]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/x86.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / hw / i386 / x86.c
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
22 */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "trace.h"
38
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
44
45 #include "hw/acpi/cpu_hotplug.h"
46 #include "hw/irq.h"
47 #include "hw/nmi.h"
48 #include "hw/loader.h"
49 #include "multiboot.h"
50 #include "elf.h"
51 #include "standard-headers/asm-x86/bootparam.h"
52 #include "config-devices.h"
53 #include "kvm_i386.h"
54
55 #define BIOS_FILENAME "bios.bin"
56
57 /* Physical Address of PVH entry point read from kernel ELF NOTE */
58 static size_t pvh_start_addr;
59
60 inline void init_topo_info(X86CPUTopoInfo *topo_info,
61 const X86MachineState *x86ms)
62 {
63 MachineState *ms = MACHINE(x86ms);
64
65 topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets;
66 topo_info->dies_per_pkg = x86ms->smp_dies;
67 topo_info->cores_per_die = ms->smp.cores;
68 topo_info->threads_per_core = ms->smp.threads;
69 }
70
71 /*
72 * Set up with the new EPYC topology handlers
73 *
74 * AMD uses different apic id encoding for EPYC based cpus. Override
75 * the default topo handlers with EPYC encoding handlers.
76 */
77 static void x86_set_epyc_topo_handlers(MachineState *machine)
78 {
79 X86MachineState *x86ms = X86_MACHINE(machine);
80
81 x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx_epyc;
82 x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid_epyc;
83 x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids_epyc;
84 x86ms->apicid_pkg_offset = apicid_pkg_offset_epyc;
85 }
86
87 /*
88 * Calculates initial APIC ID for a specific CPU index
89 *
90 * Currently we need to be able to calculate the APIC ID from the CPU index
91 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
92 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
93 * all CPUs up to max_cpus.
94 */
95 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
96 unsigned int cpu_index)
97 {
98 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
99 X86CPUTopoInfo topo_info;
100 uint32_t correct_id;
101 static bool warned;
102
103 init_topo_info(&topo_info, x86ms);
104
105 correct_id = x86ms->apicid_from_cpu_idx(&topo_info, cpu_index);
106 if (x86mc->compat_apic_id_mode) {
107 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
108 error_report("APIC IDs set in compatibility mode, "
109 "CPU topology won't match the configuration");
110 warned = true;
111 }
112 return cpu_index;
113 } else {
114 return correct_id;
115 }
116 }
117
118
119 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
120 {
121 Error *local_err = NULL;
122 Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
123
124 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
125 if (local_err) {
126 goto out;
127 }
128 qdev_realize(DEVICE(cpu), NULL, &local_err);
129
130 out:
131 object_unref(cpu);
132 error_propagate(errp, local_err);
133 }
134
135 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
136 {
137 int i;
138 const CPUArchIdList *possible_cpus;
139 MachineState *ms = MACHINE(x86ms);
140 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
141
142 /* Check for apicid encoding */
143 if (cpu_x86_use_epyc_apic_id_encoding(ms->cpu_type)) {
144 x86_set_epyc_topo_handlers(ms);
145 }
146
147 x86_cpu_set_default_version(default_cpu_version);
148
149 /*
150 * Calculates the limit to CPU APIC ID values
151 *
152 * Limit for the APIC ID value, so that all
153 * CPU APIC IDs are < x86ms->apic_id_limit.
154 *
155 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
156 */
157 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
158 ms->smp.max_cpus - 1) + 1;
159 possible_cpus = mc->possible_cpu_arch_ids(ms);
160
161 for (i = 0; i < ms->possible_cpus->len; i++) {
162 ms->possible_cpus->cpus[i].arch_id =
163 x86_cpu_apic_id_from_index(x86ms, i);
164 }
165
166 for (i = 0; i < ms->smp.cpus; i++) {
167 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
168 }
169 }
170
171 CpuInstanceProperties
172 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
173 {
174 MachineClass *mc = MACHINE_GET_CLASS(ms);
175 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
176
177 assert(cpu_index < possible_cpus->len);
178 return possible_cpus->cpus[cpu_index].props;
179 }
180
181 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
182 {
183 X86CPUTopoIDs topo_ids;
184 X86MachineState *x86ms = X86_MACHINE(ms);
185 X86CPUTopoInfo topo_info;
186
187 init_topo_info(&topo_info, x86ms);
188
189 assert(idx < ms->possible_cpus->len);
190 x86_topo_ids_from_idx(&topo_info, idx, &topo_ids);
191 return topo_ids.pkg_id % ms->numa_state->num_nodes;
192 }
193
194 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
195 {
196 X86MachineState *x86ms = X86_MACHINE(ms);
197 unsigned int max_cpus = ms->smp.max_cpus;
198 X86CPUTopoInfo topo_info;
199 int i;
200
201 if (ms->possible_cpus) {
202 /*
203 * make sure that max_cpus hasn't changed since the first use, i.e.
204 * -smp hasn't been parsed after it
205 */
206 assert(ms->possible_cpus->len == max_cpus);
207 return ms->possible_cpus;
208 }
209
210 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
211 sizeof(CPUArchId) * max_cpus);
212 ms->possible_cpus->len = max_cpus;
213
214 init_topo_info(&topo_info, x86ms);
215
216 for (i = 0; i < ms->possible_cpus->len; i++) {
217 X86CPUTopoIDs topo_ids;
218
219 ms->possible_cpus->cpus[i].type = ms->cpu_type;
220 ms->possible_cpus->cpus[i].vcpus_count = 1;
221 x86_topo_ids_from_idx(&topo_info, i, &topo_ids);
222 ms->possible_cpus->cpus[i].props.has_socket_id = true;
223 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
224 if (x86ms->smp_dies > 1) {
225 ms->possible_cpus->cpus[i].props.has_die_id = true;
226 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
227 }
228 ms->possible_cpus->cpus[i].props.has_core_id = true;
229 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
230 ms->possible_cpus->cpus[i].props.has_thread_id = true;
231 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
232 }
233 return ms->possible_cpus;
234 }
235
236 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
237 {
238 /* cpu index isn't used */
239 CPUState *cs;
240
241 CPU_FOREACH(cs) {
242 X86CPU *cpu = X86_CPU(cs);
243
244 if (!cpu->apic_state) {
245 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
246 } else {
247 apic_deliver_nmi(cpu->apic_state);
248 }
249 }
250 }
251
252 static long get_file_size(FILE *f)
253 {
254 long where, size;
255
256 /* XXX: on Unix systems, using fstat() probably makes more sense */
257
258 where = ftell(f);
259 fseek(f, 0, SEEK_END);
260 size = ftell(f);
261 fseek(f, where, SEEK_SET);
262
263 return size;
264 }
265
266 /* TSC handling */
267 uint64_t cpu_get_tsc(CPUX86State *env)
268 {
269 return cpu_get_ticks();
270 }
271
272 /* IRQ handling */
273 static void pic_irq_request(void *opaque, int irq, int level)
274 {
275 CPUState *cs = first_cpu;
276 X86CPU *cpu = X86_CPU(cs);
277
278 trace_x86_pic_interrupt(irq, level);
279 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
280 CPU_FOREACH(cs) {
281 cpu = X86_CPU(cs);
282 if (apic_accept_pic_intr(cpu->apic_state)) {
283 apic_deliver_pic_intr(cpu->apic_state, level);
284 }
285 }
286 } else {
287 if (level) {
288 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
289 } else {
290 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
291 }
292 }
293 }
294
295 qemu_irq x86_allocate_cpu_irq(void)
296 {
297 return qemu_allocate_irq(pic_irq_request, NULL, 0);
298 }
299
300 int cpu_get_pic_interrupt(CPUX86State *env)
301 {
302 X86CPU *cpu = env_archcpu(env);
303 int intno;
304
305 if (!kvm_irqchip_in_kernel()) {
306 intno = apic_get_interrupt(cpu->apic_state);
307 if (intno >= 0) {
308 return intno;
309 }
310 /* read the irq from the PIC */
311 if (!apic_accept_pic_intr(cpu->apic_state)) {
312 return -1;
313 }
314 }
315
316 intno = pic_read_irq(isa_pic);
317 return intno;
318 }
319
320 DeviceState *cpu_get_current_apic(void)
321 {
322 if (current_cpu) {
323 X86CPU *cpu = X86_CPU(current_cpu);
324 return cpu->apic_state;
325 } else {
326 return NULL;
327 }
328 }
329
330 void gsi_handler(void *opaque, int n, int level)
331 {
332 GSIState *s = opaque;
333
334 trace_x86_gsi_interrupt(n, level);
335 if (n < ISA_NUM_IRQS) {
336 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
337 qemu_set_irq(s->i8259_irq[n], level);
338 }
339 qemu_set_irq(s->ioapic_irq[n], level);
340 }
341
342 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
343 {
344 DeviceState *dev;
345 SysBusDevice *d;
346 unsigned int i;
347
348 assert(parent_name);
349 if (kvm_ioapic_in_kernel()) {
350 dev = qdev_new(TYPE_KVM_IOAPIC);
351 } else {
352 dev = qdev_new(TYPE_IOAPIC);
353 }
354 object_property_add_child(object_resolve_path(parent_name, NULL),
355 "ioapic", OBJECT(dev));
356 d = SYS_BUS_DEVICE(dev);
357 sysbus_realize_and_unref(d, &error_fatal);
358 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
359
360 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
361 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
362 }
363 }
364
365 struct setup_data {
366 uint64_t next;
367 uint32_t type;
368 uint32_t len;
369 uint8_t data[];
370 } __attribute__((packed));
371
372
373 /*
374 * The entry point into the kernel for PVH boot is different from
375 * the native entry point. The PVH entry is defined by the x86/HVM
376 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
377 *
378 * This function is passed to load_elf() when it is called from
379 * load_elfboot() which then additionally checks for an ELF Note of
380 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
381 * parse the PVH entry address from the ELF Note.
382 *
383 * Due to trickery in elf_opts.h, load_elf() is actually available as
384 * load_elf32() or load_elf64() and this routine needs to be able
385 * to deal with being called as 32 or 64 bit.
386 *
387 * The address of the PVH entry point is saved to the 'pvh_start_addr'
388 * global variable. (although the entry point is 32-bit, the kernel
389 * binary can be either 32-bit or 64-bit).
390 */
391 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
392 {
393 size_t *elf_note_data_addr;
394
395 /* Check if ELF Note header passed in is valid */
396 if (arg1 == NULL) {
397 return 0;
398 }
399
400 if (is64) {
401 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
402 uint64_t nhdr_size64 = sizeof(struct elf64_note);
403 uint64_t phdr_align = *(uint64_t *)arg2;
404 uint64_t nhdr_namesz = nhdr64->n_namesz;
405
406 elf_note_data_addr =
407 ((void *)nhdr64) + nhdr_size64 +
408 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
409 } else {
410 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
411 uint32_t nhdr_size32 = sizeof(struct elf32_note);
412 uint32_t phdr_align = *(uint32_t *)arg2;
413 uint32_t nhdr_namesz = nhdr32->n_namesz;
414
415 elf_note_data_addr =
416 ((void *)nhdr32) + nhdr_size32 +
417 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
418 }
419
420 pvh_start_addr = *elf_note_data_addr;
421
422 return pvh_start_addr;
423 }
424
425 static bool load_elfboot(const char *kernel_filename,
426 int kernel_file_size,
427 uint8_t *header,
428 size_t pvh_xen_start_addr,
429 FWCfgState *fw_cfg)
430 {
431 uint32_t flags = 0;
432 uint32_t mh_load_addr = 0;
433 uint32_t elf_kernel_size = 0;
434 uint64_t elf_entry;
435 uint64_t elf_low, elf_high;
436 int kernel_size;
437
438 if (ldl_p(header) != 0x464c457f) {
439 return false; /* no elfboot */
440 }
441
442 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
443 flags = elf_is64 ?
444 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
445
446 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
447 error_report("elfboot unsupported flags = %x", flags);
448 exit(1);
449 }
450
451 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
452 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
453 NULL, &elf_note_type, &elf_entry,
454 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
455 0, 0);
456
457 if (kernel_size < 0) {
458 error_report("Error while loading elf kernel");
459 exit(1);
460 }
461 mh_load_addr = elf_low;
462 elf_kernel_size = elf_high - elf_low;
463
464 if (pvh_start_addr == 0) {
465 error_report("Error loading uncompressed kernel without PVH ELF Note");
466 exit(1);
467 }
468 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
469 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
470 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
471
472 return true;
473 }
474
475 void x86_load_linux(X86MachineState *x86ms,
476 FWCfgState *fw_cfg,
477 int acpi_data_size,
478 bool pvh_enabled,
479 bool linuxboot_dma_enabled)
480 {
481 uint16_t protocol;
482 int setup_size, kernel_size, cmdline_size;
483 int dtb_size, setup_data_offset;
484 uint32_t initrd_max;
485 uint8_t header[8192], *setup, *kernel;
486 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
487 FILE *f;
488 char *vmode;
489 MachineState *machine = MACHINE(x86ms);
490 struct setup_data *setup_data;
491 const char *kernel_filename = machine->kernel_filename;
492 const char *initrd_filename = machine->initrd_filename;
493 const char *dtb_filename = machine->dtb;
494 const char *kernel_cmdline = machine->kernel_cmdline;
495
496 /* Align to 16 bytes as a paranoia measure */
497 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
498
499 /* load the kernel header */
500 f = fopen(kernel_filename, "rb");
501 if (!f) {
502 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
503 kernel_filename, strerror(errno));
504 exit(1);
505 }
506
507 kernel_size = get_file_size(f);
508 if (!kernel_size ||
509 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
510 MIN(ARRAY_SIZE(header), kernel_size)) {
511 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
512 kernel_filename, strerror(errno));
513 exit(1);
514 }
515
516 /* kernel protocol version */
517 if (ldl_p(header + 0x202) == 0x53726448) {
518 protocol = lduw_p(header + 0x206);
519 } else {
520 /*
521 * This could be a multiboot kernel. If it is, let's stop treating it
522 * like a Linux kernel.
523 * Note: some multiboot images could be in the ELF format (the same of
524 * PVH), so we try multiboot first since we check the multiboot magic
525 * header before to load it.
526 */
527 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
528 kernel_cmdline, kernel_size, header)) {
529 return;
530 }
531 /*
532 * Check if the file is an uncompressed kernel file (ELF) and load it,
533 * saving the PVH entry point used by the x86/HVM direct boot ABI.
534 * If load_elfboot() is successful, populate the fw_cfg info.
535 */
536 if (pvh_enabled &&
537 load_elfboot(kernel_filename, kernel_size,
538 header, pvh_start_addr, fw_cfg)) {
539 fclose(f);
540
541 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
542 strlen(kernel_cmdline) + 1);
543 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
544
545 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
546 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
547 header, sizeof(header));
548
549 /* load initrd */
550 if (initrd_filename) {
551 GMappedFile *mapped_file;
552 gsize initrd_size;
553 gchar *initrd_data;
554 GError *gerr = NULL;
555
556 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
557 if (!mapped_file) {
558 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
559 initrd_filename, gerr->message);
560 exit(1);
561 }
562 x86ms->initrd_mapped_file = mapped_file;
563
564 initrd_data = g_mapped_file_get_contents(mapped_file);
565 initrd_size = g_mapped_file_get_length(mapped_file);
566 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
567 if (initrd_size >= initrd_max) {
568 fprintf(stderr, "qemu: initrd is too large, cannot support."
569 "(max: %"PRIu32", need %"PRId64")\n",
570 initrd_max, (uint64_t)initrd_size);
571 exit(1);
572 }
573
574 initrd_addr = (initrd_max - initrd_size) & ~4095;
575
576 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
577 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
578 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
579 initrd_size);
580 }
581
582 option_rom[nb_option_roms].bootindex = 0;
583 option_rom[nb_option_roms].name = "pvh.bin";
584 nb_option_roms++;
585
586 return;
587 }
588 protocol = 0;
589 }
590
591 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
592 /* Low kernel */
593 real_addr = 0x90000;
594 cmdline_addr = 0x9a000 - cmdline_size;
595 prot_addr = 0x10000;
596 } else if (protocol < 0x202) {
597 /* High but ancient kernel */
598 real_addr = 0x90000;
599 cmdline_addr = 0x9a000 - cmdline_size;
600 prot_addr = 0x100000;
601 } else {
602 /* High and recent kernel */
603 real_addr = 0x10000;
604 cmdline_addr = 0x20000;
605 prot_addr = 0x100000;
606 }
607
608 /* highest address for loading the initrd */
609 if (protocol >= 0x20c &&
610 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
611 /*
612 * Linux has supported initrd up to 4 GB for a very long time (2007,
613 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
614 * though it only sets initrd_max to 2 GB to "work around bootloader
615 * bugs". Luckily, QEMU firmware(which does something like bootloader)
616 * has supported this.
617 *
618 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
619 * be loaded into any address.
620 *
621 * In addition, initrd_max is uint32_t simply because QEMU doesn't
622 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
623 * field).
624 *
625 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
626 */
627 initrd_max = UINT32_MAX;
628 } else if (protocol >= 0x203) {
629 initrd_max = ldl_p(header + 0x22c);
630 } else {
631 initrd_max = 0x37ffffff;
632 }
633
634 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
635 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
636 }
637
638 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
639 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
640 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
641
642 if (protocol >= 0x202) {
643 stl_p(header + 0x228, cmdline_addr);
644 } else {
645 stw_p(header + 0x20, 0xA33F);
646 stw_p(header + 0x22, cmdline_addr - real_addr);
647 }
648
649 /* handle vga= parameter */
650 vmode = strstr(kernel_cmdline, "vga=");
651 if (vmode) {
652 unsigned int video_mode;
653 const char *end;
654 int ret;
655 /* skip "vga=" */
656 vmode += 4;
657 if (!strncmp(vmode, "normal", 6)) {
658 video_mode = 0xffff;
659 } else if (!strncmp(vmode, "ext", 3)) {
660 video_mode = 0xfffe;
661 } else if (!strncmp(vmode, "ask", 3)) {
662 video_mode = 0xfffd;
663 } else {
664 ret = qemu_strtoui(vmode, &end, 0, &video_mode);
665 if (ret != 0 || (*end && *end != ' ')) {
666 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
667 exit(1);
668 }
669 }
670 stw_p(header + 0x1fa, video_mode);
671 }
672
673 /* loader type */
674 /*
675 * High nybble = B reserved for QEMU; low nybble is revision number.
676 * If this code is substantially changed, you may want to consider
677 * incrementing the revision.
678 */
679 if (protocol >= 0x200) {
680 header[0x210] = 0xB0;
681 }
682 /* heap */
683 if (protocol >= 0x201) {
684 header[0x211] |= 0x80; /* CAN_USE_HEAP */
685 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
686 }
687
688 /* load initrd */
689 if (initrd_filename) {
690 GMappedFile *mapped_file;
691 gsize initrd_size;
692 gchar *initrd_data;
693 GError *gerr = NULL;
694
695 if (protocol < 0x200) {
696 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
697 exit(1);
698 }
699
700 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
701 if (!mapped_file) {
702 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
703 initrd_filename, gerr->message);
704 exit(1);
705 }
706 x86ms->initrd_mapped_file = mapped_file;
707
708 initrd_data = g_mapped_file_get_contents(mapped_file);
709 initrd_size = g_mapped_file_get_length(mapped_file);
710 if (initrd_size >= initrd_max) {
711 fprintf(stderr, "qemu: initrd is too large, cannot support."
712 "(max: %"PRIu32", need %"PRId64")\n",
713 initrd_max, (uint64_t)initrd_size);
714 exit(1);
715 }
716
717 initrd_addr = (initrd_max - initrd_size) & ~4095;
718
719 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
720 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
721 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
722
723 stl_p(header + 0x218, initrd_addr);
724 stl_p(header + 0x21c, initrd_size);
725 }
726
727 /* load kernel and setup */
728 setup_size = header[0x1f1];
729 if (setup_size == 0) {
730 setup_size = 4;
731 }
732 setup_size = (setup_size + 1) * 512;
733 if (setup_size > kernel_size) {
734 fprintf(stderr, "qemu: invalid kernel header\n");
735 exit(1);
736 }
737 kernel_size -= setup_size;
738
739 setup = g_malloc(setup_size);
740 kernel = g_malloc(kernel_size);
741 fseek(f, 0, SEEK_SET);
742 if (fread(setup, 1, setup_size, f) != setup_size) {
743 fprintf(stderr, "fread() failed\n");
744 exit(1);
745 }
746 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
747 fprintf(stderr, "fread() failed\n");
748 exit(1);
749 }
750 fclose(f);
751
752 /* append dtb to kernel */
753 if (dtb_filename) {
754 if (protocol < 0x209) {
755 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
756 exit(1);
757 }
758
759 dtb_size = get_image_size(dtb_filename);
760 if (dtb_size <= 0) {
761 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
762 dtb_filename, strerror(errno));
763 exit(1);
764 }
765
766 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
767 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
768 kernel = g_realloc(kernel, kernel_size);
769
770 stq_p(header + 0x250, prot_addr + setup_data_offset);
771
772 setup_data = (struct setup_data *)(kernel + setup_data_offset);
773 setup_data->next = 0;
774 setup_data->type = cpu_to_le32(SETUP_DTB);
775 setup_data->len = cpu_to_le32(dtb_size);
776
777 load_image_size(dtb_filename, setup_data->data, dtb_size);
778 }
779
780 memcpy(setup, header, MIN(sizeof(header), setup_size));
781
782 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
783 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
784 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
785
786 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
787 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
788 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
789
790 option_rom[nb_option_roms].bootindex = 0;
791 option_rom[nb_option_roms].name = "linuxboot.bin";
792 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
793 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
794 }
795 nb_option_roms++;
796 }
797
798 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
799 {
800 char *filename;
801 MemoryRegion *bios, *isa_bios;
802 int bios_size, isa_bios_size;
803 int ret;
804
805 /* BIOS load */
806 if (bios_name == NULL) {
807 bios_name = BIOS_FILENAME;
808 }
809 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
810 if (filename) {
811 bios_size = get_image_size(filename);
812 } else {
813 bios_size = -1;
814 }
815 if (bios_size <= 0 ||
816 (bios_size % 65536) != 0) {
817 goto bios_error;
818 }
819 bios = g_malloc(sizeof(*bios));
820 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
821 if (!isapc_ram_fw) {
822 memory_region_set_readonly(bios, true);
823 }
824 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
825 if (ret != 0) {
826 bios_error:
827 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
828 exit(1);
829 }
830 g_free(filename);
831
832 /* map the last 128KB of the BIOS in ISA space */
833 isa_bios_size = MIN(bios_size, 128 * KiB);
834 isa_bios = g_malloc(sizeof(*isa_bios));
835 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
836 bios_size - isa_bios_size, isa_bios_size);
837 memory_region_add_subregion_overlap(rom_memory,
838 0x100000 - isa_bios_size,
839 isa_bios,
840 1);
841 if (!isapc_ram_fw) {
842 memory_region_set_readonly(isa_bios, true);
843 }
844
845 /* map all the bios at the top of memory */
846 memory_region_add_subregion(rom_memory,
847 (uint32_t)(-bios_size),
848 bios);
849 }
850
851 bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
852 {
853 bool smm_available = false;
854
855 if (x86ms->smm == ON_OFF_AUTO_OFF) {
856 return false;
857 }
858
859 if (tcg_enabled() || qtest_enabled()) {
860 smm_available = true;
861 } else if (kvm_enabled()) {
862 smm_available = kvm_has_smm();
863 }
864
865 if (smm_available) {
866 return true;
867 }
868
869 if (x86ms->smm == ON_OFF_AUTO_ON) {
870 error_report("System Management Mode not supported by this hypervisor.");
871 exit(1);
872 }
873 return false;
874 }
875
876 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
877 void *opaque, Error **errp)
878 {
879 X86MachineState *x86ms = X86_MACHINE(obj);
880 OnOffAuto smm = x86ms->smm;
881
882 visit_type_OnOffAuto(v, name, &smm, errp);
883 }
884
885 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
886 void *opaque, Error **errp)
887 {
888 X86MachineState *x86ms = X86_MACHINE(obj);
889
890 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
891 }
892
893 bool x86_machine_is_acpi_enabled(X86MachineState *x86ms)
894 {
895 if (x86ms->acpi == ON_OFF_AUTO_OFF) {
896 return false;
897 }
898 return true;
899 }
900
901 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
902 void *opaque, Error **errp)
903 {
904 X86MachineState *x86ms = X86_MACHINE(obj);
905 OnOffAuto acpi = x86ms->acpi;
906
907 visit_type_OnOffAuto(v, name, &acpi, errp);
908 }
909
910 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
911 void *opaque, Error **errp)
912 {
913 X86MachineState *x86ms = X86_MACHINE(obj);
914
915 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
916 }
917
918 static void x86_machine_initfn(Object *obj)
919 {
920 X86MachineState *x86ms = X86_MACHINE(obj);
921
922 x86ms->smm = ON_OFF_AUTO_AUTO;
923 x86ms->acpi = ON_OFF_AUTO_AUTO;
924 x86ms->smp_dies = 1;
925
926 x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx;
927 x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid;
928 x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids;
929 x86ms->apicid_pkg_offset = apicid_pkg_offset;
930 }
931
932 static void x86_machine_class_init(ObjectClass *oc, void *data)
933 {
934 MachineClass *mc = MACHINE_CLASS(oc);
935 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
936 NMIClass *nc = NMI_CLASS(oc);
937
938 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
939 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
940 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
941 x86mc->compat_apic_id_mode = false;
942 x86mc->save_tsc_khz = true;
943 nc->nmi_monitor_handler = x86_nmi;
944
945 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
946 x86_machine_get_smm, x86_machine_set_smm,
947 NULL, NULL);
948 object_class_property_set_description(oc, X86_MACHINE_SMM,
949 "Enable SMM");
950
951 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
952 x86_machine_get_acpi, x86_machine_set_acpi,
953 NULL, NULL);
954 object_class_property_set_description(oc, X86_MACHINE_ACPI,
955 "Enable ACPI");
956 }
957
958 static const TypeInfo x86_machine_info = {
959 .name = TYPE_X86_MACHINE,
960 .parent = TYPE_MACHINE,
961 .abstract = true,
962 .instance_size = sizeof(X86MachineState),
963 .instance_init = x86_machine_initfn,
964 .class_size = sizeof(X86MachineClass),
965 .class_init = x86_machine_class_init,
966 .interfaces = (InterfaceInfo[]) {
967 { TYPE_NMI },
968 { }
969 },
970 };
971
972 static void x86_machine_register_types(void)
973 {
974 type_register_static(&x86_machine_info);
975 }
976
977 type_init(x86_machine_register_types)