]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/arm_gicv3_common.c
Merge remote-tracking branch 'remotes/berrange/tags/pull-qio-2017-07-18-1' into staging
[mirror_qemu.git] / hw / intc / arm_gicv3_common.c
1 /*
2 * ARM GICv3 support - common bits of emulated and KVM kernel model
3 *
4 * Copyright (c) 2012 Linaro Limited
5 * Copyright (c) 2015 Huawei.
6 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7 * Written by Peter Maydell
8 * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qom/cpu.h"
27 #include "hw/intc/arm_gicv3_common.h"
28 #include "gicv3_internal.h"
29 #include "hw/arm/linux-boot-if.h"
30
31 static void gicv3_pre_save(void *opaque)
32 {
33 GICv3State *s = (GICv3State *)opaque;
34 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
35
36 if (c->pre_save) {
37 c->pre_save(s);
38 }
39 }
40
41 static int gicv3_post_load(void *opaque, int version_id)
42 {
43 GICv3State *s = (GICv3State *)opaque;
44 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
45
46 if (c->post_load) {
47 c->post_load(s);
48 }
49 return 0;
50 }
51
52 static bool virt_state_needed(void *opaque)
53 {
54 GICv3CPUState *cs = opaque;
55
56 return cs->num_list_regs != 0;
57 }
58
59 static const VMStateDescription vmstate_gicv3_cpu_virt = {
60 .name = "arm_gicv3_cpu/virt",
61 .version_id = 1,
62 .minimum_version_id = 1,
63 .needed = virt_state_needed,
64 .fields = (VMStateField[]) {
65 VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4),
66 VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState),
67 VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX),
68 VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState),
69 VMSTATE_END_OF_LIST()
70 }
71 };
72
73 static int icc_sre_el1_reg_pre_load(void *opaque)
74 {
75 GICv3CPUState *cs = opaque;
76
77 /*
78 * If the sre_el1 subsection is not transferred this
79 * means SRE_EL1 is 0x7 (which might not be the same as
80 * our reset value).
81 */
82 cs->icc_sre_el1 = 0x7;
83 return 0;
84 }
85
86 static bool icc_sre_el1_reg_needed(void *opaque)
87 {
88 GICv3CPUState *cs = opaque;
89
90 return cs->icc_sre_el1 != 7;
91 }
92
93 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = {
94 .name = "arm_gicv3_cpu/sre_el1",
95 .version_id = 1,
96 .minimum_version_id = 1,
97 .pre_load = icc_sre_el1_reg_pre_load,
98 .needed = icc_sre_el1_reg_needed,
99 .fields = (VMStateField[]) {
100 VMSTATE_UINT64(icc_sre_el1, GICv3CPUState),
101 VMSTATE_END_OF_LIST()
102 }
103 };
104
105 static const VMStateDescription vmstate_gicv3_cpu = {
106 .name = "arm_gicv3_cpu",
107 .version_id = 1,
108 .minimum_version_id = 1,
109 .fields = (VMStateField[]) {
110 VMSTATE_UINT32(level, GICv3CPUState),
111 VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
112 VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
113 VMSTATE_UINT32(gicr_waker, GICv3CPUState),
114 VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
115 VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
116 VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
117 VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
118 VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
119 VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
120 VMSTATE_UINT32(edge_trigger, GICv3CPUState),
121 VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
122 VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
123 VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
124 VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
125 VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
126 VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
127 VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
128 VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
129 VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
130 VMSTATE_END_OF_LIST()
131 },
132 .subsections = (const VMStateDescription * []) {
133 &vmstate_gicv3_cpu_virt,
134 NULL
135 },
136 .subsections = (const VMStateDescription * []) {
137 &vmstate_gicv3_cpu_sre_el1,
138 NULL
139 }
140 };
141
142 static const VMStateDescription vmstate_gicv3 = {
143 .name = "arm_gicv3",
144 .version_id = 1,
145 .minimum_version_id = 1,
146 .pre_save = gicv3_pre_save,
147 .post_load = gicv3_post_load,
148 .priority = MIG_PRI_GICV3,
149 .fields = (VMStateField[]) {
150 VMSTATE_UINT32(gicd_ctlr, GICv3State),
151 VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
152 VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
153 VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
154 VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
155 VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
156 VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
157 VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
158 VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
159 VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
160 VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
161 VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
162 DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
163 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
164 vmstate_gicv3_cpu, GICv3CPUState),
165 VMSTATE_END_OF_LIST()
166 }
167 };
168
169 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
170 const MemoryRegionOps *ops)
171 {
172 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
173 int i;
174
175 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
176 * GPIO array layout is thus:
177 * [0..N-1] spi
178 * [N..N+31] PPIs for CPU 0
179 * [N+32..N+63] PPIs for CPU 1
180 * ...
181 */
182 i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
183 qdev_init_gpio_in(DEVICE(s), handler, i);
184
185 for (i = 0; i < s->num_cpu; i++) {
186 sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
187 }
188 for (i = 0; i < s->num_cpu; i++) {
189 sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
190 }
191 for (i = 0; i < s->num_cpu; i++) {
192 sysbus_init_irq(sbd, &s->cpu[i].parent_virq);
193 }
194 for (i = 0; i < s->num_cpu; i++) {
195 sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq);
196 }
197
198 memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
199 "gicv3_dist", 0x10000);
200 memory_region_init_io(&s->iomem_redist, OBJECT(s), ops ? &ops[1] : NULL, s,
201 "gicv3_redist", 0x20000 * s->num_cpu);
202
203 sysbus_init_mmio(sbd, &s->iomem_dist);
204 sysbus_init_mmio(sbd, &s->iomem_redist);
205 }
206
207 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
208 {
209 GICv3State *s = ARM_GICV3_COMMON(dev);
210 int i;
211
212 /* revision property is actually reserved and currently used only in order
213 * to keep the interface compatible with GICv2 code, avoiding extra
214 * conditions. However, in future it could be used, for example, if we
215 * implement GICv4.
216 */
217 if (s->revision != 3) {
218 error_setg(errp, "unsupported GIC revision %d", s->revision);
219 return;
220 }
221
222 if (s->num_irq > GICV3_MAXIRQ) {
223 error_setg(errp,
224 "requested %u interrupt lines exceeds GIC maximum %d",
225 s->num_irq, GICV3_MAXIRQ);
226 return;
227 }
228 if (s->num_irq < GIC_INTERNAL) {
229 error_setg(errp,
230 "requested %u interrupt lines is below GIC minimum %d",
231 s->num_irq, GIC_INTERNAL);
232 return;
233 }
234
235 /* ITLinesNumber is represented as (N / 32) - 1, so this is an
236 * implementation imposed restriction, not an architectural one,
237 * so we don't have to deal with bitfields where only some of the
238 * bits in a 32-bit word should be valid.
239 */
240 if (s->num_irq % 32) {
241 error_setg(errp,
242 "%d interrupt lines unsupported: not divisible by 32",
243 s->num_irq);
244 return;
245 }
246
247 s->cpu = g_new0(GICv3CPUState, s->num_cpu);
248
249 for (i = 0; i < s->num_cpu; i++) {
250 CPUState *cpu = qemu_get_cpu(i);
251 uint64_t cpu_affid;
252 int last;
253
254 s->cpu[i].cpu = cpu;
255 s->cpu[i].gic = s;
256 /* Store GICv3CPUState in CPUARMState gicv3state pointer */
257 gicv3_set_gicv3state(cpu, &s->cpu[i]);
258
259 /* Pre-construct the GICR_TYPER:
260 * For our implementation:
261 * Top 32 bits are the affinity value of the associated CPU
262 * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
263 * Processor_Number == CPU index starting from 0
264 * DPGS == 0 (GICR_CTLR.DPG* not supported)
265 * Last == 1 if this is the last redistributor in a series of
266 * contiguous redistributor pages
267 * DirectLPI == 0 (direct injection of LPIs not supported)
268 * VLPIS == 0 (virtual LPIs not supported)
269 * PLPIS == 0 (physical LPIs not supported)
270 */
271 cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL);
272 last = (i == s->num_cpu - 1);
273
274 /* The CPU mp-affinity property is in MPIDR register format; squash
275 * the affinity bytes into 32 bits as the GICR_TYPER has them.
276 */
277 cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) |
278 (cpu_affid & 0xFFFFFF);
279 s->cpu[i].gicr_typer = (cpu_affid << 32) |
280 (1 << 24) |
281 (i << 8) |
282 (last << 4);
283 }
284 }
285
286 static void arm_gicv3_common_reset(DeviceState *dev)
287 {
288 GICv3State *s = ARM_GICV3_COMMON(dev);
289 int i;
290
291 for (i = 0; i < s->num_cpu; i++) {
292 GICv3CPUState *cs = &s->cpu[i];
293
294 cs->level = 0;
295 cs->gicr_ctlr = 0;
296 cs->gicr_statusr[GICV3_S] = 0;
297 cs->gicr_statusr[GICV3_NS] = 0;
298 cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
299 cs->gicr_propbaser = 0;
300 cs->gicr_pendbaser = 0;
301 /* If we're resetting a TZ-aware GIC as if secure firmware
302 * had set it up ready to start a kernel in non-secure, we
303 * need to set interrupts to group 1 so the kernel can use them.
304 * Otherwise they reset to group 0 like the hardware.
305 */
306 if (s->irq_reset_nonsecure) {
307 cs->gicr_igroupr0 = 0xffffffff;
308 } else {
309 cs->gicr_igroupr0 = 0;
310 }
311
312 cs->gicr_ienabler0 = 0;
313 cs->gicr_ipendr0 = 0;
314 cs->gicr_iactiver0 = 0;
315 cs->edge_trigger = 0xffff;
316 cs->gicr_igrpmodr0 = 0;
317 cs->gicr_nsacr = 0;
318 memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
319
320 cs->hppi.prio = 0xff;
321
322 /* State in the CPU interface must *not* be reset here, because it
323 * is part of the CPU's reset domain, not the GIC device's.
324 */
325 }
326
327 /* For our implementation affinity routing is always enabled */
328 if (s->security_extn) {
329 s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
330 } else {
331 s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
332 }
333
334 s->gicd_statusr[GICV3_S] = 0;
335 s->gicd_statusr[GICV3_NS] = 0;
336
337 memset(s->group, 0, sizeof(s->group));
338 memset(s->grpmod, 0, sizeof(s->grpmod));
339 memset(s->enabled, 0, sizeof(s->enabled));
340 memset(s->pending, 0, sizeof(s->pending));
341 memset(s->active, 0, sizeof(s->active));
342 memset(s->level, 0, sizeof(s->level));
343 memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
344 memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
345 memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
346 memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
347 /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
348 * write these to get sane behaviour and we need not populate the
349 * pointer cache here; however having the cache be different for
350 * "happened to be 0 from reset" and "guest wrote 0" would be
351 * too confusing.
352 */
353 gicv3_cache_all_target_cpustates(s);
354
355 if (s->irq_reset_nonsecure) {
356 /* If we're resetting a TZ-aware GIC as if secure firmware
357 * had set it up ready to start a kernel in non-secure, we
358 * need to set interrupts to group 1 so the kernel can use them.
359 * Otherwise they reset to group 0 like the hardware.
360 */
361 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
362 gicv3_gicd_group_set(s, i);
363 }
364 }
365 }
366
367 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
368 bool secure_boot)
369 {
370 GICv3State *s = ARM_GICV3_COMMON(obj);
371
372 if (s->security_extn && !secure_boot) {
373 /* We're directly booting a kernel into NonSecure. If this GIC
374 * implements the security extensions then we must configure it
375 * to have all the interrupts be NonSecure (this is a job that
376 * is done by the Secure boot firmware in real hardware, and in
377 * this mode QEMU is acting as a minimalist firmware-and-bootloader
378 * equivalent).
379 */
380 s->irq_reset_nonsecure = true;
381 }
382 }
383
384 static Property arm_gicv3_common_properties[] = {
385 DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
386 DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
387 DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
388 DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
389 DEFINE_PROP_END_OF_LIST(),
390 };
391
392 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
393 {
394 DeviceClass *dc = DEVICE_CLASS(klass);
395 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
396
397 dc->reset = arm_gicv3_common_reset;
398 dc->realize = arm_gicv3_common_realize;
399 dc->props = arm_gicv3_common_properties;
400 dc->vmsd = &vmstate_gicv3;
401 albifc->arm_linux_init = arm_gic_common_linux_init;
402 }
403
404 static const TypeInfo arm_gicv3_common_type = {
405 .name = TYPE_ARM_GICV3_COMMON,
406 .parent = TYPE_SYS_BUS_DEVICE,
407 .instance_size = sizeof(GICv3State),
408 .class_size = sizeof(ARMGICv3CommonClass),
409 .class_init = arm_gicv3_common_class_init,
410 .abstract = true,
411 .interfaces = (InterfaceInfo []) {
412 { TYPE_ARM_LINUX_BOOT_IF },
413 { },
414 },
415 };
416
417 static void register_types(void)
418 {
419 type_register_static(&arm_gicv3_common_type);
420 }
421
422 type_init(register_types)