616 type_init(port92_register_types)
617
618 static void handle_a20_line_change(void *opaque, int irq, int level)
619 {
620 X86CPU *cpu = opaque;
621
622 /* XXX: send to all CPUs ? */
623 /* XXX: add logic to handle multiple A20 line sources */
624 x86_cpu_set_a20(cpu, level);
625 }
626
627 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
628 {
629 int index = le32_to_cpu(e820_reserve.count);
630 struct e820_entry *entry;
631
632 if (type != E820_RAM) {
633 /* old FW_CFG_E820_TABLE entry -- reservations only */
634 if (index >= E820_NR_ENTRIES) {
635 return -EBUSY;
636 }
637 entry = &e820_reserve.entry[index++];
638
639 entry->address = cpu_to_le64(address);
640 entry->length = cpu_to_le64(length);
641 entry->type = cpu_to_le32(type);
642
643 e820_reserve.count = cpu_to_le32(index);
644 }
645
646 /* new "etc/e820" file -- include ram too */
647 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
648 e820_table[e820_entries].address = cpu_to_le64(address);
649 e820_table[e820_entries].length = cpu_to_le64(length);
650 e820_table[e820_entries].type = cpu_to_le32(type);
651 e820_entries++;
652
653 return e820_entries;
654 }
655
656 int e820_get_num_entries(void)
657 {
658 return e820_entries;
659 }
660
661 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
662 {
663 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
664 *address = le64_to_cpu(e820_table[idx].address);
665 *length = le64_to_cpu(e820_table[idx].length);
666 return true;
667 }
668 return false;
669 }
670
671 /* Enables contiguous-apic-ID mode, for compatibility */
672 static bool compat_apic_id_mode;
673
674 void enable_compat_apic_id_mode(void)
675 {
676 compat_apic_id_mode = true;
677 }
678
679 /* Calculates initial APIC ID for a specific CPU index
680 *
681 * Currently we need to be able to calculate the APIC ID from the CPU index
682 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
683 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
684 * all CPUs up to max_cpus.
685 */
686 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
687 {
688 uint32_t correct_id;
689 static bool warned;
690
691 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
692 if (compat_apic_id_mode) {
693 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
694 error_report("APIC IDs set in compatibility mode, "
695 "CPU topology won't match the configuration");
696 warned = true;
697 }
698 return cpu_index;
699 } else {
700 return correct_id;
701 }
702 }
703
704 static void pc_build_smbios(PCMachineState *pcms)
705 {
706 uint8_t *smbios_tables, *smbios_anchor;
707 size_t smbios_tables_len, smbios_anchor_len;
708 struct smbios_phys_mem_area *mem_array;
709 unsigned i, array_count;
710 MachineState *ms = MACHINE(pcms);
711 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
712
713 /* tell smbios about cpuid version and features */
714 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
715
716 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
717 if (smbios_tables) {
718 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
719 smbios_tables, smbios_tables_len);
720 }
721
722 /* build the array of physical mem area from e820 table */
723 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
724 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
725 uint64_t addr, len;
726
727 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
728 mem_array[array_count].address = addr;
729 mem_array[array_count].length = len;
730 array_count++;
731 }
732 }
733 smbios_get_tables(mem_array, array_count,
734 &smbios_tables, &smbios_tables_len,
735 &smbios_anchor, &smbios_anchor_len);
736 g_free(mem_array);
737
738 if (smbios_anchor) {
739 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
740 smbios_tables, smbios_tables_len);
741 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
742 smbios_anchor, smbios_anchor_len);
743 }
744 }
745
746 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
747 {
748 FWCfgState *fw_cfg;
749 uint64_t *numa_fw_cfg;
750 int i;
751 const CPUArchIdList *cpus;
752 MachineClass *mc = MACHINE_GET_CLASS(pcms);
753
754 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
755 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
756
757 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
758 *
759 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
760 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
761 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
762 * for CPU hotplug also uses APIC ID and not "CPU index".
763 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
764 * but the "limit to the APIC ID values SeaBIOS may see".
765 *
766 * So for compatibility reasons with old BIOSes we are stuck with
767 * "etc/max-cpus" actually being apic_id_limit
768 */
769 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
770 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
771 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
772 acpi_tables, acpi_tables_len);
773 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
774
775 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
776 &e820_reserve, sizeof(e820_reserve));
777 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
778 sizeof(struct e820_entry) * e820_entries);
779
780 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
781 /* allocate memory for the NUMA channel: one (64bit) word for the number
782 * of nodes, one word for each VCPU->node and one word for each node to
783 * hold the amount of memory.
784 */
785 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
786 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
787 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
788 for (i = 0; i < cpus->len; i++) {
789 unsigned int apic_id = cpus->cpus[i].arch_id;
790 assert(apic_id < pcms->apic_id_limit);
791 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
792 }
793 for (i = 0; i < nb_numa_nodes; i++) {
794 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
795 cpu_to_le64(numa_info[i].node_mem);
796 }
797 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
798 (1 + pcms->apic_id_limit + nb_numa_nodes) *
799 sizeof(*numa_fw_cfg));
800
801 return fw_cfg;
802 }
803
804 static long get_file_size(FILE *f)
805 {
806 long where, size;
807
808 /* XXX: on Unix systems, using fstat() probably makes more sense */
809
810 where = ftell(f);
811 fseek(f, 0, SEEK_END);
812 size = ftell(f);
813 fseek(f, where, SEEK_SET);
814
815 return size;
816 }
817
818 /* setup_data types */
819 #define SETUP_NONE 0
820 #define SETUP_E820_EXT 1
821 #define SETUP_DTB 2
822 #define SETUP_PCI 3
823 #define SETUP_EFI 4
824
825 struct setup_data {
826 uint64_t next;
827 uint32_t type;
828 uint32_t len;
829 uint8_t data[0];
830 } __attribute__((packed));
831
832 static void load_linux(PCMachineState *pcms,
833 FWCfgState *fw_cfg)
834 {
835 uint16_t protocol;
836 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
837 int dtb_size, setup_data_offset;
838 uint32_t initrd_max;
839 uint8_t header[8192], *setup, *kernel, *initrd_data;
840 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
841 FILE *f;
842 char *vmode;
843 MachineState *machine = MACHINE(pcms);
844 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
845 struct setup_data *setup_data;
846 const char *kernel_filename = machine->kernel_filename;
847 const char *initrd_filename = machine->initrd_filename;
848 const char *dtb_filename = machine->dtb;
849 const char *kernel_cmdline = machine->kernel_cmdline;
850
851 /* Align to 16 bytes as a paranoia measure */
852 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
853
854 /* load the kernel header */
855 f = fopen(kernel_filename, "rb");
856 if (!f || !(kernel_size = get_file_size(f)) ||
857 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
858 MIN(ARRAY_SIZE(header), kernel_size)) {
859 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
860 kernel_filename, strerror(errno));
861 exit(1);
862 }
863
864 /* kernel protocol version */
865 #if 0
866 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
867 #endif
868 if (ldl_p(header+0x202) == 0x53726448) {
869 protocol = lduw_p(header+0x206);
870 } else {
871 /* This looks like a multiboot kernel. If it is, let's stop
872 treating it like a Linux kernel. */
873 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
874 kernel_cmdline, kernel_size, header)) {
875 return;
876 }
877 protocol = 0;
878 }
879
880 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
881 /* Low kernel */
882 real_addr = 0x90000;
883 cmdline_addr = 0x9a000 - cmdline_size;
884 prot_addr = 0x10000;
885 } else if (protocol < 0x202) {
886 /* High but ancient kernel */
887 real_addr = 0x90000;
888 cmdline_addr = 0x9a000 - cmdline_size;
889 prot_addr = 0x100000;
890 } else {
891 /* High and recent kernel */
892 real_addr = 0x10000;
893 cmdline_addr = 0x20000;
894 prot_addr = 0x100000;
895 }
896
897 #if 0
898 fprintf(stderr,
899 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
900 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
901 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
902 real_addr,
903 cmdline_addr,
904 prot_addr);
905 #endif
906
907 /* highest address for loading the initrd */
908 if (protocol >= 0x203) {
909 initrd_max = ldl_p(header+0x22c);
910 } else {
911 initrd_max = 0x37ffffff;
912 }
913
914 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
915 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
916 }
917
918 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
919 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
920 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
921
922 if (protocol >= 0x202) {
923 stl_p(header+0x228, cmdline_addr);
924 } else {
925 stw_p(header+0x20, 0xA33F);
926 stw_p(header+0x22, cmdline_addr-real_addr);
927 }
928
929 /* handle vga= parameter */
930 vmode = strstr(kernel_cmdline, "vga=");
931 if (vmode) {
932 unsigned int video_mode;
933 /* skip "vga=" */
934 vmode += 4;
935 if (!strncmp(vmode, "normal", 6)) {
936 video_mode = 0xffff;
937 } else if (!strncmp(vmode, "ext", 3)) {
938 video_mode = 0xfffe;
939 } else if (!strncmp(vmode, "ask", 3)) {
940 video_mode = 0xfffd;
941 } else {
942 video_mode = strtol(vmode, NULL, 0);
943 }
944 stw_p(header+0x1fa, video_mode);
945 }
946
947 /* loader type */
948 /* High nybble = B reserved for QEMU; low nybble is revision number.
949 If this code is substantially changed, you may want to consider
950 incrementing the revision. */
951 if (protocol >= 0x200) {
952 header[0x210] = 0xB0;
953 }
954 /* heap */
955 if (protocol >= 0x201) {
956 header[0x211] |= 0x80; /* CAN_USE_HEAP */
957 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
958 }
959
960 /* load initrd */
961 if (initrd_filename) {
962 if (protocol < 0x200) {
963 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
964 exit(1);
965 }
966
967 initrd_size = get_image_size(initrd_filename);
968 if (initrd_size < 0) {
969 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
970 initrd_filename, strerror(errno));
971 exit(1);
972 }
973
974 initrd_addr = (initrd_max-initrd_size) & ~4095;
975
976 initrd_data = g_malloc(initrd_size);
977 load_image(initrd_filename, initrd_data);
978
979 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
980 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
981 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
982
983 stl_p(header+0x218, initrd_addr);
984 stl_p(header+0x21c, initrd_size);
985 }
986
987 /* load kernel and setup */
988 setup_size = header[0x1f1];
989 if (setup_size == 0) {
990 setup_size = 4;
991 }
992 setup_size = (setup_size+1)*512;
993 if (setup_size > kernel_size) {
994 fprintf(stderr, "qemu: invalid kernel header\n");
995 exit(1);
996 }
997 kernel_size -= setup_size;
998
999 setup = g_malloc(setup_size);
1000 kernel = g_malloc(kernel_size);
1001 fseek(f, 0, SEEK_SET);
1002 if (fread(setup, 1, setup_size, f) != setup_size) {
1003 fprintf(stderr, "fread() failed\n");
1004 exit(1);
1005 }
1006 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1007 fprintf(stderr, "fread() failed\n");
1008 exit(1);
1009 }
1010 fclose(f);
1011
1012 /* append dtb to kernel */
1013 if (dtb_filename) {
1014 if (protocol < 0x209) {
1015 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1016 exit(1);
1017 }
1018
1019 dtb_size = get_image_size(dtb_filename);
1020 if (dtb_size <= 0) {
1021 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1022 dtb_filename, strerror(errno));
1023 exit(1);
1024 }
1025
1026 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1027 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1028 kernel = g_realloc(kernel, kernel_size);
1029
1030 stq_p(header+0x250, prot_addr + setup_data_offset);
1031
1032 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1033 setup_data->next = 0;
1034 setup_data->type = cpu_to_le32(SETUP_DTB);
1035 setup_data->len = cpu_to_le32(dtb_size);
1036
1037 load_image_size(dtb_filename, setup_data->data, dtb_size);
1038 }
1039
1040 memcpy(setup, header, MIN(sizeof(header), setup_size));
1041
1042 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1043 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1044 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1045
1046 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1047 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1048 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1049
1050 option_rom[nb_option_roms].bootindex = 0;
1051 option_rom[nb_option_roms].name = "linuxboot.bin";
1052 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1053 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1054 }
1055 nb_option_roms++;
1056 }
1057
1058 #define NE2000_NB_MAX 6
1059
1060 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1061 0x280, 0x380 };
1062 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1063
1064 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1065 {
1066 static int nb_ne2k = 0;
1067
1068 if (nb_ne2k == NE2000_NB_MAX)
1069 return;
1070 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1071 ne2000_irq[nb_ne2k], nd);
1072 nb_ne2k++;
1073 }
1074
1075 DeviceState *cpu_get_current_apic(void)
1076 {
1077 if (current_cpu) {
1078 X86CPU *cpu = X86_CPU(current_cpu);
1079 return cpu->apic_state;
1080 } else {
1081 return NULL;
1082 }
1083 }
1084
1085 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1086 {
1087 X86CPU *cpu = opaque;
1088
1089 if (level) {
1090 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1091 }
1092 }
1093
1094 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1095 {
1096 Object *cpu = NULL;
1097 Error *local_err = NULL;
1098
1099 cpu = object_new(typename);
1100
1101 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1102 object_property_set_bool(cpu, true, "realized", &local_err);
1103
1104 object_unref(cpu);
1105 error_propagate(errp, local_err);
1106 }
1107
1108 void pc_hot_add_cpu(const int64_t id, Error **errp)
1109 {
1110 ObjectClass *oc;
1111 MachineState *ms = MACHINE(qdev_get_machine());
1112 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1113 Error *local_err = NULL;
1114
1115 if (id < 0) {
1116 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1117 return;
1118 }
1119
1120 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1121 error_setg(errp, "Unable to add CPU: %" PRIi64
1122 ", resulting APIC ID (%" PRIi64 ") is too large",
1123 id, apic_id);
1124 return;
1125 }
1126
1127 assert(ms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1128 oc = OBJECT_CLASS(CPU_GET_CLASS(ms->possible_cpus->cpus[0].cpu));
1129 pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1130 if (local_err) {
1131 error_propagate(errp, local_err);
1132 return;
1133 }
1134 }
1135
1136 void pc_cpus_init(PCMachineState *pcms)
1137 {
1138 int i;
1139 CPUClass *cc;
1140 ObjectClass *oc;
1141 const char *typename;
1142 gchar **model_pieces;
1143 const CPUArchIdList *possible_cpus;
1144 MachineState *machine = MACHINE(pcms);
1145 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1146
1147 /* init CPUs */
1148 if (machine->cpu_model == NULL) {
1149 #ifdef TARGET_X86_64
1150 machine->cpu_model = "qemu64";
1151 #else
1152 machine->cpu_model = "qemu32";
1153 #endif
1154 }
1155
1156 model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1157 if (!model_pieces[0]) {
1158 error_report("Invalid/empty CPU model name");
1159 exit(1);
1160 }
1161
1162 oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1163 if (oc == NULL) {
1164 error_report("Unable to find CPU definition: %s", model_pieces[0]);
1165 exit(1);
1166 }
1167 typename = object_class_get_name(oc);
1168 cc = CPU_CLASS(oc);
1169 cc->parse_features(typename, model_pieces[1], &error_fatal);
1170 g_strfreev(model_pieces);
1171
1172 /* Calculates the limit to CPU APIC ID values
1173 *
1174 * Limit for the APIC ID value, so that all
1175 * CPU APIC IDs are < pcms->apic_id_limit.
1176 *
1177 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1178 */
1179 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1180 possible_cpus = mc->possible_cpu_arch_ids(machine);
1181 for (i = 0; i < smp_cpus; i++) {
1182 pc_new_cpu(typename, possible_cpus->cpus[i].arch_id, &error_fatal);
1183 }
1184 }
1185
1186 static void pc_build_feature_control_file(PCMachineState *pcms)
1187 {
1188 MachineState *ms = MACHINE(pcms);
1189 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1190 CPUX86State *env = &cpu->env;
1191 uint32_t unused, ecx, edx;
1192 uint64_t feature_control_bits = 0;
1193 uint64_t *val;
1194
1195 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1196 if (ecx & CPUID_EXT_VMX) {
1197 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1198 }
1199
1200 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1201 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1202 (env->mcg_cap & MCG_LMCE_P)) {
1203 feature_control_bits |= FEATURE_CONTROL_LMCE;
1204 }
1205
1206 if (!feature_control_bits) {
1207 return;
1208 }
1209
1210 val = g_malloc(sizeof(*val));
1211 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1212 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1213 }
1214
1215 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1216 {
1217 if (cpus_count > 0xff) {
1218 /* If the number of CPUs can't be represented in 8 bits, the
1219 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1220 * to make old BIOSes fail more predictably.
1221 */
1222 rtc_set_memory(rtc, 0x5f, 0);
1223 } else {
1224 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1225 }
1226 }
1227
1228 static
1229 void pc_machine_done(Notifier *notifier, void *data)
1230 {
1231 PCMachineState *pcms = container_of(notifier,
1232 PCMachineState, machine_done);
1233 PCIBus *bus = pcms->bus;
1234
1235 /* set the number of CPUs */
1236 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1237
1238 if (bus) {
1239 int extra_hosts = 0;
1240
1241 QLIST_FOREACH(bus, &bus->child, sibling) {
1242 /* look for expander root buses */
1243 if (pci_bus_is_root(bus)) {
1244 extra_hosts++;
1245 }
1246 }
1247 if (extra_hosts && pcms->fw_cfg) {
1248 uint64_t *val = g_malloc(sizeof(*val));
1249 *val = cpu_to_le64(extra_hosts);
1250 fw_cfg_add_file(pcms->fw_cfg,
1251 "etc/extra-pci-roots", val, sizeof(*val));
1252 }
1253 }
1254
1255 acpi_setup();
1256 if (pcms->fw_cfg) {
1257 pc_build_smbios(pcms);
1258 pc_build_feature_control_file(pcms);
1259 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1260 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1261 }
1262
1263 if (pcms->apic_id_limit > 255) {
1264 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1265
1266 if (!iommu || !iommu->x86_iommu.intr_supported ||
1267 iommu->intr_eim != ON_OFF_AUTO_ON) {
1268 error_report("current -smp configuration requires "
1269 "Extended Interrupt Mode enabled. "
1270 "You can add an IOMMU using: "
1271 "-device intel-iommu,intremap=on,eim=on");
1272 exit(EXIT_FAILURE);
1273 }
1274 }
1275 }
1276
1277 void pc_guest_info_init(PCMachineState *pcms)
1278 {
1279 int i;
1280
1281 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1282 pcms->numa_nodes = nb_numa_nodes;
1283 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1284 sizeof *pcms->node_mem);
1285 for (i = 0; i < nb_numa_nodes; i++) {
1286 pcms->node_mem[i] = numa_info[i].node_mem;
1287 }
1288
1289 pcms->machine_done.notify = pc_machine_done;
1290 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1291 }
1292
1293 /* setup pci memory address space mapping into system address space */
1294 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1295 MemoryRegion *pci_address_space)
1296 {
1297 /* Set to lower priority than RAM */
1298 memory_region_add_subregion_overlap(system_memory, 0x0,
1299 pci_address_space, -1);
1300 }
1301
1302 void pc_acpi_init(const char *default_dsdt)
1303 {
1304 char *filename;
1305
1306 if (acpi_tables != NULL) {
1307 /* manually set via -acpitable, leave it alone */
1308 return;
1309 }
1310
1311 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1312 if (filename == NULL) {
1313 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1314 } else {
1315 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1316 &error_abort);
1317 Error *err = NULL;
1318
1319 qemu_opt_set(opts, "file", filename, &error_abort);
1320
1321 acpi_table_add_builtin(opts, &err);
1322 if (err) {
1323 warn_reportf_err(err, "failed to load %s: ", filename);
1324 }
1325 g_free(filename);
1326 }
1327 }
1328
1329 void xen_load_linux(PCMachineState *pcms)
1330 {
1331 int i;
1332 FWCfgState *fw_cfg;
1333
1334 assert(MACHINE(pcms)->kernel_filename != NULL);
1335
1336 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1337 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1338 rom_set_fw(fw_cfg);
1339
1340 load_linux(pcms, fw_cfg);
1341 for (i = 0; i < nb_option_roms; i++) {
1342 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1343 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1344 !strcmp(option_rom[i].name, "multiboot.bin"));
1345 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1346 }
1347 pcms->fw_cfg = fw_cfg;
1348 }
1349
1350 void pc_memory_init(PCMachineState *pcms,
1351 MemoryRegion *system_memory,
1352 MemoryRegion *rom_memory,
1353 MemoryRegion **ram_memory)
1354 {
1355 int linux_boot, i;
1356 MemoryRegion *ram, *option_rom_mr;
1357 MemoryRegion *ram_below_4g, *ram_above_4g;
1358 FWCfgState *fw_cfg;
1359 MachineState *machine = MACHINE(pcms);
1360 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1361
1362 assert(machine->ram_size == pcms->below_4g_mem_size +
1363 pcms->above_4g_mem_size);
1364
1365 linux_boot = (machine->kernel_filename != NULL);
1366
1367 /* Allocate RAM. We allocate it as a single memory region and use
1368 * aliases to address portions of it, mostly for backwards compatibility
1369 * with older qemus that used qemu_ram_alloc().
1370 */
1371 ram = g_malloc(sizeof(*ram));
1372 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1373 machine->ram_size);
1374 *ram_memory = ram;
1375 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1376 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1377 0, pcms->below_4g_mem_size);
1378 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1379 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1380 if (pcms->above_4g_mem_size > 0) {
1381 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1382 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1383 pcms->below_4g_mem_size,
1384 pcms->above_4g_mem_size);
1385 memory_region_add_subregion(system_memory, 0x100000000ULL,
1386 ram_above_4g);
1387 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1388 }
1389
1390 if (!pcmc->has_reserved_memory &&
1391 (machine->ram_slots ||
1392 (machine->maxram_size > machine->ram_size))) {
1393 MachineClass *mc = MACHINE_GET_CLASS(machine);
1394
1395 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1396 mc->name);
1397 exit(EXIT_FAILURE);
1398 }
1399
1400 /* initialize hotplug memory address space */
1401 if (pcmc->has_reserved_memory &&
1402 (machine->ram_size < machine->maxram_size)) {
1403 ram_addr_t hotplug_mem_size =
1404 machine->maxram_size - machine->ram_size;
1405
1406 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1407 error_report("unsupported amount of memory slots: %"PRIu64,
1408 machine->ram_slots);
1409 exit(EXIT_FAILURE);
1410 }
1411
1412 if (QEMU_ALIGN_UP(machine->maxram_size,
1413 TARGET_PAGE_SIZE) != machine->maxram_size) {
1414 error_report("maximum memory size must by aligned to multiple of "
1415 "%d bytes", TARGET_PAGE_SIZE);
1416 exit(EXIT_FAILURE);
1417 }
1418
1419 pcms->hotplug_memory.base =
1420 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1421
1422 if (pcmc->enforce_aligned_dimm) {
1423 /* size hotplug region assuming 1G page max alignment per slot */
1424 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1425 }
1426
1427 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1428 hotplug_mem_size) {
1429 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1430 machine->maxram_size);
1431 exit(EXIT_FAILURE);
1432 }
1433
1434 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1435 "hotplug-memory", hotplug_mem_size);
1436 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1437 &pcms->hotplug_memory.mr);
1438 }
1439
1440 /* Initialize PC system firmware */
1441 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1442
1443 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1444 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1445 &error_fatal);
1446 vmstate_register_ram_global(option_rom_mr);
1447 memory_region_add_subregion_overlap(rom_memory,
1448 PC_ROM_MIN_VGA,
1449 option_rom_mr,
1450 1);
1451
1452 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1453
1454 rom_set_fw(fw_cfg);
1455
1456 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1457 uint64_t *val = g_malloc(sizeof(*val));
1458 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1459 uint64_t res_mem_end = pcms->hotplug_memory.base;
1460
1461 if (!pcmc->broken_reserved_end) {
1462 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1463 }
1464 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1465 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1466 }
1467
1468 if (linux_boot) {
1469 load_linux(pcms, fw_cfg);
1470 }
1471
1472 for (i = 0; i < nb_option_roms; i++) {
1473 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1474 }
1475 pcms->fw_cfg = fw_cfg;
1476
1477 /* Init default IOAPIC address space */
1478 pcms->ioapic_as = &address_space_memory;
1479 }
1480
1481 qemu_irq pc_allocate_cpu_irq(void)
1482 {
1483 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1484 }
1485
1486 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1487 {
1488 DeviceState *dev = NULL;
1489
1490 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1491 if (pci_bus) {
1492 PCIDevice *pcidev = pci_vga_init(pci_bus);
1493 dev = pcidev ? &pcidev->qdev : NULL;
1494 } else if (isa_bus) {
1495 ISADevice *isadev = isa_vga_init(isa_bus);
1496 dev = isadev ? DEVICE(isadev) : NULL;
1497 }
1498 rom_reset_order_override();
1499 return dev;
1500 }
1501
1502 static const MemoryRegionOps ioport80_io_ops = {
1503 .write = ioport80_write,
1504 .read = ioport80_read,
1505 .endianness = DEVICE_NATIVE_ENDIAN,
1506 .impl = {
1507 .min_access_size = 1,
1508 .max_access_size = 1,
1509 },
1510 };
1511
1512 static const MemoryRegionOps ioportF0_io_ops = {
1513 .write = ioportF0_write,
1514 .read = ioportF0_read,
1515 .endianness = DEVICE_NATIVE_ENDIAN,
1516 .impl = {
1517 .min_access_size = 1,
1518 .max_access_size = 1,
1519 },
1520 };
1521
1522 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1523 ISADevice **rtc_state,
1524 bool create_fdctrl,
1525 bool no_vmport,
1526 bool has_pit,
1527 uint32_t hpet_irqs)
1528 {
1529 int i;
1530 DriveInfo *fd[MAX_FD];
1531 DeviceState *hpet = NULL;
1532 int pit_isa_irq = 0;
1533 qemu_irq pit_alt_irq = NULL;
1534 qemu_irq rtc_irq = NULL;
1535 qemu_irq *a20_line;
1536 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1537 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1538 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1539
1540 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1541 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1542
1543 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1544 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1545
1546 /*
1547 * Check if an HPET shall be created.
1548 *
1549 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1550 * when the HPET wants to take over. Thus we have to disable the latter.
1551 */
1552 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1553 /* In order to set property, here not using sysbus_try_create_simple */
1554 hpet = qdev_try_create(NULL, TYPE_HPET);
1555 if (hpet) {
1556 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1557 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1558 * IRQ8 and IRQ2.
1559 */
1560 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1561 HPET_INTCAP, NULL);
1562 if (!compat) {
1563 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1564 }
1565 qdev_init_nofail(hpet);
1566 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1567
1568 for (i = 0; i < GSI_NUM_PINS; i++) {
1569 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1570 }
1571 pit_isa_irq = -1;
1572 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1573 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1574 }
1575 }
1576 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1577
1578 qemu_register_boot_set(pc_boot_set, *rtc_state);
1579
1580 if (!xen_enabled() && has_pit) {
1581 if (kvm_pit_in_kernel()) {
1582 pit = kvm_pit_init(isa_bus, 0x40);
1583 } else {
1584 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1585 }
1586 if (hpet) {
1587 /* connect PIT to output control line of the HPET */
1588 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1589 }
1590 pcspk_init(isa_bus, pit);
1591 }
1592
1593 serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1594 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1595
1596 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1597 i8042 = isa_create_simple(isa_bus, "i8042");
1598 i8042_setup_a20_line(i8042, a20_line[0]);
1599 if (!no_vmport) {
1600 vmport_init(isa_bus);
1601 vmmouse = isa_try_create(isa_bus, "vmmouse");
1602 } else {
1603 vmmouse = NULL;
1604 }
1605 if (vmmouse) {
1606 DeviceState *dev = DEVICE(vmmouse);
1607 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1608 qdev_init_nofail(dev);
1609 }
1610 port92 = isa_create_simple(isa_bus, "port92");
1611 port92_init(port92, a20_line[1]);
1612 g_free(a20_line);
1613
1614 DMA_init(isa_bus, 0);
1615
1616 for(i = 0; i < MAX_FD; i++) {
1617 fd[i] = drive_get(IF_FLOPPY, 0, i);
1618 create_fdctrl |= !!fd[i];
1619 }
1620 if (create_fdctrl) {
1621 fdctrl_init_isa(isa_bus, fd);
1622 }
1623 }
1624
1625 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1626 {
1627 int i;
1628
1629 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1630 for (i = 0; i < nb_nics; i++) {
1631 NICInfo *nd = &nd_table[i];
1632
1633 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1634 pc_init_ne2k_isa(isa_bus, nd);
1635 } else {
1636 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1637 }
1638 }
1639 rom_reset_order_override();
1640 }
1641
1642 void pc_pci_device_init(PCIBus *pci_bus)
1643 {
1644 int max_bus;
1645 int bus;
1646
1647 /* Note: if=scsi is deprecated with PC machine types */
1648 max_bus = drive_get_max_bus(IF_SCSI);
1649 for (bus = 0; bus <= max_bus; bus++) {
1650 pci_create_simple(pci_bus, -1, "lsi53c895a");
1651 /*
1652 * By not creating frontends here, we make
1653 * scsi_legacy_handle_cmdline() create them, and warn that
1654 * this usage is deprecated.
1655 */
1656 }
1657 }
1658
1659 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1660 {
1661 DeviceState *dev;
1662 SysBusDevice *d;
1663 unsigned int i;
1664
1665 if (kvm_ioapic_in_kernel()) {
1666 dev = qdev_create(NULL, "kvm-ioapic");
1667 } else {
1668 dev = qdev_create(NULL, "ioapic");
1669 }
1670 if (parent_name) {
1671 object_property_add_child(object_resolve_path(parent_name, NULL),
1672 "ioapic", OBJECT(dev), NULL);
1673 }
1674 qdev_init_nofail(dev);
1675 d = SYS_BUS_DEVICE(dev);
1676 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1677
1678 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1679 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1680 }
1681 }
1682
1683 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1684 DeviceState *dev, Error **errp)
1685 {
1686 HotplugHandlerClass *hhc;
1687 Error *local_err = NULL;
1688 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1689 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1690 PCDIMMDevice *dimm = PC_DIMM(dev);
1691 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1692 MemoryRegion *mr = ddc->get_memory_region(dimm);
1693 uint64_t align = TARGET_PAGE_SIZE;
1694 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1695
1696 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1697 align = memory_region_get_alignment(mr);
1698 }
1699
1700 if (!pcms->acpi_dev) {
1701 error_setg(&local_err,
1702 "memory hotplug is not enabled: missing acpi device");
1703 goto out;
1704 }
1705
1706 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1707 error_setg(&local_err,
1708 "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1709 goto out;
1710 }
1711
1712 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1713 if (local_err) {
1714 goto out;
1715 }
1716
1717 if (is_nvdimm) {
1718 nvdimm_plug(&pcms->acpi_nvdimm_state);
1719 }
1720
1721 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1722 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1723 out:
1724 error_propagate(errp, local_err);
1725 }
1726
1727 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1728 DeviceState *dev, Error **errp)
1729 {
1730 HotplugHandlerClass *hhc;
1731 Error *local_err = NULL;
1732 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1733
1734 if (!pcms->acpi_dev) {
1735 error_setg(&local_err,
1736 "memory hotplug is not enabled: missing acpi device");
1737 goto out;
1738 }
1739
1740 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1741 error_setg(&local_err,
1742 "nvdimm device hot unplug is not supported yet.");
1743 goto out;
1744 }
1745
1746 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1747 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1748
1749 out:
1750 error_propagate(errp, local_err);
1751 }
1752
1753 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1754 DeviceState *dev, Error **errp)
1755 {
1756 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1757 PCDIMMDevice *dimm = PC_DIMM(dev);
1758 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1759 MemoryRegion *mr = ddc->get_memory_region(dimm);
1760 HotplugHandlerClass *hhc;
1761 Error *local_err = NULL;
1762
1763 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1764 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1765
1766 if (local_err) {
1767 goto out;
1768 }
1769
1770 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1771 object_unparent(OBJECT(dev));
1772
1773 out:
1774 error_propagate(errp, local_err);
1775 }
1776
1777 static int pc_apic_cmp(const void *a, const void *b)
1778 {
1779 CPUArchId *apic_a = (CPUArchId *)a;
1780 CPUArchId *apic_b = (CPUArchId *)b;
1781
1782 return apic_a->arch_id - apic_b->arch_id;
1783 }
1784
1785 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1786 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1787 * entry corresponding to CPU's apic_id returns NULL.
1788 */
1789 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1790 {
1791 CPUArchId apic_id, *found_cpu;
1792
1793 apic_id.arch_id = id;
1794 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1795 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1796 pc_apic_cmp);
1797 if (found_cpu && idx) {
1798 *idx = found_cpu - ms->possible_cpus->cpus;
1799 }
1800 return found_cpu;
1801 }
1802
1803 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1804 DeviceState *dev, Error **errp)
1805 {
1806 CPUArchId *found_cpu;
1807 HotplugHandlerClass *hhc;
1808 Error *local_err = NULL;
1809 X86CPU *cpu = X86_CPU(dev);
1810 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1811
1812 if (pcms->acpi_dev) {
1813 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1814 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1815 if (local_err) {
1816 goto out;
1817 }
1818 }
1819
1820 /* increment the number of CPUs */
1821 pcms->boot_cpus++;
1822 if (pcms->rtc) {
1823 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1824 }
1825 if (pcms->fw_cfg) {
1826 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1827 }
1828
1829 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1830 found_cpu->cpu = OBJECT(dev);
1831 out:
1832 error_propagate(errp, local_err);
1833 }
1834 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1835 DeviceState *dev, Error **errp)
1836 {
1837 int idx = -1;
1838 HotplugHandlerClass *hhc;
1839 Error *local_err = NULL;
1840 X86CPU *cpu = X86_CPU(dev);
1841 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1842
1843 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1844 assert(idx != -1);
1845 if (idx == 0) {
1846 error_setg(&local_err, "Boot CPU is unpluggable");
1847 goto out;
1848 }
1849
1850 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1851 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1852
1853 if (local_err) {
1854 goto out;
1855 }
1856
1857 out:
1858 error_propagate(errp, local_err);
1859
1860 }
1861
1862 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1863 DeviceState *dev, Error **errp)
1864 {
1865 CPUArchId *found_cpu;
1866 HotplugHandlerClass *hhc;
1867 Error *local_err = NULL;
1868 X86CPU *cpu = X86_CPU(dev);
1869 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1870
1871 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1872 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1873
1874 if (local_err) {
1875 goto out;
1876 }
1877
1878 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1879 found_cpu->cpu = NULL;
1880 object_unparent(OBJECT(dev));
1881
1882 /* decrement the number of CPUs */
1883 pcms->boot_cpus--;
1884 /* Update the number of CPUs in CMOS */
1885 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1886 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1887 out:
1888 error_propagate(errp, local_err);
1889 }
1890
1891 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1892 DeviceState *dev, Error **errp)
1893 {
1894 int idx;
1895 CPUState *cs;
1896 CPUArchId *cpu_slot;
1897 X86CPUTopoInfo topo;
1898 X86CPU *cpu = X86_CPU(dev);
1899 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1900
1901 /* if APIC ID is not set, set it based on socket/core/thread properties */
1902 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1903 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1904
1905 if (cpu->socket_id < 0) {
1906 error_setg(errp, "CPU socket-id is not set");
1907 return;
1908 } else if (cpu->socket_id > max_socket) {
1909 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1910 cpu->socket_id, max_socket);
1911 return;
1912 }
1913 if (cpu->core_id < 0) {
1914 error_setg(errp, "CPU core-id is not set");
1915 return;
1916 } else if (cpu->core_id > (smp_cores - 1)) {
1917 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1918 cpu->core_id, smp_cores - 1);
1919 return;
1920 }
1921 if (cpu->thread_id < 0) {
1922 error_setg(errp, "CPU thread-id is not set");
1923 return;
1924 } else if (cpu->thread_id > (smp_threads - 1)) {
1925 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1926 cpu->thread_id, smp_threads - 1);
1927 return;
1928 }
1929
1930 topo.pkg_id = cpu->socket_id;
1931 topo.core_id = cpu->core_id;
1932 topo.smt_id = cpu->thread_id;
1933 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1934 }
1935
1936 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1937 if (!cpu_slot) {
1938 MachineState *ms = MACHINE(pcms);
1939
1940 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1941 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1942 " APIC ID %" PRIu32 ", valid index range 0:%d",
1943 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1944 ms->possible_cpus->len - 1);
1945 return;
1946 }
1947
1948 if (cpu_slot->cpu) {
1949 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1950 idx, cpu->apic_id);
1951 return;
1952 }
1953
1954 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1955 * so that machine_query_hotpluggable_cpus would show correct values
1956 */
1957 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1958 * once -smp refactoring is complete and there will be CPU private
1959 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1960 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1961 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1962 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1963 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1964 return;
1965 }
1966 cpu->socket_id = topo.pkg_id;
1967
1968 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1969 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1970 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1971 return;
1972 }
1973 cpu->core_id = topo.core_id;
1974
1975 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1976 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1977 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1978 return;
1979 }
1980 cpu->thread_id = topo.smt_id;
1981
1982 cs = CPU(cpu);
1983 cs->cpu_index = idx;
1984
1985 numa_cpu_pre_plug(cpu_slot, dev, errp);
1986 }
1987
1988 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1989 DeviceState *dev, Error **errp)
1990 {
1991 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1992 pc_cpu_pre_plug(hotplug_dev, dev, errp);
1993 }
1994 }
1995
1996 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1997 DeviceState *dev, Error **errp)
1998 {
1999 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2000 pc_dimm_plug(hotplug_dev, dev, errp);
2001 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2002 pc_cpu_plug(hotplug_dev, dev, errp);
2003 }
2004 }
2005
2006 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2007 DeviceState *dev, Error **errp)
2008 {
2009 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2010 pc_dimm_unplug_request(hotplug_dev, dev, errp);
2011 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2012 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2013 } else {
2014 error_setg(errp, "acpi: device unplug request for not supported device"
2015 " type: %s", object_get_typename(OBJECT(dev)));
2016 }
2017 }
2018
2019 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2020 DeviceState *dev, Error **errp)
2021 {
2022 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2023 pc_dimm_unplug(hotplug_dev, dev, errp);
2024 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2025 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2026 } else {
2027 error_setg(errp, "acpi: device unplug for not supported device"
2028 " type: %s", object_get_typename(OBJECT(dev)));
2029 }
2030 }
2031
2032 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2033 DeviceState *dev)
2034 {
2035 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2036
2037 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2038 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2039 return HOTPLUG_HANDLER(machine);
2040 }
2041
2042 return pcmc->get_hotplug_handler ?
2043 pcmc->get_hotplug_handler(machine, dev) : NULL;
2044 }
2045
2046 static void
2047 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2048 const char *name, void *opaque,
2049 Error **errp)
2050 {
2051 PCMachineState *pcms = PC_MACHINE(obj);
2052 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2053
2054 visit_type_int(v, name, &value, errp);
2055 }
2056
2057 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2058 const char *name, void *opaque,
2059 Error **errp)
2060 {
2061 PCMachineState *pcms = PC_MACHINE(obj);
2062 uint64_t value = pcms->max_ram_below_4g;
2063
2064 visit_type_size(v, name, &value, errp);
2065 }
2066
2067 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2068 const char *name, void *opaque,
2069 Error **errp)
2070 {
2071 PCMachineState *pcms = PC_MACHINE(obj);
2072 Error *error = NULL;
2073 uint64_t value;
2074
2075 visit_type_size(v, name, &value, &error);
2076 if (error) {
2077 error_propagate(errp, error);
2078 return;
2079 }
2080 if (value > (1ULL << 32)) {
2081 error_setg(&error,
2082 "Machine option 'max-ram-below-4g=%"PRIu64
2083 "' expects size less than or equal to 4G", value);
2084 error_propagate(errp, error);
2085 return;
2086 }
2087
2088 if (value < (1ULL << 20)) {
2089 warn_report("small max_ram_below_4g(%"PRIu64
2090 ") less than 1M. BIOS may not work..",
2091 value);
2092 }
2093
2094 pcms->max_ram_below_4g = value;
2095 }
2096
2097 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2098 void *opaque, Error **errp)
2099 {
2100 PCMachineState *pcms = PC_MACHINE(obj);
2101 OnOffAuto vmport = pcms->vmport;
2102
2103 visit_type_OnOffAuto(v, name, &vmport, errp);
2104 }
2105
2106 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2107 void *opaque, Error **errp)
2108 {
2109 PCMachineState *pcms = PC_MACHINE(obj);
2110
2111 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2112 }
2113
2114 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2115 {
2116 bool smm_available = false;
2117
2118 if (pcms->smm == ON_OFF_AUTO_OFF) {
2119 return false;
2120 }
2121
2122 if (tcg_enabled() || qtest_enabled()) {
2123 smm_available = true;
2124 } else if (kvm_enabled()) {
2125 smm_available = kvm_has_smm();
2126 }
2127
2128 if (smm_available) {
2129 return true;
2130 }
2131
2132 if (pcms->smm == ON_OFF_AUTO_ON) {
2133 error_report("System Management Mode not supported by this hypervisor.");
2134 exit(1);
2135 }
2136 return false;
2137 }
2138
2139 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2140 void *opaque, Error **errp)
2141 {
2142 PCMachineState *pcms = PC_MACHINE(obj);
2143 OnOffAuto smm = pcms->smm;
2144
2145 visit_type_OnOffAuto(v, name, &smm, errp);
2146 }
2147
2148 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2149 void *opaque, Error **errp)
2150 {
2151 PCMachineState *pcms = PC_MACHINE(obj);
2152
2153 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2154 }
2155
2156 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2157 {
2158 PCMachineState *pcms = PC_MACHINE(obj);
2159
2160 return pcms->acpi_nvdimm_state.is_enabled;
2161 }
2162
2163 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2164 {
2165 PCMachineState *pcms = PC_MACHINE(obj);
2166
2167 pcms->acpi_nvdimm_state.is_enabled = value;
2168 }
2169
2170 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2171 {
2172 PCMachineState *pcms = PC_MACHINE(obj);
2173
2174 return pcms->smbus;
2175 }
2176
2177 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2178 {
2179 PCMachineState *pcms = PC_MACHINE(obj);
2180
2181 pcms->smbus = value;
2182 }
2183
2184 static bool pc_machine_get_sata(Object *obj, Error **errp)
2185 {
2186 PCMachineState *pcms = PC_MACHINE(obj);
2187
2188 return pcms->sata;
2189 }
2190
2191 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2192 {
2193 PCMachineState *pcms = PC_MACHINE(obj);
2194
2195 pcms->sata = value;
2196 }
2197
2198 static bool pc_machine_get_pit(Object *obj, Error **errp)
2199 {
2200 PCMachineState *pcms = PC_MACHINE(obj);
2201
2202 return pcms->pit;
2203 }
2204
2205 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2206 {
2207 PCMachineState *pcms = PC_MACHINE(obj);
2208
2209 pcms->pit = value;
2210 }
2211
2212 static void pc_machine_initfn(Object *obj)
2213 {
2214 PCMachineState *pcms = PC_MACHINE(obj);
2215
2216 pcms->max_ram_below_4g = 0; /* use default */
2217 pcms->smm = ON_OFF_AUTO_AUTO;
2218 pcms->vmport = ON_OFF_AUTO_AUTO;
2219 /* nvdimm is disabled on default. */
2220 pcms->acpi_nvdimm_state.is_enabled = false;
2221 /* acpi build is enabled by default if machine supports it */
2222 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2223 pcms->smbus = true;
2224 pcms->sata = true;
2225 pcms->pit = true;
2226 }
2227
2228 static void pc_machine_reset(void)
2229 {
2230 CPUState *cs;
2231 X86CPU *cpu;
2232
2233 qemu_devices_reset();
2234
2235 /* Reset APIC after devices have been reset to cancel
2236 * any changes that qemu_devices_reset() might have done.
2237 */
2238 CPU_FOREACH(cs) {
2239 cpu = X86_CPU(cs);
2240
2241 if (cpu->apic_state) {
2242 device_reset(cpu->apic_state);
2243 }
2244 }
2245 }
2246
2247 static CpuInstanceProperties
2248 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2249 {
2250 MachineClass *mc = MACHINE_GET_CLASS(ms);
2251 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2252
2253 assert(cpu_index < possible_cpus->len);
2254 return possible_cpus->cpus[cpu_index].props;
2255 }
2256
2257 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2258 {
2259 int i;
2260
2261 if (ms->possible_cpus) {
2262 /*
2263 * make sure that max_cpus hasn't changed since the first use, i.e.
2264 * -smp hasn't been parsed after it
2265 */
2266 assert(ms->possible_cpus->len == max_cpus);
2267 return ms->possible_cpus;
2268 }
2269
2270 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2271 sizeof(CPUArchId) * max_cpus);
2272 ms->possible_cpus->len = max_cpus;
2273 for (i = 0; i < ms->possible_cpus->len; i++) {
2274 X86CPUTopoInfo topo;
2275
2276 ms->possible_cpus->cpus[i].vcpus_count = 1;
2277 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2278 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2279 smp_cores, smp_threads, &topo);
2280 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2281 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2282 ms->possible_cpus->cpus[i].props.has_core_id = true;
2283 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2284 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2285 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2286
2287 /* default distribution of CPUs over NUMA nodes */
2288 if (nb_numa_nodes) {
2289 /* preset values but do not enable them i.e. 'has_node_id = false',
2290 * numa init code will enable them later if manual mapping wasn't
2291 * present on CLI */
2292 ms->possible_cpus->cpus[i].props.node_id =
2293 topo.pkg_id % nb_numa_nodes;
2294 }
2295 }
2296 return ms->possible_cpus;
2297 }
2298
2299 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2300 {
2301 /* cpu index isn't used */
2302 CPUState *cs;
2303
2304 CPU_FOREACH(cs) {
2305 X86CPU *cpu = X86_CPU(cs);
2306
2307 if (!cpu->apic_state) {
2308 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2309 } else {
2310 apic_deliver_nmi(cpu->apic_state);
2311 }
2312 }
2313 }
2314
2315 static void pc_machine_class_init(ObjectClass *oc, void *data)
2316 {
2317 MachineClass *mc = MACHINE_CLASS(oc);
2318 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2319 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2320 NMIClass *nc = NMI_CLASS(oc);
2321
2322 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2323 pcmc->pci_enabled = true;
2324 pcmc->has_acpi_build = true;
2325 pcmc->rsdp_in_ram = true;
2326 pcmc->smbios_defaults = true;
2327 pcmc->smbios_uuid_encoded = true;
2328 pcmc->gigabyte_align = true;
2329 pcmc->has_reserved_memory = true;
2330 pcmc->kvmclock_enabled = true;
2331 pcmc->enforce_aligned_dimm = true;
2332 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2333 * to be used at the moment, 32K should be enough for a while. */
2334 pcmc->acpi_data_size = 0x20000 + 0x8000;
2335 pcmc->save_tsc_khz = true;
2336 pcmc->linuxboot_dma_enabled = true;
2337 mc->get_hotplug_handler = pc_get_hotpug_handler;
2338 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2339 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2340 mc->has_hotpluggable_cpus = true;
2341 mc->default_boot_order = "cad";
2342 mc->hot_add_cpu = pc_hot_add_cpu;
2343 mc->block_default_type = IF_IDE;
2344 mc->max_cpus = 255;
2345 mc->reset = pc_machine_reset;
2346 hc->pre_plug = pc_machine_device_pre_plug_cb;
2347 hc->plug = pc_machine_device_plug_cb;
2348 hc->unplug_request = pc_machine_device_unplug_request_cb;
2349 hc->unplug = pc_machine_device_unplug_cb;
2350 nc->nmi_monitor_handler = x86_nmi;
2351
2352 object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2353 pc_machine_get_hotplug_memory_region_size, NULL,
2354 NULL, NULL, &error_abort);
2355
2356 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2357 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2358 NULL, NULL, &error_abort);
2359
2360 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2361 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2362
2363 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2364 pc_machine_get_smm, pc_machine_set_smm,
2365 NULL, NULL, &error_abort);
2366 object_class_property_set_description(oc, PC_MACHINE_SMM,
2367 "Enable SMM (pc & q35)", &error_abort);
2368
2369 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2370 pc_machine_get_vmport, pc_machine_set_vmport,
2371 NULL, NULL, &error_abort);
2372 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2373 "Enable vmport (pc & q35)", &error_abort);
2374
2375 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2376 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2377
2378 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2379 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2380
2381 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2382 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2383
2384 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2385 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2386 }
2387
2388 static const TypeInfo pc_machine_info = {
2389 .name = TYPE_PC_MACHINE,
2390 .parent = TYPE_MACHINE,
2391 .abstract = true,
2392 .instance_size = sizeof(PCMachineState),
2393 .instance_init = pc_machine_initfn,
2394 .class_size = sizeof(PCMachineClass),
2395 .class_init = pc_machine_class_init,
2396 .interfaces = (InterfaceInfo[]) {
2397 { TYPE_HOTPLUG_HANDLER },
2398 { TYPE_NMI },
2399 { }
2400 },
2401 };
2402
2403 static void pc_machine_register_types(void)
2404 {
2405 type_register_static(&pc_machine_info);
2406 }
2407
2408 type_init(pc_machine_register_types)