]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/arm_gic_kvm.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20150512' into...
[mirror_qemu.git] / hw / intc / arm_gic_kvm.c
1 /*
2 * ARM Generic Interrupt Controller using KVM in-kernel support
3 *
4 * Copyright (c) 2012 Linaro Limited
5 * Written by Peter Maydell
6 * Save/Restore logic added by Christoffer Dall.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "hw/sysbus.h"
23 #include "sysemu/kvm.h"
24 #include "kvm_arm.h"
25 #include "gic_internal.h"
26
27 //#define DEBUG_GIC_KVM
28
29 #ifdef DEBUG_GIC_KVM
30 static const int debug_gic_kvm = 1;
31 #else
32 static const int debug_gic_kvm = 0;
33 #endif
34
35 #define DPRINTF(fmt, ...) do { \
36 if (debug_gic_kvm) { \
37 printf("arm_gic: " fmt , ## __VA_ARGS__); \
38 } \
39 } while (0)
40
41 #define TYPE_KVM_ARM_GIC "kvm-arm-gic"
42 #define KVM_ARM_GIC(obj) \
43 OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC)
44 #define KVM_ARM_GIC_CLASS(klass) \
45 OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC)
46 #define KVM_ARM_GIC_GET_CLASS(obj) \
47 OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC)
48
49 typedef struct KVMARMGICClass {
50 ARMGICCommonClass parent_class;
51 DeviceRealize parent_realize;
52 void (*parent_reset)(DeviceState *dev);
53 } KVMARMGICClass;
54
55 static void kvm_arm_gic_set_irq(void *opaque, int irq, int level)
56 {
57 /* Meaning of the 'irq' parameter:
58 * [0..N-1] : external interrupts
59 * [N..N+31] : PPI (internal) interrupts for CPU 0
60 * [N+32..N+63] : PPI (internal interrupts for CPU 1
61 * ...
62 * Convert this to the kernel's desired encoding, which
63 * has separate fields in the irq number for type,
64 * CPU number and interrupt number.
65 */
66 GICState *s = (GICState *)opaque;
67 int kvm_irq, irqtype, cpu;
68
69 if (irq < (s->num_irq - GIC_INTERNAL)) {
70 /* External interrupt. The kernel numbers these like the GIC
71 * hardware, with external interrupt IDs starting after the
72 * internal ones.
73 */
74 irqtype = KVM_ARM_IRQ_TYPE_SPI;
75 cpu = 0;
76 irq += GIC_INTERNAL;
77 } else {
78 /* Internal interrupt: decode into (cpu, interrupt id) */
79 irqtype = KVM_ARM_IRQ_TYPE_PPI;
80 irq -= (s->num_irq - GIC_INTERNAL);
81 cpu = irq / GIC_INTERNAL;
82 irq %= GIC_INTERNAL;
83 }
84 kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT)
85 | (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq;
86
87 kvm_set_irq(kvm_state, kvm_irq, !!level);
88 }
89
90 static bool kvm_arm_gic_can_save_restore(GICState *s)
91 {
92 return s->dev_fd >= 0;
93 }
94
95 static bool kvm_gic_supports_attr(GICState *s, int group, int attrnum)
96 {
97 struct kvm_device_attr attr = {
98 .group = group,
99 .attr = attrnum,
100 .flags = 0,
101 };
102
103 if (s->dev_fd == -1) {
104 return false;
105 }
106
107 return kvm_device_ioctl(s->dev_fd, KVM_HAS_DEVICE_ATTR, &attr) == 0;
108 }
109
110 static void kvm_gic_access(GICState *s, int group, int offset,
111 int cpu, uint32_t *val, bool write)
112 {
113 struct kvm_device_attr attr;
114 int type;
115 int err;
116
117 cpu = cpu & 0xff;
118
119 attr.flags = 0;
120 attr.group = group;
121 attr.attr = (((uint64_t)cpu << KVM_DEV_ARM_VGIC_CPUID_SHIFT) &
122 KVM_DEV_ARM_VGIC_CPUID_MASK) |
123 (((uint64_t)offset << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) &
124 KVM_DEV_ARM_VGIC_OFFSET_MASK);
125 attr.addr = (uintptr_t)val;
126
127 if (write) {
128 type = KVM_SET_DEVICE_ATTR;
129 } else {
130 type = KVM_GET_DEVICE_ATTR;
131 }
132
133 err = kvm_device_ioctl(s->dev_fd, type, &attr);
134 if (err < 0) {
135 fprintf(stderr, "KVM_{SET/GET}_DEVICE_ATTR failed: %s\n",
136 strerror(-err));
137 abort();
138 }
139 }
140
141 static void kvm_gicd_access(GICState *s, int offset, int cpu,
142 uint32_t *val, bool write)
143 {
144 kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
145 offset, cpu, val, write);
146 }
147
148 static void kvm_gicc_access(GICState *s, int offset, int cpu,
149 uint32_t *val, bool write)
150 {
151 kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_CPU_REGS,
152 offset, cpu, val, write);
153 }
154
155 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \
156 for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++)
157
158 /*
159 * Translate from the in-kernel field for an IRQ value to/from the qemu
160 * representation.
161 */
162 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu,
163 uint32_t *field, bool to_kernel);
164
165 /* synthetic translate function used for clear/set registers to completely
166 * clear a setting using a clear-register before setting the remaining bits
167 * using a set-register */
168 static void translate_clear(GICState *s, int irq, int cpu,
169 uint32_t *field, bool to_kernel)
170 {
171 if (to_kernel) {
172 *field = ~0;
173 } else {
174 /* does not make sense: qemu model doesn't use set/clear regs */
175 abort();
176 }
177 }
178
179 static void translate_group(GICState *s, int irq, int cpu,
180 uint32_t *field, bool to_kernel)
181 {
182 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
183
184 if (to_kernel) {
185 *field = GIC_TEST_GROUP(irq, cm);
186 } else {
187 if (*field & 1) {
188 GIC_SET_GROUP(irq, cm);
189 }
190 }
191 }
192
193 static void translate_enabled(GICState *s, int irq, int cpu,
194 uint32_t *field, bool to_kernel)
195 {
196 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
197
198 if (to_kernel) {
199 *field = GIC_TEST_ENABLED(irq, cm);
200 } else {
201 if (*field & 1) {
202 GIC_SET_ENABLED(irq, cm);
203 }
204 }
205 }
206
207 static void translate_pending(GICState *s, int irq, int cpu,
208 uint32_t *field, bool to_kernel)
209 {
210 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
211
212 if (to_kernel) {
213 *field = gic_test_pending(s, irq, cm);
214 } else {
215 if (*field & 1) {
216 GIC_SET_PENDING(irq, cm);
217 /* TODO: Capture is level-line is held high in the kernel */
218 }
219 }
220 }
221
222 static void translate_active(GICState *s, int irq, int cpu,
223 uint32_t *field, bool to_kernel)
224 {
225 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
226
227 if (to_kernel) {
228 *field = GIC_TEST_ACTIVE(irq, cm);
229 } else {
230 if (*field & 1) {
231 GIC_SET_ACTIVE(irq, cm);
232 }
233 }
234 }
235
236 static void translate_trigger(GICState *s, int irq, int cpu,
237 uint32_t *field, bool to_kernel)
238 {
239 if (to_kernel) {
240 *field = (GIC_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
241 } else {
242 if (*field & 0x2) {
243 GIC_SET_EDGE_TRIGGER(irq);
244 }
245 }
246 }
247
248 static void translate_priority(GICState *s, int irq, int cpu,
249 uint32_t *field, bool to_kernel)
250 {
251 if (to_kernel) {
252 *field = GIC_GET_PRIORITY(irq, cpu) & 0xff;
253 } else {
254 gic_set_priority(s, cpu, irq, *field & 0xff, MEMTXATTRS_UNSPECIFIED);
255 }
256 }
257
258 static void translate_targets(GICState *s, int irq, int cpu,
259 uint32_t *field, bool to_kernel)
260 {
261 if (to_kernel) {
262 *field = s->irq_target[irq] & 0xff;
263 } else {
264 s->irq_target[irq] = *field & 0xff;
265 }
266 }
267
268 static void translate_sgisource(GICState *s, int irq, int cpu,
269 uint32_t *field, bool to_kernel)
270 {
271 if (to_kernel) {
272 *field = s->sgi_pending[irq][cpu] & 0xff;
273 } else {
274 s->sgi_pending[irq][cpu] = *field & 0xff;
275 }
276 }
277
278 /* Read a register group from the kernel VGIC */
279 static void kvm_dist_get(GICState *s, uint32_t offset, int width,
280 int maxirq, vgic_translate_fn translate_fn)
281 {
282 uint32_t reg;
283 int i;
284 int j;
285 int irq;
286 int cpu;
287 int regsz = 32 / width; /* irqs per kernel register */
288 uint32_t field;
289
290 for_each_irq_reg(i, maxirq, width) {
291 irq = i * regsz;
292 cpu = 0;
293 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
294 kvm_gicd_access(s, offset, cpu, &reg, false);
295 for (j = 0; j < regsz; j++) {
296 field = extract32(reg, j * width, width);
297 translate_fn(s, irq + j, cpu, &field, false);
298 }
299
300 cpu++;
301 }
302 offset += 4;
303 }
304 }
305
306 /* Write a register group to the kernel VGIC */
307 static void kvm_dist_put(GICState *s, uint32_t offset, int width,
308 int maxirq, vgic_translate_fn translate_fn)
309 {
310 uint32_t reg;
311 int i;
312 int j;
313 int irq;
314 int cpu;
315 int regsz = 32 / width; /* irqs per kernel register */
316 uint32_t field;
317
318 for_each_irq_reg(i, maxirq, width) {
319 irq = i * regsz;
320 cpu = 0;
321 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
322 reg = 0;
323 for (j = 0; j < regsz; j++) {
324 translate_fn(s, irq + j, cpu, &field, true);
325 reg = deposit32(reg, j * width, width, field);
326 }
327 kvm_gicd_access(s, offset, cpu, &reg, true);
328
329 cpu++;
330 }
331 offset += 4;
332 }
333 }
334
335 static void kvm_arm_gic_put(GICState *s)
336 {
337 uint32_t reg;
338 int i;
339 int cpu;
340 int num_cpu;
341 int num_irq;
342
343 if (!kvm_arm_gic_can_save_restore(s)) {
344 DPRINTF("Cannot put kernel gic state, no kernel interface");
345 return;
346 }
347
348 /* Note: We do the restore in a slightly different order than the save
349 * (where the order doesn't matter and is simply ordered according to the
350 * register offset values */
351
352 /*****************************************************************
353 * Distributor State
354 */
355
356 /* s->ctlr -> GICD_CTLR */
357 reg = s->ctlr;
358 kvm_gicd_access(s, 0x0, 0, &reg, true);
359
360 /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */
361 kvm_gicd_access(s, 0x4, 0, &reg, false);
362 num_irq = ((reg & 0x1f) + 1) * 32;
363 num_cpu = ((reg & 0xe0) >> 5) + 1;
364
365 if (num_irq < s->num_irq) {
366 fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n",
367 s->num_irq, num_irq);
368 abort();
369 } else if (num_cpu != s->num_cpu) {
370 fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n",
371 s->num_cpu, num_cpu);
372 /* Did we not create the VCPUs in the kernel yet? */
373 abort();
374 }
375
376 /* TODO: Consider checking compatibility with the IIDR ? */
377
378 /* irq_state[n].enabled -> GICD_ISENABLERn */
379 kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear);
380 kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled);
381
382 /* irq_state[n].group -> GICD_IGROUPRn */
383 kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group);
384
385 /* s->irq_target[irq] -> GICD_ITARGETSRn
386 * (restore targets before pending to ensure the pending state is set on
387 * the appropriate CPU interfaces in the kernel) */
388 kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets);
389
390 /* irq_state[n].trigger -> GICD_ICFGRn
391 * (restore configuration registers before pending IRQs so we treat
392 * level/edge correctly) */
393 kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger);
394
395 /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */
396 kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear);
397 kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending);
398
399 /* irq_state[n].active -> GICD_ISACTIVERn */
400 kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear);
401 kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active);
402
403
404 /* s->priorityX[irq] -> ICD_IPRIORITYRn */
405 kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority);
406
407 /* s->sgi_pending -> ICD_CPENDSGIRn */
408 kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear);
409 kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource);
410
411
412 /*****************************************************************
413 * CPU Interface(s) State
414 */
415
416 for (cpu = 0; cpu < s->num_cpu; cpu++) {
417 /* s->cpu_ctlr[cpu] -> GICC_CTLR */
418 reg = s->cpu_ctlr[cpu];
419 kvm_gicc_access(s, 0x00, cpu, &reg, true);
420
421 /* s->priority_mask[cpu] -> GICC_PMR */
422 reg = (s->priority_mask[cpu] & 0xff);
423 kvm_gicc_access(s, 0x04, cpu, &reg, true);
424
425 /* s->bpr[cpu] -> GICC_BPR */
426 reg = (s->bpr[cpu] & 0x7);
427 kvm_gicc_access(s, 0x08, cpu, &reg, true);
428
429 /* s->abpr[cpu] -> GICC_ABPR */
430 reg = (s->abpr[cpu] & 0x7);
431 kvm_gicc_access(s, 0x1c, cpu, &reg, true);
432
433 /* s->apr[n][cpu] -> GICC_APRn */
434 for (i = 0; i < 4; i++) {
435 reg = s->apr[i][cpu];
436 kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, true);
437 }
438 }
439 }
440
441 static void kvm_arm_gic_get(GICState *s)
442 {
443 uint32_t reg;
444 int i;
445 int cpu;
446
447 if (!kvm_arm_gic_can_save_restore(s)) {
448 DPRINTF("Cannot get kernel gic state, no kernel interface");
449 return;
450 }
451
452 /*****************************************************************
453 * Distributor State
454 */
455
456 /* GICD_CTLR -> s->ctlr */
457 kvm_gicd_access(s, 0x0, 0, &reg, false);
458 s->ctlr = reg;
459
460 /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */
461 kvm_gicd_access(s, 0x4, 0, &reg, false);
462 s->num_irq = ((reg & 0x1f) + 1) * 32;
463 s->num_cpu = ((reg & 0xe0) >> 5) + 1;
464
465 if (s->num_irq > GIC_MAXIRQ) {
466 fprintf(stderr, "Too many IRQs reported from the kernel: %d\n",
467 s->num_irq);
468 abort();
469 }
470
471 /* GICD_IIDR -> ? */
472 kvm_gicd_access(s, 0x8, 0, &reg, false);
473
474 /* Clear all the IRQ settings */
475 for (i = 0; i < s->num_irq; i++) {
476 memset(&s->irq_state[i], 0, sizeof(s->irq_state[0]));
477 }
478
479 /* GICD_IGROUPRn -> irq_state[n].group */
480 kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group);
481
482 /* GICD_ISENABLERn -> irq_state[n].enabled */
483 kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled);
484
485 /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */
486 kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending);
487
488 /* GICD_ISACTIVERn -> irq_state[n].active */
489 kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active);
490
491 /* GICD_ICFRn -> irq_state[n].trigger */
492 kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger);
493
494 /* GICD_IPRIORITYRn -> s->priorityX[irq] */
495 kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority);
496
497 /* GICD_ITARGETSRn -> s->irq_target[irq] */
498 kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets);
499
500 /* GICD_CPENDSGIRn -> s->sgi_pending */
501 kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource);
502
503
504 /*****************************************************************
505 * CPU Interface(s) State
506 */
507
508 for (cpu = 0; cpu < s->num_cpu; cpu++) {
509 /* GICC_CTLR -> s->cpu_ctlr[cpu] */
510 kvm_gicc_access(s, 0x00, cpu, &reg, false);
511 s->cpu_ctlr[cpu] = reg;
512
513 /* GICC_PMR -> s->priority_mask[cpu] */
514 kvm_gicc_access(s, 0x04, cpu, &reg, false);
515 s->priority_mask[cpu] = (reg & 0xff);
516
517 /* GICC_BPR -> s->bpr[cpu] */
518 kvm_gicc_access(s, 0x08, cpu, &reg, false);
519 s->bpr[cpu] = (reg & 0x7);
520
521 /* GICC_ABPR -> s->abpr[cpu] */
522 kvm_gicc_access(s, 0x1c, cpu, &reg, false);
523 s->abpr[cpu] = (reg & 0x7);
524
525 /* GICC_APRn -> s->apr[n][cpu] */
526 for (i = 0; i < 4; i++) {
527 kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, false);
528 s->apr[i][cpu] = reg;
529 }
530 }
531 }
532
533 static void kvm_arm_gic_reset(DeviceState *dev)
534 {
535 GICState *s = ARM_GIC_COMMON(dev);
536 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
537
538 kgc->parent_reset(dev);
539 kvm_arm_gic_put(s);
540 }
541
542 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
543 {
544 int i;
545 GICState *s = KVM_ARM_GIC(dev);
546 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
547 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
548 Error *local_err = NULL;
549 int ret;
550
551 kgc->parent_realize(dev, &local_err);
552 if (local_err) {
553 error_propagate(errp, local_err);
554 return;
555 }
556
557 if (s->security_extn) {
558 error_setg(errp, "the in-kernel VGIC does not implement the "
559 "security extensions");
560 return;
561 }
562
563 i = s->num_irq - GIC_INTERNAL;
564 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
565 * GPIO array layout is thus:
566 * [0..N-1] SPIs
567 * [N..N+31] PPIs for CPU 0
568 * [N+32..N+63] PPIs for CPU 1
569 * ...
570 */
571 i += (GIC_INTERNAL * s->num_cpu);
572 qdev_init_gpio_in(dev, kvm_arm_gic_set_irq, i);
573 /* We never use our outbound IRQ/FIQ lines but provide them so that
574 * we maintain the same interface as the non-KVM GIC.
575 */
576 for (i = 0; i < s->num_cpu; i++) {
577 sysbus_init_irq(sbd, &s->parent_irq[i]);
578 }
579 for (i = 0; i < s->num_cpu; i++) {
580 sysbus_init_irq(sbd, &s->parent_fiq[i]);
581 }
582
583 /* Try to create the device via the device control API */
584 s->dev_fd = -1;
585 ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false);
586 if (ret >= 0) {
587 s->dev_fd = ret;
588 } else if (ret != -ENODEV && ret != -ENOTSUP) {
589 error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
590 return;
591 }
592
593 if (kvm_gic_supports_attr(s, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) {
594 uint32_t numirqs = s->num_irq;
595 kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, 0, &numirqs, 1);
596 }
597
598 /* Tell the kernel to complete VGIC initialization now */
599 if (kvm_gic_supports_attr(s, KVM_DEV_ARM_VGIC_GRP_CTRL,
600 KVM_DEV_ARM_VGIC_CTRL_INIT)) {
601 kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_CTRL,
602 KVM_DEV_ARM_VGIC_CTRL_INIT, 0, 0, 1);
603 }
604
605 /* Distributor */
606 memory_region_init_reservation(&s->iomem, OBJECT(s),
607 "kvm-gic_dist", 0x1000);
608 sysbus_init_mmio(sbd, &s->iomem);
609 kvm_arm_register_device(&s->iomem,
610 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
611 | KVM_VGIC_V2_ADDR_TYPE_DIST,
612 KVM_DEV_ARM_VGIC_GRP_ADDR,
613 KVM_VGIC_V2_ADDR_TYPE_DIST,
614 s->dev_fd);
615 /* CPU interface for current core. Unlike arm_gic, we don't
616 * provide the "interface for core #N" memory regions, because
617 * cores with a VGIC don't have those.
618 */
619 memory_region_init_reservation(&s->cpuiomem[0], OBJECT(s),
620 "kvm-gic_cpu", 0x1000);
621 sysbus_init_mmio(sbd, &s->cpuiomem[0]);
622 kvm_arm_register_device(&s->cpuiomem[0],
623 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
624 | KVM_VGIC_V2_ADDR_TYPE_CPU,
625 KVM_DEV_ARM_VGIC_GRP_ADDR,
626 KVM_VGIC_V2_ADDR_TYPE_CPU,
627 s->dev_fd);
628 }
629
630 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
631 {
632 DeviceClass *dc = DEVICE_CLASS(klass);
633 ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
634 KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
635
636 agcc->pre_save = kvm_arm_gic_get;
637 agcc->post_load = kvm_arm_gic_put;
638 kgc->parent_realize = dc->realize;
639 kgc->parent_reset = dc->reset;
640 dc->realize = kvm_arm_gic_realize;
641 dc->reset = kvm_arm_gic_reset;
642 }
643
644 static const TypeInfo kvm_arm_gic_info = {
645 .name = TYPE_KVM_ARM_GIC,
646 .parent = TYPE_ARM_GIC_COMMON,
647 .instance_size = sizeof(GICState),
648 .class_init = kvm_arm_gic_class_init,
649 .class_size = sizeof(KVMARMGICClass),
650 };
651
652 static void kvm_arm_gic_register_types(void)
653 {
654 type_register_static(&kvm_arm_gic_info);
655 }
656
657 type_init(kvm_arm_gic_register_types)