]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/xen/xen-hvm.c
accel: Move Xen accelerator code under accel/xen/
[mirror_qemu.git] / hw / i386 / xen / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12
13 #include "cpu.h"
14 #include "hw/pci/pci.h"
15 #include "hw/pci/pci_host.h"
16 #include "hw/i386/pc.h"
17 #include "hw/southbridge/piix.h"
18 #include "hw/irq.h"
19 #include "hw/hw.h"
20 #include "hw/i386/apic-msidef.h"
21 #include "hw/xen/xen_common.h"
22 #include "hw/xen/xen-legacy-backend.h"
23 #include "hw/xen/xen-bus.h"
24 #include "qapi/error.h"
25 #include "qapi/qapi-commands-misc.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/range.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/xen.h"
32 #include "sysemu/xen-mapcache.h"
33 #include "trace.h"
34 #include "exec/address-spaces.h"
35
36 #include <xen/hvm/ioreq.h>
37 #include <xen/hvm/e820.h>
38
39 //#define DEBUG_XEN_HVM
40
41 #ifdef DEBUG_XEN_HVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
48
49 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
50 static MemoryRegion *framebuffer;
51 static bool xen_in_migration;
52
53 /* Compatibility with older version */
54
55 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
56 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
57 * needs to be included before this block and hw/xen/xen_common.h needs to
58 * be included before xen/hvm/ioreq.h
59 */
60 #ifndef IOREQ_TYPE_VMWARE_PORT
61 #define IOREQ_TYPE_VMWARE_PORT 3
62 struct vmware_regs {
63 uint32_t esi;
64 uint32_t edi;
65 uint32_t ebx;
66 uint32_t ecx;
67 uint32_t edx;
68 };
69 typedef struct vmware_regs vmware_regs_t;
70
71 struct shared_vmport_iopage {
72 struct vmware_regs vcpu_vmport_regs[1];
73 };
74 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
75 #endif
76
77 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
78 {
79 return shared_page->vcpu_ioreq[i].vp_eport;
80 }
81 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
82 {
83 return &shared_page->vcpu_ioreq[vcpu];
84 }
85
86 #define BUFFER_IO_MAX_DELAY 100
87
88 typedef struct XenPhysmap {
89 hwaddr start_addr;
90 ram_addr_t size;
91 const char *name;
92 hwaddr phys_offset;
93
94 QLIST_ENTRY(XenPhysmap) list;
95 } XenPhysmap;
96
97 static QLIST_HEAD(, XenPhysmap) xen_physmap;
98
99 typedef struct XenPciDevice {
100 PCIDevice *pci_dev;
101 uint32_t sbdf;
102 QLIST_ENTRY(XenPciDevice) entry;
103 } XenPciDevice;
104
105 typedef struct XenIOState {
106 ioservid_t ioservid;
107 shared_iopage_t *shared_page;
108 shared_vmport_iopage_t *shared_vmport_page;
109 buffered_iopage_t *buffered_io_page;
110 QEMUTimer *buffered_io_timer;
111 CPUState **cpu_by_vcpu_id;
112 /* the evtchn port for polling the notification, */
113 evtchn_port_t *ioreq_local_port;
114 /* evtchn remote and local ports for buffered io */
115 evtchn_port_t bufioreq_remote_port;
116 evtchn_port_t bufioreq_local_port;
117 /* the evtchn fd for polling */
118 xenevtchn_handle *xce_handle;
119 /* which vcpu we are serving */
120 int send_vcpu;
121
122 struct xs_handle *xenstore;
123 MemoryListener memory_listener;
124 MemoryListener io_listener;
125 QLIST_HEAD(, XenPciDevice) dev_list;
126 DeviceListener device_listener;
127 hwaddr free_phys_offset;
128 const XenPhysmap *log_for_dirtybit;
129 /* Buffer used by xen_sync_dirty_bitmap */
130 unsigned long *dirty_bitmap;
131
132 Notifier exit;
133 Notifier suspend;
134 Notifier wakeup;
135 } XenIOState;
136
137 /* Xen specific function for piix pci */
138
139 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
140 {
141 return irq_num + ((pci_dev->devfn >> 3) << 2);
142 }
143
144 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
145 {
146 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
147 irq_num & 3, level);
148 }
149
150 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
151 {
152 int i;
153
154 /* Scan for updates to PCI link routes (0x60-0x63). */
155 for (i = 0; i < len; i++) {
156 uint8_t v = (val >> (8 * i)) & 0xff;
157 if (v & 0x80) {
158 v = 0;
159 }
160 v &= 0xf;
161 if (((address + i) >= PIIX_PIRQCA) && ((address + i) <= PIIX_PIRQCD)) {
162 xen_set_pci_link_route(xen_domid, address + i - PIIX_PIRQCA, v);
163 }
164 }
165 }
166
167 int xen_is_pirq_msi(uint32_t msi_data)
168 {
169 /* If vector is 0, the msi is remapped into a pirq, passed as
170 * dest_id.
171 */
172 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
173 }
174
175 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
176 {
177 xen_inject_msi(xen_domid, addr, data);
178 }
179
180 static void xen_suspend_notifier(Notifier *notifier, void *data)
181 {
182 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
183 }
184
185 /* Xen Interrupt Controller */
186
187 static void xen_set_irq(void *opaque, int irq, int level)
188 {
189 xen_set_isa_irq_level(xen_domid, irq, level);
190 }
191
192 qemu_irq *xen_interrupt_controller_init(void)
193 {
194 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
195 }
196
197 /* Memory Ops */
198
199 static void xen_ram_init(PCMachineState *pcms,
200 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
201 {
202 X86MachineState *x86ms = X86_MACHINE(pcms);
203 MemoryRegion *sysmem = get_system_memory();
204 ram_addr_t block_len;
205 uint64_t user_lowmem =
206 object_property_get_uint(qdev_get_machine(),
207 X86_MACHINE_MAX_RAM_BELOW_4G,
208 &error_abort);
209
210 /* Handle the machine opt max-ram-below-4g. It is basically doing
211 * min(xen limit, user limit).
212 */
213 if (!user_lowmem) {
214 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
215 }
216 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
217 user_lowmem = HVM_BELOW_4G_RAM_END;
218 }
219
220 if (ram_size >= user_lowmem) {
221 x86ms->above_4g_mem_size = ram_size - user_lowmem;
222 x86ms->below_4g_mem_size = user_lowmem;
223 } else {
224 x86ms->above_4g_mem_size = 0;
225 x86ms->below_4g_mem_size = ram_size;
226 }
227 if (!x86ms->above_4g_mem_size) {
228 block_len = ram_size;
229 } else {
230 /*
231 * Xen does not allocate the memory continuously, it keeps a
232 * hole of the size computed above or passed in.
233 */
234 block_len = (1ULL << 32) + x86ms->above_4g_mem_size;
235 }
236 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
237 &error_fatal);
238 *ram_memory_p = &ram_memory;
239
240 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
241 &ram_memory, 0, 0xa0000);
242 memory_region_add_subregion(sysmem, 0, &ram_640k);
243 /* Skip of the VGA IO memory space, it will be registered later by the VGA
244 * emulated device.
245 *
246 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
247 * the Options ROM, so it is registered here as RAM.
248 */
249 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
250 &ram_memory, 0xc0000,
251 x86ms->below_4g_mem_size - 0xc0000);
252 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
253 if (x86ms->above_4g_mem_size > 0) {
254 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
255 &ram_memory, 0x100000000ULL,
256 x86ms->above_4g_mem_size);
257 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
258 }
259 }
260
261 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
262 Error **errp)
263 {
264 unsigned long nr_pfn;
265 xen_pfn_t *pfn_list;
266 int i;
267
268 if (runstate_check(RUN_STATE_INMIGRATE)) {
269 /* RAM already populated in Xen */
270 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
271 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
272 __func__, size, ram_addr);
273 return;
274 }
275
276 if (mr == &ram_memory) {
277 return;
278 }
279
280 trace_xen_ram_alloc(ram_addr, size);
281
282 nr_pfn = size >> TARGET_PAGE_BITS;
283 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
284
285 for (i = 0; i < nr_pfn; i++) {
286 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
287 }
288
289 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
290 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
291 ram_addr);
292 }
293
294 g_free(pfn_list);
295 }
296
297 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size)
298 {
299 XenPhysmap *physmap = NULL;
300
301 start_addr &= TARGET_PAGE_MASK;
302
303 QLIST_FOREACH(physmap, &xen_physmap, list) {
304 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
305 return physmap;
306 }
307 }
308 return NULL;
309 }
310
311 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size)
312 {
313 hwaddr addr = phys_offset & TARGET_PAGE_MASK;
314 XenPhysmap *physmap = NULL;
315
316 QLIST_FOREACH(physmap, &xen_physmap, list) {
317 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
318 return physmap->start_addr + (phys_offset - physmap->phys_offset);
319 }
320 }
321
322 return phys_offset;
323 }
324
325 #ifdef XEN_COMPAT_PHYSMAP
326 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
327 {
328 char path[80], value[17];
329
330 snprintf(path, sizeof(path),
331 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
332 xen_domid, (uint64_t)physmap->phys_offset);
333 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr);
334 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
335 return -1;
336 }
337 snprintf(path, sizeof(path),
338 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
339 xen_domid, (uint64_t)physmap->phys_offset);
340 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size);
341 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
342 return -1;
343 }
344 if (physmap->name) {
345 snprintf(path, sizeof(path),
346 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
347 xen_domid, (uint64_t)physmap->phys_offset);
348 if (!xs_write(state->xenstore, 0, path,
349 physmap->name, strlen(physmap->name))) {
350 return -1;
351 }
352 }
353 return 0;
354 }
355 #else
356 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
357 {
358 return 0;
359 }
360 #endif
361
362 static int xen_add_to_physmap(XenIOState *state,
363 hwaddr start_addr,
364 ram_addr_t size,
365 MemoryRegion *mr,
366 hwaddr offset_within_region)
367 {
368 unsigned long nr_pages;
369 int rc = 0;
370 XenPhysmap *physmap = NULL;
371 hwaddr pfn, start_gpfn;
372 hwaddr phys_offset = memory_region_get_ram_addr(mr);
373 const char *mr_name;
374
375 if (get_physmapping(start_addr, size)) {
376 return 0;
377 }
378 if (size <= 0) {
379 return -1;
380 }
381
382 /* Xen can only handle a single dirty log region for now and we want
383 * the linear framebuffer to be that region.
384 * Avoid tracking any regions that is not videoram and avoid tracking
385 * the legacy vga region. */
386 if (mr == framebuffer && start_addr > 0xbffff) {
387 goto go_physmap;
388 }
389 return -1;
390
391 go_physmap:
392 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
393 start_addr, start_addr + size);
394
395 mr_name = memory_region_name(mr);
396
397 physmap = g_malloc(sizeof(XenPhysmap));
398
399 physmap->start_addr = start_addr;
400 physmap->size = size;
401 physmap->name = mr_name;
402 physmap->phys_offset = phys_offset;
403
404 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
405
406 if (runstate_check(RUN_STATE_INMIGRATE)) {
407 /* Now when we have a physmap entry we can replace a dummy mapping with
408 * a real one of guest foreign memory. */
409 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size);
410 assert(p && p == memory_region_get_ram_ptr(mr));
411
412 return 0;
413 }
414
415 pfn = phys_offset >> TARGET_PAGE_BITS;
416 start_gpfn = start_addr >> TARGET_PAGE_BITS;
417 nr_pages = size >> TARGET_PAGE_BITS;
418 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn,
419 start_gpfn);
420 if (rc) {
421 int saved_errno = errno;
422
423 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx
424 " to GFN %"HWADDR_PRIx" failed: %s",
425 nr_pages, pfn, start_gpfn, strerror(saved_errno));
426 errno = saved_errno;
427 return -1;
428 }
429
430 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid,
431 start_addr >> TARGET_PAGE_BITS,
432 (start_addr + size - 1) >> TARGET_PAGE_BITS,
433 XEN_DOMCTL_MEM_CACHEATTR_WB);
434 if (rc) {
435 error_report("pin_memory_cacheattr failed: %s", strerror(errno));
436 }
437 return xen_save_physmap(state, physmap);
438 }
439
440 static int xen_remove_from_physmap(XenIOState *state,
441 hwaddr start_addr,
442 ram_addr_t size)
443 {
444 int rc = 0;
445 XenPhysmap *physmap = NULL;
446 hwaddr phys_offset = 0;
447
448 physmap = get_physmapping(start_addr, size);
449 if (physmap == NULL) {
450 return -1;
451 }
452
453 phys_offset = physmap->phys_offset;
454 size = physmap->size;
455
456 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
457 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
458
459 size >>= TARGET_PAGE_BITS;
460 start_addr >>= TARGET_PAGE_BITS;
461 phys_offset >>= TARGET_PAGE_BITS;
462 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr,
463 phys_offset);
464 if (rc) {
465 int saved_errno = errno;
466
467 error_report("relocate_memory "RAM_ADDR_FMT" pages"
468 " from GFN %"HWADDR_PRIx
469 " to GFN %"HWADDR_PRIx" failed: %s",
470 size, start_addr, phys_offset, strerror(saved_errno));
471 errno = saved_errno;
472 return -1;
473 }
474
475 QLIST_REMOVE(physmap, list);
476 if (state->log_for_dirtybit == physmap) {
477 state->log_for_dirtybit = NULL;
478 g_free(state->dirty_bitmap);
479 state->dirty_bitmap = NULL;
480 }
481 g_free(physmap);
482
483 return 0;
484 }
485
486 static void xen_set_memory(struct MemoryListener *listener,
487 MemoryRegionSection *section,
488 bool add)
489 {
490 XenIOState *state = container_of(listener, XenIOState, memory_listener);
491 hwaddr start_addr = section->offset_within_address_space;
492 ram_addr_t size = int128_get64(section->size);
493 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
494 hvmmem_type_t mem_type;
495
496 if (section->mr == &ram_memory) {
497 return;
498 } else {
499 if (add) {
500 xen_map_memory_section(xen_domid, state->ioservid,
501 section);
502 } else {
503 xen_unmap_memory_section(xen_domid, state->ioservid,
504 section);
505 }
506 }
507
508 if (!memory_region_is_ram(section->mr)) {
509 return;
510 }
511
512 if (log_dirty != add) {
513 return;
514 }
515
516 trace_xen_client_set_memory(start_addr, size, log_dirty);
517
518 start_addr &= TARGET_PAGE_MASK;
519 size = TARGET_PAGE_ALIGN(size);
520
521 if (add) {
522 if (!memory_region_is_rom(section->mr)) {
523 xen_add_to_physmap(state, start_addr, size,
524 section->mr, section->offset_within_region);
525 } else {
526 mem_type = HVMMEM_ram_ro;
527 if (xen_set_mem_type(xen_domid, mem_type,
528 start_addr >> TARGET_PAGE_BITS,
529 size >> TARGET_PAGE_BITS)) {
530 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
531 start_addr);
532 }
533 }
534 } else {
535 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
536 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
537 }
538 }
539 }
540
541 static void xen_region_add(MemoryListener *listener,
542 MemoryRegionSection *section)
543 {
544 memory_region_ref(section->mr);
545 xen_set_memory(listener, section, true);
546 }
547
548 static void xen_region_del(MemoryListener *listener,
549 MemoryRegionSection *section)
550 {
551 xen_set_memory(listener, section, false);
552 memory_region_unref(section->mr);
553 }
554
555 static void xen_io_add(MemoryListener *listener,
556 MemoryRegionSection *section)
557 {
558 XenIOState *state = container_of(listener, XenIOState, io_listener);
559 MemoryRegion *mr = section->mr;
560
561 if (mr->ops == &unassigned_io_ops) {
562 return;
563 }
564
565 memory_region_ref(mr);
566
567 xen_map_io_section(xen_domid, state->ioservid, section);
568 }
569
570 static void xen_io_del(MemoryListener *listener,
571 MemoryRegionSection *section)
572 {
573 XenIOState *state = container_of(listener, XenIOState, io_listener);
574 MemoryRegion *mr = section->mr;
575
576 if (mr->ops == &unassigned_io_ops) {
577 return;
578 }
579
580 xen_unmap_io_section(xen_domid, state->ioservid, section);
581
582 memory_region_unref(mr);
583 }
584
585 static void xen_device_realize(DeviceListener *listener,
586 DeviceState *dev)
587 {
588 XenIOState *state = container_of(listener, XenIOState, device_listener);
589
590 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
591 PCIDevice *pci_dev = PCI_DEVICE(dev);
592 XenPciDevice *xendev = g_new(XenPciDevice, 1);
593
594 xendev->pci_dev = pci_dev;
595 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev),
596 pci_dev->devfn);
597 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry);
598
599 xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
600 }
601 }
602
603 static void xen_device_unrealize(DeviceListener *listener,
604 DeviceState *dev)
605 {
606 XenIOState *state = container_of(listener, XenIOState, device_listener);
607
608 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
609 PCIDevice *pci_dev = PCI_DEVICE(dev);
610 XenPciDevice *xendev, *next;
611
612 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
613
614 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) {
615 if (xendev->pci_dev == pci_dev) {
616 QLIST_REMOVE(xendev, entry);
617 g_free(xendev);
618 break;
619 }
620 }
621 }
622 }
623
624 static void xen_sync_dirty_bitmap(XenIOState *state,
625 hwaddr start_addr,
626 ram_addr_t size)
627 {
628 hwaddr npages = size >> TARGET_PAGE_BITS;
629 const int width = sizeof(unsigned long) * 8;
630 size_t bitmap_size = DIV_ROUND_UP(npages, width);
631 int rc, i, j;
632 const XenPhysmap *physmap = NULL;
633
634 physmap = get_physmapping(start_addr, size);
635 if (physmap == NULL) {
636 /* not handled */
637 return;
638 }
639
640 if (state->log_for_dirtybit == NULL) {
641 state->log_for_dirtybit = physmap;
642 state->dirty_bitmap = g_new(unsigned long, bitmap_size);
643 } else if (state->log_for_dirtybit != physmap) {
644 /* Only one range for dirty bitmap can be tracked. */
645 return;
646 }
647
648 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
649 npages, state->dirty_bitmap);
650 if (rc < 0) {
651 #ifndef ENODATA
652 #define ENODATA ENOENT
653 #endif
654 if (errno == ENODATA) {
655 memory_region_set_dirty(framebuffer, 0, size);
656 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
657 ", 0x" TARGET_FMT_plx "): %s\n",
658 start_addr, start_addr + size, strerror(errno));
659 }
660 return;
661 }
662
663 for (i = 0; i < bitmap_size; i++) {
664 unsigned long map = state->dirty_bitmap[i];
665 while (map != 0) {
666 j = ctzl(map);
667 map &= ~(1ul << j);
668 memory_region_set_dirty(framebuffer,
669 (i * width + j) * TARGET_PAGE_SIZE,
670 TARGET_PAGE_SIZE);
671 };
672 }
673 }
674
675 static void xen_log_start(MemoryListener *listener,
676 MemoryRegionSection *section,
677 int old, int new)
678 {
679 XenIOState *state = container_of(listener, XenIOState, memory_listener);
680
681 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
682 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
683 int128_get64(section->size));
684 }
685 }
686
687 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
688 int old, int new)
689 {
690 XenIOState *state = container_of(listener, XenIOState, memory_listener);
691
692 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
693 state->log_for_dirtybit = NULL;
694 g_free(state->dirty_bitmap);
695 state->dirty_bitmap = NULL;
696 /* Disable dirty bit tracking */
697 xen_track_dirty_vram(xen_domid, 0, 0, NULL);
698 }
699 }
700
701 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
702 {
703 XenIOState *state = container_of(listener, XenIOState, memory_listener);
704
705 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
706 int128_get64(section->size));
707 }
708
709 static void xen_log_global_start(MemoryListener *listener)
710 {
711 if (xen_enabled()) {
712 xen_in_migration = true;
713 }
714 }
715
716 static void xen_log_global_stop(MemoryListener *listener)
717 {
718 xen_in_migration = false;
719 }
720
721 static MemoryListener xen_memory_listener = {
722 .region_add = xen_region_add,
723 .region_del = xen_region_del,
724 .log_start = xen_log_start,
725 .log_stop = xen_log_stop,
726 .log_sync = xen_log_sync,
727 .log_global_start = xen_log_global_start,
728 .log_global_stop = xen_log_global_stop,
729 .priority = 10,
730 };
731
732 static MemoryListener xen_io_listener = {
733 .region_add = xen_io_add,
734 .region_del = xen_io_del,
735 .priority = 10,
736 };
737
738 static DeviceListener xen_device_listener = {
739 .realize = xen_device_realize,
740 .unrealize = xen_device_unrealize,
741 };
742
743 /* get the ioreq packets from share mem */
744 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
745 {
746 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
747
748 if (req->state != STATE_IOREQ_READY) {
749 DPRINTF("I/O request not ready: "
750 "%x, ptr: %x, port: %"PRIx64", "
751 "data: %"PRIx64", count: %u, size: %u\n",
752 req->state, req->data_is_ptr, req->addr,
753 req->data, req->count, req->size);
754 return NULL;
755 }
756
757 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
758
759 req->state = STATE_IOREQ_INPROCESS;
760 return req;
761 }
762
763 /* use poll to get the port notification */
764 /* ioreq_vec--out,the */
765 /* retval--the number of ioreq packet */
766 static ioreq_t *cpu_get_ioreq(XenIOState *state)
767 {
768 MachineState *ms = MACHINE(qdev_get_machine());
769 unsigned int max_cpus = ms->smp.max_cpus;
770 int i;
771 evtchn_port_t port;
772
773 port = xenevtchn_pending(state->xce_handle);
774 if (port == state->bufioreq_local_port) {
775 timer_mod(state->buffered_io_timer,
776 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
777 return NULL;
778 }
779
780 if (port != -1) {
781 for (i = 0; i < max_cpus; i++) {
782 if (state->ioreq_local_port[i] == port) {
783 break;
784 }
785 }
786
787 if (i == max_cpus) {
788 hw_error("Fatal error while trying to get io event!\n");
789 }
790
791 /* unmask the wanted port again */
792 xenevtchn_unmask(state->xce_handle, port);
793
794 /* get the io packet from shared memory */
795 state->send_vcpu = i;
796 return cpu_get_ioreq_from_shared_memory(state, i);
797 }
798
799 /* read error or read nothing */
800 return NULL;
801 }
802
803 static uint32_t do_inp(uint32_t addr, unsigned long size)
804 {
805 switch (size) {
806 case 1:
807 return cpu_inb(addr);
808 case 2:
809 return cpu_inw(addr);
810 case 4:
811 return cpu_inl(addr);
812 default:
813 hw_error("inp: bad size: %04x %lx", addr, size);
814 }
815 }
816
817 static void do_outp(uint32_t addr,
818 unsigned long size, uint32_t val)
819 {
820 switch (size) {
821 case 1:
822 return cpu_outb(addr, val);
823 case 2:
824 return cpu_outw(addr, val);
825 case 4:
826 return cpu_outl(addr, val);
827 default:
828 hw_error("outp: bad size: %04x %lx", addr, size);
829 }
830 }
831
832 /*
833 * Helper functions which read/write an object from/to physical guest
834 * memory, as part of the implementation of an ioreq.
835 *
836 * Equivalent to
837 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
838 * val, req->size, 0/1)
839 * except without the integer overflow problems.
840 */
841 static void rw_phys_req_item(hwaddr addr,
842 ioreq_t *req, uint32_t i, void *val, int rw)
843 {
844 /* Do everything unsigned so overflow just results in a truncated result
845 * and accesses to undesired parts of guest memory, which is up
846 * to the guest */
847 hwaddr offset = (hwaddr)req->size * i;
848 if (req->df) {
849 addr -= offset;
850 } else {
851 addr += offset;
852 }
853 cpu_physical_memory_rw(addr, val, req->size, rw);
854 }
855
856 static inline void read_phys_req_item(hwaddr addr,
857 ioreq_t *req, uint32_t i, void *val)
858 {
859 rw_phys_req_item(addr, req, i, val, 0);
860 }
861 static inline void write_phys_req_item(hwaddr addr,
862 ioreq_t *req, uint32_t i, void *val)
863 {
864 rw_phys_req_item(addr, req, i, val, 1);
865 }
866
867
868 static void cpu_ioreq_pio(ioreq_t *req)
869 {
870 uint32_t i;
871
872 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
873 req->data, req->count, req->size);
874
875 if (req->size > sizeof(uint32_t)) {
876 hw_error("PIO: bad size (%u)", req->size);
877 }
878
879 if (req->dir == IOREQ_READ) {
880 if (!req->data_is_ptr) {
881 req->data = do_inp(req->addr, req->size);
882 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
883 req->size);
884 } else {
885 uint32_t tmp;
886
887 for (i = 0; i < req->count; i++) {
888 tmp = do_inp(req->addr, req->size);
889 write_phys_req_item(req->data, req, i, &tmp);
890 }
891 }
892 } else if (req->dir == IOREQ_WRITE) {
893 if (!req->data_is_ptr) {
894 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
895 req->size);
896 do_outp(req->addr, req->size, req->data);
897 } else {
898 for (i = 0; i < req->count; i++) {
899 uint32_t tmp = 0;
900
901 read_phys_req_item(req->data, req, i, &tmp);
902 do_outp(req->addr, req->size, tmp);
903 }
904 }
905 }
906 }
907
908 static void cpu_ioreq_move(ioreq_t *req)
909 {
910 uint32_t i;
911
912 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
913 req->data, req->count, req->size);
914
915 if (req->size > sizeof(req->data)) {
916 hw_error("MMIO: bad size (%u)", req->size);
917 }
918
919 if (!req->data_is_ptr) {
920 if (req->dir == IOREQ_READ) {
921 for (i = 0; i < req->count; i++) {
922 read_phys_req_item(req->addr, req, i, &req->data);
923 }
924 } else if (req->dir == IOREQ_WRITE) {
925 for (i = 0; i < req->count; i++) {
926 write_phys_req_item(req->addr, req, i, &req->data);
927 }
928 }
929 } else {
930 uint64_t tmp;
931
932 if (req->dir == IOREQ_READ) {
933 for (i = 0; i < req->count; i++) {
934 read_phys_req_item(req->addr, req, i, &tmp);
935 write_phys_req_item(req->data, req, i, &tmp);
936 }
937 } else if (req->dir == IOREQ_WRITE) {
938 for (i = 0; i < req->count; i++) {
939 read_phys_req_item(req->data, req, i, &tmp);
940 write_phys_req_item(req->addr, req, i, &tmp);
941 }
942 }
943 }
944 }
945
946 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req)
947 {
948 uint32_t sbdf = req->addr >> 32;
949 uint32_t reg = req->addr;
950 XenPciDevice *xendev;
951
952 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
953 req->size != sizeof(uint32_t)) {
954 hw_error("PCI config access: bad size (%u)", req->size);
955 }
956
957 if (req->count != 1) {
958 hw_error("PCI config access: bad count (%u)", req->count);
959 }
960
961 QLIST_FOREACH(xendev, &state->dev_list, entry) {
962 if (xendev->sbdf != sbdf) {
963 continue;
964 }
965
966 if (!req->data_is_ptr) {
967 if (req->dir == IOREQ_READ) {
968 req->data = pci_host_config_read_common(
969 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
970 req->size);
971 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
972 req->size, req->data);
973 } else if (req->dir == IOREQ_WRITE) {
974 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
975 req->size, req->data);
976 pci_host_config_write_common(
977 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
978 req->data, req->size);
979 }
980 } else {
981 uint32_t tmp;
982
983 if (req->dir == IOREQ_READ) {
984 tmp = pci_host_config_read_common(
985 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
986 req->size);
987 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
988 req->size, tmp);
989 write_phys_req_item(req->data, req, 0, &tmp);
990 } else if (req->dir == IOREQ_WRITE) {
991 read_phys_req_item(req->data, req, 0, &tmp);
992 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
993 req->size, tmp);
994 pci_host_config_write_common(
995 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
996 tmp, req->size);
997 }
998 }
999 }
1000 }
1001
1002 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
1003 {
1004 X86CPU *cpu;
1005 CPUX86State *env;
1006
1007 cpu = X86_CPU(current_cpu);
1008 env = &cpu->env;
1009 env->regs[R_EAX] = req->data;
1010 env->regs[R_EBX] = vmport_regs->ebx;
1011 env->regs[R_ECX] = vmport_regs->ecx;
1012 env->regs[R_EDX] = vmport_regs->edx;
1013 env->regs[R_ESI] = vmport_regs->esi;
1014 env->regs[R_EDI] = vmport_regs->edi;
1015 }
1016
1017 static void regs_from_cpu(vmware_regs_t *vmport_regs)
1018 {
1019 X86CPU *cpu = X86_CPU(current_cpu);
1020 CPUX86State *env = &cpu->env;
1021
1022 vmport_regs->ebx = env->regs[R_EBX];
1023 vmport_regs->ecx = env->regs[R_ECX];
1024 vmport_regs->edx = env->regs[R_EDX];
1025 vmport_regs->esi = env->regs[R_ESI];
1026 vmport_regs->edi = env->regs[R_EDI];
1027 }
1028
1029 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
1030 {
1031 vmware_regs_t *vmport_regs;
1032
1033 assert(state->shared_vmport_page);
1034 vmport_regs =
1035 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
1036 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
1037
1038 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
1039 regs_to_cpu(vmport_regs, req);
1040 cpu_ioreq_pio(req);
1041 regs_from_cpu(vmport_regs);
1042 current_cpu = NULL;
1043 }
1044
1045 static void handle_ioreq(XenIOState *state, ioreq_t *req)
1046 {
1047 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
1048 req->addr, req->data, req->count, req->size);
1049
1050 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
1051 (req->size < sizeof (target_ulong))) {
1052 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
1053 }
1054
1055 if (req->dir == IOREQ_WRITE)
1056 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
1057 req->addr, req->data, req->count, req->size);
1058
1059 switch (req->type) {
1060 case IOREQ_TYPE_PIO:
1061 cpu_ioreq_pio(req);
1062 break;
1063 case IOREQ_TYPE_COPY:
1064 cpu_ioreq_move(req);
1065 break;
1066 case IOREQ_TYPE_VMWARE_PORT:
1067 handle_vmport_ioreq(state, req);
1068 break;
1069 case IOREQ_TYPE_TIMEOFFSET:
1070 break;
1071 case IOREQ_TYPE_INVALIDATE:
1072 xen_invalidate_map_cache();
1073 break;
1074 case IOREQ_TYPE_PCI_CONFIG:
1075 cpu_ioreq_config(state, req);
1076 break;
1077 default:
1078 hw_error("Invalid ioreq type 0x%x\n", req->type);
1079 }
1080 if (req->dir == IOREQ_READ) {
1081 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
1082 req->addr, req->data, req->count, req->size);
1083 }
1084 }
1085
1086 static int handle_buffered_iopage(XenIOState *state)
1087 {
1088 buffered_iopage_t *buf_page = state->buffered_io_page;
1089 buf_ioreq_t *buf_req = NULL;
1090 ioreq_t req;
1091 int qw;
1092
1093 if (!buf_page) {
1094 return 0;
1095 }
1096
1097 memset(&req, 0x00, sizeof(req));
1098 req.state = STATE_IOREQ_READY;
1099 req.count = 1;
1100 req.dir = IOREQ_WRITE;
1101
1102 for (;;) {
1103 uint32_t rdptr = buf_page->read_pointer, wrptr;
1104
1105 xen_rmb();
1106 wrptr = buf_page->write_pointer;
1107 xen_rmb();
1108 if (rdptr != buf_page->read_pointer) {
1109 continue;
1110 }
1111 if (rdptr == wrptr) {
1112 break;
1113 }
1114 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1115 req.size = 1U << buf_req->size;
1116 req.addr = buf_req->addr;
1117 req.data = buf_req->data;
1118 req.type = buf_req->type;
1119 xen_rmb();
1120 qw = (req.size == 8);
1121 if (qw) {
1122 if (rdptr + 1 == wrptr) {
1123 hw_error("Incomplete quad word buffered ioreq");
1124 }
1125 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1126 IOREQ_BUFFER_SLOT_NUM];
1127 req.data |= ((uint64_t)buf_req->data) << 32;
1128 xen_rmb();
1129 }
1130
1131 handle_ioreq(state, &req);
1132
1133 /* Only req.data may get updated by handle_ioreq(), albeit even that
1134 * should not happen as such data would never make it to the guest (we
1135 * can only usefully see writes here after all).
1136 */
1137 assert(req.state == STATE_IOREQ_READY);
1138 assert(req.count == 1);
1139 assert(req.dir == IOREQ_WRITE);
1140 assert(!req.data_is_ptr);
1141
1142 atomic_add(&buf_page->read_pointer, qw + 1);
1143 }
1144
1145 return req.count;
1146 }
1147
1148 static void handle_buffered_io(void *opaque)
1149 {
1150 XenIOState *state = opaque;
1151
1152 if (handle_buffered_iopage(state)) {
1153 timer_mod(state->buffered_io_timer,
1154 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1155 } else {
1156 timer_del(state->buffered_io_timer);
1157 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1158 }
1159 }
1160
1161 static void cpu_handle_ioreq(void *opaque)
1162 {
1163 XenIOState *state = opaque;
1164 ioreq_t *req = cpu_get_ioreq(state);
1165
1166 handle_buffered_iopage(state);
1167 if (req) {
1168 ioreq_t copy = *req;
1169
1170 xen_rmb();
1171 handle_ioreq(state, &copy);
1172 req->data = copy.data;
1173
1174 if (req->state != STATE_IOREQ_INPROCESS) {
1175 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1176 "%x, ptr: %x, port: %"PRIx64", "
1177 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1178 req->state, req->data_is_ptr, req->addr,
1179 req->data, req->count, req->size, req->type);
1180 destroy_hvm_domain(false);
1181 return;
1182 }
1183
1184 xen_wmb(); /* Update ioreq contents /then/ update state. */
1185
1186 /*
1187 * We do this before we send the response so that the tools
1188 * have the opportunity to pick up on the reset before the
1189 * guest resumes and does a hlt with interrupts disabled which
1190 * causes Xen to powerdown the domain.
1191 */
1192 if (runstate_is_running()) {
1193 ShutdownCause request;
1194
1195 if (qemu_shutdown_requested_get()) {
1196 destroy_hvm_domain(false);
1197 }
1198 request = qemu_reset_requested_get();
1199 if (request) {
1200 qemu_system_reset(request);
1201 destroy_hvm_domain(true);
1202 }
1203 }
1204
1205 req->state = STATE_IORESP_READY;
1206 xenevtchn_notify(state->xce_handle,
1207 state->ioreq_local_port[state->send_vcpu]);
1208 }
1209 }
1210
1211 static void xen_main_loop_prepare(XenIOState *state)
1212 {
1213 int evtchn_fd = -1;
1214
1215 if (state->xce_handle != NULL) {
1216 evtchn_fd = xenevtchn_fd(state->xce_handle);
1217 }
1218
1219 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1220 state);
1221
1222 if (evtchn_fd != -1) {
1223 CPUState *cpu_state;
1224
1225 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1226 CPU_FOREACH(cpu_state) {
1227 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1228 __func__, cpu_state->cpu_index, cpu_state);
1229 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1230 }
1231 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1232 }
1233 }
1234
1235
1236 static void xen_hvm_change_state_handler(void *opaque, int running,
1237 RunState rstate)
1238 {
1239 XenIOState *state = opaque;
1240
1241 if (running) {
1242 xen_main_loop_prepare(state);
1243 }
1244
1245 xen_set_ioreq_server_state(xen_domid,
1246 state->ioservid,
1247 (rstate == RUN_STATE_RUNNING));
1248 }
1249
1250 static void xen_exit_notifier(Notifier *n, void *data)
1251 {
1252 XenIOState *state = container_of(n, XenIOState, exit);
1253
1254 xen_destroy_ioreq_server(xen_domid, state->ioservid);
1255
1256 xenevtchn_close(state->xce_handle);
1257 xs_daemon_close(state->xenstore);
1258 }
1259
1260 #ifdef XEN_COMPAT_PHYSMAP
1261 static void xen_read_physmap(XenIOState *state)
1262 {
1263 XenPhysmap *physmap = NULL;
1264 unsigned int len, num, i;
1265 char path[80], *value = NULL;
1266 char **entries = NULL;
1267
1268 snprintf(path, sizeof(path),
1269 "/local/domain/0/device-model/%d/physmap", xen_domid);
1270 entries = xs_directory(state->xenstore, 0, path, &num);
1271 if (entries == NULL)
1272 return;
1273
1274 for (i = 0; i < num; i++) {
1275 physmap = g_malloc(sizeof (XenPhysmap));
1276 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1277 snprintf(path, sizeof(path),
1278 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1279 xen_domid, entries[i]);
1280 value = xs_read(state->xenstore, 0, path, &len);
1281 if (value == NULL) {
1282 g_free(physmap);
1283 continue;
1284 }
1285 physmap->start_addr = strtoull(value, NULL, 16);
1286 free(value);
1287
1288 snprintf(path, sizeof(path),
1289 "/local/domain/0/device-model/%d/physmap/%s/size",
1290 xen_domid, entries[i]);
1291 value = xs_read(state->xenstore, 0, path, &len);
1292 if (value == NULL) {
1293 g_free(physmap);
1294 continue;
1295 }
1296 physmap->size = strtoull(value, NULL, 16);
1297 free(value);
1298
1299 snprintf(path, sizeof(path),
1300 "/local/domain/0/device-model/%d/physmap/%s/name",
1301 xen_domid, entries[i]);
1302 physmap->name = xs_read(state->xenstore, 0, path, &len);
1303
1304 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
1305 }
1306 free(entries);
1307 }
1308 #else
1309 static void xen_read_physmap(XenIOState *state)
1310 {
1311 }
1312 #endif
1313
1314 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1315 {
1316 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1317 }
1318
1319 static int xen_map_ioreq_server(XenIOState *state)
1320 {
1321 void *addr = NULL;
1322 xenforeignmemory_resource_handle *fres;
1323 xen_pfn_t ioreq_pfn;
1324 xen_pfn_t bufioreq_pfn;
1325 evtchn_port_t bufioreq_evtchn;
1326 int rc;
1327
1328 /*
1329 * Attempt to map using the resource API and fall back to normal
1330 * foreign mapping if this is not supported.
1331 */
1332 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0);
1333 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1);
1334 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid,
1335 XENMEM_resource_ioreq_server,
1336 state->ioservid, 0, 2,
1337 &addr,
1338 PROT_READ | PROT_WRITE, 0);
1339 if (fres != NULL) {
1340 trace_xen_map_resource_ioreq(state->ioservid, addr);
1341 state->buffered_io_page = addr;
1342 state->shared_page = addr + TARGET_PAGE_SIZE;
1343 } else if (errno != EOPNOTSUPP) {
1344 error_report("failed to map ioreq server resources: error %d handle=%p",
1345 errno, xen_xc);
1346 return -1;
1347 }
1348
1349 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1350 (state->shared_page == NULL) ?
1351 &ioreq_pfn : NULL,
1352 (state->buffered_io_page == NULL) ?
1353 &bufioreq_pfn : NULL,
1354 &bufioreq_evtchn);
1355 if (rc < 0) {
1356 error_report("failed to get ioreq server info: error %d handle=%p",
1357 errno, xen_xc);
1358 return rc;
1359 }
1360
1361 if (state->shared_page == NULL) {
1362 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1363
1364 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1365 PROT_READ | PROT_WRITE,
1366 1, &ioreq_pfn, NULL);
1367 if (state->shared_page == NULL) {
1368 error_report("map shared IO page returned error %d handle=%p",
1369 errno, xen_xc);
1370 }
1371 }
1372
1373 if (state->buffered_io_page == NULL) {
1374 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1375
1376 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1377 PROT_READ | PROT_WRITE,
1378 1, &bufioreq_pfn,
1379 NULL);
1380 if (state->buffered_io_page == NULL) {
1381 error_report("map buffered IO page returned error %d", errno);
1382 return -1;
1383 }
1384 }
1385
1386 if (state->shared_page == NULL || state->buffered_io_page == NULL) {
1387 return -1;
1388 }
1389
1390 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1391
1392 state->bufioreq_remote_port = bufioreq_evtchn;
1393
1394 return 0;
1395 }
1396
1397 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1398 {
1399 MachineState *ms = MACHINE(pcms);
1400 unsigned int max_cpus = ms->smp.max_cpus;
1401 int i, rc;
1402 xen_pfn_t ioreq_pfn;
1403 XenIOState *state;
1404
1405 state = g_malloc0(sizeof (XenIOState));
1406
1407 state->xce_handle = xenevtchn_open(NULL, 0);
1408 if (state->xce_handle == NULL) {
1409 perror("xen: event channel open");
1410 goto err;
1411 }
1412
1413 state->xenstore = xs_daemon_open();
1414 if (state->xenstore == NULL) {
1415 perror("xen: xenstore open");
1416 goto err;
1417 }
1418
1419 xen_create_ioreq_server(xen_domid, &state->ioservid);
1420
1421 state->exit.notify = xen_exit_notifier;
1422 qemu_add_exit_notifier(&state->exit);
1423
1424 state->suspend.notify = xen_suspend_notifier;
1425 qemu_register_suspend_notifier(&state->suspend);
1426
1427 state->wakeup.notify = xen_wakeup_notifier;
1428 qemu_register_wakeup_notifier(&state->wakeup);
1429
1430 /*
1431 * Register wake-up support in QMP query-current-machine API
1432 */
1433 qemu_register_wakeup_support();
1434
1435 rc = xen_map_ioreq_server(state);
1436 if (rc < 0) {
1437 goto err;
1438 }
1439
1440 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1441 if (!rc) {
1442 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1443 state->shared_vmport_page =
1444 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1445 1, &ioreq_pfn, NULL);
1446 if (state->shared_vmport_page == NULL) {
1447 error_report("map shared vmport IO page returned error %d handle=%p",
1448 errno, xen_xc);
1449 goto err;
1450 }
1451 } else if (rc != -ENOSYS) {
1452 error_report("get vmport regs pfn returned error %d, rc=%d",
1453 errno, rc);
1454 goto err;
1455 }
1456
1457 /* Note: cpus is empty at this point in init */
1458 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1459
1460 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1461 if (rc < 0) {
1462 error_report("failed to enable ioreq server info: error %d handle=%p",
1463 errno, xen_xc);
1464 goto err;
1465 }
1466
1467 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1468
1469 /* FIXME: how about if we overflow the page here? */
1470 for (i = 0; i < max_cpus; i++) {
1471 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1472 xen_vcpu_eport(state->shared_page, i));
1473 if (rc == -1) {
1474 error_report("shared evtchn %d bind error %d", i, errno);
1475 goto err;
1476 }
1477 state->ioreq_local_port[i] = rc;
1478 }
1479
1480 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1481 state->bufioreq_remote_port);
1482 if (rc == -1) {
1483 error_report("buffered evtchn bind error %d", errno);
1484 goto err;
1485 }
1486 state->bufioreq_local_port = rc;
1487
1488 /* Init RAM management */
1489 #ifdef XEN_COMPAT_PHYSMAP
1490 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1491 #else
1492 xen_map_cache_init(NULL, state);
1493 #endif
1494 xen_ram_init(pcms, ram_size, ram_memory);
1495
1496 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1497
1498 state->memory_listener = xen_memory_listener;
1499 memory_listener_register(&state->memory_listener, &address_space_memory);
1500 state->log_for_dirtybit = NULL;
1501
1502 state->io_listener = xen_io_listener;
1503 memory_listener_register(&state->io_listener, &address_space_io);
1504
1505 state->device_listener = xen_device_listener;
1506 QLIST_INIT(&state->dev_list);
1507 device_listener_register(&state->device_listener);
1508
1509 xen_bus_init();
1510
1511 /* Initialize backend core & drivers */
1512 if (xen_be_init() != 0) {
1513 error_report("xen backend core setup failed");
1514 goto err;
1515 }
1516 xen_be_register_common();
1517
1518 QLIST_INIT(&xen_physmap);
1519 xen_read_physmap(state);
1520
1521 /* Disable ACPI build because Xen handles it */
1522 pcms->acpi_build_enabled = false;
1523
1524 return;
1525
1526 err:
1527 error_report("xen hardware virtual machine initialisation failed");
1528 exit(1);
1529 }
1530
1531 void destroy_hvm_domain(bool reboot)
1532 {
1533 xc_interface *xc_handle;
1534 int sts;
1535 int rc;
1536
1537 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff;
1538
1539 if (xen_dmod) {
1540 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason);
1541 if (!rc) {
1542 return;
1543 }
1544 if (errno != ENOTTY /* old Xen */) {
1545 perror("xendevicemodel_shutdown failed");
1546 }
1547 /* well, try the old thing then */
1548 }
1549
1550 xc_handle = xc_interface_open(0, 0, 0);
1551 if (xc_handle == NULL) {
1552 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1553 } else {
1554 sts = xc_domain_shutdown(xc_handle, xen_domid, reason);
1555 if (sts != 0) {
1556 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1557 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1558 sts, strerror(errno));
1559 } else {
1560 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1561 reboot ? "reboot" : "poweroff");
1562 }
1563 xc_interface_close(xc_handle);
1564 }
1565 }
1566
1567 void xen_register_framebuffer(MemoryRegion *mr)
1568 {
1569 framebuffer = mr;
1570 }
1571
1572 void xen_shutdown_fatal_error(const char *fmt, ...)
1573 {
1574 va_list ap;
1575
1576 va_start(ap, fmt);
1577 vfprintf(stderr, fmt, ap);
1578 va_end(ap);
1579 fprintf(stderr, "Will destroy the domain.\n");
1580 /* destroy the domain */
1581 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
1582 }
1583
1584 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1585 {
1586 if (unlikely(xen_in_migration)) {
1587 int rc;
1588 ram_addr_t start_pfn, nb_pages;
1589
1590 start = xen_phys_offset_to_gaddr(start, length);
1591
1592 if (length == 0) {
1593 length = TARGET_PAGE_SIZE;
1594 }
1595 start_pfn = start >> TARGET_PAGE_BITS;
1596 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1597 - start_pfn;
1598 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1599 if (rc) {
1600 fprintf(stderr,
1601 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1602 __func__, start, nb_pages, errno, strerror(errno));
1603 }
1604 }
1605 }
1606
1607 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1608 {
1609 if (enable) {
1610 memory_global_dirty_log_start();
1611 } else {
1612 memory_global_dirty_log_stop();
1613 }
1614 }