]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/x86.c
Merge remote-tracking branch 'remotes/ehabkost/tags/x86-and-machine-pull-request...
[mirror_qemu.git] / hw / i386 / x86.c
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
22 */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "trace.h"
38
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
44
45 #include "hw/acpi/cpu_hotplug.h"
46 #include "hw/irq.h"
47 #include "hw/nmi.h"
48 #include "hw/loader.h"
49 #include "multiboot.h"
50 #include "elf.h"
51 #include "standard-headers/asm-x86/bootparam.h"
52 #include "config-devices.h"
53 #include "kvm_i386.h"
54
55 #define BIOS_FILENAME "bios.bin"
56
57 /* Physical Address of PVH entry point read from kernel ELF NOTE */
58 static size_t pvh_start_addr;
59
60 /*
61 * Calculates initial APIC ID for a specific CPU index
62 *
63 * Currently we need to be able to calculate the APIC ID from the CPU index
64 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
65 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
66 * all CPUs up to max_cpus.
67 */
68 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
69 unsigned int cpu_index)
70 {
71 MachineState *ms = MACHINE(x86ms);
72 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
73 uint32_t correct_id;
74 static bool warned;
75
76 correct_id = x86_apicid_from_cpu_idx(x86ms->smp_dies, ms->smp.cores,
77 ms->smp.threads, cpu_index);
78 if (x86mc->compat_apic_id_mode) {
79 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
80 error_report("APIC IDs set in compatibility mode, "
81 "CPU topology won't match the configuration");
82 warned = true;
83 }
84 return cpu_index;
85 } else {
86 return correct_id;
87 }
88 }
89
90
91 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
92 {
93 Object *cpu = NULL;
94 Error *local_err = NULL;
95 CPUX86State *env = NULL;
96
97 cpu = object_new(MACHINE(x86ms)->cpu_type);
98
99 env = &X86_CPU(cpu)->env;
100 env->nr_dies = x86ms->smp_dies;
101
102 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
103 object_property_set_bool(cpu, true, "realized", &local_err);
104
105 object_unref(cpu);
106 error_propagate(errp, local_err);
107 }
108
109 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
110 {
111 int i;
112 const CPUArchIdList *possible_cpus;
113 MachineState *ms = MACHINE(x86ms);
114 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
115
116 x86_cpu_set_default_version(default_cpu_version);
117
118 /*
119 * Calculates the limit to CPU APIC ID values
120 *
121 * Limit for the APIC ID value, so that all
122 * CPU APIC IDs are < x86ms->apic_id_limit.
123 *
124 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
125 */
126 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
127 ms->smp.max_cpus - 1) + 1;
128 possible_cpus = mc->possible_cpu_arch_ids(ms);
129 for (i = 0; i < ms->smp.cpus; i++) {
130 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
131 }
132 }
133
134 CpuInstanceProperties
135 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
136 {
137 MachineClass *mc = MACHINE_GET_CLASS(ms);
138 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
139
140 assert(cpu_index < possible_cpus->len);
141 return possible_cpus->cpus[cpu_index].props;
142 }
143
144 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
145 {
146 X86CPUTopoInfo topo;
147 X86MachineState *x86ms = X86_MACHINE(ms);
148
149 assert(idx < ms->possible_cpus->len);
150 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
151 x86ms->smp_dies, ms->smp.cores,
152 ms->smp.threads, &topo);
153 return topo.pkg_id % ms->numa_state->num_nodes;
154 }
155
156 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
157 {
158 X86MachineState *x86ms = X86_MACHINE(ms);
159 int i;
160 unsigned int max_cpus = ms->smp.max_cpus;
161
162 if (ms->possible_cpus) {
163 /*
164 * make sure that max_cpus hasn't changed since the first use, i.e.
165 * -smp hasn't been parsed after it
166 */
167 assert(ms->possible_cpus->len == max_cpus);
168 return ms->possible_cpus;
169 }
170
171 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
172 sizeof(CPUArchId) * max_cpus);
173 ms->possible_cpus->len = max_cpus;
174 for (i = 0; i < ms->possible_cpus->len; i++) {
175 X86CPUTopoInfo topo;
176
177 ms->possible_cpus->cpus[i].type = ms->cpu_type;
178 ms->possible_cpus->cpus[i].vcpus_count = 1;
179 ms->possible_cpus->cpus[i].arch_id =
180 x86_cpu_apic_id_from_index(x86ms, i);
181 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
182 x86ms->smp_dies, ms->smp.cores,
183 ms->smp.threads, &topo);
184 ms->possible_cpus->cpus[i].props.has_socket_id = true;
185 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
186 if (x86ms->smp_dies > 1) {
187 ms->possible_cpus->cpus[i].props.has_die_id = true;
188 ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
189 }
190 ms->possible_cpus->cpus[i].props.has_core_id = true;
191 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
192 ms->possible_cpus->cpus[i].props.has_thread_id = true;
193 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
194 }
195 return ms->possible_cpus;
196 }
197
198 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
199 {
200 /* cpu index isn't used */
201 CPUState *cs;
202
203 CPU_FOREACH(cs) {
204 X86CPU *cpu = X86_CPU(cs);
205
206 if (!cpu->apic_state) {
207 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
208 } else {
209 apic_deliver_nmi(cpu->apic_state);
210 }
211 }
212 }
213
214 static long get_file_size(FILE *f)
215 {
216 long where, size;
217
218 /* XXX: on Unix systems, using fstat() probably makes more sense */
219
220 where = ftell(f);
221 fseek(f, 0, SEEK_END);
222 size = ftell(f);
223 fseek(f, where, SEEK_SET);
224
225 return size;
226 }
227
228 /* TSC handling */
229 uint64_t cpu_get_tsc(CPUX86State *env)
230 {
231 return cpu_get_ticks();
232 }
233
234 /* IRQ handling */
235 static void pic_irq_request(void *opaque, int irq, int level)
236 {
237 CPUState *cs = first_cpu;
238 X86CPU *cpu = X86_CPU(cs);
239
240 trace_x86_pic_interrupt(irq, level);
241 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
242 CPU_FOREACH(cs) {
243 cpu = X86_CPU(cs);
244 if (apic_accept_pic_intr(cpu->apic_state)) {
245 apic_deliver_pic_intr(cpu->apic_state, level);
246 }
247 }
248 } else {
249 if (level) {
250 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
251 } else {
252 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
253 }
254 }
255 }
256
257 qemu_irq x86_allocate_cpu_irq(void)
258 {
259 return qemu_allocate_irq(pic_irq_request, NULL, 0);
260 }
261
262 int cpu_get_pic_interrupt(CPUX86State *env)
263 {
264 X86CPU *cpu = env_archcpu(env);
265 int intno;
266
267 if (!kvm_irqchip_in_kernel()) {
268 intno = apic_get_interrupt(cpu->apic_state);
269 if (intno >= 0) {
270 return intno;
271 }
272 /* read the irq from the PIC */
273 if (!apic_accept_pic_intr(cpu->apic_state)) {
274 return -1;
275 }
276 }
277
278 intno = pic_read_irq(isa_pic);
279 return intno;
280 }
281
282 DeviceState *cpu_get_current_apic(void)
283 {
284 if (current_cpu) {
285 X86CPU *cpu = X86_CPU(current_cpu);
286 return cpu->apic_state;
287 } else {
288 return NULL;
289 }
290 }
291
292 void gsi_handler(void *opaque, int n, int level)
293 {
294 GSIState *s = opaque;
295
296 trace_x86_gsi_interrupt(n, level);
297 if (n < ISA_NUM_IRQS) {
298 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
299 qemu_set_irq(s->i8259_irq[n], level);
300 }
301 qemu_set_irq(s->ioapic_irq[n], level);
302 }
303
304 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
305 {
306 DeviceState *dev;
307 SysBusDevice *d;
308 unsigned int i;
309
310 assert(parent_name);
311 if (kvm_ioapic_in_kernel()) {
312 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
313 } else {
314 dev = qdev_create(NULL, TYPE_IOAPIC);
315 }
316 object_property_add_child(object_resolve_path(parent_name, NULL),
317 "ioapic", OBJECT(dev), NULL);
318 qdev_init_nofail(dev);
319 d = SYS_BUS_DEVICE(dev);
320 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
321
322 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
323 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
324 }
325 }
326
327 struct setup_data {
328 uint64_t next;
329 uint32_t type;
330 uint32_t len;
331 uint8_t data[0];
332 } __attribute__((packed));
333
334
335 /*
336 * The entry point into the kernel for PVH boot is different from
337 * the native entry point. The PVH entry is defined by the x86/HVM
338 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
339 *
340 * This function is passed to load_elf() when it is called from
341 * load_elfboot() which then additionally checks for an ELF Note of
342 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
343 * parse the PVH entry address from the ELF Note.
344 *
345 * Due to trickery in elf_opts.h, load_elf() is actually available as
346 * load_elf32() or load_elf64() and this routine needs to be able
347 * to deal with being called as 32 or 64 bit.
348 *
349 * The address of the PVH entry point is saved to the 'pvh_start_addr'
350 * global variable. (although the entry point is 32-bit, the kernel
351 * binary can be either 32-bit or 64-bit).
352 */
353 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
354 {
355 size_t *elf_note_data_addr;
356
357 /* Check if ELF Note header passed in is valid */
358 if (arg1 == NULL) {
359 return 0;
360 }
361
362 if (is64) {
363 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
364 uint64_t nhdr_size64 = sizeof(struct elf64_note);
365 uint64_t phdr_align = *(uint64_t *)arg2;
366 uint64_t nhdr_namesz = nhdr64->n_namesz;
367
368 elf_note_data_addr =
369 ((void *)nhdr64) + nhdr_size64 +
370 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
371 } else {
372 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
373 uint32_t nhdr_size32 = sizeof(struct elf32_note);
374 uint32_t phdr_align = *(uint32_t *)arg2;
375 uint32_t nhdr_namesz = nhdr32->n_namesz;
376
377 elf_note_data_addr =
378 ((void *)nhdr32) + nhdr_size32 +
379 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
380 }
381
382 pvh_start_addr = *elf_note_data_addr;
383
384 return pvh_start_addr;
385 }
386
387 static bool load_elfboot(const char *kernel_filename,
388 int kernel_file_size,
389 uint8_t *header,
390 size_t pvh_xen_start_addr,
391 FWCfgState *fw_cfg)
392 {
393 uint32_t flags = 0;
394 uint32_t mh_load_addr = 0;
395 uint32_t elf_kernel_size = 0;
396 uint64_t elf_entry;
397 uint64_t elf_low, elf_high;
398 int kernel_size;
399
400 if (ldl_p(header) != 0x464c457f) {
401 return false; /* no elfboot */
402 }
403
404 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
405 flags = elf_is64 ?
406 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
407
408 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
409 error_report("elfboot unsupported flags = %x", flags);
410 exit(1);
411 }
412
413 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
414 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
415 NULL, &elf_note_type, &elf_entry,
416 &elf_low, &elf_high, 0, I386_ELF_MACHINE,
417 0, 0);
418
419 if (kernel_size < 0) {
420 error_report("Error while loading elf kernel");
421 exit(1);
422 }
423 mh_load_addr = elf_low;
424 elf_kernel_size = elf_high - elf_low;
425
426 if (pvh_start_addr == 0) {
427 error_report("Error loading uncompressed kernel without PVH ELF Note");
428 exit(1);
429 }
430 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
431 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
432 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
433
434 return true;
435 }
436
437 void x86_load_linux(X86MachineState *x86ms,
438 FWCfgState *fw_cfg,
439 int acpi_data_size,
440 bool pvh_enabled,
441 bool linuxboot_dma_enabled)
442 {
443 uint16_t protocol;
444 int setup_size, kernel_size, cmdline_size;
445 int dtb_size, setup_data_offset;
446 uint32_t initrd_max;
447 uint8_t header[8192], *setup, *kernel;
448 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
449 FILE *f;
450 char *vmode;
451 MachineState *machine = MACHINE(x86ms);
452 struct setup_data *setup_data;
453 const char *kernel_filename = machine->kernel_filename;
454 const char *initrd_filename = machine->initrd_filename;
455 const char *dtb_filename = machine->dtb;
456 const char *kernel_cmdline = machine->kernel_cmdline;
457
458 /* Align to 16 bytes as a paranoia measure */
459 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
460
461 /* load the kernel header */
462 f = fopen(kernel_filename, "rb");
463 if (!f) {
464 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
465 kernel_filename, strerror(errno));
466 exit(1);
467 }
468
469 kernel_size = get_file_size(f);
470 if (!kernel_size ||
471 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
472 MIN(ARRAY_SIZE(header), kernel_size)) {
473 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
474 kernel_filename, strerror(errno));
475 exit(1);
476 }
477
478 /* kernel protocol version */
479 if (ldl_p(header + 0x202) == 0x53726448) {
480 protocol = lduw_p(header + 0x206);
481 } else {
482 /*
483 * This could be a multiboot kernel. If it is, let's stop treating it
484 * like a Linux kernel.
485 * Note: some multiboot images could be in the ELF format (the same of
486 * PVH), so we try multiboot first since we check the multiboot magic
487 * header before to load it.
488 */
489 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
490 kernel_cmdline, kernel_size, header)) {
491 return;
492 }
493 /*
494 * Check if the file is an uncompressed kernel file (ELF) and load it,
495 * saving the PVH entry point used by the x86/HVM direct boot ABI.
496 * If load_elfboot() is successful, populate the fw_cfg info.
497 */
498 if (pvh_enabled &&
499 load_elfboot(kernel_filename, kernel_size,
500 header, pvh_start_addr, fw_cfg)) {
501 fclose(f);
502
503 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
504 strlen(kernel_cmdline) + 1);
505 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
506
507 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
508 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
509 header, sizeof(header));
510
511 /* load initrd */
512 if (initrd_filename) {
513 GMappedFile *mapped_file;
514 gsize initrd_size;
515 gchar *initrd_data;
516 GError *gerr = NULL;
517
518 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
519 if (!mapped_file) {
520 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
521 initrd_filename, gerr->message);
522 exit(1);
523 }
524 x86ms->initrd_mapped_file = mapped_file;
525
526 initrd_data = g_mapped_file_get_contents(mapped_file);
527 initrd_size = g_mapped_file_get_length(mapped_file);
528 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
529 if (initrd_size >= initrd_max) {
530 fprintf(stderr, "qemu: initrd is too large, cannot support."
531 "(max: %"PRIu32", need %"PRId64")\n",
532 initrd_max, (uint64_t)initrd_size);
533 exit(1);
534 }
535
536 initrd_addr = (initrd_max - initrd_size) & ~4095;
537
538 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
539 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
540 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
541 initrd_size);
542 }
543
544 option_rom[nb_option_roms].bootindex = 0;
545 option_rom[nb_option_roms].name = "pvh.bin";
546 nb_option_roms++;
547
548 return;
549 }
550 protocol = 0;
551 }
552
553 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
554 /* Low kernel */
555 real_addr = 0x90000;
556 cmdline_addr = 0x9a000 - cmdline_size;
557 prot_addr = 0x10000;
558 } else if (protocol < 0x202) {
559 /* High but ancient kernel */
560 real_addr = 0x90000;
561 cmdline_addr = 0x9a000 - cmdline_size;
562 prot_addr = 0x100000;
563 } else {
564 /* High and recent kernel */
565 real_addr = 0x10000;
566 cmdline_addr = 0x20000;
567 prot_addr = 0x100000;
568 }
569
570 /* highest address for loading the initrd */
571 if (protocol >= 0x20c &&
572 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
573 /*
574 * Linux has supported initrd up to 4 GB for a very long time (2007,
575 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
576 * though it only sets initrd_max to 2 GB to "work around bootloader
577 * bugs". Luckily, QEMU firmware(which does something like bootloader)
578 * has supported this.
579 *
580 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
581 * be loaded into any address.
582 *
583 * In addition, initrd_max is uint32_t simply because QEMU doesn't
584 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
585 * field).
586 *
587 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
588 */
589 initrd_max = UINT32_MAX;
590 } else if (protocol >= 0x203) {
591 initrd_max = ldl_p(header + 0x22c);
592 } else {
593 initrd_max = 0x37ffffff;
594 }
595
596 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
597 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
598 }
599
600 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
601 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
602 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
603
604 if (protocol >= 0x202) {
605 stl_p(header + 0x228, cmdline_addr);
606 } else {
607 stw_p(header + 0x20, 0xA33F);
608 stw_p(header + 0x22, cmdline_addr - real_addr);
609 }
610
611 /* handle vga= parameter */
612 vmode = strstr(kernel_cmdline, "vga=");
613 if (vmode) {
614 unsigned int video_mode;
615 int ret;
616 /* skip "vga=" */
617 vmode += 4;
618 if (!strncmp(vmode, "normal", 6)) {
619 video_mode = 0xffff;
620 } else if (!strncmp(vmode, "ext", 3)) {
621 video_mode = 0xfffe;
622 } else if (!strncmp(vmode, "ask", 3)) {
623 video_mode = 0xfffd;
624 } else {
625 ret = qemu_strtoui(vmode, NULL, 0, &video_mode);
626 if (ret != 0) {
627 fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n",
628 strerror(-ret));
629 exit(1);
630 }
631 }
632 stw_p(header + 0x1fa, video_mode);
633 }
634
635 /* loader type */
636 /*
637 * High nybble = B reserved for QEMU; low nybble is revision number.
638 * If this code is substantially changed, you may want to consider
639 * incrementing the revision.
640 */
641 if (protocol >= 0x200) {
642 header[0x210] = 0xB0;
643 }
644 /* heap */
645 if (protocol >= 0x201) {
646 header[0x211] |= 0x80; /* CAN_USE_HEAP */
647 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
648 }
649
650 /* load initrd */
651 if (initrd_filename) {
652 GMappedFile *mapped_file;
653 gsize initrd_size;
654 gchar *initrd_data;
655 GError *gerr = NULL;
656
657 if (protocol < 0x200) {
658 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
659 exit(1);
660 }
661
662 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
663 if (!mapped_file) {
664 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
665 initrd_filename, gerr->message);
666 exit(1);
667 }
668 x86ms->initrd_mapped_file = mapped_file;
669
670 initrd_data = g_mapped_file_get_contents(mapped_file);
671 initrd_size = g_mapped_file_get_length(mapped_file);
672 if (initrd_size >= initrd_max) {
673 fprintf(stderr, "qemu: initrd is too large, cannot support."
674 "(max: %"PRIu32", need %"PRId64")\n",
675 initrd_max, (uint64_t)initrd_size);
676 exit(1);
677 }
678
679 initrd_addr = (initrd_max - initrd_size) & ~4095;
680
681 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
682 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
683 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
684
685 stl_p(header + 0x218, initrd_addr);
686 stl_p(header + 0x21c, initrd_size);
687 }
688
689 /* load kernel and setup */
690 setup_size = header[0x1f1];
691 if (setup_size == 0) {
692 setup_size = 4;
693 }
694 setup_size = (setup_size + 1) * 512;
695 if (setup_size > kernel_size) {
696 fprintf(stderr, "qemu: invalid kernel header\n");
697 exit(1);
698 }
699 kernel_size -= setup_size;
700
701 setup = g_malloc(setup_size);
702 kernel = g_malloc(kernel_size);
703 fseek(f, 0, SEEK_SET);
704 if (fread(setup, 1, setup_size, f) != setup_size) {
705 fprintf(stderr, "fread() failed\n");
706 exit(1);
707 }
708 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
709 fprintf(stderr, "fread() failed\n");
710 exit(1);
711 }
712 fclose(f);
713
714 /* append dtb to kernel */
715 if (dtb_filename) {
716 if (protocol < 0x209) {
717 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
718 exit(1);
719 }
720
721 dtb_size = get_image_size(dtb_filename);
722 if (dtb_size <= 0) {
723 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
724 dtb_filename, strerror(errno));
725 exit(1);
726 }
727
728 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
729 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
730 kernel = g_realloc(kernel, kernel_size);
731
732 stq_p(header + 0x250, prot_addr + setup_data_offset);
733
734 setup_data = (struct setup_data *)(kernel + setup_data_offset);
735 setup_data->next = 0;
736 setup_data->type = cpu_to_le32(SETUP_DTB);
737 setup_data->len = cpu_to_le32(dtb_size);
738
739 load_image_size(dtb_filename, setup_data->data, dtb_size);
740 }
741
742 memcpy(setup, header, MIN(sizeof(header), setup_size));
743
744 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
745 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
746 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
747
748 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
749 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
750 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
751
752 option_rom[nb_option_roms].bootindex = 0;
753 option_rom[nb_option_roms].name = "linuxboot.bin";
754 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
755 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
756 }
757 nb_option_roms++;
758 }
759
760 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
761 {
762 char *filename;
763 MemoryRegion *bios, *isa_bios;
764 int bios_size, isa_bios_size;
765 int ret;
766
767 /* BIOS load */
768 if (bios_name == NULL) {
769 bios_name = BIOS_FILENAME;
770 }
771 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
772 if (filename) {
773 bios_size = get_image_size(filename);
774 } else {
775 bios_size = -1;
776 }
777 if (bios_size <= 0 ||
778 (bios_size % 65536) != 0) {
779 goto bios_error;
780 }
781 bios = g_malloc(sizeof(*bios));
782 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
783 if (!isapc_ram_fw) {
784 memory_region_set_readonly(bios, true);
785 }
786 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
787 if (ret != 0) {
788 bios_error:
789 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
790 exit(1);
791 }
792 g_free(filename);
793
794 /* map the last 128KB of the BIOS in ISA space */
795 isa_bios_size = MIN(bios_size, 128 * KiB);
796 isa_bios = g_malloc(sizeof(*isa_bios));
797 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
798 bios_size - isa_bios_size, isa_bios_size);
799 memory_region_add_subregion_overlap(rom_memory,
800 0x100000 - isa_bios_size,
801 isa_bios,
802 1);
803 if (!isapc_ram_fw) {
804 memory_region_set_readonly(isa_bios, true);
805 }
806
807 /* map all the bios at the top of memory */
808 memory_region_add_subregion(rom_memory,
809 (uint32_t)(-bios_size),
810 bios);
811 }
812
813 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
814 const char *name, void *opaque,
815 Error **errp)
816 {
817 X86MachineState *x86ms = X86_MACHINE(obj);
818 uint64_t value = x86ms->max_ram_below_4g;
819
820 visit_type_size(v, name, &value, errp);
821 }
822
823 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
824 const char *name, void *opaque,
825 Error **errp)
826 {
827 X86MachineState *x86ms = X86_MACHINE(obj);
828 Error *error = NULL;
829 uint64_t value;
830
831 visit_type_size(v, name, &value, &error);
832 if (error) {
833 error_propagate(errp, error);
834 return;
835 }
836 if (value > 4 * GiB) {
837 error_setg(&error,
838 "Machine option 'max-ram-below-4g=%"PRIu64
839 "' expects size less than or equal to 4G", value);
840 error_propagate(errp, error);
841 return;
842 }
843
844 if (value < 1 * MiB) {
845 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
846 "BIOS may not work with less than 1MiB", value);
847 }
848
849 x86ms->max_ram_below_4g = value;
850 }
851
852 bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
853 {
854 bool smm_available = false;
855
856 if (x86ms->smm == ON_OFF_AUTO_OFF) {
857 return false;
858 }
859
860 if (tcg_enabled() || qtest_enabled()) {
861 smm_available = true;
862 } else if (kvm_enabled()) {
863 smm_available = kvm_has_smm();
864 }
865
866 if (smm_available) {
867 return true;
868 }
869
870 if (x86ms->smm == ON_OFF_AUTO_ON) {
871 error_report("System Management Mode not supported by this hypervisor.");
872 exit(1);
873 }
874 return false;
875 }
876
877 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
878 void *opaque, Error **errp)
879 {
880 X86MachineState *x86ms = X86_MACHINE(obj);
881 OnOffAuto smm = x86ms->smm;
882
883 visit_type_OnOffAuto(v, name, &smm, errp);
884 }
885
886 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
887 void *opaque, Error **errp)
888 {
889 X86MachineState *x86ms = X86_MACHINE(obj);
890
891 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
892 }
893
894 static void x86_machine_initfn(Object *obj)
895 {
896 X86MachineState *x86ms = X86_MACHINE(obj);
897
898 x86ms->smm = ON_OFF_AUTO_AUTO;
899 x86ms->max_ram_below_4g = 0; /* use default */
900 x86ms->smp_dies = 1;
901 }
902
903 static void x86_machine_class_init(ObjectClass *oc, void *data)
904 {
905 MachineClass *mc = MACHINE_CLASS(oc);
906 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
907 NMIClass *nc = NMI_CLASS(oc);
908
909 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
910 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
911 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
912 x86mc->compat_apic_id_mode = false;
913 x86mc->save_tsc_khz = true;
914 nc->nmi_monitor_handler = x86_nmi;
915
916 object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size",
917 x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g,
918 NULL, NULL, &error_abort);
919 object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G,
920 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
921
922 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
923 x86_machine_get_smm, x86_machine_set_smm,
924 NULL, NULL, &error_abort);
925 object_class_property_set_description(oc, X86_MACHINE_SMM,
926 "Enable SMM", &error_abort);
927 }
928
929 static const TypeInfo x86_machine_info = {
930 .name = TYPE_X86_MACHINE,
931 .parent = TYPE_MACHINE,
932 .abstract = true,
933 .instance_size = sizeof(X86MachineState),
934 .instance_init = x86_machine_initfn,
935 .class_size = sizeof(X86MachineClass),
936 .class_init = x86_machine_class_init,
937 .interfaces = (InterfaceInfo[]) {
938 { TYPE_NMI },
939 { }
940 },
941 };
942
943 static void x86_machine_register_types(void)
944 {
945 type_register_static(&x86_machine_info);
946 }
947
948 type_init(x86_machine_register_types)