]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/xen/xen-hvm.c
qapi: Empty out qapi-schema.json
[mirror_qemu.git] / hw / i386 / xen / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12
13 #include "cpu.h"
14 #include "hw/pci/pci.h"
15 #include "hw/i386/pc.h"
16 #include "hw/i386/apic-msidef.h"
17 #include "hw/xen/xen_common.h"
18 #include "hw/xen/xen_backend.h"
19 #include "qapi/error.h"
20 #include "qapi/qapi-commands-misc.h"
21 #include "qemu/error-report.h"
22 #include "qemu/range.h"
23 #include "sysemu/xen-mapcache.h"
24 #include "trace.h"
25 #include "exec/address-spaces.h"
26
27 #include <xen/hvm/ioreq.h>
28 #include <xen/hvm/params.h>
29 #include <xen/hvm/e820.h>
30
31 //#define DEBUG_XEN_HVM
32
33 #ifdef DEBUG_XEN_HVM
34 #define DPRINTF(fmt, ...) \
35 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
36 #else
37 #define DPRINTF(fmt, ...) \
38 do { } while (0)
39 #endif
40
41 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
42 static MemoryRegion *framebuffer;
43 static bool xen_in_migration;
44
45 /* Compatibility with older version */
46
47 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
48 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
49 * needs to be included before this block and hw/xen/xen_common.h needs to
50 * be included before xen/hvm/ioreq.h
51 */
52 #ifndef IOREQ_TYPE_VMWARE_PORT
53 #define IOREQ_TYPE_VMWARE_PORT 3
54 struct vmware_regs {
55 uint32_t esi;
56 uint32_t edi;
57 uint32_t ebx;
58 uint32_t ecx;
59 uint32_t edx;
60 };
61 typedef struct vmware_regs vmware_regs_t;
62
63 struct shared_vmport_iopage {
64 struct vmware_regs vcpu_vmport_regs[1];
65 };
66 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
67 #endif
68
69 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
70 {
71 return shared_page->vcpu_ioreq[i].vp_eport;
72 }
73 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
74 {
75 return &shared_page->vcpu_ioreq[vcpu];
76 }
77
78 #define BUFFER_IO_MAX_DELAY 100
79
80 typedef struct XenPhysmap {
81 hwaddr start_addr;
82 ram_addr_t size;
83 const char *name;
84 hwaddr phys_offset;
85
86 QLIST_ENTRY(XenPhysmap) list;
87 } XenPhysmap;
88
89 typedef struct XenIOState {
90 ioservid_t ioservid;
91 shared_iopage_t *shared_page;
92 shared_vmport_iopage_t *shared_vmport_page;
93 buffered_iopage_t *buffered_io_page;
94 QEMUTimer *buffered_io_timer;
95 CPUState **cpu_by_vcpu_id;
96 /* the evtchn port for polling the notification, */
97 evtchn_port_t *ioreq_local_port;
98 /* evtchn local port for buffered io */
99 evtchn_port_t bufioreq_local_port;
100 /* the evtchn fd for polling */
101 xenevtchn_handle *xce_handle;
102 /* which vcpu we are serving */
103 int send_vcpu;
104
105 struct xs_handle *xenstore;
106 MemoryListener memory_listener;
107 MemoryListener io_listener;
108 DeviceListener device_listener;
109 QLIST_HEAD(, XenPhysmap) physmap;
110 hwaddr free_phys_offset;
111 const XenPhysmap *log_for_dirtybit;
112
113 Notifier exit;
114 Notifier suspend;
115 Notifier wakeup;
116 } XenIOState;
117
118 /* Xen specific function for piix pci */
119
120 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
121 {
122 return irq_num + ((pci_dev->devfn >> 3) << 2);
123 }
124
125 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
126 {
127 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
128 irq_num & 3, level);
129 }
130
131 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
132 {
133 int i;
134
135 /* Scan for updates to PCI link routes (0x60-0x63). */
136 for (i = 0; i < len; i++) {
137 uint8_t v = (val >> (8 * i)) & 0xff;
138 if (v & 0x80) {
139 v = 0;
140 }
141 v &= 0xf;
142 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
143 xen_set_pci_link_route(xen_domid, address + i - 0x60, v);
144 }
145 }
146 }
147
148 int xen_is_pirq_msi(uint32_t msi_data)
149 {
150 /* If vector is 0, the msi is remapped into a pirq, passed as
151 * dest_id.
152 */
153 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
154 }
155
156 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
157 {
158 xen_inject_msi(xen_domid, addr, data);
159 }
160
161 static void xen_suspend_notifier(Notifier *notifier, void *data)
162 {
163 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
164 }
165
166 /* Xen Interrupt Controller */
167
168 static void xen_set_irq(void *opaque, int irq, int level)
169 {
170 xen_set_isa_irq_level(xen_domid, irq, level);
171 }
172
173 qemu_irq *xen_interrupt_controller_init(void)
174 {
175 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
176 }
177
178 /* Memory Ops */
179
180 static void xen_ram_init(PCMachineState *pcms,
181 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
182 {
183 MemoryRegion *sysmem = get_system_memory();
184 ram_addr_t block_len;
185 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(),
186 PC_MACHINE_MAX_RAM_BELOW_4G,
187 &error_abort);
188
189 /* Handle the machine opt max-ram-below-4g. It is basically doing
190 * min(xen limit, user limit).
191 */
192 if (!user_lowmem) {
193 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
194 }
195 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
196 user_lowmem = HVM_BELOW_4G_RAM_END;
197 }
198
199 if (ram_size >= user_lowmem) {
200 pcms->above_4g_mem_size = ram_size - user_lowmem;
201 pcms->below_4g_mem_size = user_lowmem;
202 } else {
203 pcms->above_4g_mem_size = 0;
204 pcms->below_4g_mem_size = ram_size;
205 }
206 if (!pcms->above_4g_mem_size) {
207 block_len = ram_size;
208 } else {
209 /*
210 * Xen does not allocate the memory continuously, it keeps a
211 * hole of the size computed above or passed in.
212 */
213 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
214 }
215 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
216 &error_fatal);
217 *ram_memory_p = &ram_memory;
218
219 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
220 &ram_memory, 0, 0xa0000);
221 memory_region_add_subregion(sysmem, 0, &ram_640k);
222 /* Skip of the VGA IO memory space, it will be registered later by the VGA
223 * emulated device.
224 *
225 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
226 * the Options ROM, so it is registered here as RAM.
227 */
228 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
229 &ram_memory, 0xc0000,
230 pcms->below_4g_mem_size - 0xc0000);
231 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
232 if (pcms->above_4g_mem_size > 0) {
233 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
234 &ram_memory, 0x100000000ULL,
235 pcms->above_4g_mem_size);
236 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
237 }
238 }
239
240 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
241 Error **errp)
242 {
243 unsigned long nr_pfn;
244 xen_pfn_t *pfn_list;
245 int i;
246
247 if (runstate_check(RUN_STATE_INMIGRATE)) {
248 /* RAM already populated in Xen */
249 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
250 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
251 __func__, size, ram_addr);
252 return;
253 }
254
255 if (mr == &ram_memory) {
256 return;
257 }
258
259 trace_xen_ram_alloc(ram_addr, size);
260
261 nr_pfn = size >> TARGET_PAGE_BITS;
262 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
263
264 for (i = 0; i < nr_pfn; i++) {
265 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
266 }
267
268 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
269 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
270 ram_addr);
271 }
272
273 g_free(pfn_list);
274 }
275
276 static XenPhysmap *get_physmapping(XenIOState *state,
277 hwaddr start_addr, ram_addr_t size)
278 {
279 XenPhysmap *physmap = NULL;
280
281 start_addr &= TARGET_PAGE_MASK;
282
283 QLIST_FOREACH(physmap, &state->physmap, list) {
284 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
285 return physmap;
286 }
287 }
288 return NULL;
289 }
290
291 #ifdef XEN_COMPAT_PHYSMAP
292 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
293 ram_addr_t size, void *opaque)
294 {
295 hwaddr addr = start_addr & TARGET_PAGE_MASK;
296 XenIOState *xen_io_state = opaque;
297 XenPhysmap *physmap = NULL;
298
299 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
300 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
301 return physmap->start_addr;
302 }
303 }
304
305 return start_addr;
306 }
307
308 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
309 {
310 char path[80], value[17];
311
312 snprintf(path, sizeof(path),
313 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
314 xen_domid, (uint64_t)physmap->phys_offset);
315 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr);
316 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
317 return -1;
318 }
319 snprintf(path, sizeof(path),
320 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
321 xen_domid, (uint64_t)physmap->phys_offset);
322 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size);
323 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
324 return -1;
325 }
326 if (physmap->name) {
327 snprintf(path, sizeof(path),
328 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
329 xen_domid, (uint64_t)physmap->phys_offset);
330 if (!xs_write(state->xenstore, 0, path,
331 physmap->name, strlen(physmap->name))) {
332 return -1;
333 }
334 }
335 return 0;
336 }
337 #else
338 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
339 {
340 return 0;
341 }
342 #endif
343
344 static int xen_add_to_physmap(XenIOState *state,
345 hwaddr start_addr,
346 ram_addr_t size,
347 MemoryRegion *mr,
348 hwaddr offset_within_region)
349 {
350 unsigned long i = 0;
351 int rc = 0;
352 XenPhysmap *physmap = NULL;
353 hwaddr pfn, start_gpfn;
354 hwaddr phys_offset = memory_region_get_ram_addr(mr);
355 const char *mr_name;
356
357 if (get_physmapping(state, start_addr, size)) {
358 return 0;
359 }
360 if (size <= 0) {
361 return -1;
362 }
363
364 /* Xen can only handle a single dirty log region for now and we want
365 * the linear framebuffer to be that region.
366 * Avoid tracking any regions that is not videoram and avoid tracking
367 * the legacy vga region. */
368 if (mr == framebuffer && start_addr > 0xbffff) {
369 goto go_physmap;
370 }
371 return -1;
372
373 go_physmap:
374 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
375 start_addr, start_addr + size);
376
377 mr_name = memory_region_name(mr);
378
379 physmap = g_malloc(sizeof(XenPhysmap));
380
381 physmap->start_addr = start_addr;
382 physmap->size = size;
383 physmap->name = mr_name;
384 physmap->phys_offset = phys_offset;
385
386 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
387
388 if (runstate_check(RUN_STATE_INMIGRATE)) {
389 /* Now when we have a physmap entry we can replace a dummy mapping with
390 * a real one of guest foreign memory. */
391 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size);
392 assert(p && p == memory_region_get_ram_ptr(mr));
393
394 return 0;
395 }
396
397 pfn = phys_offset >> TARGET_PAGE_BITS;
398 start_gpfn = start_addr >> TARGET_PAGE_BITS;
399 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
400 unsigned long idx = pfn + i;
401 xen_pfn_t gpfn = start_gpfn + i;
402
403 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
404 if (rc) {
405 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
406 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
407 return -rc;
408 }
409 }
410
411 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
412 start_addr >> TARGET_PAGE_BITS,
413 (start_addr + size - 1) >> TARGET_PAGE_BITS,
414 XEN_DOMCTL_MEM_CACHEATTR_WB);
415 return xen_save_physmap(state, physmap);
416 }
417
418 static int xen_remove_from_physmap(XenIOState *state,
419 hwaddr start_addr,
420 ram_addr_t size)
421 {
422 unsigned long i = 0;
423 int rc = 0;
424 XenPhysmap *physmap = NULL;
425 hwaddr phys_offset = 0;
426
427 physmap = get_physmapping(state, start_addr, size);
428 if (physmap == NULL) {
429 return -1;
430 }
431
432 phys_offset = physmap->phys_offset;
433 size = physmap->size;
434
435 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
436 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
437
438 size >>= TARGET_PAGE_BITS;
439 start_addr >>= TARGET_PAGE_BITS;
440 phys_offset >>= TARGET_PAGE_BITS;
441 for (i = 0; i < size; i++) {
442 xen_pfn_t idx = start_addr + i;
443 xen_pfn_t gpfn = phys_offset + i;
444
445 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
446 if (rc) {
447 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
448 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
449 return -rc;
450 }
451 }
452
453 QLIST_REMOVE(physmap, list);
454 if (state->log_for_dirtybit == physmap) {
455 state->log_for_dirtybit = NULL;
456 }
457 g_free(physmap);
458
459 return 0;
460 }
461
462 static void xen_set_memory(struct MemoryListener *listener,
463 MemoryRegionSection *section,
464 bool add)
465 {
466 XenIOState *state = container_of(listener, XenIOState, memory_listener);
467 hwaddr start_addr = section->offset_within_address_space;
468 ram_addr_t size = int128_get64(section->size);
469 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
470 hvmmem_type_t mem_type;
471
472 if (section->mr == &ram_memory) {
473 return;
474 } else {
475 if (add) {
476 xen_map_memory_section(xen_domid, state->ioservid,
477 section);
478 } else {
479 xen_unmap_memory_section(xen_domid, state->ioservid,
480 section);
481 }
482 }
483
484 if (!memory_region_is_ram(section->mr)) {
485 return;
486 }
487
488 if (log_dirty != add) {
489 return;
490 }
491
492 trace_xen_client_set_memory(start_addr, size, log_dirty);
493
494 start_addr &= TARGET_PAGE_MASK;
495 size = TARGET_PAGE_ALIGN(size);
496
497 if (add) {
498 if (!memory_region_is_rom(section->mr)) {
499 xen_add_to_physmap(state, start_addr, size,
500 section->mr, section->offset_within_region);
501 } else {
502 mem_type = HVMMEM_ram_ro;
503 if (xen_set_mem_type(xen_domid, mem_type,
504 start_addr >> TARGET_PAGE_BITS,
505 size >> TARGET_PAGE_BITS)) {
506 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
507 start_addr);
508 }
509 }
510 } else {
511 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
512 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
513 }
514 }
515 }
516
517 static void xen_region_add(MemoryListener *listener,
518 MemoryRegionSection *section)
519 {
520 memory_region_ref(section->mr);
521 xen_set_memory(listener, section, true);
522 }
523
524 static void xen_region_del(MemoryListener *listener,
525 MemoryRegionSection *section)
526 {
527 xen_set_memory(listener, section, false);
528 memory_region_unref(section->mr);
529 }
530
531 static void xen_io_add(MemoryListener *listener,
532 MemoryRegionSection *section)
533 {
534 XenIOState *state = container_of(listener, XenIOState, io_listener);
535 MemoryRegion *mr = section->mr;
536
537 if (mr->ops == &unassigned_io_ops) {
538 return;
539 }
540
541 memory_region_ref(mr);
542
543 xen_map_io_section(xen_domid, state->ioservid, section);
544 }
545
546 static void xen_io_del(MemoryListener *listener,
547 MemoryRegionSection *section)
548 {
549 XenIOState *state = container_of(listener, XenIOState, io_listener);
550 MemoryRegion *mr = section->mr;
551
552 if (mr->ops == &unassigned_io_ops) {
553 return;
554 }
555
556 xen_unmap_io_section(xen_domid, state->ioservid, section);
557
558 memory_region_unref(mr);
559 }
560
561 static void xen_device_realize(DeviceListener *listener,
562 DeviceState *dev)
563 {
564 XenIOState *state = container_of(listener, XenIOState, device_listener);
565
566 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
567 PCIDevice *pci_dev = PCI_DEVICE(dev);
568
569 xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
570 }
571 }
572
573 static void xen_device_unrealize(DeviceListener *listener,
574 DeviceState *dev)
575 {
576 XenIOState *state = container_of(listener, XenIOState, device_listener);
577
578 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
579 PCIDevice *pci_dev = PCI_DEVICE(dev);
580
581 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
582 }
583 }
584
585 static void xen_sync_dirty_bitmap(XenIOState *state,
586 hwaddr start_addr,
587 ram_addr_t size)
588 {
589 hwaddr npages = size >> TARGET_PAGE_BITS;
590 const int width = sizeof(unsigned long) * 8;
591 unsigned long bitmap[DIV_ROUND_UP(npages, width)];
592 int rc, i, j;
593 const XenPhysmap *physmap = NULL;
594
595 physmap = get_physmapping(state, start_addr, size);
596 if (physmap == NULL) {
597 /* not handled */
598 return;
599 }
600
601 if (state->log_for_dirtybit == NULL) {
602 state->log_for_dirtybit = physmap;
603 } else if (state->log_for_dirtybit != physmap) {
604 /* Only one range for dirty bitmap can be tracked. */
605 return;
606 }
607
608 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
609 npages, bitmap);
610 if (rc < 0) {
611 #ifndef ENODATA
612 #define ENODATA ENOENT
613 #endif
614 if (errno == ENODATA) {
615 memory_region_set_dirty(framebuffer, 0, size);
616 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
617 ", 0x" TARGET_FMT_plx "): %s\n",
618 start_addr, start_addr + size, strerror(errno));
619 }
620 return;
621 }
622
623 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
624 unsigned long map = bitmap[i];
625 while (map != 0) {
626 j = ctzl(map);
627 map &= ~(1ul << j);
628 memory_region_set_dirty(framebuffer,
629 (i * width + j) * TARGET_PAGE_SIZE,
630 TARGET_PAGE_SIZE);
631 };
632 }
633 }
634
635 static void xen_log_start(MemoryListener *listener,
636 MemoryRegionSection *section,
637 int old, int new)
638 {
639 XenIOState *state = container_of(listener, XenIOState, memory_listener);
640
641 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
642 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
643 int128_get64(section->size));
644 }
645 }
646
647 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
648 int old, int new)
649 {
650 XenIOState *state = container_of(listener, XenIOState, memory_listener);
651
652 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
653 state->log_for_dirtybit = NULL;
654 /* Disable dirty bit tracking */
655 xen_track_dirty_vram(xen_domid, 0, 0, NULL);
656 }
657 }
658
659 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
660 {
661 XenIOState *state = container_of(listener, XenIOState, memory_listener);
662
663 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
664 int128_get64(section->size));
665 }
666
667 static void xen_log_global_start(MemoryListener *listener)
668 {
669 if (xen_enabled()) {
670 xen_in_migration = true;
671 }
672 }
673
674 static void xen_log_global_stop(MemoryListener *listener)
675 {
676 xen_in_migration = false;
677 }
678
679 static MemoryListener xen_memory_listener = {
680 .region_add = xen_region_add,
681 .region_del = xen_region_del,
682 .log_start = xen_log_start,
683 .log_stop = xen_log_stop,
684 .log_sync = xen_log_sync,
685 .log_global_start = xen_log_global_start,
686 .log_global_stop = xen_log_global_stop,
687 .priority = 10,
688 };
689
690 static MemoryListener xen_io_listener = {
691 .region_add = xen_io_add,
692 .region_del = xen_io_del,
693 .priority = 10,
694 };
695
696 static DeviceListener xen_device_listener = {
697 .realize = xen_device_realize,
698 .unrealize = xen_device_unrealize,
699 };
700
701 /* get the ioreq packets from share mem */
702 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
703 {
704 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
705
706 if (req->state != STATE_IOREQ_READY) {
707 DPRINTF("I/O request not ready: "
708 "%x, ptr: %x, port: %"PRIx64", "
709 "data: %"PRIx64", count: %u, size: %u\n",
710 req->state, req->data_is_ptr, req->addr,
711 req->data, req->count, req->size);
712 return NULL;
713 }
714
715 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
716
717 req->state = STATE_IOREQ_INPROCESS;
718 return req;
719 }
720
721 /* use poll to get the port notification */
722 /* ioreq_vec--out,the */
723 /* retval--the number of ioreq packet */
724 static ioreq_t *cpu_get_ioreq(XenIOState *state)
725 {
726 int i;
727 evtchn_port_t port;
728
729 port = xenevtchn_pending(state->xce_handle);
730 if (port == state->bufioreq_local_port) {
731 timer_mod(state->buffered_io_timer,
732 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
733 return NULL;
734 }
735
736 if (port != -1) {
737 for (i = 0; i < max_cpus; i++) {
738 if (state->ioreq_local_port[i] == port) {
739 break;
740 }
741 }
742
743 if (i == max_cpus) {
744 hw_error("Fatal error while trying to get io event!\n");
745 }
746
747 /* unmask the wanted port again */
748 xenevtchn_unmask(state->xce_handle, port);
749
750 /* get the io packet from shared memory */
751 state->send_vcpu = i;
752 return cpu_get_ioreq_from_shared_memory(state, i);
753 }
754
755 /* read error or read nothing */
756 return NULL;
757 }
758
759 static uint32_t do_inp(uint32_t addr, unsigned long size)
760 {
761 switch (size) {
762 case 1:
763 return cpu_inb(addr);
764 case 2:
765 return cpu_inw(addr);
766 case 4:
767 return cpu_inl(addr);
768 default:
769 hw_error("inp: bad size: %04x %lx", addr, size);
770 }
771 }
772
773 static void do_outp(uint32_t addr,
774 unsigned long size, uint32_t val)
775 {
776 switch (size) {
777 case 1:
778 return cpu_outb(addr, val);
779 case 2:
780 return cpu_outw(addr, val);
781 case 4:
782 return cpu_outl(addr, val);
783 default:
784 hw_error("outp: bad size: %04x %lx", addr, size);
785 }
786 }
787
788 /*
789 * Helper functions which read/write an object from/to physical guest
790 * memory, as part of the implementation of an ioreq.
791 *
792 * Equivalent to
793 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
794 * val, req->size, 0/1)
795 * except without the integer overflow problems.
796 */
797 static void rw_phys_req_item(hwaddr addr,
798 ioreq_t *req, uint32_t i, void *val, int rw)
799 {
800 /* Do everything unsigned so overflow just results in a truncated result
801 * and accesses to undesired parts of guest memory, which is up
802 * to the guest */
803 hwaddr offset = (hwaddr)req->size * i;
804 if (req->df) {
805 addr -= offset;
806 } else {
807 addr += offset;
808 }
809 cpu_physical_memory_rw(addr, val, req->size, rw);
810 }
811
812 static inline void read_phys_req_item(hwaddr addr,
813 ioreq_t *req, uint32_t i, void *val)
814 {
815 rw_phys_req_item(addr, req, i, val, 0);
816 }
817 static inline void write_phys_req_item(hwaddr addr,
818 ioreq_t *req, uint32_t i, void *val)
819 {
820 rw_phys_req_item(addr, req, i, val, 1);
821 }
822
823
824 static void cpu_ioreq_pio(ioreq_t *req)
825 {
826 uint32_t i;
827
828 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
829 req->data, req->count, req->size);
830
831 if (req->size > sizeof(uint32_t)) {
832 hw_error("PIO: bad size (%u)", req->size);
833 }
834
835 if (req->dir == IOREQ_READ) {
836 if (!req->data_is_ptr) {
837 req->data = do_inp(req->addr, req->size);
838 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
839 req->size);
840 } else {
841 uint32_t tmp;
842
843 for (i = 0; i < req->count; i++) {
844 tmp = do_inp(req->addr, req->size);
845 write_phys_req_item(req->data, req, i, &tmp);
846 }
847 }
848 } else if (req->dir == IOREQ_WRITE) {
849 if (!req->data_is_ptr) {
850 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
851 req->size);
852 do_outp(req->addr, req->size, req->data);
853 } else {
854 for (i = 0; i < req->count; i++) {
855 uint32_t tmp = 0;
856
857 read_phys_req_item(req->data, req, i, &tmp);
858 do_outp(req->addr, req->size, tmp);
859 }
860 }
861 }
862 }
863
864 static void cpu_ioreq_move(ioreq_t *req)
865 {
866 uint32_t i;
867
868 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
869 req->data, req->count, req->size);
870
871 if (req->size > sizeof(req->data)) {
872 hw_error("MMIO: bad size (%u)", req->size);
873 }
874
875 if (!req->data_is_ptr) {
876 if (req->dir == IOREQ_READ) {
877 for (i = 0; i < req->count; i++) {
878 read_phys_req_item(req->addr, req, i, &req->data);
879 }
880 } else if (req->dir == IOREQ_WRITE) {
881 for (i = 0; i < req->count; i++) {
882 write_phys_req_item(req->addr, req, i, &req->data);
883 }
884 }
885 } else {
886 uint64_t tmp;
887
888 if (req->dir == IOREQ_READ) {
889 for (i = 0; i < req->count; i++) {
890 read_phys_req_item(req->addr, req, i, &tmp);
891 write_phys_req_item(req->data, req, i, &tmp);
892 }
893 } else if (req->dir == IOREQ_WRITE) {
894 for (i = 0; i < req->count; i++) {
895 read_phys_req_item(req->data, req, i, &tmp);
896 write_phys_req_item(req->addr, req, i, &tmp);
897 }
898 }
899 }
900 }
901
902 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
903 {
904 X86CPU *cpu;
905 CPUX86State *env;
906
907 cpu = X86_CPU(current_cpu);
908 env = &cpu->env;
909 env->regs[R_EAX] = req->data;
910 env->regs[R_EBX] = vmport_regs->ebx;
911 env->regs[R_ECX] = vmport_regs->ecx;
912 env->regs[R_EDX] = vmport_regs->edx;
913 env->regs[R_ESI] = vmport_regs->esi;
914 env->regs[R_EDI] = vmport_regs->edi;
915 }
916
917 static void regs_from_cpu(vmware_regs_t *vmport_regs)
918 {
919 X86CPU *cpu = X86_CPU(current_cpu);
920 CPUX86State *env = &cpu->env;
921
922 vmport_regs->ebx = env->regs[R_EBX];
923 vmport_regs->ecx = env->regs[R_ECX];
924 vmport_regs->edx = env->regs[R_EDX];
925 vmport_regs->esi = env->regs[R_ESI];
926 vmport_regs->edi = env->regs[R_EDI];
927 }
928
929 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
930 {
931 vmware_regs_t *vmport_regs;
932
933 assert(state->shared_vmport_page);
934 vmport_regs =
935 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
936 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
937
938 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
939 regs_to_cpu(vmport_regs, req);
940 cpu_ioreq_pio(req);
941 regs_from_cpu(vmport_regs);
942 current_cpu = NULL;
943 }
944
945 static void handle_ioreq(XenIOState *state, ioreq_t *req)
946 {
947 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
948 req->addr, req->data, req->count, req->size);
949
950 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
951 (req->size < sizeof (target_ulong))) {
952 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
953 }
954
955 if (req->dir == IOREQ_WRITE)
956 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
957 req->addr, req->data, req->count, req->size);
958
959 switch (req->type) {
960 case IOREQ_TYPE_PIO:
961 cpu_ioreq_pio(req);
962 break;
963 case IOREQ_TYPE_COPY:
964 cpu_ioreq_move(req);
965 break;
966 case IOREQ_TYPE_VMWARE_PORT:
967 handle_vmport_ioreq(state, req);
968 break;
969 case IOREQ_TYPE_TIMEOFFSET:
970 break;
971 case IOREQ_TYPE_INVALIDATE:
972 xen_invalidate_map_cache();
973 break;
974 case IOREQ_TYPE_PCI_CONFIG: {
975 uint32_t sbdf = req->addr >> 32;
976 uint32_t val;
977
978 /* Fake a write to port 0xCF8 so that
979 * the config space access will target the
980 * correct device model.
981 */
982 val = (1u << 31) |
983 ((req->addr & 0x0f00) << 16) |
984 ((sbdf & 0xffff) << 8) |
985 (req->addr & 0xfc);
986 do_outp(0xcf8, 4, val);
987
988 /* Now issue the config space access via
989 * port 0xCFC
990 */
991 req->addr = 0xcfc | (req->addr & 0x03);
992 cpu_ioreq_pio(req);
993 break;
994 }
995 default:
996 hw_error("Invalid ioreq type 0x%x\n", req->type);
997 }
998 if (req->dir == IOREQ_READ) {
999 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
1000 req->addr, req->data, req->count, req->size);
1001 }
1002 }
1003
1004 static int handle_buffered_iopage(XenIOState *state)
1005 {
1006 buffered_iopage_t *buf_page = state->buffered_io_page;
1007 buf_ioreq_t *buf_req = NULL;
1008 ioreq_t req;
1009 int qw;
1010
1011 if (!buf_page) {
1012 return 0;
1013 }
1014
1015 memset(&req, 0x00, sizeof(req));
1016 req.state = STATE_IOREQ_READY;
1017 req.count = 1;
1018 req.dir = IOREQ_WRITE;
1019
1020 for (;;) {
1021 uint32_t rdptr = buf_page->read_pointer, wrptr;
1022
1023 xen_rmb();
1024 wrptr = buf_page->write_pointer;
1025 xen_rmb();
1026 if (rdptr != buf_page->read_pointer) {
1027 continue;
1028 }
1029 if (rdptr == wrptr) {
1030 break;
1031 }
1032 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1033 req.size = 1U << buf_req->size;
1034 req.addr = buf_req->addr;
1035 req.data = buf_req->data;
1036 req.type = buf_req->type;
1037 xen_rmb();
1038 qw = (req.size == 8);
1039 if (qw) {
1040 if (rdptr + 1 == wrptr) {
1041 hw_error("Incomplete quad word buffered ioreq");
1042 }
1043 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1044 IOREQ_BUFFER_SLOT_NUM];
1045 req.data |= ((uint64_t)buf_req->data) << 32;
1046 xen_rmb();
1047 }
1048
1049 handle_ioreq(state, &req);
1050
1051 /* Only req.data may get updated by handle_ioreq(), albeit even that
1052 * should not happen as such data would never make it to the guest (we
1053 * can only usefully see writes here after all).
1054 */
1055 assert(req.state == STATE_IOREQ_READY);
1056 assert(req.count == 1);
1057 assert(req.dir == IOREQ_WRITE);
1058 assert(!req.data_is_ptr);
1059
1060 atomic_add(&buf_page->read_pointer, qw + 1);
1061 }
1062
1063 return req.count;
1064 }
1065
1066 static void handle_buffered_io(void *opaque)
1067 {
1068 XenIOState *state = opaque;
1069
1070 if (handle_buffered_iopage(state)) {
1071 timer_mod(state->buffered_io_timer,
1072 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1073 } else {
1074 timer_del(state->buffered_io_timer);
1075 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1076 }
1077 }
1078
1079 static void cpu_handle_ioreq(void *opaque)
1080 {
1081 XenIOState *state = opaque;
1082 ioreq_t *req = cpu_get_ioreq(state);
1083
1084 handle_buffered_iopage(state);
1085 if (req) {
1086 ioreq_t copy = *req;
1087
1088 xen_rmb();
1089 handle_ioreq(state, &copy);
1090 req->data = copy.data;
1091
1092 if (req->state != STATE_IOREQ_INPROCESS) {
1093 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1094 "%x, ptr: %x, port: %"PRIx64", "
1095 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1096 req->state, req->data_is_ptr, req->addr,
1097 req->data, req->count, req->size, req->type);
1098 destroy_hvm_domain(false);
1099 return;
1100 }
1101
1102 xen_wmb(); /* Update ioreq contents /then/ update state. */
1103
1104 /*
1105 * We do this before we send the response so that the tools
1106 * have the opportunity to pick up on the reset before the
1107 * guest resumes and does a hlt with interrupts disabled which
1108 * causes Xen to powerdown the domain.
1109 */
1110 if (runstate_is_running()) {
1111 ShutdownCause request;
1112
1113 if (qemu_shutdown_requested_get()) {
1114 destroy_hvm_domain(false);
1115 }
1116 request = qemu_reset_requested_get();
1117 if (request) {
1118 qemu_system_reset(request);
1119 destroy_hvm_domain(true);
1120 }
1121 }
1122
1123 req->state = STATE_IORESP_READY;
1124 xenevtchn_notify(state->xce_handle,
1125 state->ioreq_local_port[state->send_vcpu]);
1126 }
1127 }
1128
1129 static void xen_main_loop_prepare(XenIOState *state)
1130 {
1131 int evtchn_fd = -1;
1132
1133 if (state->xce_handle != NULL) {
1134 evtchn_fd = xenevtchn_fd(state->xce_handle);
1135 }
1136
1137 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1138 state);
1139
1140 if (evtchn_fd != -1) {
1141 CPUState *cpu_state;
1142
1143 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1144 CPU_FOREACH(cpu_state) {
1145 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1146 __func__, cpu_state->cpu_index, cpu_state);
1147 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1148 }
1149 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1150 }
1151 }
1152
1153
1154 static void xen_hvm_change_state_handler(void *opaque, int running,
1155 RunState rstate)
1156 {
1157 XenIOState *state = opaque;
1158
1159 if (running) {
1160 xen_main_loop_prepare(state);
1161 }
1162
1163 xen_set_ioreq_server_state(xen_domid,
1164 state->ioservid,
1165 (rstate == RUN_STATE_RUNNING));
1166 }
1167
1168 static void xen_exit_notifier(Notifier *n, void *data)
1169 {
1170 XenIOState *state = container_of(n, XenIOState, exit);
1171
1172 xenevtchn_close(state->xce_handle);
1173 xs_daemon_close(state->xenstore);
1174 }
1175
1176 #ifdef XEN_COMPAT_PHYSMAP
1177 static void xen_read_physmap(XenIOState *state)
1178 {
1179 XenPhysmap *physmap = NULL;
1180 unsigned int len, num, i;
1181 char path[80], *value = NULL;
1182 char **entries = NULL;
1183
1184 snprintf(path, sizeof(path),
1185 "/local/domain/0/device-model/%d/physmap", xen_domid);
1186 entries = xs_directory(state->xenstore, 0, path, &num);
1187 if (entries == NULL)
1188 return;
1189
1190 for (i = 0; i < num; i++) {
1191 physmap = g_malloc(sizeof (XenPhysmap));
1192 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1193 snprintf(path, sizeof(path),
1194 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1195 xen_domid, entries[i]);
1196 value = xs_read(state->xenstore, 0, path, &len);
1197 if (value == NULL) {
1198 g_free(physmap);
1199 continue;
1200 }
1201 physmap->start_addr = strtoull(value, NULL, 16);
1202 free(value);
1203
1204 snprintf(path, sizeof(path),
1205 "/local/domain/0/device-model/%d/physmap/%s/size",
1206 xen_domid, entries[i]);
1207 value = xs_read(state->xenstore, 0, path, &len);
1208 if (value == NULL) {
1209 g_free(physmap);
1210 continue;
1211 }
1212 physmap->size = strtoull(value, NULL, 16);
1213 free(value);
1214
1215 snprintf(path, sizeof(path),
1216 "/local/domain/0/device-model/%d/physmap/%s/name",
1217 xen_domid, entries[i]);
1218 physmap->name = xs_read(state->xenstore, 0, path, &len);
1219
1220 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1221 }
1222 free(entries);
1223 }
1224 #else
1225 static void xen_read_physmap(XenIOState *state)
1226 {
1227 }
1228 #endif
1229
1230 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1231 {
1232 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1233 }
1234
1235 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1236 {
1237 int i, rc;
1238 xen_pfn_t ioreq_pfn;
1239 xen_pfn_t bufioreq_pfn;
1240 evtchn_port_t bufioreq_evtchn;
1241 XenIOState *state;
1242
1243 state = g_malloc0(sizeof (XenIOState));
1244
1245 state->xce_handle = xenevtchn_open(NULL, 0);
1246 if (state->xce_handle == NULL) {
1247 perror("xen: event channel open");
1248 goto err;
1249 }
1250
1251 state->xenstore = xs_daemon_open();
1252 if (state->xenstore == NULL) {
1253 perror("xen: xenstore open");
1254 goto err;
1255 }
1256
1257 if (xen_domid_restrict) {
1258 rc = xen_restrict(xen_domid);
1259 if (rc < 0) {
1260 error_report("failed to restrict: error %d", errno);
1261 goto err;
1262 }
1263 }
1264
1265 xen_create_ioreq_server(xen_domid, &state->ioservid);
1266
1267 state->exit.notify = xen_exit_notifier;
1268 qemu_add_exit_notifier(&state->exit);
1269
1270 state->suspend.notify = xen_suspend_notifier;
1271 qemu_register_suspend_notifier(&state->suspend);
1272
1273 state->wakeup.notify = xen_wakeup_notifier;
1274 qemu_register_wakeup_notifier(&state->wakeup);
1275
1276 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1277 &ioreq_pfn, &bufioreq_pfn,
1278 &bufioreq_evtchn);
1279 if (rc < 0) {
1280 error_report("failed to get ioreq server info: error %d handle=%p",
1281 errno, xen_xc);
1282 goto err;
1283 }
1284
1285 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1286 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1287 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1288
1289 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1290 PROT_READ|PROT_WRITE,
1291 1, &ioreq_pfn, NULL);
1292 if (state->shared_page == NULL) {
1293 error_report("map shared IO page returned error %d handle=%p",
1294 errno, xen_xc);
1295 goto err;
1296 }
1297
1298 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1299 if (!rc) {
1300 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1301 state->shared_vmport_page =
1302 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1303 1, &ioreq_pfn, NULL);
1304 if (state->shared_vmport_page == NULL) {
1305 error_report("map shared vmport IO page returned error %d handle=%p",
1306 errno, xen_xc);
1307 goto err;
1308 }
1309 } else if (rc != -ENOSYS) {
1310 error_report("get vmport regs pfn returned error %d, rc=%d",
1311 errno, rc);
1312 goto err;
1313 }
1314
1315 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1316 PROT_READ|PROT_WRITE,
1317 1, &bufioreq_pfn, NULL);
1318 if (state->buffered_io_page == NULL) {
1319 error_report("map buffered IO page returned error %d", errno);
1320 goto err;
1321 }
1322
1323 /* Note: cpus is empty at this point in init */
1324 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1325
1326 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1327 if (rc < 0) {
1328 error_report("failed to enable ioreq server info: error %d handle=%p",
1329 errno, xen_xc);
1330 goto err;
1331 }
1332
1333 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1334
1335 /* FIXME: how about if we overflow the page here? */
1336 for (i = 0; i < max_cpus; i++) {
1337 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1338 xen_vcpu_eport(state->shared_page, i));
1339 if (rc == -1) {
1340 error_report("shared evtchn %d bind error %d", i, errno);
1341 goto err;
1342 }
1343 state->ioreq_local_port[i] = rc;
1344 }
1345
1346 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1347 bufioreq_evtchn);
1348 if (rc == -1) {
1349 error_report("buffered evtchn bind error %d", errno);
1350 goto err;
1351 }
1352 state->bufioreq_local_port = rc;
1353
1354 /* Init RAM management */
1355 #ifdef XEN_COMPAT_PHYSMAP
1356 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1357 #else
1358 xen_map_cache_init(NULL, state);
1359 #endif
1360 xen_ram_init(pcms, ram_size, ram_memory);
1361
1362 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1363
1364 state->memory_listener = xen_memory_listener;
1365 QLIST_INIT(&state->physmap);
1366 memory_listener_register(&state->memory_listener, &address_space_memory);
1367 state->log_for_dirtybit = NULL;
1368
1369 state->io_listener = xen_io_listener;
1370 memory_listener_register(&state->io_listener, &address_space_io);
1371
1372 state->device_listener = xen_device_listener;
1373 device_listener_register(&state->device_listener);
1374
1375 /* Initialize backend core & drivers */
1376 if (xen_be_init() != 0) {
1377 error_report("xen backend core setup failed");
1378 goto err;
1379 }
1380 xen_be_register_common();
1381 xen_read_physmap(state);
1382
1383 /* Disable ACPI build because Xen handles it */
1384 pcms->acpi_build_enabled = false;
1385
1386 return;
1387
1388 err:
1389 error_report("xen hardware virtual machine initialisation failed");
1390 exit(1);
1391 }
1392
1393 void destroy_hvm_domain(bool reboot)
1394 {
1395 xc_interface *xc_handle;
1396 int sts;
1397
1398 xc_handle = xc_interface_open(0, 0, 0);
1399 if (xc_handle == NULL) {
1400 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1401 } else {
1402 sts = xc_domain_shutdown(xc_handle, xen_domid,
1403 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1404 if (sts != 0) {
1405 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1406 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1407 sts, strerror(errno));
1408 } else {
1409 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1410 reboot ? "reboot" : "poweroff");
1411 }
1412 xc_interface_close(xc_handle);
1413 }
1414 }
1415
1416 void xen_register_framebuffer(MemoryRegion *mr)
1417 {
1418 framebuffer = mr;
1419 }
1420
1421 void xen_shutdown_fatal_error(const char *fmt, ...)
1422 {
1423 va_list ap;
1424
1425 va_start(ap, fmt);
1426 vfprintf(stderr, fmt, ap);
1427 va_end(ap);
1428 fprintf(stderr, "Will destroy the domain.\n");
1429 /* destroy the domain */
1430 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
1431 }
1432
1433 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1434 {
1435 if (unlikely(xen_in_migration)) {
1436 int rc;
1437 ram_addr_t start_pfn, nb_pages;
1438
1439 if (length == 0) {
1440 length = TARGET_PAGE_SIZE;
1441 }
1442 start_pfn = start >> TARGET_PAGE_BITS;
1443 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1444 - start_pfn;
1445 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1446 if (rc) {
1447 fprintf(stderr,
1448 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1449 __func__, start, nb_pages, errno, strerror(errno));
1450 }
1451 }
1452 }
1453
1454 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1455 {
1456 if (enable) {
1457 memory_global_dirty_log_start();
1458 } else {
1459 memory_global_dirty_log_stop();
1460 }
1461 }