]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/x86.c
Merge remote-tracking branch 'remotes/maxreitz/tags/pull-block-2019-10-28' into staging
[mirror_qemu.git] / hw / i386 / x86.c
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
22 */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37
38 #include "hw/i386/x86.h"
39 #include "target/i386/cpu.h"
40 #include "hw/i386/topology.h"
41 #include "hw/i386/fw_cfg.h"
42
43 #include "hw/acpi/cpu_hotplug.h"
44 #include "hw/nmi.h"
45 #include "hw/loader.h"
46 #include "multiboot.h"
47 #include "elf.h"
48 #include "standard-headers/asm-x86/bootparam.h"
49
50 #define BIOS_FILENAME "bios.bin"
51
52 /* Physical Address of PVH entry point read from kernel ELF NOTE */
53 static size_t pvh_start_addr;
54
55 /*
56 * Calculates initial APIC ID for a specific CPU index
57 *
58 * Currently we need to be able to calculate the APIC ID from the CPU index
59 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
60 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
61 * all CPUs up to max_cpus.
62 */
63 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
64 unsigned int cpu_index)
65 {
66 MachineState *ms = MACHINE(x86ms);
67 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
68 uint32_t correct_id;
69 static bool warned;
70
71 correct_id = x86_apicid_from_cpu_idx(x86ms->smp_dies, ms->smp.cores,
72 ms->smp.threads, cpu_index);
73 if (x86mc->compat_apic_id_mode) {
74 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
75 error_report("APIC IDs set in compatibility mode, "
76 "CPU topology won't match the configuration");
77 warned = true;
78 }
79 return cpu_index;
80 } else {
81 return correct_id;
82 }
83 }
84
85
86 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
87 {
88 Object *cpu = NULL;
89 Error *local_err = NULL;
90 CPUX86State *env = NULL;
91
92 cpu = object_new(MACHINE(x86ms)->cpu_type);
93
94 env = &X86_CPU(cpu)->env;
95 env->nr_dies = x86ms->smp_dies;
96
97 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
98 object_property_set_bool(cpu, true, "realized", &local_err);
99
100 object_unref(cpu);
101 error_propagate(errp, local_err);
102 }
103
104 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
105 {
106 int i;
107 const CPUArchIdList *possible_cpus;
108 MachineState *ms = MACHINE(x86ms);
109 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
110
111 x86_cpu_set_default_version(default_cpu_version);
112
113 /*
114 * Calculates the limit to CPU APIC ID values
115 *
116 * Limit for the APIC ID value, so that all
117 * CPU APIC IDs are < x86ms->apic_id_limit.
118 *
119 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
120 */
121 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
122 ms->smp.max_cpus - 1) + 1;
123 possible_cpus = mc->possible_cpu_arch_ids(ms);
124 for (i = 0; i < ms->smp.cpus; i++) {
125 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
126 }
127 }
128
129 CpuInstanceProperties
130 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
131 {
132 MachineClass *mc = MACHINE_GET_CLASS(ms);
133 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
134
135 assert(cpu_index < possible_cpus->len);
136 return possible_cpus->cpus[cpu_index].props;
137 }
138
139 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
140 {
141 X86CPUTopoInfo topo;
142 X86MachineState *x86ms = X86_MACHINE(ms);
143
144 assert(idx < ms->possible_cpus->len);
145 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
146 x86ms->smp_dies, ms->smp.cores,
147 ms->smp.threads, &topo);
148 return topo.pkg_id % ms->numa_state->num_nodes;
149 }
150
151 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
152 {
153 X86MachineState *x86ms = X86_MACHINE(ms);
154 int i;
155 unsigned int max_cpus = ms->smp.max_cpus;
156
157 if (ms->possible_cpus) {
158 /*
159 * make sure that max_cpus hasn't changed since the first use, i.e.
160 * -smp hasn't been parsed after it
161 */
162 assert(ms->possible_cpus->len == max_cpus);
163 return ms->possible_cpus;
164 }
165
166 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
167 sizeof(CPUArchId) * max_cpus);
168 ms->possible_cpus->len = max_cpus;
169 for (i = 0; i < ms->possible_cpus->len; i++) {
170 X86CPUTopoInfo topo;
171
172 ms->possible_cpus->cpus[i].type = ms->cpu_type;
173 ms->possible_cpus->cpus[i].vcpus_count = 1;
174 ms->possible_cpus->cpus[i].arch_id =
175 x86_cpu_apic_id_from_index(x86ms, i);
176 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
177 x86ms->smp_dies, ms->smp.cores,
178 ms->smp.threads, &topo);
179 ms->possible_cpus->cpus[i].props.has_socket_id = true;
180 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
181 if (x86ms->smp_dies > 1) {
182 ms->possible_cpus->cpus[i].props.has_die_id = true;
183 ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
184 }
185 ms->possible_cpus->cpus[i].props.has_core_id = true;
186 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
187 ms->possible_cpus->cpus[i].props.has_thread_id = true;
188 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
189 }
190 return ms->possible_cpus;
191 }
192
193 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
194 {
195 /* cpu index isn't used */
196 CPUState *cs;
197
198 CPU_FOREACH(cs) {
199 X86CPU *cpu = X86_CPU(cs);
200
201 if (!cpu->apic_state) {
202 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
203 } else {
204 apic_deliver_nmi(cpu->apic_state);
205 }
206 }
207 }
208
209 static long get_file_size(FILE *f)
210 {
211 long where, size;
212
213 /* XXX: on Unix systems, using fstat() probably makes more sense */
214
215 where = ftell(f);
216 fseek(f, 0, SEEK_END);
217 size = ftell(f);
218 fseek(f, where, SEEK_SET);
219
220 return size;
221 }
222
223 struct setup_data {
224 uint64_t next;
225 uint32_t type;
226 uint32_t len;
227 uint8_t data[0];
228 } __attribute__((packed));
229
230
231 /*
232 * The entry point into the kernel for PVH boot is different from
233 * the native entry point. The PVH entry is defined by the x86/HVM
234 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
235 *
236 * This function is passed to load_elf() when it is called from
237 * load_elfboot() which then additionally checks for an ELF Note of
238 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
239 * parse the PVH entry address from the ELF Note.
240 *
241 * Due to trickery in elf_opts.h, load_elf() is actually available as
242 * load_elf32() or load_elf64() and this routine needs to be able
243 * to deal with being called as 32 or 64 bit.
244 *
245 * The address of the PVH entry point is saved to the 'pvh_start_addr'
246 * global variable. (although the entry point is 32-bit, the kernel
247 * binary can be either 32-bit or 64-bit).
248 */
249 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
250 {
251 size_t *elf_note_data_addr;
252
253 /* Check if ELF Note header passed in is valid */
254 if (arg1 == NULL) {
255 return 0;
256 }
257
258 if (is64) {
259 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
260 uint64_t nhdr_size64 = sizeof(struct elf64_note);
261 uint64_t phdr_align = *(uint64_t *)arg2;
262 uint64_t nhdr_namesz = nhdr64->n_namesz;
263
264 elf_note_data_addr =
265 ((void *)nhdr64) + nhdr_size64 +
266 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
267 } else {
268 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
269 uint32_t nhdr_size32 = sizeof(struct elf32_note);
270 uint32_t phdr_align = *(uint32_t *)arg2;
271 uint32_t nhdr_namesz = nhdr32->n_namesz;
272
273 elf_note_data_addr =
274 ((void *)nhdr32) + nhdr_size32 +
275 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
276 }
277
278 pvh_start_addr = *elf_note_data_addr;
279
280 return pvh_start_addr;
281 }
282
283 static bool load_elfboot(const char *kernel_filename,
284 int kernel_file_size,
285 uint8_t *header,
286 size_t pvh_xen_start_addr,
287 FWCfgState *fw_cfg)
288 {
289 uint32_t flags = 0;
290 uint32_t mh_load_addr = 0;
291 uint32_t elf_kernel_size = 0;
292 uint64_t elf_entry;
293 uint64_t elf_low, elf_high;
294 int kernel_size;
295
296 if (ldl_p(header) != 0x464c457f) {
297 return false; /* no elfboot */
298 }
299
300 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
301 flags = elf_is64 ?
302 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
303
304 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
305 error_report("elfboot unsupported flags = %x", flags);
306 exit(1);
307 }
308
309 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
310 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
311 NULL, &elf_note_type, &elf_entry,
312 &elf_low, &elf_high, 0, I386_ELF_MACHINE,
313 0, 0);
314
315 if (kernel_size < 0) {
316 error_report("Error while loading elf kernel");
317 exit(1);
318 }
319 mh_load_addr = elf_low;
320 elf_kernel_size = elf_high - elf_low;
321
322 if (pvh_start_addr == 0) {
323 error_report("Error loading uncompressed kernel without PVH ELF Note");
324 exit(1);
325 }
326 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
327 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
328 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
329
330 return true;
331 }
332
333 void x86_load_linux(X86MachineState *x86ms,
334 FWCfgState *fw_cfg,
335 int acpi_data_size,
336 bool pvh_enabled,
337 bool linuxboot_dma_enabled)
338 {
339 uint16_t protocol;
340 int setup_size, kernel_size, cmdline_size;
341 int dtb_size, setup_data_offset;
342 uint32_t initrd_max;
343 uint8_t header[8192], *setup, *kernel;
344 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
345 FILE *f;
346 char *vmode;
347 MachineState *machine = MACHINE(x86ms);
348 struct setup_data *setup_data;
349 const char *kernel_filename = machine->kernel_filename;
350 const char *initrd_filename = machine->initrd_filename;
351 const char *dtb_filename = machine->dtb;
352 const char *kernel_cmdline = machine->kernel_cmdline;
353
354 /* Align to 16 bytes as a paranoia measure */
355 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
356
357 /* load the kernel header */
358 f = fopen(kernel_filename, "rb");
359 if (!f) {
360 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
361 kernel_filename, strerror(errno));
362 exit(1);
363 }
364
365 kernel_size = get_file_size(f);
366 if (!kernel_size ||
367 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
368 MIN(ARRAY_SIZE(header), kernel_size)) {
369 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
370 kernel_filename, strerror(errno));
371 exit(1);
372 }
373
374 /* kernel protocol version */
375 if (ldl_p(header + 0x202) == 0x53726448) {
376 protocol = lduw_p(header + 0x206);
377 } else {
378 /*
379 * This could be a multiboot kernel. If it is, let's stop treating it
380 * like a Linux kernel.
381 * Note: some multiboot images could be in the ELF format (the same of
382 * PVH), so we try multiboot first since we check the multiboot magic
383 * header before to load it.
384 */
385 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
386 kernel_cmdline, kernel_size, header)) {
387 return;
388 }
389 /*
390 * Check if the file is an uncompressed kernel file (ELF) and load it,
391 * saving the PVH entry point used by the x86/HVM direct boot ABI.
392 * If load_elfboot() is successful, populate the fw_cfg info.
393 */
394 if (pvh_enabled &&
395 load_elfboot(kernel_filename, kernel_size,
396 header, pvh_start_addr, fw_cfg)) {
397 fclose(f);
398
399 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
400 strlen(kernel_cmdline) + 1);
401 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
402
403 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
404 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
405 header, sizeof(header));
406
407 /* load initrd */
408 if (initrd_filename) {
409 GMappedFile *mapped_file;
410 gsize initrd_size;
411 gchar *initrd_data;
412 GError *gerr = NULL;
413
414 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
415 if (!mapped_file) {
416 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
417 initrd_filename, gerr->message);
418 exit(1);
419 }
420 x86ms->initrd_mapped_file = mapped_file;
421
422 initrd_data = g_mapped_file_get_contents(mapped_file);
423 initrd_size = g_mapped_file_get_length(mapped_file);
424 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
425 if (initrd_size >= initrd_max) {
426 fprintf(stderr, "qemu: initrd is too large, cannot support."
427 "(max: %"PRIu32", need %"PRId64")\n",
428 initrd_max, (uint64_t)initrd_size);
429 exit(1);
430 }
431
432 initrd_addr = (initrd_max - initrd_size) & ~4095;
433
434 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
435 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
436 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
437 initrd_size);
438 }
439
440 option_rom[nb_option_roms].bootindex = 0;
441 option_rom[nb_option_roms].name = "pvh.bin";
442 nb_option_roms++;
443
444 return;
445 }
446 protocol = 0;
447 }
448
449 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
450 /* Low kernel */
451 real_addr = 0x90000;
452 cmdline_addr = 0x9a000 - cmdline_size;
453 prot_addr = 0x10000;
454 } else if (protocol < 0x202) {
455 /* High but ancient kernel */
456 real_addr = 0x90000;
457 cmdline_addr = 0x9a000 - cmdline_size;
458 prot_addr = 0x100000;
459 } else {
460 /* High and recent kernel */
461 real_addr = 0x10000;
462 cmdline_addr = 0x20000;
463 prot_addr = 0x100000;
464 }
465
466 /* highest address for loading the initrd */
467 if (protocol >= 0x20c &&
468 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
469 /*
470 * Linux has supported initrd up to 4 GB for a very long time (2007,
471 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
472 * though it only sets initrd_max to 2 GB to "work around bootloader
473 * bugs". Luckily, QEMU firmware(which does something like bootloader)
474 * has supported this.
475 *
476 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
477 * be loaded into any address.
478 *
479 * In addition, initrd_max is uint32_t simply because QEMU doesn't
480 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
481 * field).
482 *
483 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
484 */
485 initrd_max = UINT32_MAX;
486 } else if (protocol >= 0x203) {
487 initrd_max = ldl_p(header + 0x22c);
488 } else {
489 initrd_max = 0x37ffffff;
490 }
491
492 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
493 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
494 }
495
496 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
497 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
498 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
499
500 if (protocol >= 0x202) {
501 stl_p(header + 0x228, cmdline_addr);
502 } else {
503 stw_p(header + 0x20, 0xA33F);
504 stw_p(header + 0x22, cmdline_addr - real_addr);
505 }
506
507 /* handle vga= parameter */
508 vmode = strstr(kernel_cmdline, "vga=");
509 if (vmode) {
510 unsigned int video_mode;
511 int ret;
512 /* skip "vga=" */
513 vmode += 4;
514 if (!strncmp(vmode, "normal", 6)) {
515 video_mode = 0xffff;
516 } else if (!strncmp(vmode, "ext", 3)) {
517 video_mode = 0xfffe;
518 } else if (!strncmp(vmode, "ask", 3)) {
519 video_mode = 0xfffd;
520 } else {
521 ret = qemu_strtoui(vmode, NULL, 0, &video_mode);
522 if (ret != 0) {
523 fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n",
524 strerror(-ret));
525 exit(1);
526 }
527 }
528 stw_p(header + 0x1fa, video_mode);
529 }
530
531 /* loader type */
532 /*
533 * High nybble = B reserved for QEMU; low nybble is revision number.
534 * If this code is substantially changed, you may want to consider
535 * incrementing the revision.
536 */
537 if (protocol >= 0x200) {
538 header[0x210] = 0xB0;
539 }
540 /* heap */
541 if (protocol >= 0x201) {
542 header[0x211] |= 0x80; /* CAN_USE_HEAP */
543 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
544 }
545
546 /* load initrd */
547 if (initrd_filename) {
548 GMappedFile *mapped_file;
549 gsize initrd_size;
550 gchar *initrd_data;
551 GError *gerr = NULL;
552
553 if (protocol < 0x200) {
554 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
555 exit(1);
556 }
557
558 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
559 if (!mapped_file) {
560 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
561 initrd_filename, gerr->message);
562 exit(1);
563 }
564 x86ms->initrd_mapped_file = mapped_file;
565
566 initrd_data = g_mapped_file_get_contents(mapped_file);
567 initrd_size = g_mapped_file_get_length(mapped_file);
568 if (initrd_size >= initrd_max) {
569 fprintf(stderr, "qemu: initrd is too large, cannot support."
570 "(max: %"PRIu32", need %"PRId64")\n",
571 initrd_max, (uint64_t)initrd_size);
572 exit(1);
573 }
574
575 initrd_addr = (initrd_max - initrd_size) & ~4095;
576
577 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
578 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
579 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
580
581 stl_p(header + 0x218, initrd_addr);
582 stl_p(header + 0x21c, initrd_size);
583 }
584
585 /* load kernel and setup */
586 setup_size = header[0x1f1];
587 if (setup_size == 0) {
588 setup_size = 4;
589 }
590 setup_size = (setup_size + 1) * 512;
591 if (setup_size > kernel_size) {
592 fprintf(stderr, "qemu: invalid kernel header\n");
593 exit(1);
594 }
595 kernel_size -= setup_size;
596
597 setup = g_malloc(setup_size);
598 kernel = g_malloc(kernel_size);
599 fseek(f, 0, SEEK_SET);
600 if (fread(setup, 1, setup_size, f) != setup_size) {
601 fprintf(stderr, "fread() failed\n");
602 exit(1);
603 }
604 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
605 fprintf(stderr, "fread() failed\n");
606 exit(1);
607 }
608 fclose(f);
609
610 /* append dtb to kernel */
611 if (dtb_filename) {
612 if (protocol < 0x209) {
613 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
614 exit(1);
615 }
616
617 dtb_size = get_image_size(dtb_filename);
618 if (dtb_size <= 0) {
619 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
620 dtb_filename, strerror(errno));
621 exit(1);
622 }
623
624 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
625 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
626 kernel = g_realloc(kernel, kernel_size);
627
628 stq_p(header + 0x250, prot_addr + setup_data_offset);
629
630 setup_data = (struct setup_data *)(kernel + setup_data_offset);
631 setup_data->next = 0;
632 setup_data->type = cpu_to_le32(SETUP_DTB);
633 setup_data->len = cpu_to_le32(dtb_size);
634
635 load_image_size(dtb_filename, setup_data->data, dtb_size);
636 }
637
638 memcpy(setup, header, MIN(sizeof(header), setup_size));
639
640 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
641 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
642 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
643
644 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
645 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
646 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
647
648 option_rom[nb_option_roms].bootindex = 0;
649 option_rom[nb_option_roms].name = "linuxboot.bin";
650 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
651 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
652 }
653 nb_option_roms++;
654 }
655
656 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
657 {
658 char *filename;
659 MemoryRegion *bios, *isa_bios;
660 int bios_size, isa_bios_size;
661 int ret;
662
663 /* BIOS load */
664 if (bios_name == NULL) {
665 bios_name = BIOS_FILENAME;
666 }
667 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
668 if (filename) {
669 bios_size = get_image_size(filename);
670 } else {
671 bios_size = -1;
672 }
673 if (bios_size <= 0 ||
674 (bios_size % 65536) != 0) {
675 goto bios_error;
676 }
677 bios = g_malloc(sizeof(*bios));
678 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
679 if (!isapc_ram_fw) {
680 memory_region_set_readonly(bios, true);
681 }
682 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
683 if (ret != 0) {
684 bios_error:
685 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
686 exit(1);
687 }
688 g_free(filename);
689
690 /* map the last 128KB of the BIOS in ISA space */
691 isa_bios_size = MIN(bios_size, 128 * KiB);
692 isa_bios = g_malloc(sizeof(*isa_bios));
693 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
694 bios_size - isa_bios_size, isa_bios_size);
695 memory_region_add_subregion_overlap(rom_memory,
696 0x100000 - isa_bios_size,
697 isa_bios,
698 1);
699 if (!isapc_ram_fw) {
700 memory_region_set_readonly(isa_bios, true);
701 }
702
703 /* map all the bios at the top of memory */
704 memory_region_add_subregion(rom_memory,
705 (uint32_t)(-bios_size),
706 bios);
707 }
708
709 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
710 const char *name, void *opaque,
711 Error **errp)
712 {
713 X86MachineState *x86ms = X86_MACHINE(obj);
714 uint64_t value = x86ms->max_ram_below_4g;
715
716 visit_type_size(v, name, &value, errp);
717 }
718
719 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
720 const char *name, void *opaque,
721 Error **errp)
722 {
723 X86MachineState *x86ms = X86_MACHINE(obj);
724 Error *error = NULL;
725 uint64_t value;
726
727 visit_type_size(v, name, &value, &error);
728 if (error) {
729 error_propagate(errp, error);
730 return;
731 }
732 if (value > 4 * GiB) {
733 error_setg(&error,
734 "Machine option 'max-ram-below-4g=%"PRIu64
735 "' expects size less than or equal to 4G", value);
736 error_propagate(errp, error);
737 return;
738 }
739
740 if (value < 1 * MiB) {
741 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
742 "BIOS may not work with less than 1MiB", value);
743 }
744
745 x86ms->max_ram_below_4g = value;
746 }
747
748 static void x86_machine_initfn(Object *obj)
749 {
750 X86MachineState *x86ms = X86_MACHINE(obj);
751
752 x86ms->max_ram_below_4g = 0; /* use default */
753 x86ms->smp_dies = 1;
754 }
755
756 static void x86_machine_class_init(ObjectClass *oc, void *data)
757 {
758 MachineClass *mc = MACHINE_CLASS(oc);
759 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
760 NMIClass *nc = NMI_CLASS(oc);
761
762 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
763 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
764 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
765 x86mc->compat_apic_id_mode = false;
766 nc->nmi_monitor_handler = x86_nmi;
767
768 object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size",
769 x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g,
770 NULL, NULL, &error_abort);
771
772 object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G,
773 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
774 }
775
776 static const TypeInfo x86_machine_info = {
777 .name = TYPE_X86_MACHINE,
778 .parent = TYPE_MACHINE,
779 .abstract = true,
780 .instance_size = sizeof(X86MachineState),
781 .instance_init = x86_machine_initfn,
782 .class_size = sizeof(X86MachineClass),
783 .class_init = x86_machine_class_init,
784 .interfaces = (InterfaceInfo[]) {
785 { TYPE_NMI },
786 { }
787 },
788 };
789
790 static void x86_machine_register_types(void)
791 {
792 type_register_static(&x86_machine_info);
793 }
794
795 type_init(x86_machine_register_types)