]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/xen/xen-hvm.c
hw/i386/pc: move shared x86 functions to x86.c and export them
[mirror_qemu.git] / hw / i386 / xen / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12
13 #include "cpu.h"
14 #include "hw/pci/pci.h"
15 #include "hw/pci/pci_host.h"
16 #include "hw/i386/pc.h"
17 #include "hw/irq.h"
18 #include "hw/hw.h"
19 #include "hw/i386/apic-msidef.h"
20 #include "hw/xen/xen_common.h"
21 #include "hw/xen/xen-legacy-backend.h"
22 #include "hw/xen/xen-bus.h"
23 #include "qapi/error.h"
24 #include "qapi/qapi-commands-misc.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/range.h"
28 #include "sysemu/runstate.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/xen-mapcache.h"
31 #include "trace.h"
32 #include "exec/address-spaces.h"
33
34 #include <xen/hvm/ioreq.h>
35 #include <xen/hvm/e820.h>
36
37 //#define DEBUG_XEN_HVM
38
39 #ifdef DEBUG_XEN_HVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
48 static MemoryRegion *framebuffer;
49 static bool xen_in_migration;
50
51 /* Compatibility with older version */
52
53 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
54 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
55 * needs to be included before this block and hw/xen/xen_common.h needs to
56 * be included before xen/hvm/ioreq.h
57 */
58 #ifndef IOREQ_TYPE_VMWARE_PORT
59 #define IOREQ_TYPE_VMWARE_PORT 3
60 struct vmware_regs {
61 uint32_t esi;
62 uint32_t edi;
63 uint32_t ebx;
64 uint32_t ecx;
65 uint32_t edx;
66 };
67 typedef struct vmware_regs vmware_regs_t;
68
69 struct shared_vmport_iopage {
70 struct vmware_regs vcpu_vmport_regs[1];
71 };
72 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
73 #endif
74
75 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
76 {
77 return shared_page->vcpu_ioreq[i].vp_eport;
78 }
79 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
80 {
81 return &shared_page->vcpu_ioreq[vcpu];
82 }
83
84 #define BUFFER_IO_MAX_DELAY 100
85
86 typedef struct XenPhysmap {
87 hwaddr start_addr;
88 ram_addr_t size;
89 const char *name;
90 hwaddr phys_offset;
91
92 QLIST_ENTRY(XenPhysmap) list;
93 } XenPhysmap;
94
95 static QLIST_HEAD(, XenPhysmap) xen_physmap;
96
97 typedef struct XenPciDevice {
98 PCIDevice *pci_dev;
99 uint32_t sbdf;
100 QLIST_ENTRY(XenPciDevice) entry;
101 } XenPciDevice;
102
103 typedef struct XenIOState {
104 ioservid_t ioservid;
105 shared_iopage_t *shared_page;
106 shared_vmport_iopage_t *shared_vmport_page;
107 buffered_iopage_t *buffered_io_page;
108 QEMUTimer *buffered_io_timer;
109 CPUState **cpu_by_vcpu_id;
110 /* the evtchn port for polling the notification, */
111 evtchn_port_t *ioreq_local_port;
112 /* evtchn remote and local ports for buffered io */
113 evtchn_port_t bufioreq_remote_port;
114 evtchn_port_t bufioreq_local_port;
115 /* the evtchn fd for polling */
116 xenevtchn_handle *xce_handle;
117 /* which vcpu we are serving */
118 int send_vcpu;
119
120 struct xs_handle *xenstore;
121 MemoryListener memory_listener;
122 MemoryListener io_listener;
123 QLIST_HEAD(, XenPciDevice) dev_list;
124 DeviceListener device_listener;
125 hwaddr free_phys_offset;
126 const XenPhysmap *log_for_dirtybit;
127 /* Buffer used by xen_sync_dirty_bitmap */
128 unsigned long *dirty_bitmap;
129
130 Notifier exit;
131 Notifier suspend;
132 Notifier wakeup;
133 } XenIOState;
134
135 /* Xen specific function for piix pci */
136
137 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
138 {
139 return irq_num + ((pci_dev->devfn >> 3) << 2);
140 }
141
142 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
143 {
144 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
145 irq_num & 3, level);
146 }
147
148 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
149 {
150 int i;
151
152 /* Scan for updates to PCI link routes (0x60-0x63). */
153 for (i = 0; i < len; i++) {
154 uint8_t v = (val >> (8 * i)) & 0xff;
155 if (v & 0x80) {
156 v = 0;
157 }
158 v &= 0xf;
159 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
160 xen_set_pci_link_route(xen_domid, address + i - 0x60, v);
161 }
162 }
163 }
164
165 int xen_is_pirq_msi(uint32_t msi_data)
166 {
167 /* If vector is 0, the msi is remapped into a pirq, passed as
168 * dest_id.
169 */
170 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
171 }
172
173 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
174 {
175 xen_inject_msi(xen_domid, addr, data);
176 }
177
178 static void xen_suspend_notifier(Notifier *notifier, void *data)
179 {
180 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
181 }
182
183 /* Xen Interrupt Controller */
184
185 static void xen_set_irq(void *opaque, int irq, int level)
186 {
187 xen_set_isa_irq_level(xen_domid, irq, level);
188 }
189
190 qemu_irq *xen_interrupt_controller_init(void)
191 {
192 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
193 }
194
195 /* Memory Ops */
196
197 static void xen_ram_init(PCMachineState *pcms,
198 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
199 {
200 MemoryRegion *sysmem = get_system_memory();
201 ram_addr_t block_len;
202 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(),
203 PC_MACHINE_MAX_RAM_BELOW_4G,
204 &error_abort);
205
206 /* Handle the machine opt max-ram-below-4g. It is basically doing
207 * min(xen limit, user limit).
208 */
209 if (!user_lowmem) {
210 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
211 }
212 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
213 user_lowmem = HVM_BELOW_4G_RAM_END;
214 }
215
216 if (ram_size >= user_lowmem) {
217 pcms->above_4g_mem_size = ram_size - user_lowmem;
218 pcms->below_4g_mem_size = user_lowmem;
219 } else {
220 pcms->above_4g_mem_size = 0;
221 pcms->below_4g_mem_size = ram_size;
222 }
223 if (!pcms->above_4g_mem_size) {
224 block_len = ram_size;
225 } else {
226 /*
227 * Xen does not allocate the memory continuously, it keeps a
228 * hole of the size computed above or passed in.
229 */
230 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
231 }
232 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
233 &error_fatal);
234 *ram_memory_p = &ram_memory;
235
236 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
237 &ram_memory, 0, 0xa0000);
238 memory_region_add_subregion(sysmem, 0, &ram_640k);
239 /* Skip of the VGA IO memory space, it will be registered later by the VGA
240 * emulated device.
241 *
242 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
243 * the Options ROM, so it is registered here as RAM.
244 */
245 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
246 &ram_memory, 0xc0000,
247 pcms->below_4g_mem_size - 0xc0000);
248 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
249 if (pcms->above_4g_mem_size > 0) {
250 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
251 &ram_memory, 0x100000000ULL,
252 pcms->above_4g_mem_size);
253 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
254 }
255 }
256
257 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
258 Error **errp)
259 {
260 unsigned long nr_pfn;
261 xen_pfn_t *pfn_list;
262 int i;
263
264 if (runstate_check(RUN_STATE_INMIGRATE)) {
265 /* RAM already populated in Xen */
266 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
267 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
268 __func__, size, ram_addr);
269 return;
270 }
271
272 if (mr == &ram_memory) {
273 return;
274 }
275
276 trace_xen_ram_alloc(ram_addr, size);
277
278 nr_pfn = size >> TARGET_PAGE_BITS;
279 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
280
281 for (i = 0; i < nr_pfn; i++) {
282 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
283 }
284
285 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
286 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
287 ram_addr);
288 }
289
290 g_free(pfn_list);
291 }
292
293 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size)
294 {
295 XenPhysmap *physmap = NULL;
296
297 start_addr &= TARGET_PAGE_MASK;
298
299 QLIST_FOREACH(physmap, &xen_physmap, list) {
300 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
301 return physmap;
302 }
303 }
304 return NULL;
305 }
306
307 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size)
308 {
309 hwaddr addr = phys_offset & TARGET_PAGE_MASK;
310 XenPhysmap *physmap = NULL;
311
312 QLIST_FOREACH(physmap, &xen_physmap, list) {
313 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
314 return physmap->start_addr + (phys_offset - physmap->phys_offset);
315 }
316 }
317
318 return phys_offset;
319 }
320
321 #ifdef XEN_COMPAT_PHYSMAP
322 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
323 {
324 char path[80], value[17];
325
326 snprintf(path, sizeof(path),
327 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
328 xen_domid, (uint64_t)physmap->phys_offset);
329 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr);
330 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
331 return -1;
332 }
333 snprintf(path, sizeof(path),
334 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
335 xen_domid, (uint64_t)physmap->phys_offset);
336 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size);
337 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
338 return -1;
339 }
340 if (physmap->name) {
341 snprintf(path, sizeof(path),
342 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
343 xen_domid, (uint64_t)physmap->phys_offset);
344 if (!xs_write(state->xenstore, 0, path,
345 physmap->name, strlen(physmap->name))) {
346 return -1;
347 }
348 }
349 return 0;
350 }
351 #else
352 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
353 {
354 return 0;
355 }
356 #endif
357
358 static int xen_add_to_physmap(XenIOState *state,
359 hwaddr start_addr,
360 ram_addr_t size,
361 MemoryRegion *mr,
362 hwaddr offset_within_region)
363 {
364 unsigned long nr_pages;
365 int rc = 0;
366 XenPhysmap *physmap = NULL;
367 hwaddr pfn, start_gpfn;
368 hwaddr phys_offset = memory_region_get_ram_addr(mr);
369 const char *mr_name;
370
371 if (get_physmapping(start_addr, size)) {
372 return 0;
373 }
374 if (size <= 0) {
375 return -1;
376 }
377
378 /* Xen can only handle a single dirty log region for now and we want
379 * the linear framebuffer to be that region.
380 * Avoid tracking any regions that is not videoram and avoid tracking
381 * the legacy vga region. */
382 if (mr == framebuffer && start_addr > 0xbffff) {
383 goto go_physmap;
384 }
385 return -1;
386
387 go_physmap:
388 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
389 start_addr, start_addr + size);
390
391 mr_name = memory_region_name(mr);
392
393 physmap = g_malloc(sizeof(XenPhysmap));
394
395 physmap->start_addr = start_addr;
396 physmap->size = size;
397 physmap->name = mr_name;
398 physmap->phys_offset = phys_offset;
399
400 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
401
402 if (runstate_check(RUN_STATE_INMIGRATE)) {
403 /* Now when we have a physmap entry we can replace a dummy mapping with
404 * a real one of guest foreign memory. */
405 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size);
406 assert(p && p == memory_region_get_ram_ptr(mr));
407
408 return 0;
409 }
410
411 pfn = phys_offset >> TARGET_PAGE_BITS;
412 start_gpfn = start_addr >> TARGET_PAGE_BITS;
413 nr_pages = size >> TARGET_PAGE_BITS;
414 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn,
415 start_gpfn);
416 if (rc) {
417 int saved_errno = errno;
418
419 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx
420 " to GFN %"HWADDR_PRIx" failed: %s",
421 nr_pages, pfn, start_gpfn, strerror(saved_errno));
422 errno = saved_errno;
423 return -1;
424 }
425
426 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid,
427 start_addr >> TARGET_PAGE_BITS,
428 (start_addr + size - 1) >> TARGET_PAGE_BITS,
429 XEN_DOMCTL_MEM_CACHEATTR_WB);
430 if (rc) {
431 error_report("pin_memory_cacheattr failed: %s", strerror(errno));
432 }
433 return xen_save_physmap(state, physmap);
434 }
435
436 static int xen_remove_from_physmap(XenIOState *state,
437 hwaddr start_addr,
438 ram_addr_t size)
439 {
440 int rc = 0;
441 XenPhysmap *physmap = NULL;
442 hwaddr phys_offset = 0;
443
444 physmap = get_physmapping(start_addr, size);
445 if (physmap == NULL) {
446 return -1;
447 }
448
449 phys_offset = physmap->phys_offset;
450 size = physmap->size;
451
452 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
453 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
454
455 size >>= TARGET_PAGE_BITS;
456 start_addr >>= TARGET_PAGE_BITS;
457 phys_offset >>= TARGET_PAGE_BITS;
458 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr,
459 phys_offset);
460 if (rc) {
461 int saved_errno = errno;
462
463 error_report("relocate_memory "RAM_ADDR_FMT" pages"
464 " from GFN %"HWADDR_PRIx
465 " to GFN %"HWADDR_PRIx" failed: %s",
466 size, start_addr, phys_offset, strerror(saved_errno));
467 errno = saved_errno;
468 return -1;
469 }
470
471 QLIST_REMOVE(physmap, list);
472 if (state->log_for_dirtybit == physmap) {
473 state->log_for_dirtybit = NULL;
474 g_free(state->dirty_bitmap);
475 state->dirty_bitmap = NULL;
476 }
477 g_free(physmap);
478
479 return 0;
480 }
481
482 static void xen_set_memory(struct MemoryListener *listener,
483 MemoryRegionSection *section,
484 bool add)
485 {
486 XenIOState *state = container_of(listener, XenIOState, memory_listener);
487 hwaddr start_addr = section->offset_within_address_space;
488 ram_addr_t size = int128_get64(section->size);
489 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
490 hvmmem_type_t mem_type;
491
492 if (section->mr == &ram_memory) {
493 return;
494 } else {
495 if (add) {
496 xen_map_memory_section(xen_domid, state->ioservid,
497 section);
498 } else {
499 xen_unmap_memory_section(xen_domid, state->ioservid,
500 section);
501 }
502 }
503
504 if (!memory_region_is_ram(section->mr)) {
505 return;
506 }
507
508 if (log_dirty != add) {
509 return;
510 }
511
512 trace_xen_client_set_memory(start_addr, size, log_dirty);
513
514 start_addr &= TARGET_PAGE_MASK;
515 size = TARGET_PAGE_ALIGN(size);
516
517 if (add) {
518 if (!memory_region_is_rom(section->mr)) {
519 xen_add_to_physmap(state, start_addr, size,
520 section->mr, section->offset_within_region);
521 } else {
522 mem_type = HVMMEM_ram_ro;
523 if (xen_set_mem_type(xen_domid, mem_type,
524 start_addr >> TARGET_PAGE_BITS,
525 size >> TARGET_PAGE_BITS)) {
526 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
527 start_addr);
528 }
529 }
530 } else {
531 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
532 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
533 }
534 }
535 }
536
537 static void xen_region_add(MemoryListener *listener,
538 MemoryRegionSection *section)
539 {
540 memory_region_ref(section->mr);
541 xen_set_memory(listener, section, true);
542 }
543
544 static void xen_region_del(MemoryListener *listener,
545 MemoryRegionSection *section)
546 {
547 xen_set_memory(listener, section, false);
548 memory_region_unref(section->mr);
549 }
550
551 static void xen_io_add(MemoryListener *listener,
552 MemoryRegionSection *section)
553 {
554 XenIOState *state = container_of(listener, XenIOState, io_listener);
555 MemoryRegion *mr = section->mr;
556
557 if (mr->ops == &unassigned_io_ops) {
558 return;
559 }
560
561 memory_region_ref(mr);
562
563 xen_map_io_section(xen_domid, state->ioservid, section);
564 }
565
566 static void xen_io_del(MemoryListener *listener,
567 MemoryRegionSection *section)
568 {
569 XenIOState *state = container_of(listener, XenIOState, io_listener);
570 MemoryRegion *mr = section->mr;
571
572 if (mr->ops == &unassigned_io_ops) {
573 return;
574 }
575
576 xen_unmap_io_section(xen_domid, state->ioservid, section);
577
578 memory_region_unref(mr);
579 }
580
581 static void xen_device_realize(DeviceListener *listener,
582 DeviceState *dev)
583 {
584 XenIOState *state = container_of(listener, XenIOState, device_listener);
585
586 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
587 PCIDevice *pci_dev = PCI_DEVICE(dev);
588 XenPciDevice *xendev = g_new(XenPciDevice, 1);
589
590 xendev->pci_dev = pci_dev;
591 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev),
592 pci_dev->devfn);
593 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry);
594
595 xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
596 }
597 }
598
599 static void xen_device_unrealize(DeviceListener *listener,
600 DeviceState *dev)
601 {
602 XenIOState *state = container_of(listener, XenIOState, device_listener);
603
604 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
605 PCIDevice *pci_dev = PCI_DEVICE(dev);
606 XenPciDevice *xendev, *next;
607
608 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
609
610 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) {
611 if (xendev->pci_dev == pci_dev) {
612 QLIST_REMOVE(xendev, entry);
613 g_free(xendev);
614 break;
615 }
616 }
617 }
618 }
619
620 static void xen_sync_dirty_bitmap(XenIOState *state,
621 hwaddr start_addr,
622 ram_addr_t size)
623 {
624 hwaddr npages = size >> TARGET_PAGE_BITS;
625 const int width = sizeof(unsigned long) * 8;
626 size_t bitmap_size = DIV_ROUND_UP(npages, width);
627 int rc, i, j;
628 const XenPhysmap *physmap = NULL;
629
630 physmap = get_physmapping(start_addr, size);
631 if (physmap == NULL) {
632 /* not handled */
633 return;
634 }
635
636 if (state->log_for_dirtybit == NULL) {
637 state->log_for_dirtybit = physmap;
638 state->dirty_bitmap = g_new(unsigned long, bitmap_size);
639 } else if (state->log_for_dirtybit != physmap) {
640 /* Only one range for dirty bitmap can be tracked. */
641 return;
642 }
643
644 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
645 npages, state->dirty_bitmap);
646 if (rc < 0) {
647 #ifndef ENODATA
648 #define ENODATA ENOENT
649 #endif
650 if (errno == ENODATA) {
651 memory_region_set_dirty(framebuffer, 0, size);
652 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
653 ", 0x" TARGET_FMT_plx "): %s\n",
654 start_addr, start_addr + size, strerror(errno));
655 }
656 return;
657 }
658
659 for (i = 0; i < bitmap_size; i++) {
660 unsigned long map = state->dirty_bitmap[i];
661 while (map != 0) {
662 j = ctzl(map);
663 map &= ~(1ul << j);
664 memory_region_set_dirty(framebuffer,
665 (i * width + j) * TARGET_PAGE_SIZE,
666 TARGET_PAGE_SIZE);
667 };
668 }
669 }
670
671 static void xen_log_start(MemoryListener *listener,
672 MemoryRegionSection *section,
673 int old, int new)
674 {
675 XenIOState *state = container_of(listener, XenIOState, memory_listener);
676
677 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
678 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
679 int128_get64(section->size));
680 }
681 }
682
683 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
684 int old, int new)
685 {
686 XenIOState *state = container_of(listener, XenIOState, memory_listener);
687
688 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
689 state->log_for_dirtybit = NULL;
690 g_free(state->dirty_bitmap);
691 state->dirty_bitmap = NULL;
692 /* Disable dirty bit tracking */
693 xen_track_dirty_vram(xen_domid, 0, 0, NULL);
694 }
695 }
696
697 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
698 {
699 XenIOState *state = container_of(listener, XenIOState, memory_listener);
700
701 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
702 int128_get64(section->size));
703 }
704
705 static void xen_log_global_start(MemoryListener *listener)
706 {
707 if (xen_enabled()) {
708 xen_in_migration = true;
709 }
710 }
711
712 static void xen_log_global_stop(MemoryListener *listener)
713 {
714 xen_in_migration = false;
715 }
716
717 static MemoryListener xen_memory_listener = {
718 .region_add = xen_region_add,
719 .region_del = xen_region_del,
720 .log_start = xen_log_start,
721 .log_stop = xen_log_stop,
722 .log_sync = xen_log_sync,
723 .log_global_start = xen_log_global_start,
724 .log_global_stop = xen_log_global_stop,
725 .priority = 10,
726 };
727
728 static MemoryListener xen_io_listener = {
729 .region_add = xen_io_add,
730 .region_del = xen_io_del,
731 .priority = 10,
732 };
733
734 static DeviceListener xen_device_listener = {
735 .realize = xen_device_realize,
736 .unrealize = xen_device_unrealize,
737 };
738
739 /* get the ioreq packets from share mem */
740 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
741 {
742 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
743
744 if (req->state != STATE_IOREQ_READY) {
745 DPRINTF("I/O request not ready: "
746 "%x, ptr: %x, port: %"PRIx64", "
747 "data: %"PRIx64", count: %u, size: %u\n",
748 req->state, req->data_is_ptr, req->addr,
749 req->data, req->count, req->size);
750 return NULL;
751 }
752
753 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
754
755 req->state = STATE_IOREQ_INPROCESS;
756 return req;
757 }
758
759 /* use poll to get the port notification */
760 /* ioreq_vec--out,the */
761 /* retval--the number of ioreq packet */
762 static ioreq_t *cpu_get_ioreq(XenIOState *state)
763 {
764 MachineState *ms = MACHINE(qdev_get_machine());
765 unsigned int max_cpus = ms->smp.max_cpus;
766 int i;
767 evtchn_port_t port;
768
769 port = xenevtchn_pending(state->xce_handle);
770 if (port == state->bufioreq_local_port) {
771 timer_mod(state->buffered_io_timer,
772 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
773 return NULL;
774 }
775
776 if (port != -1) {
777 for (i = 0; i < max_cpus; i++) {
778 if (state->ioreq_local_port[i] == port) {
779 break;
780 }
781 }
782
783 if (i == max_cpus) {
784 hw_error("Fatal error while trying to get io event!\n");
785 }
786
787 /* unmask the wanted port again */
788 xenevtchn_unmask(state->xce_handle, port);
789
790 /* get the io packet from shared memory */
791 state->send_vcpu = i;
792 return cpu_get_ioreq_from_shared_memory(state, i);
793 }
794
795 /* read error or read nothing */
796 return NULL;
797 }
798
799 static uint32_t do_inp(uint32_t addr, unsigned long size)
800 {
801 switch (size) {
802 case 1:
803 return cpu_inb(addr);
804 case 2:
805 return cpu_inw(addr);
806 case 4:
807 return cpu_inl(addr);
808 default:
809 hw_error("inp: bad size: %04x %lx", addr, size);
810 }
811 }
812
813 static void do_outp(uint32_t addr,
814 unsigned long size, uint32_t val)
815 {
816 switch (size) {
817 case 1:
818 return cpu_outb(addr, val);
819 case 2:
820 return cpu_outw(addr, val);
821 case 4:
822 return cpu_outl(addr, val);
823 default:
824 hw_error("outp: bad size: %04x %lx", addr, size);
825 }
826 }
827
828 /*
829 * Helper functions which read/write an object from/to physical guest
830 * memory, as part of the implementation of an ioreq.
831 *
832 * Equivalent to
833 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
834 * val, req->size, 0/1)
835 * except without the integer overflow problems.
836 */
837 static void rw_phys_req_item(hwaddr addr,
838 ioreq_t *req, uint32_t i, void *val, int rw)
839 {
840 /* Do everything unsigned so overflow just results in a truncated result
841 * and accesses to undesired parts of guest memory, which is up
842 * to the guest */
843 hwaddr offset = (hwaddr)req->size * i;
844 if (req->df) {
845 addr -= offset;
846 } else {
847 addr += offset;
848 }
849 cpu_physical_memory_rw(addr, val, req->size, rw);
850 }
851
852 static inline void read_phys_req_item(hwaddr addr,
853 ioreq_t *req, uint32_t i, void *val)
854 {
855 rw_phys_req_item(addr, req, i, val, 0);
856 }
857 static inline void write_phys_req_item(hwaddr addr,
858 ioreq_t *req, uint32_t i, void *val)
859 {
860 rw_phys_req_item(addr, req, i, val, 1);
861 }
862
863
864 static void cpu_ioreq_pio(ioreq_t *req)
865 {
866 uint32_t i;
867
868 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
869 req->data, req->count, req->size);
870
871 if (req->size > sizeof(uint32_t)) {
872 hw_error("PIO: bad size (%u)", req->size);
873 }
874
875 if (req->dir == IOREQ_READ) {
876 if (!req->data_is_ptr) {
877 req->data = do_inp(req->addr, req->size);
878 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
879 req->size);
880 } else {
881 uint32_t tmp;
882
883 for (i = 0; i < req->count; i++) {
884 tmp = do_inp(req->addr, req->size);
885 write_phys_req_item(req->data, req, i, &tmp);
886 }
887 }
888 } else if (req->dir == IOREQ_WRITE) {
889 if (!req->data_is_ptr) {
890 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
891 req->size);
892 do_outp(req->addr, req->size, req->data);
893 } else {
894 for (i = 0; i < req->count; i++) {
895 uint32_t tmp = 0;
896
897 read_phys_req_item(req->data, req, i, &tmp);
898 do_outp(req->addr, req->size, tmp);
899 }
900 }
901 }
902 }
903
904 static void cpu_ioreq_move(ioreq_t *req)
905 {
906 uint32_t i;
907
908 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
909 req->data, req->count, req->size);
910
911 if (req->size > sizeof(req->data)) {
912 hw_error("MMIO: bad size (%u)", req->size);
913 }
914
915 if (!req->data_is_ptr) {
916 if (req->dir == IOREQ_READ) {
917 for (i = 0; i < req->count; i++) {
918 read_phys_req_item(req->addr, req, i, &req->data);
919 }
920 } else if (req->dir == IOREQ_WRITE) {
921 for (i = 0; i < req->count; i++) {
922 write_phys_req_item(req->addr, req, i, &req->data);
923 }
924 }
925 } else {
926 uint64_t tmp;
927
928 if (req->dir == IOREQ_READ) {
929 for (i = 0; i < req->count; i++) {
930 read_phys_req_item(req->addr, req, i, &tmp);
931 write_phys_req_item(req->data, req, i, &tmp);
932 }
933 } else if (req->dir == IOREQ_WRITE) {
934 for (i = 0; i < req->count; i++) {
935 read_phys_req_item(req->data, req, i, &tmp);
936 write_phys_req_item(req->addr, req, i, &tmp);
937 }
938 }
939 }
940 }
941
942 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req)
943 {
944 uint32_t sbdf = req->addr >> 32;
945 uint32_t reg = req->addr;
946 XenPciDevice *xendev;
947
948 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
949 req->size != sizeof(uint32_t)) {
950 hw_error("PCI config access: bad size (%u)", req->size);
951 }
952
953 if (req->count != 1) {
954 hw_error("PCI config access: bad count (%u)", req->count);
955 }
956
957 QLIST_FOREACH(xendev, &state->dev_list, entry) {
958 if (xendev->sbdf != sbdf) {
959 continue;
960 }
961
962 if (!req->data_is_ptr) {
963 if (req->dir == IOREQ_READ) {
964 req->data = pci_host_config_read_common(
965 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
966 req->size);
967 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
968 req->size, req->data);
969 } else if (req->dir == IOREQ_WRITE) {
970 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
971 req->size, req->data);
972 pci_host_config_write_common(
973 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
974 req->data, req->size);
975 }
976 } else {
977 uint32_t tmp;
978
979 if (req->dir == IOREQ_READ) {
980 tmp = pci_host_config_read_common(
981 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
982 req->size);
983 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
984 req->size, tmp);
985 write_phys_req_item(req->data, req, 0, &tmp);
986 } else if (req->dir == IOREQ_WRITE) {
987 read_phys_req_item(req->data, req, 0, &tmp);
988 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
989 req->size, tmp);
990 pci_host_config_write_common(
991 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
992 tmp, req->size);
993 }
994 }
995 }
996 }
997
998 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
999 {
1000 X86CPU *cpu;
1001 CPUX86State *env;
1002
1003 cpu = X86_CPU(current_cpu);
1004 env = &cpu->env;
1005 env->regs[R_EAX] = req->data;
1006 env->regs[R_EBX] = vmport_regs->ebx;
1007 env->regs[R_ECX] = vmport_regs->ecx;
1008 env->regs[R_EDX] = vmport_regs->edx;
1009 env->regs[R_ESI] = vmport_regs->esi;
1010 env->regs[R_EDI] = vmport_regs->edi;
1011 }
1012
1013 static void regs_from_cpu(vmware_regs_t *vmport_regs)
1014 {
1015 X86CPU *cpu = X86_CPU(current_cpu);
1016 CPUX86State *env = &cpu->env;
1017
1018 vmport_regs->ebx = env->regs[R_EBX];
1019 vmport_regs->ecx = env->regs[R_ECX];
1020 vmport_regs->edx = env->regs[R_EDX];
1021 vmport_regs->esi = env->regs[R_ESI];
1022 vmport_regs->edi = env->regs[R_EDI];
1023 }
1024
1025 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
1026 {
1027 vmware_regs_t *vmport_regs;
1028
1029 assert(state->shared_vmport_page);
1030 vmport_regs =
1031 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
1032 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
1033
1034 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
1035 regs_to_cpu(vmport_regs, req);
1036 cpu_ioreq_pio(req);
1037 regs_from_cpu(vmport_regs);
1038 current_cpu = NULL;
1039 }
1040
1041 static void handle_ioreq(XenIOState *state, ioreq_t *req)
1042 {
1043 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
1044 req->addr, req->data, req->count, req->size);
1045
1046 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
1047 (req->size < sizeof (target_ulong))) {
1048 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
1049 }
1050
1051 if (req->dir == IOREQ_WRITE)
1052 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
1053 req->addr, req->data, req->count, req->size);
1054
1055 switch (req->type) {
1056 case IOREQ_TYPE_PIO:
1057 cpu_ioreq_pio(req);
1058 break;
1059 case IOREQ_TYPE_COPY:
1060 cpu_ioreq_move(req);
1061 break;
1062 case IOREQ_TYPE_VMWARE_PORT:
1063 handle_vmport_ioreq(state, req);
1064 break;
1065 case IOREQ_TYPE_TIMEOFFSET:
1066 break;
1067 case IOREQ_TYPE_INVALIDATE:
1068 xen_invalidate_map_cache();
1069 break;
1070 case IOREQ_TYPE_PCI_CONFIG:
1071 cpu_ioreq_config(state, req);
1072 break;
1073 default:
1074 hw_error("Invalid ioreq type 0x%x\n", req->type);
1075 }
1076 if (req->dir == IOREQ_READ) {
1077 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
1078 req->addr, req->data, req->count, req->size);
1079 }
1080 }
1081
1082 static int handle_buffered_iopage(XenIOState *state)
1083 {
1084 buffered_iopage_t *buf_page = state->buffered_io_page;
1085 buf_ioreq_t *buf_req = NULL;
1086 ioreq_t req;
1087 int qw;
1088
1089 if (!buf_page) {
1090 return 0;
1091 }
1092
1093 memset(&req, 0x00, sizeof(req));
1094 req.state = STATE_IOREQ_READY;
1095 req.count = 1;
1096 req.dir = IOREQ_WRITE;
1097
1098 for (;;) {
1099 uint32_t rdptr = buf_page->read_pointer, wrptr;
1100
1101 xen_rmb();
1102 wrptr = buf_page->write_pointer;
1103 xen_rmb();
1104 if (rdptr != buf_page->read_pointer) {
1105 continue;
1106 }
1107 if (rdptr == wrptr) {
1108 break;
1109 }
1110 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1111 req.size = 1U << buf_req->size;
1112 req.addr = buf_req->addr;
1113 req.data = buf_req->data;
1114 req.type = buf_req->type;
1115 xen_rmb();
1116 qw = (req.size == 8);
1117 if (qw) {
1118 if (rdptr + 1 == wrptr) {
1119 hw_error("Incomplete quad word buffered ioreq");
1120 }
1121 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1122 IOREQ_BUFFER_SLOT_NUM];
1123 req.data |= ((uint64_t)buf_req->data) << 32;
1124 xen_rmb();
1125 }
1126
1127 handle_ioreq(state, &req);
1128
1129 /* Only req.data may get updated by handle_ioreq(), albeit even that
1130 * should not happen as such data would never make it to the guest (we
1131 * can only usefully see writes here after all).
1132 */
1133 assert(req.state == STATE_IOREQ_READY);
1134 assert(req.count == 1);
1135 assert(req.dir == IOREQ_WRITE);
1136 assert(!req.data_is_ptr);
1137
1138 atomic_add(&buf_page->read_pointer, qw + 1);
1139 }
1140
1141 return req.count;
1142 }
1143
1144 static void handle_buffered_io(void *opaque)
1145 {
1146 XenIOState *state = opaque;
1147
1148 if (handle_buffered_iopage(state)) {
1149 timer_mod(state->buffered_io_timer,
1150 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1151 } else {
1152 timer_del(state->buffered_io_timer);
1153 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1154 }
1155 }
1156
1157 static void cpu_handle_ioreq(void *opaque)
1158 {
1159 XenIOState *state = opaque;
1160 ioreq_t *req = cpu_get_ioreq(state);
1161
1162 handle_buffered_iopage(state);
1163 if (req) {
1164 ioreq_t copy = *req;
1165
1166 xen_rmb();
1167 handle_ioreq(state, &copy);
1168 req->data = copy.data;
1169
1170 if (req->state != STATE_IOREQ_INPROCESS) {
1171 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1172 "%x, ptr: %x, port: %"PRIx64", "
1173 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1174 req->state, req->data_is_ptr, req->addr,
1175 req->data, req->count, req->size, req->type);
1176 destroy_hvm_domain(false);
1177 return;
1178 }
1179
1180 xen_wmb(); /* Update ioreq contents /then/ update state. */
1181
1182 /*
1183 * We do this before we send the response so that the tools
1184 * have the opportunity to pick up on the reset before the
1185 * guest resumes and does a hlt with interrupts disabled which
1186 * causes Xen to powerdown the domain.
1187 */
1188 if (runstate_is_running()) {
1189 ShutdownCause request;
1190
1191 if (qemu_shutdown_requested_get()) {
1192 destroy_hvm_domain(false);
1193 }
1194 request = qemu_reset_requested_get();
1195 if (request) {
1196 qemu_system_reset(request);
1197 destroy_hvm_domain(true);
1198 }
1199 }
1200
1201 req->state = STATE_IORESP_READY;
1202 xenevtchn_notify(state->xce_handle,
1203 state->ioreq_local_port[state->send_vcpu]);
1204 }
1205 }
1206
1207 static void xen_main_loop_prepare(XenIOState *state)
1208 {
1209 int evtchn_fd = -1;
1210
1211 if (state->xce_handle != NULL) {
1212 evtchn_fd = xenevtchn_fd(state->xce_handle);
1213 }
1214
1215 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1216 state);
1217
1218 if (evtchn_fd != -1) {
1219 CPUState *cpu_state;
1220
1221 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1222 CPU_FOREACH(cpu_state) {
1223 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1224 __func__, cpu_state->cpu_index, cpu_state);
1225 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1226 }
1227 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1228 }
1229 }
1230
1231
1232 static void xen_hvm_change_state_handler(void *opaque, int running,
1233 RunState rstate)
1234 {
1235 XenIOState *state = opaque;
1236
1237 if (running) {
1238 xen_main_loop_prepare(state);
1239 }
1240
1241 xen_set_ioreq_server_state(xen_domid,
1242 state->ioservid,
1243 (rstate == RUN_STATE_RUNNING));
1244 }
1245
1246 static void xen_exit_notifier(Notifier *n, void *data)
1247 {
1248 XenIOState *state = container_of(n, XenIOState, exit);
1249
1250 xen_destroy_ioreq_server(xen_domid, state->ioservid);
1251
1252 xenevtchn_close(state->xce_handle);
1253 xs_daemon_close(state->xenstore);
1254 }
1255
1256 #ifdef XEN_COMPAT_PHYSMAP
1257 static void xen_read_physmap(XenIOState *state)
1258 {
1259 XenPhysmap *physmap = NULL;
1260 unsigned int len, num, i;
1261 char path[80], *value = NULL;
1262 char **entries = NULL;
1263
1264 snprintf(path, sizeof(path),
1265 "/local/domain/0/device-model/%d/physmap", xen_domid);
1266 entries = xs_directory(state->xenstore, 0, path, &num);
1267 if (entries == NULL)
1268 return;
1269
1270 for (i = 0; i < num; i++) {
1271 physmap = g_malloc(sizeof (XenPhysmap));
1272 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1273 snprintf(path, sizeof(path),
1274 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1275 xen_domid, entries[i]);
1276 value = xs_read(state->xenstore, 0, path, &len);
1277 if (value == NULL) {
1278 g_free(physmap);
1279 continue;
1280 }
1281 physmap->start_addr = strtoull(value, NULL, 16);
1282 free(value);
1283
1284 snprintf(path, sizeof(path),
1285 "/local/domain/0/device-model/%d/physmap/%s/size",
1286 xen_domid, entries[i]);
1287 value = xs_read(state->xenstore, 0, path, &len);
1288 if (value == NULL) {
1289 g_free(physmap);
1290 continue;
1291 }
1292 physmap->size = strtoull(value, NULL, 16);
1293 free(value);
1294
1295 snprintf(path, sizeof(path),
1296 "/local/domain/0/device-model/%d/physmap/%s/name",
1297 xen_domid, entries[i]);
1298 physmap->name = xs_read(state->xenstore, 0, path, &len);
1299
1300 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
1301 }
1302 free(entries);
1303 }
1304 #else
1305 static void xen_read_physmap(XenIOState *state)
1306 {
1307 }
1308 #endif
1309
1310 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1311 {
1312 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1313 }
1314
1315 static int xen_map_ioreq_server(XenIOState *state)
1316 {
1317 void *addr = NULL;
1318 xenforeignmemory_resource_handle *fres;
1319 xen_pfn_t ioreq_pfn;
1320 xen_pfn_t bufioreq_pfn;
1321 evtchn_port_t bufioreq_evtchn;
1322 int rc;
1323
1324 /*
1325 * Attempt to map using the resource API and fall back to normal
1326 * foreign mapping if this is not supported.
1327 */
1328 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0);
1329 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1);
1330 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid,
1331 XENMEM_resource_ioreq_server,
1332 state->ioservid, 0, 2,
1333 &addr,
1334 PROT_READ | PROT_WRITE, 0);
1335 if (fres != NULL) {
1336 trace_xen_map_resource_ioreq(state->ioservid, addr);
1337 state->buffered_io_page = addr;
1338 state->shared_page = addr + TARGET_PAGE_SIZE;
1339 } else if (errno != EOPNOTSUPP) {
1340 error_report("failed to map ioreq server resources: error %d handle=%p",
1341 errno, xen_xc);
1342 return -1;
1343 }
1344
1345 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1346 (state->shared_page == NULL) ?
1347 &ioreq_pfn : NULL,
1348 (state->buffered_io_page == NULL) ?
1349 &bufioreq_pfn : NULL,
1350 &bufioreq_evtchn);
1351 if (rc < 0) {
1352 error_report("failed to get ioreq server info: error %d handle=%p",
1353 errno, xen_xc);
1354 return rc;
1355 }
1356
1357 if (state->shared_page == NULL) {
1358 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1359
1360 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1361 PROT_READ | PROT_WRITE,
1362 1, &ioreq_pfn, NULL);
1363 if (state->shared_page == NULL) {
1364 error_report("map shared IO page returned error %d handle=%p",
1365 errno, xen_xc);
1366 }
1367 }
1368
1369 if (state->buffered_io_page == NULL) {
1370 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1371
1372 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1373 PROT_READ | PROT_WRITE,
1374 1, &bufioreq_pfn,
1375 NULL);
1376 if (state->buffered_io_page == NULL) {
1377 error_report("map buffered IO page returned error %d", errno);
1378 return -1;
1379 }
1380 }
1381
1382 if (state->shared_page == NULL || state->buffered_io_page == NULL) {
1383 return -1;
1384 }
1385
1386 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1387
1388 state->bufioreq_remote_port = bufioreq_evtchn;
1389
1390 return 0;
1391 }
1392
1393 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1394 {
1395 MachineState *ms = MACHINE(pcms);
1396 unsigned int max_cpus = ms->smp.max_cpus;
1397 int i, rc;
1398 xen_pfn_t ioreq_pfn;
1399 XenIOState *state;
1400
1401 state = g_malloc0(sizeof (XenIOState));
1402
1403 state->xce_handle = xenevtchn_open(NULL, 0);
1404 if (state->xce_handle == NULL) {
1405 perror("xen: event channel open");
1406 goto err;
1407 }
1408
1409 state->xenstore = xs_daemon_open();
1410 if (state->xenstore == NULL) {
1411 perror("xen: xenstore open");
1412 goto err;
1413 }
1414
1415 xen_create_ioreq_server(xen_domid, &state->ioservid);
1416
1417 state->exit.notify = xen_exit_notifier;
1418 qemu_add_exit_notifier(&state->exit);
1419
1420 state->suspend.notify = xen_suspend_notifier;
1421 qemu_register_suspend_notifier(&state->suspend);
1422
1423 state->wakeup.notify = xen_wakeup_notifier;
1424 qemu_register_wakeup_notifier(&state->wakeup);
1425
1426 /*
1427 * Register wake-up support in QMP query-current-machine API
1428 */
1429 qemu_register_wakeup_support();
1430
1431 rc = xen_map_ioreq_server(state);
1432 if (rc < 0) {
1433 goto err;
1434 }
1435
1436 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1437 if (!rc) {
1438 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1439 state->shared_vmport_page =
1440 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1441 1, &ioreq_pfn, NULL);
1442 if (state->shared_vmport_page == NULL) {
1443 error_report("map shared vmport IO page returned error %d handle=%p",
1444 errno, xen_xc);
1445 goto err;
1446 }
1447 } else if (rc != -ENOSYS) {
1448 error_report("get vmport regs pfn returned error %d, rc=%d",
1449 errno, rc);
1450 goto err;
1451 }
1452
1453 /* Note: cpus is empty at this point in init */
1454 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1455
1456 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1457 if (rc < 0) {
1458 error_report("failed to enable ioreq server info: error %d handle=%p",
1459 errno, xen_xc);
1460 goto err;
1461 }
1462
1463 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1464
1465 /* FIXME: how about if we overflow the page here? */
1466 for (i = 0; i < max_cpus; i++) {
1467 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1468 xen_vcpu_eport(state->shared_page, i));
1469 if (rc == -1) {
1470 error_report("shared evtchn %d bind error %d", i, errno);
1471 goto err;
1472 }
1473 state->ioreq_local_port[i] = rc;
1474 }
1475
1476 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1477 state->bufioreq_remote_port);
1478 if (rc == -1) {
1479 error_report("buffered evtchn bind error %d", errno);
1480 goto err;
1481 }
1482 state->bufioreq_local_port = rc;
1483
1484 /* Init RAM management */
1485 #ifdef XEN_COMPAT_PHYSMAP
1486 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1487 #else
1488 xen_map_cache_init(NULL, state);
1489 #endif
1490 xen_ram_init(pcms, ram_size, ram_memory);
1491
1492 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1493
1494 state->memory_listener = xen_memory_listener;
1495 memory_listener_register(&state->memory_listener, &address_space_memory);
1496 state->log_for_dirtybit = NULL;
1497
1498 state->io_listener = xen_io_listener;
1499 memory_listener_register(&state->io_listener, &address_space_io);
1500
1501 state->device_listener = xen_device_listener;
1502 QLIST_INIT(&state->dev_list);
1503 device_listener_register(&state->device_listener);
1504
1505 xen_bus_init();
1506
1507 /* Initialize backend core & drivers */
1508 if (xen_be_init() != 0) {
1509 error_report("xen backend core setup failed");
1510 goto err;
1511 }
1512 xen_be_register_common();
1513
1514 QLIST_INIT(&xen_physmap);
1515 xen_read_physmap(state);
1516
1517 /* Disable ACPI build because Xen handles it */
1518 pcms->acpi_build_enabled = false;
1519
1520 return;
1521
1522 err:
1523 error_report("xen hardware virtual machine initialisation failed");
1524 exit(1);
1525 }
1526
1527 void destroy_hvm_domain(bool reboot)
1528 {
1529 xc_interface *xc_handle;
1530 int sts;
1531 int rc;
1532
1533 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff;
1534
1535 if (xen_dmod) {
1536 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason);
1537 if (!rc) {
1538 return;
1539 }
1540 if (errno != ENOTTY /* old Xen */) {
1541 perror("xendevicemodel_shutdown failed");
1542 }
1543 /* well, try the old thing then */
1544 }
1545
1546 xc_handle = xc_interface_open(0, 0, 0);
1547 if (xc_handle == NULL) {
1548 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1549 } else {
1550 sts = xc_domain_shutdown(xc_handle, xen_domid, reason);
1551 if (sts != 0) {
1552 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1553 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1554 sts, strerror(errno));
1555 } else {
1556 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1557 reboot ? "reboot" : "poweroff");
1558 }
1559 xc_interface_close(xc_handle);
1560 }
1561 }
1562
1563 void xen_register_framebuffer(MemoryRegion *mr)
1564 {
1565 framebuffer = mr;
1566 }
1567
1568 void xen_shutdown_fatal_error(const char *fmt, ...)
1569 {
1570 va_list ap;
1571
1572 va_start(ap, fmt);
1573 vfprintf(stderr, fmt, ap);
1574 va_end(ap);
1575 fprintf(stderr, "Will destroy the domain.\n");
1576 /* destroy the domain */
1577 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
1578 }
1579
1580 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1581 {
1582 if (unlikely(xen_in_migration)) {
1583 int rc;
1584 ram_addr_t start_pfn, nb_pages;
1585
1586 start = xen_phys_offset_to_gaddr(start, length);
1587
1588 if (length == 0) {
1589 length = TARGET_PAGE_SIZE;
1590 }
1591 start_pfn = start >> TARGET_PAGE_BITS;
1592 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1593 - start_pfn;
1594 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1595 if (rc) {
1596 fprintf(stderr,
1597 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1598 __func__, start, nb_pages, errno, strerror(errno));
1599 }
1600 }
1601 }
1602
1603 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1604 {
1605 if (enable) {
1606 memory_global_dirty_log_start();
1607 } else {
1608 memory_global_dirty_log_stop();
1609 }
1610 }